Simon King′s home page:
Mathematics:
Cohomology
→Theory
→Implementation
Jena:
Faculty
David Green
External links:
Singular
Gap
|
Mod-5-Cohomology of McL, a group of order 898128000
General information on the group
- McL is a group of order 898128000.
- The group order factors as 27 · 36 · 53 · 7 · 11.
- The group is defined by Group([(1,191)(2,182)(4,81)(5,55)(6,60)(8,66)(9,272)(10,177)(11,192)(12,163)(14,242)(15,133)(16,107)(18,267)(19,108)(20,218)(21,198)(22,185)(23,211)(24,82)(25,204)(26,195)(27,132)(28,253)(29,207)(30,59)(31,179)(32,154)(33,264)(34,152)(35,92)(36,189)(37,217)(38,197)(39,85)(40,156)(42,184)(43,102)(44,50)(45,216)(46,99)(47,181)(49,199)(51,111)(53,158)(54,236)(56,210)(58,103)(61,263)(63,119)(64,138)(65,127)(67,105)(68,137)(70,125)(71,144)(72,219)(73,261)(75,175)(77,269)(78,237)(79,268)(83,232)(84,256)(86,104)(87,95)(89,234)(90,233)(91,140)(94,149)(97,173)(98,160)(100,112)(101,123)(106,221)(109,131)(110,176)(113,262)(114,257)(115,201)(117,260)(118,238)(120,275)(121,214)(122,225)(124,246)(126,170)(129,141)(134,196)(135,167)(142,235)(143,224)(145,205)(146,249)(148,226)(150,243)(153,193)(155,228)(161,231)(164,215)(165,180)(168,222)(169,270)(171,241)(172,259)(174,212)(178,188)(183,266)(186,203)(190,250)(202,247)(208,255)(209,251)(213,252)(223,271)(227,274)(230,240)(239,254)(245,258)(265,273),(1,24,204,92,155)(2,28,272,165,78)(3,67,142,31,255)(4,168,77,17,100)(5,118,19,223,211)(6,274,137,79,245)(7,98,75,73,14)(8,209,43,139,193)(9,266,104,70,145)(10,271,12,13,71)(11,247,138,121,269)(15,218,133,164,196)(16,170,182,65,171)(18,26,198,124,185)(20,128,159,83,38)(21,264,27,64,162)(22,116,53,101,51)(23,179,244,80,203)(25,40,177,85,191)(29,56,135,68,195)(30,132,42,248,146)(32,148,114,49,134)(33,61,163,90,227)(34,241,233,95,181)(35,89,82,205,41)(36,239,275,257,183)(37,54,99,249,176)(39,126,189,136,230)(44,172,153,125,119)(45,234,222,232,212)(46,214,69,167,190)(47,140,268,174,62)(48,55,113,220,235)(50,213,224,202,130)(52,107,262,226,88)(57,221,261,129,58)(59,252,260,216,166)(60,84,188,208,201)(63,94,173,210,81)(66,192,93,169,110)(72,152,197,217,254)(74,206,154,186,219)(76,91,180,238,112)(86,215,231,131,225)(87,115,158,178,240)(96,265,161,120,144)(97,250,243,263,109)(102,207,246,122,127)(103,156,160,151,150)(105,267,199,111,117)(106,273,242,149,143)(108,256,157,147,184)(123,141,259,175,200)(187,251,258,194,236)(228,237,253,270,229)]).
- It is non-abelian.
- It has 5-Rank 2.
- The centre of a Sylow 5-subgroup has rank 1.
- Its Sylow 5-subgroup has 6 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 2.
Structure of the cohomology ring
This cohomology ring is isomorphic to the cohomology ring of a subgroup, namely H*(Normalizer(McL,Centre(SylowSubgroup(McL,5))); GF(5)).
General information
- The cohomology ring is of dimension 2 and depth 1.
- The depth coincides with the Duflot bound.
