Simon King′s home page:
Mathematics:
Cohomology
→Theory
→Implementation
Jena:
Faculty
David Green
External links:
Singular
Gap
|
Mod-2-Cohomology of Normalizer(HigmanSims,Centre(SylowSubgroup(HigmanSims,2))), a group of order 7680
General information on the group
- Normalizer(HigmanSims,Centre(SylowSubgroup(HigmanSims,2))) is a group of order 7680.
- The group order factors as 29 · 3 · 5.
- The group is defined by Group([(1,74)(2,76)(3,70)(4,16)(5,42)(6,20)(7,10)(8,68)(11,43)(12,54)(13,79)(14,22)(15,39)(17,73)(18,84)(19,46)(21,55)(23,62)(25,93)(26,27)(29,60)(30,37)(31,64)(33,91)(34,82)(35,69)(36,77)(40,95)(41,47)(45,80)(48,72)(50,98)(56,61)(57,89)(58,63)(65,86)(67,97)(75,99)(81,92)(85,90),(3,23,77,61)(4,19,35,89)(5,40,67,92)(6,22,20,14)(7,26,8,80)(10,27,68,45)(11,29,41,13)(12,39,50,33)(15,98,91,54)(16,46,69,57)(17,90,37,65)(18,84)(21,25,75,58)(24,52,28,49)(30,86,73,85)(31,82,64,34)(32,66)(36,56,70,62)(42,95,97,81)(43,60,47,79)(44,94,100,59)(48,72)(51,53)(55,93,99,63)(78,88)(87,96),(3,55)(4,69)(5,10)(6,64)(7,42)(8,97)(9,71)(12,50)(14,82)(15,91)(16,35)(17,73)(18,84)(19,57)(20,31)(21,70)(22,34)(23,93)(24,94)(25,62)(26,95)(27,40)(28,59)(30,37)(33,39)(36,75)(38,83)(44,49)(45,92)(46,89)(48,72)(52,100)(54,98)(56,58)(61,63)(65,86)(67,68)(77,99)(80,81)(85,90),(2,6)(3,4)(5,92)(7,98)(8,60)(9,53)(10,50)(11,39)(12,45)(13,27)(14,22)(15,43)(16,70)(17,23)(18,34)(19,46)(20,76)(21,58)(25,93)(26,79)(29,68)(30,77)(35,56)(36,37)(38,66)(42,81)(48,72)(49,78)(52,88)(54,80)(55,63)(57,85)(59,87)(61,69)(62,73)(65,86)(75,99)(82,84)(89,90)(94,96),(1,2)(3,7)(4,19)(5,21)(6,34)(8,77)(9,38)(10,70)(11,79)(12,39)(13,43)(14,31)(15,54)(16,46)(17,85)(18,72)(20,82)(22,64)(23,80)(24,52)(25,92)(26,61)(27,56)(28,49)(29,47)(30,65)(32,66)(33,50)(35,89)(36,68)(37,86)(40,58)(41,60)(42,55)(44,59)(45,62)(48,84)(51,53)(57,69)(63,95)(67,75)(71,83)(73,90)(74,76)(78,88)(81,93)(87,96)(91,98)(94,100)(97,99),(1,3)(2,8)(4,16)(6,56)(7,72)(10,48)(11,46)(12,30)(13,79)(14,23)(18,77)(19,43)(20,61)(21,55)(22,62)(24,66)(25,92)(26,64)(27,31)(28,53)(29,35)(32,49)(33,90)(34,80)(36,84)(37,54)(40,58)(41,47)(45,82)(51,52)(57,89)(60,69)(63,95)(67,97)(68,76)(70,74)(71,96)(81,93)(83,87)(85,91)]).
- It is non-abelian.
- It has 2-Rank 4.
- The centre of a Sylow 2-subgroup has rank 1.
- Its Sylow 2-subgroup has 9 conjugacy classes of maximal elementary abelian subgroups, which are of rank 3, 3, 3, 3, 3, 3, 4, 4 and 4, respectively.
Structure of the cohomology ring
The computation was based on 3 stability conditions for H*(Syl2HS; GF(2)).
General information
- The cohomology ring is of dimension 4 and depth 2.
- The depth exceeds the Duflot bound, which is 1.
- The Poincaré series is
(2)·(1/2 − t + 5/2·t2 − 5/2·t3 + 3·t4 − 5/2·t5 + 3·t6 − 5/2·t7 + 5/2·t8 − 2·t9 + t10) |
| ( − 1 + t)4 · (1 + t + t2) · (1 + t2)2 · (1 + t4) |
Ring generators
The cohomology ring has 16 minimal generators of maximal degree 8:
- b_1_0, an element of degree 1
- b_2_2, an element of degree 2
- b_2_1, an element of degree 2
- a_3_6, a nilpotent element of degree 3
- b_3_4, an element of degree 3
- b_3_1, an element of degree 3
- b_3_0, an element of degree 3
- b_4_5, an element of degree 4
- b_4_1, an element of degree 4
- b_4_0, an element of degree 4
- b_5_5, an element of degree 5
- b_5_0, an element of degree 5
- b_6_6, an element of degree 6
- b_6_4, an element of degree 6
- b_7_10, an element of degree 7
- c_8_8, a Duflot element of degree 8
Ring relations
There are 76 minimal relations of maximal degree 14:
- b_1_0·a_3_6
- b_2_2·b_1_02 + b_2_22 + b_2_1·b_1_02
- b_1_0·b_3_1 + b_2_1·b_2_2
- b_1_0·b_3_4
- b_2_1·a_3_6
- b_2_2·a_3_6
- b_2_2·b_3_1 + b_2_1·b_2_2·b_1_0 + b_2_12·b_1_0
- b_2_2·b_3_4
- b_4_0·b_1_0 + b_2_2·b_3_0 + b_2_22·b_1_0 + b_2_1·b_1_03 + b_2_1·b_2_2·b_1_0
- b_4_5·b_1_0 + b_2_1·b_2_2·b_1_0
- a_3_62
- a_3_6·b_3_0
- a_3_6·b_3_1
- a_3_6·b_3_4
- b_2_2·b_4_5 + b_2_1·b_2_22
- b_2_2·b_1_0·b_3_0 + b_2_2·b_4_0 + b_2_23 + b_2_1·b_1_0·b_3_0 + b_2_12·b_1_02
- b_1_0·b_5_5 + b_2_1·b_1_0·b_3_0 + b_2_1·b_2_22 + b_2_12·b_1_02 + b_2_12·b_2_2
- b_3_12 + b_3_0·b_3_4 + b_2_12·b_2_2 + b_2_13
- b_3_1·b_3_4 + b_3_0·b_3_4 + b_3_0·b_3_1 + b_2_1·b_4_0 + b_2_1·b_2_22 + b_2_12·b_1_02
+ b_2_12·b_2_2
- b_3_42 + b_3_0·b_3_1 + b_2_1·b_4_5 + b_2_1·b_4_0 + b_2_1·b_2_22 + b_2_12·b_1_02
- b_4_0·a_3_6
- b_4_5·a_3_6
- b_2_1·b_5_5 + b_2_12·b_3_1 + b_2_12·b_3_0 + b_2_12·b_2_2·b_1_0
- b_2_2·b_5_5 + b_2_1·b_2_2·b_3_0 + b_2_1·b_2_22·b_1_0 + b_2_12·b_2_2·b_1_0
+ b_2_13·b_1_0
- b_4_1·b_3_4 + b_4_0·b_3_4 + b_2_12·b_3_4
- b_4_5·b_3_0 + b_4_0·b_3_1 + b_2_1·b_2_22·b_1_0 + b_2_12·b_3_4 + b_2_12·b_3_0
+ b_2_12·b_2_2·b_1_0 + b_2_13·b_1_0
- b_4_5·b_3_1 + b_4_0·b_3_4 + b_2_12·b_3_4 + b_2_12·b_2_2·b_1_0 + b_2_13·b_1_0
- b_4_5·b_3_4 + b_4_0·b_3_4 + b_4_0·b_3_1 + b_2_1·b_2_2·b_3_0 + b_2_1·b_2_22·b_1_0
+ b_2_12·b_3_0 + b_2_12·b_2_2·b_1_0 + b_2_13·b_1_0
- b_6_6·b_1_0 + b_2_2·b_4_1·b_1_0 + b_2_22·b_3_0 + b_2_1·b_4_1·b_1_0 + b_2_12·b_1_03
- b_1_04·b_3_0 + b_6_4·b_1_0 + b_4_1·b_1_03 + b_2_2·b_5_0 + b_2_22·b_3_0 + b_2_23·b_1_0
+ b_2_1·b_1_02·b_3_0 + b_2_1·b_2_22·b_1_0
- b_2_1·b_3_02 + b_2_1·b_1_0·b_5_0 + b_2_1·b_6_6 + b_2_1·b_4_1·b_1_02
+ b_2_1·b_2_2·b_4_1 + b_2_1·b_2_23 + b_2_12·b_1_0·b_3_0 + b_2_12·b_1_04 + b_2_12·b_4_0 + b_2_12·b_2_22 + b_2_13·b_1_02 + b_2_13·b_2_2 + a_3_6·b_5_5 + a_3_6·b_5_0
- b_2_1·b_3_0·b_3_4 + b_2_1·b_3_0·b_3_1 + b_2_1·b_6_6 + b_2_1·b_2_2·b_4_1
+ b_2_1·b_2_2·b_4_0 + b_2_1·b_2_23 + b_2_12·b_4_5 + b_2_12·b_4_1 + b_2_12·b_4_0 + b_2_12·b_2_22 + b_2_13·b_1_02 + a_3_6·b_5_5 + a_3_6·b_5_0
- b_2_2·b_6_6 + b_2_22·b_4_1 + b_2_22·b_4_0 + b_2_24 + b_2_1·b_2_2·b_4_1 + a_3_6·b_5_5
- b_2_2·b_1_0·b_5_0 + b_2_2·b_6_4 + b_2_22·b_4_1 + b_2_24 + b_2_1·b_1_0·b_5_0
+ b_2_1·b_1_03·b_3_0 + b_2_1·b_4_1·b_1_02 + b_2_1·b_2_23
- b_4_02 + b_2_2·b_3_02 + b_2_24 + b_2_1·b_1_0·b_5_0 + b_2_1·b_4_1·b_1_02
+ b_2_1·b_2_2·b_4_0 + b_2_12·b_1_0·b_3_0 + b_2_12·b_4_1 + b_2_12·b_4_0 + b_2_13·b_1_02 + b_2_13·b_2_2
- b_4_0·b_4_5 + b_2_1·b_2_2·b_4_0 + b_2_12·b_4_5 + b_2_13·b_2_2
- b_4_1·b_4_5 + b_2_1·b_2_2·b_4_1 + a_3_6·b_5_0
- b_4_52 + b_2_12·b_2_22
- b_1_0·b_7_10 + b_2_24 + b_2_13·b_1_02 + a_3_6·b_5_0
- b_3_0·b_5_5 + b_2_1·b_3_0·b_3_1 + b_2_1·b_1_0·b_5_0 + b_2_1·b_6_6 + b_2_1·b_4_1·b_1_02
+ b_2_1·b_2_2·b_4_1 + b_2_1·b_2_2·b_4_0 + b_2_12·b_1_04 + b_2_12·b_4_0 + b_2_12·b_2_22 + b_2_13·b_2_2
- b_3_1·b_5_0 + b_2_1·b_3_0·b_3_1 + b_2_1·b_1_03·b_3_0 + b_2_1·b_6_6 + b_2_1·b_6_4
+ b_2_1·b_4_1·b_1_02 + b_2_1·b_2_2·b_4_1 + b_2_1·b_2_23 + b_2_12·b_1_0·b_3_0 + b_2_12·b_4_5 + b_2_12·b_4_1 + b_2_12·b_4_0 + a_3_6·b_5_5
- b_3_1·b_5_5 + b_2_1·b_6_6 + b_2_1·b_2_2·b_4_1 + b_2_1·b_2_2·b_4_0 + b_2_1·b_2_23
+ b_2_12·b_4_5 + b_2_12·b_4_1 + b_2_12·b_4_0 + b_2_13·b_1_02 + b_2_13·b_2_2 + b_2_14 + a_3_6·b_5_0
- b_3_4·b_5_0 + b_2_1·b_3_0·b_3_1 + b_2_1·b_6_6 + b_2_1·b_2_2·b_4_1 + b_2_1·b_2_2·b_4_0
+ b_2_1·b_2_23 + b_2_12·b_4_1 + b_2_12·b_4_0 + b_2_12·b_2_22 + b_2_13·b_1_02 + b_2_13·b_2_2 + a_3_6·b_5_5 + a_3_6·b_5_0
- b_3_4·b_5_5 + b_2_1·b_3_0·b_3_1 + b_2_12·b_4_0 + b_2_12·b_2_22 + b_2_13·b_1_02
+ b_2_13·b_2_2
- b_2_1·b_4_1·b_3_1 + b_2_1·b_4_0·b_3_4 + b_2_1·b_4_0·b_3_0 + b_2_1·b_2_2·b_5_0
+ b_2_1·b_2_2·b_4_1·b_1_0 + b_2_1·b_2_23·b_1_0 + b_2_12·b_1_02·b_3_0 + b_2_13·b_3_4 + b_2_13·b_3_0 + b_2_13·b_1_03 + b_2_13·b_2_2·b_1_0
- b_2_1·b_7_10 + b_2_1·b_4_0·b_3_4 + b_2_1·b_4_0·b_3_1 + b_2_1·b_2_23·b_1_0
+ b_2_12·b_2_2·b_3_0 + b_2_13·b_3_0 + b_2_13·b_2_2·b_1_0 + b_6_4·a_3_6
- b_2_2·b_7_10 + b_2_24·b_1_0 + b_2_1·b_2_23·b_1_0 + b_2_13·b_2_2·b_1_0 + b_6_4·a_3_6
- b_4_0·b_5_5 + b_2_1·b_4_0·b_3_1 + b_2_1·b_4_0·b_3_0 + b_2_1·b_2_22·b_3_0
+ b_2_1·b_2_23·b_1_0 + b_2_13·b_1_03 + b_6_4·a_3_6
- b_4_5·b_5_0 + b_2_1·b_4_0·b_3_1 + b_2_1·b_2_2·b_5_0 + b_2_12·b_2_2·b_3_0
+ b_2_12·b_2_22·b_1_0 + b_2_13·b_3_4 + b_2_13·b_3_0 + b_2_13·b_2_2·b_1_0 + b_2_14·b_1_0
- b_4_5·b_5_5 + b_2_1·b_4_0·b_3_4 + b_2_1·b_4_0·b_3_1 + b_2_13·b_3_0
- b_6_6·b_3_0 + b_6_4·b_3_4 + b_6_4·b_3_1 + b_2_2·b_4_1·b_3_0 + b_2_2·b_4_0·b_3_0
+ b_2_23·b_3_0 + b_2_1·b_4_1·b_3_0 + b_2_1·b_4_0·b_3_4 + b_2_1·b_4_0·b_3_1 + b_2_1·b_2_2·b_5_0 + b_2_1·b_2_2·b_4_1·b_1_0 + b_2_1·b_2_23·b_1_0 + b_2_12·b_5_0 + b_2_12·b_1_02·b_3_0 + b_2_12·b_2_2·b_3_0 + b_2_12·b_2_22·b_1_0 + b_2_13·b_3_0 + b_2_14·b_1_0 + b_6_6·a_3_6 + b_6_4·a_3_6
- b_6_6·b_3_1 + b_6_4·b_3_1 + b_2_1·b_4_0·b_3_0 + b_2_1·b_2_2·b_4_1·b_1_0
+ b_2_1·b_2_22·b_3_0 + b_2_12·b_5_0 + b_2_12·b_4_1·b_1_0 + b_2_12·b_2_2·b_3_0 + b_2_13·b_3_4 + b_2_13·b_3_0 + b_2_13·b_1_03 + b_2_13·b_2_2·b_1_0 + b_6_6·a_3_6