- The Poincaré series is
1 − 2·t + 2·t2 − 2·t3 + 3·t4 − 3·t5 + 2·t6 − t7 + t8 − 2·t9 + 2·t10 − 2·t11 + 3·t12 − 2·t13 + t14 − 2·t17 + 3·t18 − 3·t19 + 3·t20 − 2·t21 + t22 − 2·t25 + 3·t26 − 2·t27 + 2·t28 − 2·t29 + t30 − t31 + 2·t32 − 3·t33 + 3·t34 − 2·t35 + 2·t36 − 2·t37 + t38 |
| ( − 1 + t)2 · (1 + t2) · (1 − t + t2 − t3 + t4) · (1 + t4) · (1 + t + t2 + t3 + t4) · (1 − t2 + t4 − t6 + t8) · (1 − t4 + t8 − t12 + t16) |
- The a-invariants are -∞,-16,-2. They were obtained using the filter regular HSOP of the Hilbert-Poincaré test.
- The filter degree type of any filter regular HSOP is [-1, -2, -2].
Ring generators
The cohomology ring has 12 minimal generators of maximal degree 40:
- a_4_0, a nilpotent element of degree 4
- a_5_0, a nilpotent element of degree 5
- a_7_0, a nilpotent element of degree 7
- b_8_0, an element of degree 8
- a_13_1, a nilpotent element of degree 13
- b_14_0, an element of degree 14
- a_15_1, a nilpotent element of degree 15
- a_16_1, a nilpotent element of degree 16
- a_23_1, a nilpotent element of degree 23
- a_24_1, a nilpotent element of degree 24
- a_39_1, a nilpotent element of degree 39
- c_40_1, a Duflot element of degree 40
Ring relations
There are 6 "obvious" relations:
a_5_02, a_7_02, a_13_12, a_15_12, a_23_12, a_39_12
Apart from that, there are 52 minimal relations of maximal degree 63:
- a_4_02
- a_4_0·a_5_0
- a_4_0·a_7_0
- a_4_0·b_8_0 + 2·a_5_0·a_7_0
- a_4_0·a_13_1
- a_4_0·b_14_0 + a_5_0·a_13_1
- a_4_0·a_15_1
- a_4_0·a_16_1
- a_5_0·a_15_1
- a_7_0·a_13_1
- a_16_1·a_5_0
- b_14_0·a_7_0 + 2·b_8_0·a_13_1
- a_7_0·a_15_1
- a_16_1·a_7_0
- b_8_0·a_15_1
- b_8_0·a_16_1
- a_4_0·a_23_1
- a_4_0·a_24_1
- a_5_0·a_23_1
- a_13_1·a_15_1
- a_16_1·a_13_1
- a_24_1·a_5_0
- b_14_0·a_15_1
- a_7_0·a_23_1
- b_14_0·a_16_1
- a_16_1·a_15_1
- a_24_1·a_7_0
- b_8_0·a_23_1
- a_16_12
- b_8_0·a_24_1
- a_13_1·a_23_1
- a_24_1·a_13_1
- b_14_0·a_23_1
- a_15_1·a_23_1
- b_14_0·a_24_1
- a_16_1·a_23_1
- a_24_1·a_15_1
- a_16_1·a_24_1
- a_4_0·a_39_1
- a_5_0·a_39_1
- a_7_0·a_39_1 + 2·b_14_02·a_5_0·a_13_1
- a_24_1·a_23_1
- b_14_03·a_5_0 + b_8_0·a_39_1
- a_24_12
- a_13_1·a_39_1 + c_40_1·a_5_0·a_7_0
- b_14_0·a_39_1 + 2·b_8_0·c_40_1·a_5_0
- a_15_1·a_39_1
- a_16_1·a_39_1
- b_14_03·a_13_1 + b_8_0·c_40_1·a_7_0
- b_14_04 + b_8_03·b_14_0·a_5_0·a_13_1 − 2·b_8_02·c_40_1
- a_23_1·a_39_1
- a_24_1·a_39_1
Data used for the Hilbert-Poincaré test
- We proved completion in degree 63 using the Hilbert-Poincaré criterion.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_40_1, an element of degree 40
- b_8_0, an element of degree 8
- A Duflot regular sequence is given by c_40_1.