- b_6_6·b_3_4 + b_6_4·b_3_4 + b_2_1·b_4_0·b_3_1 + b_2_12·b_2_2·b_3_0
+ b_2_12·b_2_22·b_1_0 + b_2_13·b_3_0 + b_2_13·b_2_2·b_1_0 + b_2_14·b_1_0
- b_1_03·b_3_02 + b_6_4·b_3_4 + b_6_4·b_3_1 + b_6_4·b_3_0 + b_4_1·b_1_02·b_3_0
+ b_4_0·b_5_0 + b_2_2·b_4_0·b_3_0 + b_2_22·b_5_0 + b_2_1·b_4_1·b_1_03 + b_2_1·b_4_0·b_3_1 + b_2_1·b_2_2·b_4_1·b_1_0 + b_2_12·b_5_0 + b_2_12·b_1_02·b_3_0 + b_2_12·b_1_05 + b_2_12·b_4_1·b_1_0 + b_2_12·b_2_22·b_1_0 + b_2_13·b_3_4 + b_2_13·b_3_0 + b_2_13·b_1_03 + b_2_14·b_1_0
- b_3_02·b_3_1 + b_6_4·b_3_1 + b_2_1·b_4_0·b_3_1 + b_2_1·b_4_0·b_3_0 + b_2_1·b_2_2·b_5_0
+ b_2_1·b_2_2·b_4_1·b_1_0 + b_2_1·b_2_22·b_3_0 + b_2_1·b_2_23·b_1_0 + b_2_12·b_5_0 + b_2_12·b_2_22·b_1_0 + b_2_13·b_3_4 + b_2_13·b_3_0 + b_2_14·b_1_0 + b_6_4·a_3_6
- b_3_02·b_3_4 + b_6_4·b_3_4 + b_2_1·b_4_0·b_3_4 + b_2_1·b_4_0·b_3_1
+ b_2_12·b_2_2·b_3_0 + b_2_12·b_2_22·b_1_0 + b_2_13·b_3_0 + b_2_13·b_2_2·b_1_0 + b_2_14·b_1_0
- b_4_0·b_6_6 + b_4_0·b_6_4 + b_2_2·b_3_0·b_5_0 + b_2_22·b_3_02 + b_2_22·b_6_4
+ b_2_23·b_4_1 + b_2_1·b_3_0·b_5_0 + b_2_1·b_1_03·b_5_0 + b_2_1·b_6_4·b_1_02 + b_2_1·b_4_1·b_1_0·b_3_0 + b_2_1·b_4_1·b_1_04 + b_2_1·b_4_0·b_4_1 + b_2_1·b_2_22·b_4_0 + b_2_12·b_1_0·b_5_0 + b_2_12·b_1_06 + b_2_12·b_6_6 + b_2_12·b_2_2·b_4_0 + b_2_12·b_2_23 + b_2_13·b_1_0·b_3_0 + b_2_13·b_1_04 + b_2_13·b_4_1 + a_3_6·b_7_10
- b_4_0·b_3_0·b_3_4 + b_4_0·b_3_0·b_3_1 + b_4_0·b_6_4 + b_2_2·b_3_0·b_5_0
+ b_2_2·b_4_0·b_4_1 + b_2_22·b_6_4 + b_2_23·b_4_1 + b_2_23·b_4_0 + b_2_25 + b_2_1·b_3_0·b_5_0 + b_2_1·b_1_03·b_5_0 + b_2_1·b_6_4·b_1_02 + b_2_1·b_4_1·b_1_0·b_3_0 + b_2_1·b_4_1·b_1_04 + b_2_1·b_2_24 + b_2_12·b_1_06 + b_2_12·b_6_6 + b_2_12·b_4_1·b_1_02 + b_2_12·b_2_23 + b_2_13·b_1_0·b_3_0 + b_2_13·b_1_04 + b_2_13·b_4_5 + b_2_13·b_4_0 + b_2_13·b_2_22 + b_2_14·b_1_02
- b_4_5·b_6_4 + b_4_0·b_3_0·b_3_1 + b_2_12·b_3_0·b_3_1 + b_2_12·b_1_03·b_3_0
+ b_2_12·b_4_1·b_1_02 + b_2_12·b_2_2·b_4_1 + b_2_12·b_2_2·b_4_0 + b_2_13·b_1_0·b_3_0 + b_2_13·b_4_5 + b_2_13·b_4_1 + b_2_14·b_2_2
- b_4_5·b_6_6 + b_4_0·b_3_0·b_3_1 + b_2_1·b_2_2·b_6_4 + b_2_1·b_2_22·b_4_1
+ b_2_1·b_2_22·b_4_0 + b_2_1·b_2_24 + b_2_12·b_3_0·b_3_1 + b_2_12·b_1_03·b_3_0 + b_2_12·b_4_1·b_1_02 + b_2_12·b_2_2·b_4_0 + b_2_13·b_1_0·b_3_0 + b_2_13·b_4_1
- b_3_0·b_7_10 + b_4_0·b_6_4 + b_2_2·b_3_0·b_5_0 + b_2_2·b_4_0·b_4_1 + b_2_22·b_6_4
+ b_2_23·b_4_1 + b_2_1·b_3_0·b_5_0 + b_2_1·b_1_03·b_5_0 + b_2_1·b_6_4·b_1_02 + b_2_1·b_4_1·b_1_0·b_3_0 + b_2_1·b_4_1·b_1_04 + b_2_1·b_2_2·b_6_4 + b_2_1·b_2_24 + b_2_12·b_1_03·b_3_0 + b_2_12·b_1_06 + b_2_12·b_2_23 + b_2_13·b_1_0·b_3_0 + b_2_13·b_1_04 + b_2_13·b_4_5 + b_2_13·b_2_22 + b_2_14·b_1_02 + b_2_14·b_2_2 + a_3_6·b_7_10
- b_3_1·b_7_10 + b_4_0·b_3_0·b_3_1 + b_2_1·b_2_2·b_6_4 + b_2_1·b_2_24
+ b_2_12·b_3_0·b_3_1 + b_2_12·b_1_03·b_3_0 + b_2_12·b_4_1·b_1_02 + b_2_12·b_2_2·b_4_1 + b_2_12·b_2_2·b_4_0 + b_2_12·b_2_23 + b_2_13·b_1_0·b_3_0 + b_2_13·b_4_1 + b_2_14·b_2_2 + a_3_6·b_7_10
- b_3_4·b_7_10 + b_4_0·b_3_0·b_3_1 + b_4_0·b_6_4 + b_2_2·b_3_0·b_5_0 + b_2_2·b_4_0·b_4_1
+ b_2_22·b_6_4 + b_2_23·b_4_1 + b_2_23·b_4_0 + b_2_25 + b_2_1·b_3_0·b_5_0 + b_2_1·b_1_03·b_5_0 + b_2_1·b_6_4·b_1_02 + b_2_1·b_4_1·b_1_0·b_3_0 + b_2_1·b_4_1·b_1_04 + b_2_1·b_2_24 + b_2_12·b_3_0·b_3_1 + b_2_12·b_1_06 + b_2_12·b_4_1·b_1_02 + b_2_12·b_2_2·b_4_1 + b_2_12·b_2_2·b_4_0 + b_2_13·b_1_0·b_3_0 + b_2_13·b_1_04 + b_2_13·b_4_5 + b_2_13·b_4_1 + b_2_14·b_2_2
- b_5_02 + b_6_4·b_1_0·b_3_0 + b_4_1·b_3_02 + b_4_1·b_1_03·b_3_0 + b_4_12·b_1_02
+ b_4_0·b_3_02 + b_2_2·b_3_0·b_5_0 + b_2_2·b_4_0·b_4_1 + b_2_1·b_1_03·b_5_0 + b_2_1·b_1_08 + b_2_1·b_4_1·b_1_0·b_3_0 + b_2_1·b_4_1·b_1_04 + b_2_1·b_2_2·b_6_4 + b_2_1·b_2_22·b_4_0 + b_2_12·b_1_03·b_3_0 + b_2_12·b_1_06 + b_2_13·b_2_22 + c_8_8·b_1_02
- b_5_0·b_5_5 + b_2_1·b_3_0·b_5_0 + b_2_1·b_2_2·b_6_4 + b_2_1·b_2_22·b_4_1
+ b_2_1·b_2_24 + b_2_12·b_3_0·b_3_1 + b_2_12·b_1_0·b_5_0 + b_2_12·b_6_6 + b_2_12·b_6_4 + b_2_12·b_2_2·b_4_1 + b_2_13·b_1_0·b_3_0 + b_2_13·b_4_5 + b_2_13·b_4_1 + b_2_13·b_4_0
- b_5_52 + b_2_12·b_3_0·b_3_1 + b_2_12·b_1_0·b_5_0 + b_2_12·b_4_1·b_1_02
+ b_2_12·b_2_2·b_4_0 + b_2_12·b_2_23 + b_2_13·b_1_0·b_3_0 + b_2_13·b_1_04 + b_2_13·b_4_5 + b_2_13·b_4_1 + b_2_13·b_2_22 + b_2_14·b_1_02 + b_2_15
- b_4_0·b_7_10 + b_2_24·b_3_0 + b_2_25·b_1_0 + b_2_1·b_2_23·b_3_0 + b_2_1·b_2_24·b_1_0