- The Raw Filter Degree Type of the filter regular HSOP is [-1, 24, 46].
Restriction maps
- a_4_0 → a_4_0
- a_5_0 → a_5_0
- a_7_0 → a_7_0
- b_8_0 → b_8_0
- a_13_1 → a_13_1
- b_14_0 → b_14_0
- a_15_1 → a_15_1
- a_16_1 → a_16_1
- a_23_1 → a_23_1
- a_24_1 → a_24_1
- a_39_1 → a_39_1
- c_40_1 → c_40_1
Restriction map to the greatest el. ab. subgp. in the centre of a Sylow subgroup, which is of rank 1
- a_4_0 → 0, an element of degree 4
- a_5_0 → 0, an element of degree 5
- a_7_0 → 0, an element of degree 7
- b_8_0 → 0, an element of degree 8
- a_13_1 → 0, an element of degree 13
- b_14_0 → 0, an element of degree 14
- a_15_1 → 0, an element of degree 15
- a_16_1 → 0, an element of degree 16
- a_23_1 → 0, an element of degree 23
- a_24_1 → 0, an element of degree 24
- a_39_1 → 0, an element of degree 39
- c_40_1 → − 2·c_2_020, an element of degree 40
Restriction map to a maximal el. ab. subgp. of rank 2 in a Sylow subgroup
- a_4_0 → 2·c_2_2·a_1_0·a_1_1, an element of degree 4
- a_5_0 → − 2·c_2_22·a_1_0 + 2·c_2_1·c_2_2·a_1_1, an element of degree 5
- a_7_0 → 2·c_2_23·a_1_1, an element of degree 7
- b_8_0 → − c_2_24, an element of degree 8
- a_13_1 → 2·c_2_1·c_2_25·a_1_1 − 2·c_2_15·c_2_2·a_1_1, an element of degree 13
- b_14_0 → 2·c_2_1·c_2_26 − 2·c_2_15·c_2_22, an element of degree 14
- a_15_1 → 0, an element of degree 15
- a_16_1 → 0, an element of degree 16
- a_23_1 → 0, an element of degree 23
- a_24_1 → 0, an element of degree 24
- a_39_1 → − c_2_13·c_2_216·a_1_0 + c_2_14·c_2_215·a_1_1 − 2·c_2_17·c_2_212·a_1_0
+ 2·c_2_18·c_2_211·a_1_1 + 2·c_2_111·c_2_28·a_1_0 − 2·c_2_112·c_2_27·a_1_1 + c_2_115·c_2_24·a_1_0 − c_2_116·c_2_23·a_1_1, an element of degree 39
- c_40_1 → − c_2_12·c_2_217·a_1_0·a_1_1 + 2·c_2_16·c_2_213·a_1_0·a_1_1
− c_2_110·c_2_29·a_1_0·a_1_1 − 2·c_2_14·c_2_216 − 2·c_2_18·c_2_212 − 2·c_2_112·c_2_28 − 2·c_2_116·c_2_24 − 2·c_2_120, an element of degree 40
Restriction map to a maximal el. ab. subgp. of rank 2 in a Sylow subgroup
- a_4_0 → − c_2_2·a_1_0·a_1_1, an element of degree 4
- a_5_0 → c_2_22·a_1_0 − c_2_1·c_2_2·a_1_1, an element of degree 5
- a_7_0 → 2·c_2_23·a_1_1, an element of degree 7
- b_8_0 → − c_2_24, an element of degree 8
- a_13_1 → − c_2_1·c_2_25·a_1_1 + c_2_15·c_2_2·a_1_1, an element of degree 13
- b_14_0 → − c_2_1·c_2_26 + c_2_15·c_2_22, an element of degree 14
- a_15_1 → 0, an element of degree 15
- a_16_1 → 0, an element of degree 16
- a_23_1 → 0, an element of degree 23
- a_24_1 → 0, an element of degree 24
- a_39_1 → − c_2_13·c_2_216·a_1_0 + c_2_14·c_2_215·a_1_1 − 2·c_2_17·c_2_212·a_1_0
+ 2·c_2_18·c_2_211·a_1_1 + 2·c_2_111·c_2_28·a_1_0 − 2·c_2_112·c_2_27·a_1_1 + c_2_115·c_2_24·a_1_0 − c_2_116·c_2_23·a_1_1, an element of degree 39
- c_40_1 → 2·c_2_12·c_2_217·a_1_0·a_1_1 + c_2_16·c_2_213·a_1_0·a_1_1
+ 2·c_2_110·c_2_29·a_1_0·a_1_1 − 2·c_2_14·c_2_216 − 2·c_2_18·c_2_212 − 2·c_2_112·c_2_28 − 2·c_2_116·c_2_24 − 2·c_2_120, an element of degree 40
Restriction map to a maximal el. ab. subgp. of rank 2 in a Sylow subgroup
- a_4_0 → − c_2_2·a_1_0·a_1_1, an element of degree 4
- a_5_0 → c_2_22·a_1_0 − c_2_1·c_2_2·a_1_1, an element of degree 5
- a_7_0 → 2·c_2_23·a_1_1, an element of degree 7
- b_8_0 → − c_2_24, an element of degree 8
- a_13_1 → − c_2_1·c_2_25·a_1_1 + c_2_15·c_2_2·a_1_1, an element of degree 13
- b_14_0 → − c_2_1·c_2_26 + c_2_15·c_2_22, an element of degree 14
- a_15_1 → 0, an element of degree 15
- a_16_1 → 0, an element of degree 16
- a_23_1 → 0, an element of degree 23
- a_24_1 → 0, an element of degree 24
- a_39_1 → − c_2_13·c_2_216·a_1_0 + c_2_14·c_2_215·a_1_1 − 2·c_2_17·c_2_212·a_1_0
+ 2·c_2_18·c_2_211·a_1_1 + 2·c_2_111·c_2_28·a_1_0 − 2·c_2_112·c_2_27·a_1_1 + c_2_115·c_2_24·a_1_0 − c_2_116·c_2_23·a_1_1, an element of degree 39
- c_40_1 → 2·c_2_12·c_2_217·a_1_0·a_1_1 + c_2_16·c_2_213·a_1_0·a_1_1
+ 2·c_2_110·c_2_29·a_1_0·a_1_1 − 2·c_2_14·c_2_216 − 2·c_2_18·c_2_212 − 2·c_2_112·c_2_28 − 2·c_2_116·c_2_24 − 2·c_2_120, an element of degree 40
Restriction map to a maximal el. ab. subgp. of rank 2 in a Sylow subgroup
- a_4_0 → − 2·c_2_2·a_1_0·a_1_1, an element of degree 4
- a_5_0 → 2·c_2_22·a_1_0 − 2·c_2_1·c_2_2·a_1_1, an element of degree 5
- a_7_0 → 2·c_2_23·a_1_1, an element of degree 7
- b_8_0 → − c_2_24, an element of degree 8
- a_13_1 → − 2·c_2_1·c_2_25·a_1_1 + 2·c_2_15·c_2_2·a_1_1, an element of degree 13
- b_14_0 → − 2·c_2_1·c_2_26 + 2·c_2_15·c_2_22, an element of degree 14
- a_15_1 → 0, an element of degree 15
- a_16_1 → 0, an element of degree 16
- a_23_1 → 0, an element of degree 23
- a_24_1 → 0, an element of degree 24
- a_39_1 → − c_2_13·c_2_216·a_1_0 + c_2_14·c_2_215·a_1_1 − 2·c_2_17·c_2_212·a_1_0