+ b_2_12·b_4_0·b_3_4 + b_2_12·b_4_0·b_3_1 + b_2_12·b_2_23·b_1_0 + b_2_14·b_3_0 + b_2_14·b_1_03 + b_2_15·b_1_0
- b_4_5·b_7_10 + b_2_1·b_2_24·b_1_0 + b_2_12·b_2_23·b_1_0 + b_2_14·b_2_2·b_1_0
- b_6_4·b_5_5 + b_2_1·b_6_4·b_3_1 + b_2_1·b_6_4·b_3_0 + b_2_1·b_2_22·b_5_0
+ b_2_1·b_2_22·b_4_1·b_1_0 + b_2_1·b_2_24·b_1_0 + b_2_12·b_6_4·b_1_0 + b_2_12·b_2_2·b_5_0 + b_2_12·b_2_22·b_3_0 + b_2_13·b_1_02·b_3_0 + b_2_13·b_2_22·b_1_0
- b_6_6·b_5_0 + b_2_2·b_4_1·b_5_0 + b_2_2·b_4_0·b_5_0 + b_2_23·b_5_0 + b_2_1·b_6_4·b_3_4
+ b_2_1·b_6_4·b_3_1 + b_2_1·b_4_1·b_5_0 + b_2_12·b_4_0·b_3_1 + b_2_12·b_2_2·b_5_0 + b_2_12·b_2_2·b_4_1·b_1_0 + b_2_12·b_2_23·b_1_0 + b_2_13·b_5_0 + b_2_13·b_1_02·b_3_0 + b_2_13·b_2_2·b_3_0 + b_2_13·b_2_22·b_1_0 + b_2_14·b_3_4 + b_2_14·b_3_0 + b_2_15·b_1_0
- b_1_03·b_3_0·b_5_0 + b_6_4·b_5_0 + b_4_1·b_1_02·b_5_0 + b_4_0·b_4_1·b_3_0
+ b_2_2·b_3_03 + b_2_2·b_4_12·b_1_0 + b_2_2·b_4_0·b_5_0 + b_2_22·b_4_0·b_3_0 + b_2_23·b_4_1·b_1_0 + b_2_1·b_6_4·b_3_0 + b_2_1·b_4_1·b_1_02·b_3_0 + b_2_1·b_4_0·b_5_0 + b_2_1·b_2_2·b_4_1·b_3_0 + b_2_1·b_2_22·b_4_1·b_1_0 + b_2_1·b_2_24·b_1_0 + b_2_12·b_1_07 + b_2_12·b_6_4·b_1_0 + b_2_12·b_4_1·b_3_0 + b_2_12·b_4_1·b_1_03 + b_2_12·b_4_0·b_3_4 + b_2_12·b_4_0·b_3_0 + b_2_12·b_2_2·b_5_0 + b_2_12·b_2_2·b_4_1·b_1_0 + b_2_13·b_1_02·b_3_0 + b_2_13·b_1_05 + b_2_13·b_4_1·b_1_0 + b_2_13·b_2_22·b_1_0 + b_2_14·b_3_4 + b_2_14·b_2_2·b_1_0 + b_2_2·c_8_8·b_1_0
- b_6_4·b_3_0·b_3_4 + b_6_4·b_3_0·b_3_1 + b_6_4·b_1_03·b_3_0 + b_6_42
+ b_4_1·b_6_4·b_1_02 + b_2_2·b_4_1·b_3_02 + b_2_2·b_4_1·b_6_4 + b_2_2·b_4_0·b_3_02 + b_2_22·b_3_0·b_5_0 + b_2_24·b_4_1 + b_2_26 + b_2_1·b_1_02·b_3_0·b_5_0 + b_2_1·b_6_4·b_1_0·b_3_0 + b_2_1·b_4_1·b_1_03·b_3_0 + b_2_1·b_4_0·b_6_4 + b_2_1·b_2_2·b_4_0·b_4_1 + b_2_1·b_2_22·b_6_4 + b_2_1·b_2_23·b_4_0 + b_2_12·b_1_03·b_5_0 + b_2_12·b_6_4·b_1_02 + b_2_12·b_4_1·b_1_0·b_3_0 + b_2_12·b_4_12 + b_2_12·b_2_2·b_6_4 + b_2_12·b_2_24 + b_2_13·b_6_6 + b_2_13·b_4_1·b_1_02 + b_2_13·b_2_2·b_4_1 + b_2_13·b_2_2·b_4_0 + b_2_14·b_1_04 + b_2_14·b_4_5 + b_2_14·b_4_0 + b_2_14·b_2_22 + b_2_15·b_1_02 + b_2_22·c_8_8
- b_5_0·b_7_10 + b_2_23·b_6_4 + b_2_24·b_4_1 + b_2_26 + b_2_1·b_4_0·b_6_4
+ b_2_1·b_2_2·b_3_0·b_5_0 + b_2_1·b_2_2·b_4_0·b_4_1 + b_2_1·b_2_22·b_6_4 + b_2_1·b_2_25 + b_2_12·b_3_0·b_5_0 + b_2_12·b_1_03·b_5_0 + b_2_12·b_6_4·b_1_02 + b_2_12·b_4_1·b_1_0·b_3_0 + b_2_12·b_4_1·b_1_04 + b_2_12·b_2_2·b_6_4 + b_2_12·b_2_22·b_4_1 + b_2_12·b_2_24 + b_2_13·b_1_0·b_5_0 + b_2_13·b_1_06 + b_2_13·b_4_1·b_1_02 + b_2_13·b_2_23 + b_2_14·b_1_04 + b_2_14·b_4_5 + b_2_14·b_2_22 + b_2_15·b_1_02 + b_2_15·b_2_2 + b_4_1·a_3_6·b_5_0
- b_5_5·b_7_10 + b_6_4·b_1_03·b_3_0 + b_6_4·b_6_6 + b_6_42 + b_4_1·b_6_4·b_1_02
+ b_2_2·b_4_1·b_3_02 + b_2_2·b_4_0·b_3_02 + b_2_22·b_4_0·b_4_1 + b_2_24·b_4_0 + b_2_1·b_1_02·b_3_0·b_5_0 + b_2_1·b_6_4·b_1_0·b_3_0 + b_2_1·b_4_1·b_1_03·b_3_0 + b_2_1·b_4_1·b_6_4 + b_2_1·b_4_0·b_6_4 + b_2_1·b_2_2·b_4_0·b_4_1 + b_2_1·b_2_23·b_4_0 + b_2_1·b_2_25 + b_2_12·b_3_0·b_5_0 + b_2_12·b_1_03·b_5_0 + b_2_12·b_4_1·b_1_0·b_3_0 + b_2_12·b_4_12 + b_2_12·b_2_22·b_4_1 + b_2_13·b_1_0·b_5_0 + b_2_13·b_6_6 + b_2_13·b_4_1·b_1_02 + b_2_13·b_2_2·b_4_1 + b_2_13·b_2_2·b_4_0 + b_2_14·b_1_0·b_3_0 + b_2_14·b_4_5 + b_2_14·b_4_0 + b_2_15·b_2_2 + b_4_1·a_3_6·b_5_5 + b_2_22·c_8_8
- b_6_4·b_7_10 + b_4_0·b_6_4·b_3_0 + b_2_2·b_3_02·b_5_0 + b_2_2·b_4_0·b_4_1·b_3_0
+ b_2_22·b_4_0·b_5_0 + b_2_23·b_4_0·b_3_0 + b_2_24·b_4_1·b_1_0 + b_2_26·b_1_0 + b_2_1·b_6_4·b_5_0 + b_2_1·b_4_12·b_1_03 + b_2_1·b_4_0·b_4_1·b_3_0 + b_2_1·b_2_2·b_4_12·b_1_0 + b_2_1·b_2_22·b_4_1·b_3_0 + b_2_1·b_2_23·b_4_1·b_1_0 + b_2_1·b_2_25·b_1_0 + b_2_12·b_1_09 + b_2_12·b_6_4·b_3_4 + b_2_12·b_6_4·b_3_1 + b_2_12·b_6_4·b_3_0 + b_2_12·b_6_4·b_1_03 + b_2_12·b_4_1·b_5_0 + b_2_12·b_2_2·b_4_1·b_3_0 + b_2_12·b_2_22·b_5_0 + b_2_13·b_4_1·b_3_0 + b_2_13·b_4_0·b_3_4 + b_2_13·b_4_0·b_3_0 + b_2_13·b_2_2·b_5_0 + b_2_13·b_2_23·b_1_0 + b_2_14·b_5_0 + b_2_14·b_4_1·b_1_0 + b_2_15·b_3_4 + b_4_1·b_6_4·a_3_6 + b_2_1·c_8_8·b_1_03 + b_2_1·b_2_2·c_8_8·b_1_0
- b_7_102 + b_2_27 + b_2_1·b_2_26 + b_2_16·b_1_02
Data used for the Hilbert-Poincaré test
- We proved completion in degree 17 using the Hilbert-Poincaré criterion.
- However, the last relation was already found in degree 14 and the last generator in degree 8.