+ 2·c_2_18·c_2_211·a_1_1 + 2·c_2_111·c_2_28·a_1_0 − 2·c_2_112·c_2_27·a_1_1 + c_2_115·c_2_24·a_1_0 − c_2_116·c_2_23·a_1_1, an element of degree 39
- c_40_1 → c_2_12·c_2_217·a_1_0·a_1_1 − 2·c_2_16·c_2_213·a_1_0·a_1_1
+ c_2_110·c_2_29·a_1_0·a_1_1 − 2·c_2_14·c_2_216 − 2·c_2_18·c_2_212 − 2·c_2_112·c_2_28 − 2·c_2_116·c_2_24 − 2·c_2_120, an element of degree 40
Restriction map to a maximal el. ab. subgp. of rank 2 in a Sylow subgroup
- a_4_0 → − 2·c_2_2·a_1_0·a_1_1, an element of degree 4
- a_5_0 → 2·c_2_22·a_1_0 − 2·c_2_1·c_2_2·a_1_1, an element of degree 5
- a_7_0 → 2·c_2_23·a_1_1, an element of degree 7
- b_8_0 → − c_2_24, an element of degree 8
- a_13_1 → − 2·c_2_1·c_2_25·a_1_1 + 2·c_2_15·c_2_2·a_1_1, an element of degree 13
- b_14_0 → − 2·c_2_1·c_2_26 + 2·c_2_15·c_2_22, an element of degree 14
- a_15_1 → 0, an element of degree 15
- a_16_1 → 0, an element of degree 16
- a_23_1 → 0, an element of degree 23
- a_24_1 → 0, an element of degree 24
- a_39_1 → − c_2_13·c_2_216·a_1_0 + c_2_14·c_2_215·a_1_1 − 2·c_2_17·c_2_212·a_1_0
+ 2·c_2_18·c_2_211·a_1_1 + 2·c_2_111·c_2_28·a_1_0 − 2·c_2_112·c_2_27·a_1_1 + c_2_115·c_2_24·a_1_0 − c_2_116·c_2_23·a_1_1, an element of degree 39
- c_40_1 → c_2_12·c_2_217·a_1_0·a_1_1 − 2·c_2_16·c_2_213·a_1_0·a_1_1
+ c_2_110·c_2_29·a_1_0·a_1_1 − 2·c_2_14·c_2_216 − 2·c_2_18·c_2_212 − 2·c_2_112·c_2_28 − 2·c_2_116·c_2_24 − 2·c_2_120, an element of degree 40
Restriction map to a maximal el. ab. subgp. of rank 2 in a Sylow subgroup
- a_4_0 → c_2_2·a_1_0·a_1_1, an element of degree 4
- a_5_0 → − c_2_22·a_1_0 + c_2_1·c_2_2·a_1_1, an element of degree 5
- a_7_0 → 2·c_2_23·a_1_1, an element of degree 7
- b_8_0 → − c_2_24, an element of degree 8
- a_13_1 → c_2_1·c_2_25·a_1_1 − c_2_15·c_2_2·a_1_1, an element of degree 13
- b_14_0 → c_2_1·c_2_26 − c_2_15·c_2_22, an element of degree 14
- a_15_1 → 0, an element of degree 15
- a_16_1 → 0, an element of degree 16
- a_23_1 → 0, an element of degree 23
- a_24_1 → 0, an element of degree 24
- a_39_1 → − c_2_13·c_2_216·a_1_0 + c_2_14·c_2_215·a_1_1 − 2·c_2_17·c_2_212·a_1_0
+ 2·c_2_18·c_2_211·a_1_1 + 2·c_2_111·c_2_28·a_1_0 − 2·c_2_112·c_2_27·a_1_1 + c_2_115·c_2_24·a_1_0 − c_2_116·c_2_23·a_1_1, an element of degree 39
- c_40_1 → − 2·c_2_12·c_2_217·a_1_0·a_1_1 − c_2_16·c_2_213·a_1_0·a_1_1
− 2·c_2_110·c_2_29·a_1_0·a_1_1 − 2·c_2_14·c_2_216 − 2·c_2_18·c_2_212 − 2·c_2_112·c_2_28 − 2·c_2_116·c_2_24 − 2·c_2_120, an element of degree 40
|