- The following is a filter regular homogeneous system of parameters:
- b_3_0·b_5_0 + b_1_08 + b_4_1·b_1_0·b_3_0 + b_4_12 + b_4_0·b_4_1 + b_2_2·b_3_02
+ b_2_2·b_6_4 + b_2_22·b_4_1 + b_2_22·b_4_0 + b_2_24 + b_2_1·b_1_03·b_3_0 + b_2_1·b_1_06 + b_2_1·b_6_6 + b_2_1·b_6_4 + b_2_1·b_4_1·b_1_02 + b_2_1·b_2_23 + b_2_12·b_1_0·b_3_0 + b_2_12·b_1_04 + b_2_12·b_4_1 + b_2_12·b_4_0 + b_2_12·b_2_22 + b_2_13·b_2_2 + b_2_14 + c_8_8, an element of degree 8
- b_3_04 + b_1_0·b_3_02·b_5_0 + b_6_62 + b_6_4·b_3_0·b_3_1 + b_6_4·b_3_02
+ b_6_4·b_1_0·b_5_0 + b_6_4·b_6_6 + b_6_42 + b_4_1·b_3_0·b_5_0 + b_4_1·b_1_03·b_5_0 + b_4_1·b_6_4·b_1_02 + b_4_12·b_1_0·b_3_0 + b_4_12·b_1_04 + b_4_0·b_4_12 + b_2_2·b_4_1·b_3_02 + b_2_2·b_4_1·b_6_4 + b_2_2·b_4_0·b_3_02 + b_2_22·b_3_0·b_5_0 + b_2_22·b_4_12 + b_2_22·b_4_0·b_4_1 + b_2_23·b_3_02 + b_2_23·b_6_4 + b_2_1·b_1_02·b_3_0·b_5_0 + b_2_1·b_4_1·b_1_03·b_3_0 + b_2_1·b_4_1·b_1_06 + b_2_1·b_2_2·b_4_12 + b_2_1·b_2_25 + b_2_12·b_1_08 + b_2_12·b_4_1·b_1_0·b_3_0 + b_2_12·b_4_1·b_1_04 + b_2_12·b_2_2·b_6_4 + b_2_12·b_2_22·b_4_0 + b_2_12·b_2_24 + b_2_13·b_1_03·b_3_0 + b_2_13·b_6_6 + b_2_13·b_4_1·b_1_02 + b_2_13·b_2_2·b_4_1 + b_2_13·b_2_23 + b_2_14·b_1_0·b_3_0 + b_2_14·b_4_1 + b_2_14·b_2_22 + b_2_15·b_2_2 + b_2_16 + c_8_8·b_1_0·b_3_0 + b_4_1·c_8_8 + b_4_0·c_8_8, an element of degree 12
- b_3_03·b_5_0 + b_6_42·b_1_02 + b_4_1·b_1_02·b_3_0·b_5_0 + b_4_12·b_1_03·b_3_0
+ b_4_12·b_1_06 + b_4_0·b_4_1·b_3_02 + b_2_2·b_3_04 + b_2_2·b_4_1·b_3_0·b_5_0 + b_2_2·b_4_0·b_3_0·b_5_0 + b_2_22·b_4_1·b_6_4 + b_2_23·b_3_0·b_5_0 + b_2_23·b_4_12 + b_2_23·b_4_0·b_4_1 + b_2_25·b_4_1 + b_2_25·b_4_0 + b_2_27 + b_2_1·b_1_012 + b_2_1·b_6_4·b_3_0·b_3_1 + b_2_1·b_6_4·b_1_0·b_5_0 + b_2_1·b_6_4·b_6_6 + b_2_1·b_4_1·b_1_08 + b_2_1·b_4_1·b_6_4·b_1_02 + b_2_1·b_2_2·b_4_1·b_6_4 + b_2_1·b_2_22·b_4_12 + b_2_1·b_2_22·b_4_0·b_4_1 + b_2_1·b_2_24·b_4_0 + b_2_12·b_1_02·b_3_0·b_5_0 + b_2_12·b_6_4·b_1_0·b_3_0 + b_2_12·b_4_12·b_1_02 + b_2_12·b_2_2·b_4_12 + b_2_12·b_2_23·b_4_1 + b_2_13·b_3_0·b_5_0 + b_2_13·b_1_08 + b_2_13·b_4_1·b_1_0·b_3_0 + b_2_13·b_4_1·b_1_04 + b_2_13·b_4_12 + b_2_14·b_1_0·b_5_0 + b_2_14·b_1_03·b_3_0 + b_2_14·b_1_06 + b_2_14·b_6_4 + b_2_14·b_4_1·b_1_02 + b_2_14·b_2_2·b_4_0 + b_2_15·b_1_0·b_3_0 + b_2_15·b_4_0 + b_2_16·b_1_02 + b_2_17 + c_8_8·b_3_0·b_3_1 + c_8_8·b_3_02 + c_8_8·b_1_0·b_5_0 + c_8_8·b_1_06 + b_6_6·c_8_8 + b_2_2·b_4_1·c_8_8 + b_2_2·b_4_0·c_8_8 + b_2_23·c_8_8 + b_2_1·c_8_8·b_1_0·b_3_0 + b_2_1·b_4_1·c_8_8 + b_2_1·b_4_0·c_8_8 + b_2_1·b_2_22·c_8_8 + b_2_12·c_8_8·b_1_02 + b_2_13·c_8_8, an element of degree 14
- b_1_0, an element of degree 1
- A Duflot regular sequence is given by c_8_8.
- Modifying the above filter regular HSOP, we obtained the following parameters:
- b_3_0·b_5_0 + b_1_08 + b_4_1·b_1_0·b_3_0 + b_4_12 + b_4_0·b_4_1 + b_2_2·b_3_02
+ b_2_2·b_6_4 + b_2_22·b_4_1 + b_2_22·b_4_0 + b_2_24 + b_2_1·b_1_03·b_3_0 + b_2_1·b_1_06 + b_2_1·b_6_6 + b_2_1·b_6_4 + b_2_1·b_4_1·b_1_02 + b_2_1·b_2_23 + b_2_12·b_1_0·b_3_0 + b_2_12·b_1_04 + b_2_12·b_4_1 + b_2_12·b_4_0 + b_2_12·b_2_22 + b_2_13·b_2_2 + b_2_14 + c_8_8, an element of degree 8
- b_3_04 + b_1_0·b_3_02·b_5_0 + b_6_62 + b_6_4·b_3_0·b_3_1 + b_6_4·b_3_02
+ b_6_4·b_1_0·b_5_0 + b_6_4·b_6_6 + b_6_42 + b_4_1·b_3_0·b_5_0 + b_4_1·b_1_03·b_5_0 + b_4_1·b_6_4·b_1_02 + b_4_12·b_1_0·b_3_0 + b_4_12·b_1_04 + b_4_0·b_4_12 + b_2_2·b_4_1·b_3_02 + b_2_2·b_4_1·b_6_4 + b_2_2·b_4_0·b_3_02 + b_2_22·b_3_0·b_5_0 + b_2_22·b_4_12 + b_2_22·b_4_0·b_4_1 + b_2_23·b_3_02 + b_2_23·b_6_4 + b_2_1·b_1_02·b_3_0·b_5_0 + b_2_1·b_4_1·b_1_03·b_3_0 + b_2_1·b_4_1·b_1_06 + b_2_1·b_2_2·b_4_12 + b_2_1·b_2_25 + b_2_12·b_1_08 + b_2_12·b_4_1·b_1_0·b_3_0 + b_2_12·b_4_1·b_1_04 + b_2_12·b_2_2·b_6_4 + b_2_12·b_2_22·b_4_0 + b_2_12·b_2_24 + b_2_13·b_1_03·b_3_0 + b_2_13·b_6_6 + b_2_13·b_4_1·b_1_02 + b_2_13·b_2_2·b_4_1 + b_2_13·b_2_23 + b_2_14·b_1_0·b_3_0 + b_2_14·b_4_1 + b_2_14·b_2_22 + b_2_15·b_2_2 + b_2_16 + c_8_8·b_1_0·b_3_0 + b_4_1·c_8_8 + b_4_0·c_8_8, an element of degree 12
- b_4_1 + b_2_12, an element of degree 4
- b_1_0, an element of degree 1
- We found that there exists some HSOP over a finite extension field, in degrees 8,4,1,6.
Restriction maps
Expressing the generators as elements of H*(Syl2HS; GF(2))
- b_1_0 → b_1_1
- b_2_2 → b_2_3
- b_2_1 → b_1_02 + b_2_4
- a_3_6 → a_3_4
- b_3_4 → b_2_4·b_1_0
- b_3_1 → b_3_11
- b_3_0 → b_3_13 + b_3_12 + b_2_6·b_1_2 + b_2_6·b_1_1 + b_2_5·b_1_2
- b_4_5 → b_2_4·b_2_5 + b_2_42 + b_1_0·a_3_4
- b_4_1 → b_1_24 + b_1_0·b_3_11 + b_4_22 + b_4_21 + b_2_6·b_1_12 + b_2_62 + b_2_4·b_1_02
+ b_2_42
- b_4_0 → b_1_2·b_3_12 + b_4_21 + b_2_5·b_1_02 + b_2_52 + b_2_3·b_2_6
- b_5_5 → b_4_22·b_1_0 + b_2_4·b_3_13 + b_2_42·b_1_0 + b_2_5·a_3_4
- b_5_0 → b_5_31 + b_4_21·b_1_2 + b_2_6·b_3_13 + b_2_6·b_3_12 + b_2_6·b_1_23 + b_2_6·b_1_13
+ b_2_62·b_1_2 + b_2_5·b_1_23 + b_2_52·b_1_0 + b_2_4·b_3_13 + b_2_5·a_3_4
- b_6_6 → b_2_6·b_1_2·b_3_12 + b_2_5·b_1_2·b_3_12 + b_2_5·b_4_22 + b_2_5·b_2_6·b_1_22
+ b_2_5·b_2_62 + b_2_4·b_1_04 + b_2_4·b_4_21 + b_2_43
- b_6_4 → b_6_43 + b_4_21·b_1_22 + b_2_6·b_4_22 + b_2_62·b_1_12 + b_2_5·b_1_04 + b_2_5·b_4_21
+ b_2_5·b_2_6·b_1_22 + b_2_52·b_1_22 + b_2_53 + b_2_4·b_1_04 + b_2_4·b_4_22 + b_2_3·b_2_62
- b_7_10 → b_2_5·b_4_22·b_1_0 + b_2_5·b_4_21·b_1_2 + b_2_5·b_4_21·b_1_0 + b_2_5·b_2_6·b_1_23
+ b_2_52·b_3_12 + b_2_53·b_1_2 + b_2_53·b_1_0 + b_2_4·b_2_5·b_1_03 + b_2_42·b_3_11 + b_2_42·b_1_03 + b_2_43·b_1_0 + b_2_32·b_2_6·b_1_1 + a_7_17 + b_2_52·a_3_4
- c_8_8 → b_4_222 + b_4_21·b_1_04 + b_2_6·b_1_1·b_5_31 + b_2_6·b_6_43 + b_2_6·b_4_22·b_1_12
+ b_2_62·b_1_2·b_3_12 + b_2_62·b_1_24 + b_2_62·b_1_1·b_3_13 + b_2_62·b_1_14 + b_2_62·b_4_22 + b_2_63·b_1_22 + b_2_63·b_1_12 + b_2_5·b_2_6·b_1_24 + b_2_5·b_2_63 + b_2_52·b_1_24 + b_2_52·b_4_22 + b_2_52·b_4_21 + b_2_54 + b_2_4·b_4_21·b_1_02 + b_2_42·b_4_22 + b_2_44 + b_2_33·b_2_6 + b_2_52·b_1_0·a_3_4 + c_8_83
Restriction map to the greatest el. ab. subgp. in the centre of a Sylow subgroup, which is of rank 1
- b_1_0 → 0, an element of degree 1
- b_2_2 → 0, an element of degree 2
- b_2_1 → 0, an element of degree 2
- a_3_6 → 0, an element of degree 3
- b_3_4 → 0, an element of degree 3
- b_3_1 → 0, an element of degree 3
- b_3_0 → 0, an element of degree 3
- b_4_5 → 0, an element of degree 4
- b_4_1 → 0, an element of degree 4
- b_4_0 → 0, an element of degree 4
- b_5_5 → 0, an element of degree 5
- b_5_0 → 0, an element of degree 5
- b_6_6 → 0, an element of degree 6
- b_6_4 → 0, an element of degree 6
- b_7_10 → 0, an element of degree 7
- c_8_8 → c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3 in a Sylow subgroup
- b_1_0 → 0, an element of degree 1
- b_2_2 → 0, an element of degree 2
- b_2_1 → 0, an element of degree 2
- a_3_6 → 0, an element of degree 3
- b_3_4 → 0, an element of degree 3
- b_3_1 → 0, an element of degree 3
- b_3_0 → 0, an element of degree 3
- b_4_5 → 0, an element of degree 4
- b_4_1 → c_1_24 + c_1_12·c_1_22 + c_1_14, an element of degree 4
- b_4_0 → 0, an element of degree 4
- b_5_5 → 0, an element of degree 5
- b_5_0 → 0, an element of degree 5
- b_6_6 → c_1_12·c_1_24 + c_1_14·c_1_22, an element of degree 6
- b_6_4 → 0, an element of degree 6
- b_7_10 → 0, an element of degree 7
- c_8_8 → c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_24
+ c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3 in a Sylow subgroup
- b_1_0 → 0, an element of degree 1
- b_2_2 → 0, an element of degree 2
- b_2_1 → 0, an element of degree 2
- a_3_6 → 0, an element of degree 3
- b_3_4 → 0, an element of degree 3
- b_3_1 → 0, an element of degree 3
- b_3_0 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_4_5 → 0, an element of degree 4
- b_4_1 → c_1_24 + c_1_12·c_1_22 + c_1_14, an element of degree 4
- b_4_0 → 0, an element of degree 4
- b_5_5 → 0, an element of degree 5
- b_5_0 → c_1_1·c_1_24 + c_1_14·c_1_2, an element of degree 5
- b_6_6 → 0, an element of degree 6
- b_6_4 → 0, an element of degree 6
- b_7_10 → 0, an element of degree 7
- c_8_8 → c_1_12·c_1_26 + c_1_13·c_1_25 + c_1_15·c_1_23 + c_1_16·c_1_22
+ c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_24 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3 in a Sylow subgroup
- b_1_0 → 0, an element of degree 1
- b_2_2 → 0, an element of degree 2
- b_2_1 → c_1_22, an element of degree 2
- a_3_6 → 0, an element of degree 3
- b_3_4 → 0, an element of degree 3
- b_3_1 → c_1_23, an element of degree 3
- b_3_0 → c_1_23 + c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_4_5 → 0, an element of degree 4
- b_4_1 → c_1_1·c_1_23 + c_1_14, an element of degree 4
- b_4_0 → c_1_24 + c_1_1·c_1_23 + c_1_12·c_1_22, an element of degree 4
- b_5_5 → c_1_1·c_1_24 + c_1_12·c_1_23, an element of degree 5
- b_5_0 → c_1_25 + c_1_12·c_1_23 + c_1_14·c_1_2, an element of degree 5
- b_6_6 → c_1_1·c_1_25 + c_1_14·c_1_22, an element of degree 6
- b_6_4 → c_1_26 + c_1_12·c_1_24 + c_1_14·c_1_22, an element of degree 6
- b_7_10 → 0, an element of degree 7
- c_8_8 → c_1_28 + c_1_1·c_1_27 + c_1_14·c_1_24 + c_1_02·c_1_12·c_1_24
+ c_1_02·c_1_14·c_1_22 + c_1_04·c_1_24 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3 in a Sylow subgroup
- b_1_0 → 0, an element of degree 1
- b_2_2 → 0, an element of degree 2
- b_2_1 → 0, an element of degree 2
- a_3_6 → 0, an element of degree 3
- b_3_4 → 0, an element of degree 3
- b_3_1 → 0, an element of degree 3
- b_3_0 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_4_5 → 0, an element of degree 4
- b_4_1 → c_1_24 + c_1_12·c_1_22 + c_1_14, an element of degree 4
- b_4_0 → 0, an element of degree 4
- b_5_5 → 0, an element of degree 5
- b_5_0 → c_1_1·c_1_24 + c_1_14·c_1_2, an element of degree 5
- b_6_6 → 0, an element of degree 6
- b_6_4 → 0, an element of degree 6
- b_7_10 → 0, an element of degree 7
- c_8_8 → c_1_12·c_1_26 + c_1_13·c_1_25 + c_1_15·c_1_23 + c_1_16·c_1_22
+ c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_24 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3 in a Sylow subgroup
- b_1_0 → 0, an element of degree 1
- b_2_2 → 0, an element of degree 2
- b_2_1 → 0, an element of degree 2
- a_3_6 → 0, an element of degree 3
- b_3_4 → 0, an element of degree 3
- b_3_1 → 0, an element of degree 3
- b_3_0 → 0, an element of degree 3
- b_4_5 → 0, an element of degree 4
- b_4_1 → c_1_24 + c_1_12·c_1_22 + c_1_14, an element of degree 4
- b_4_0 → 0, an element of degree 4
- b_5_5 → 0, an element of degree 5
- b_5_0 → 0, an element of degree 5
- b_6_6 → c_1_12·c_1_24 + c_1_14·c_1_22, an element of degree 6
- b_6_4 → 0, an element of degree 6
- b_7_10 → 0, an element of degree 7
- c_8_8 → c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_24
+ c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3 in a Sylow subgroup
- b_1_0 → 0, an element of degree 1
- b_2_2 → 0, an element of degree 2
- b_2_1 → c_1_22 + c_1_1·c_1_2 + c_1_12, an element of degree 2
- a_3_6 → 0, an element of degree 3
- b_3_4 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_3_1 → c_1_23 + c_1_1·c_1_22 + c_1_13, an element of degree 3
- b_3_0 → c_1_23 + c_1_12·c_1_2 + c_1_13, an element of degree 3
- b_4_5 → 0, an element of degree 4
- b_4_1 → 0, an element of degree 4
- b_4_0 → c_1_24 + c_1_12·c_1_22 + c_1_14, an element of degree 4
- b_5_5 → c_1_1·c_1_24 + c_1_14·c_1_2, an element of degree 5
- b_5_0 → c_1_25 + c_1_1·c_1_24 + c_1_15, an element of degree 5
- b_6_6 → c_1_1·c_1_25 + c_1_13·c_1_23 + c_1_14·c_1_22 + c_1_15·c_1_2, an element of degree 6
- b_6_4 → c_1_26 + c_1_14·c_1_22 + c_1_16, an element of degree 6
- b_7_10 → 0, an element of degree 7
- c_8_8 → c_1_28 + c_1_1·c_1_27 + c_1_12·c_1_26 + c_1_14·c_1_24 + c_1_15·c_1_23
+ c_1_17·c_1_2 + c_1_18 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_24 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 4 in a Sylow subgroup
- b_1_0 → c_1_3 + c_1_2 + c_1_1, an element of degree 1
- b_2_2 → 0, an element of degree 2
- b_2_1 → 0, an element of degree 2
- a_3_6 → 0, an element of degree 3
- b_3_4 → 0, an element of degree 3
- b_3_1 → 0, an element of degree 3
- b_3_0 → c_1_1·c_1_32 + c_1_12·c_1_3 + c_1_0·c_1_32 + c_1_0·c_1_22 + c_1_0·c_1_12
+ c_1_02·c_1_3 + c_1_02·c_1_2 + c_1_02·c_1_1, an element of degree 3
- b_4_5 → 0, an element of degree 4
- b_4_1 → c_1_22·c_1_32 + c_1_1·c_1_33 + c_1_1·c_1_22·c_1_3 + c_1_12·c_1_32
+ c_1_12·c_1_22 + c_1_13·c_1_3 + c_1_0·c_1_33 + c_1_0·c_1_2·c_1_32 + c_1_0·c_1_22·c_1_3 + c_1_0·c_1_23 + c_1_0·c_1_1·c_1_32 + c_1_0·c_1_1·c_1_22 + c_1_0·c_1_12·c_1_3 + c_1_0·c_1_12·c_1_2 + c_1_0·c_1_13 + c_1_02·c_1_32 + c_1_02·c_1_22 + c_1_02·c_1_12, an element of degree 4
- b_4_0 → 0, an element of degree 4
- b_5_5 → 0, an element of degree 5
- b_5_0 → c_1_22·c_1_33 + c_1_23·c_1_32 + c_1_1·c_1_34 + c_1_1·c_1_2·c_1_33
+ c_1_1·c_1_22·c_1_32 + c_1_1·c_1_23·c_1_3 + c_1_12·c_1_33 + c_1_12·c_1_2·c_1_32 + c_1_12·c_1_22·c_1_3 + c_1_12·c_1_23 + c_1_13·c_1_32 + c_1_13·c_1_2·c_1_3 + c_1_13·c_1_22 + c_1_14·c_1_3 + c_1_0·c_1_34 + c_1_0·c_1_24 + c_1_0·c_1_14 + c_1_04·c_1_3 + c_1_04·c_1_2 + c_1_04·c_1_1, an element of degree 5
- b_6_6 → 0, an element of degree 6
- b_6_4 → c_1_22·c_1_34 + c_1_24·c_1_32 + c_1_1·c_1_2·c_1_34 + c_1_1·c_1_22·c_1_33
+ c_1_1·c_1_23·c_1_32 + c_1_1·c_1_24·c_1_3 + c_1_12·c_1_34 + c_1_12·c_1_2·c_1_33 + c_1_12·c_1_22·c_1_32 + c_1_12·c_1_23·c_1_3 + c_1_12·c_1_24 + c_1_13·c_1_2·c_1_32 + c_1_13·c_1_22·c_1_3 + c_1_14·c_1_32 + c_1_14·c_1_2·c_1_3 + c_1_14·c_1_22, an element of degree 6
- b_7_10 → 0, an element of degree 7
- c_8_8 → c_1_12·c_1_36 + c_1_13·c_1_35 + c_1_15·c_1_33 + c_1_16·c_1_32
+ c_1_0·c_1_12·c_1_35 + c_1_0·c_1_12·c_1_2·c_1_34 + c_1_0·c_1_13·c_1_34 + c_1_0·c_1_14·c_1_33 + c_1_0·c_1_14·c_1_2·c_1_32 + c_1_0·c_1_15·c_1_32 + c_1_02·c_1_36 + c_1_02·c_1_26 + c_1_02·c_1_1·c_1_35 + c_1_02·c_1_1·c_1_24·c_1_3 + c_1_02·c_1_12·c_1_34 + c_1_02·c_1_12·c_1_22·c_1_32 + c_1_02·c_1_14·c_1_32 + c_1_02·c_1_15·c_1_3 + c_1_02·c_1_16 + c_1_03·c_1_35 + c_1_03·c_1_2·c_1_34 + c_1_03·c_1_24·c_1_3 + c_1_03·c_1_25 + c_1_03·c_1_1·c_1_34 + c_1_03·c_1_1·c_1_24 + c_1_03·c_1_14·c_1_3 + c_1_03·c_1_14·c_1_2 + c_1_03·c_1_15 + c_1_04·c_1_34 + c_1_04·c_1_22·c_1_32 + c_1_04·c_1_24 + c_1_04·c_1_1·c_1_33 + c_1_04·c_1_1·c_1_22·c_1_3 + c_1_04·c_1_12·c_1_32 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_13·c_1_3 + c_1_04·c_1_14 + c_1_05·c_1_33 + c_1_05·c_1_2·c_1_32 + c_1_05·c_1_22·c_1_3 + c_1_05·c_1_23 + c_1_05·c_1_1·c_1_32 + c_1_05·c_1_1·c_1_22 + c_1_05·c_1_12·c_1_3 + c_1_05·c_1_12·c_1_2 + c_1_05·c_1_13 + c_1_06·c_1_32 + c_1_06·c_1_22 + c_1_06·c_1_12 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 4 in a Sylow subgroup
- b_1_0 → c_1_3 + c_1_2 + c_1_1, an element of degree 1
- b_2_2 → c_1_32 + c_1_2·c_1_3 + c_1_1·c_1_3, an element of degree 2
- b_2_1 → c_1_2·c_1_3 + c_1_1·c_1_3, an element of degree 2
- a_3_6 → 0, an element of degree 3
- b_3_4 → 0, an element of degree 3
- b_3_1 → c_1_2·c_1_32 + c_1_1·c_1_32, an element of degree 3
- b_3_0 → c_1_33 + c_1_2·c_1_32 + c_1_22·c_1_3 + c_1_0·c_1_32 + c_1_0·c_1_22
+ c_1_0·c_1_12 + c_1_02·c_1_3 + c_1_02·c_1_2 + c_1_02·c_1_1, an element of degree 3
- b_4_5 → c_1_2·c_1_33 + c_1_22·c_1_32 + c_1_1·c_1_33 + c_1_12·c_1_32, an element of degree 4
- b_4_1 → c_1_34 + c_1_23·c_1_3 + c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22
+ c_1_0·c_1_2·c_1_32 + c_1_0·c_1_23 + c_1_0·c_1_1·c_1_32 + c_1_0·c_1_1·c_1_22 + c_1_0·c_1_12·c_1_2 + c_1_0·c_1_13 + c_1_02·c_1_2·c_1_3 + c_1_02·c_1_22 + c_1_02·c_1_1·c_1_3 + c_1_02·c_1_12, an element of degree 4
- b_4_0 → c_1_2·c_1_33 + c_1_22·c_1_32 + c_1_23·c_1_3 + c_1_1·c_1_22·c_1_3
+ c_1_12·c_1_2·c_1_3 + c_1_13·c_1_3 + c_1_0·c_1_33 + c_1_0·c_1_22·c_1_3 + c_1_0·c_1_12·c_1_3 + c_1_02·c_1_32 + c_1_02·c_1_2·c_1_3 + c_1_02·c_1_1·c_1_3, an element of degree 4
- b_5_5 → c_1_1·c_1_2·c_1_33 + c_1_12·c_1_33 + c_1_12·c_1_2·c_1_32 + c_1_13·c_1_32
+ c_1_0·c_1_2·c_1_33 + c_1_0·c_1_23·c_1_3 + c_1_0·c_1_1·c_1_33 + c_1_0·c_1_1·c_1_22·c_1_3 + c_1_0·c_1_12·c_1_2·c_1_3 + c_1_0·c_1_13·c_1_3 + c_1_02·c_1_2·c_1_32 + c_1_02·c_1_22·c_1_3 + c_1_02·c_1_1·c_1_32 + c_1_02·c_1_12·c_1_3, an element of degree 5
- b_5_0 → c_1_2·c_1_34 + c_1_1·c_1_23·c_1_3 + c_1_12·c_1_33 + c_1_12·c_1_2·c_1_32
+ c_1_12·c_1_22·c_1_3 + c_1_12·c_1_23 + c_1_13·c_1_32 + c_1_13·c_1_2·c_1_3 + c_1_13·c_1_22 + c_1_14·c_1_3 + c_1_0·c_1_34 + c_1_0·c_1_2·c_1_33 + c_1_0·c_1_23·c_1_3 + c_1_0·c_1_24 + c_1_0·c_1_1·c_1_33 + c_1_0·c_1_1·c_1_22·c_1_3 + c_1_0·c_1_12·c_1_2·c_1_3 + c_1_0·c_1_13·c_1_3 + c_1_0·c_1_14 + c_1_02·c_1_2·c_1_32 + c_1_02·c_1_22·c_1_3 + c_1_02·c_1_1·c_1_32 + c_1_02·c_1_12·c_1_3 + c_1_04·c_1_3 + c_1_04·c_1_2 + c_1_04·c_1_1, an element of degree 5
- b_6_6 → c_1_22·c_1_34 + c_1_24·c_1_32 + c_1_1·c_1_35 + c_1_1·c_1_2·c_1_34
+ c_1_1·c_1_22·c_1_33 + c_1_12·c_1_2·c_1_33 + c_1_12·c_1_22·c_1_32 + c_1_14·c_1_32 + c_1_0·c_1_35 + c_1_0·c_1_22·c_1_33 + c_1_0·c_1_12·c_1_33 + c_1_02·c_1_34 + c_1_02·c_1_2·c_1_33 + c_1_02·c_1_1·c_1_33, an element of degree 6
- b_6_4 → c_1_22·c_1_34 + c_1_23·c_1_33 + c_1_24·c_1_32 + c_1_1·c_1_35
+ c_1_1·c_1_2·c_1_34 + c_1_1·c_1_24·c_1_3 + c_1_12·c_1_2·c_1_33 + c_1_12·c_1_24 + c_1_14·c_1_2·c_1_3 + c_1_14·c_1_22 + c_1_0·c_1_35 + c_1_0·c_1_2·c_1_34 + c_1_0·c_1_23·c_1_32 + c_1_0·c_1_24·c_1_3 + c_1_0·c_1_1·c_1_34 + c_1_0·c_1_1·c_1_22·c_1_32 + c_1_0·c_1_12·c_1_2·c_1_32 + c_1_0·c_1_13·c_1_32 + c_1_0·c_1_14·c_1_3 + c_1_02·c_1_2·c_1_33 + c_1_02·c_1_22·c_1_32 + c_1_02·c_1_1·c_1_33 + c_1_02·c_1_12·c_1_32 + c_1_04·c_1_32 + c_1_04·c_1_2·c_1_3 + c_1_04·c_1_1·c_1_3, an element of degree 6
- b_7_10 → c_1_37 + c_1_2·c_1_36 + c_1_22·c_1_35 + c_1_24·c_1_33 + c_1_1·c_1_36
+ c_1_12·c_1_35 + c_1_14·c_1_33, an element of degree 7
- c_8_8 → c_1_38 + c_1_22·c_1_36 + c_1_24·c_1_34 + c_1_25·c_1_33 + c_1_27·c_1_3
+ c_1_1·c_1_37 + c_1_1·c_1_22·c_1_35 + c_1_1·c_1_26·c_1_3 + c_1_12·c_1_36 + c_1_12·c_1_22·c_1_34 + c_1_12·c_1_24·c_1_32 + c_1_12·c_1_25·c_1_3 + c_1_13·c_1_35 + c_1_13·c_1_24·c_1_3 + c_1_14·c_1_34 + c_1_14·c_1_2·c_1_33 + c_1_14·c_1_23·c_1_3 + c_1_15·c_1_22·c_1_3 + c_1_16·c_1_32 + c_1_16·c_1_2·c_1_3 + c_1_17·c_1_3 + c_1_0·c_1_37 + c_1_0·c_1_2·c_1_36 + c_1_0·c_1_22·c_1_35 + c_1_0·c_1_25·c_1_32 + c_1_0·c_1_1·c_1_36 + c_1_0·c_1_1·c_1_2·c_1_35 + c_1_0·c_1_1·c_1_22·c_1_34 + c_1_0·c_1_1·c_1_23·c_1_33 + c_1_0·c_1_12·c_1_22·c_1_33 + c_1_0·c_1_12·c_1_23·c_1_32 + c_1_0·c_1_12·c_1_24·c_1_3 + c_1_0·c_1_13·c_1_34 + c_1_0·c_1_13·c_1_2·c_1_33 + c_1_0·c_1_13·c_1_22·c_1_32 + c_1_0·c_1_14·c_1_33 + c_1_0·c_1_14·c_1_2·c_1_32 + c_1_0·c_1_14·c_1_22·c_1_3 + c_1_02·c_1_36 + c_1_02·c_1_2·c_1_35 + c_1_02·c_1_22·c_1_34 + c_1_02·c_1_23·c_1_33 + c_1_02·c_1_25·c_1_3 + c_1_02·c_1_26 + c_1_02·c_1_1·c_1_2·c_1_34 + c_1_02·c_1_1·c_1_22·c_1_33 + c_1_02·c_1_1·c_1_23·c_1_32 + c_1_02·c_1_12·c_1_2·c_1_33 + c_1_02·c_1_12·c_1_23·c_1_3 + c_1_02·c_1_13·c_1_33 + c_1_02·c_1_13·c_1_2·c_1_32 + c_1_02·c_1_13·c_1_22·c_1_3 + c_1_02·c_1_14·c_1_32 + c_1_02·c_1_14·c_1_2·c_1_3 + c_1_02·c_1_16 + c_1_03·c_1_35 + c_1_03·c_1_2·c_1_34 + c_1_03·c_1_24·c_1_3 + c_1_03·c_1_25 + c_1_03·c_1_1·c_1_34 + c_1_03·c_1_1·c_1_24 + c_1_03·c_1_14·c_1_3 + c_1_03·c_1_14·c_1_2 + c_1_03·c_1_15 + c_1_04·c_1_2·c_1_33 + c_1_04·c_1_23·c_1_3 + c_1_04·c_1_24 + c_1_04·c_1_12·c_1_2·c_1_3 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_05·c_1_33 + c_1_05·c_1_2·c_1_32 + c_1_05·c_1_22·c_1_3 + c_1_05·c_1_23 + c_1_05·c_1_1·c_1_32 + c_1_05·c_1_1·c_1_22 + c_1_05·c_1_12·c_1_3 + c_1_05·c_1_12·c_1_2 + c_1_05·c_1_13 + c_1_06·c_1_32 + c_1_06·c_1_22 + c_1_06·c_1_12 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 4 in a Sylow subgroup
- b_1_0 → c_1_2, an element of degree 1
- b_2_2 → c_1_22, an element of degree 2
- b_2_1 → 0, an element of degree 2
- a_3_6 → 0, an element of degree 3
- b_3_4 → 0, an element of degree 3
- b_3_1 → 0, an element of degree 3
- b_3_0 → c_1_2·c_1_32 + c_1_22·c_1_3 + c_1_23 + c_1_1·c_1_32 + c_1_1·c_1_22
+ c_1_12·c_1_3 + c_1_12·c_1_2 + c_1_0·c_1_22 + c_1_02·c_1_2, an element of degree 3
- b_4_5 → 0, an element of degree 4
- b_4_1 → c_1_34 + c_1_22·c_1_32 + c_1_24 + c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3
+ c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22 + c_1_14, an element of degree 4
- b_4_0 → c_1_22·c_1_32 + c_1_23·c_1_3 + c_1_1·c_1_2·c_1_32 + c_1_1·c_1_23
+ c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22 + c_1_0·c_1_23 + c_1_02·c_1_22, an element of degree 4
- b_5_5 → 0, an element of degree 5
- b_5_0 → c_1_23·c_1_32 + c_1_24·c_1_3 + c_1_1·c_1_34 + c_1_1·c_1_22·c_1_32
+ c_1_1·c_1_23·c_1_3 + c_1_1·c_1_24 + c_1_12·c_1_2·c_1_32 + c_1_12·c_1_22·c_1_3 + c_1_12·c_1_23 + c_1_14·c_1_3 + c_1_0·c_1_24 + c_1_04·c_1_2, an element of degree 5
- b_6_6 → c_1_22·c_1_34 + c_1_25·c_1_3 + c_1_1·c_1_24·c_1_3 + c_1_1·c_1_25
+ c_1_12·c_1_22·c_1_32 + c_1_14·c_1_22 + c_1_0·c_1_25 + c_1_02·c_1_24, an element of degree 6
- b_6_4 → c_1_22·c_1_34 + c_1_25·c_1_3 + c_1_1·c_1_2·c_1_34 + c_1_1·c_1_25
+ c_1_14·c_1_2·c_1_3 + c_1_14·c_1_22 + c_1_0·c_1_25 + c_1_04·c_1_22, an element of degree 6
- b_7_10 → c_1_27, an element of degree 7
- c_8_8 → c_1_24·c_1_34 + c_1_27·c_1_3 + c_1_28 + c_1_1·c_1_2·c_1_36
+ c_1_1·c_1_22·c_1_35 + c_1_1·c_1_24·c_1_33 + c_1_1·c_1_25·c_1_32 + c_1_1·c_1_26·c_1_3 + c_1_1·c_1_27 + c_1_12·c_1_36 + c_1_12·c_1_24·c_1_32 + c_1_12·c_1_25·c_1_3 + c_1_13·c_1_35 + c_1_13·c_1_24·c_1_3 + c_1_14·c_1_24 + c_1_15·c_1_33 + c_1_15·c_1_22·c_1_3 + c_1_16·c_1_32 + c_1_16·c_1_2·c_1_3 + c_1_0·c_1_27 + c_1_0·c_1_1·c_1_24·c_1_32 + c_1_0·c_1_1·c_1_25·c_1_3 + c_1_0·c_1_12·c_1_2·c_1_34 + c_1_0·c_1_12·c_1_23·c_1_32 + c_1_0·c_1_12·c_1_24·c_1_3 + c_1_0·c_1_14·c_1_2·c_1_32 + c_1_02·c_1_22·c_1_34 + c_1_02·c_1_25·c_1_3 + c_1_02·c_1_26 + c_1_02·c_1_1·c_1_23·c_1_32 + c_1_02·c_1_1·c_1_25 + c_1_02·c_1_12·c_1_34 + c_1_02·c_1_12·c_1_23·c_1_3 + c_1_02·c_1_14·c_1_32 + c_1_02·c_1_14·c_1_22 + c_1_03·c_1_25 + c_1_04·c_1_34 + c_1_04·c_1_23·c_1_3 + c_1_04·c_1_1·c_1_22·c_1_3 + c_1_04·c_1_1·c_1_23 + c_1_04·c_1_12·c_1_32 + c_1_04·c_1_14 + c_1_05·c_1_23 + c_1_06·c_1_22 + c_1_08, an element of degree 8
|