Mod-2-Cohomology of Normalizer(HigmanSims,Centre(SylowSubgroup(HigmanSims,2))), a group of order 7680

About the group Ring generators Ring relations Completion information Restriction maps


General information on the group

  • Normalizer(HigmanSims,Centre(SylowSubgroup(HigmanSims,2))) is a group of order 7680.
  • The group order factors as 29 · 3 · 5.
  • The group is defined by Group([(1,74)(2,76)(3,70)(4,16)(5,42)(6,20)(7,10)(8,68)(11,43)(12,54)(13,79)(14,22)(15,39)(17,73)(18,84)(19,46)(21,55)(23,62)(25,93)(26,27)(29,60)(30,37)(31,64)(33,91)(34,82)(35,69)(36,77)(40,95)(41,47)(45,80)(48,72)(50,98)(56,61)(57,89)(58,63)(65,86)(67,97)(75,99)(81,92)(85,90),(3,23,77,61)(4,19,35,89)(5,40,67,92)(6,22,20,14)(7,26,8,80)(10,27,68,45)(11,29,41,13)(12,39,50,33)(15,98,91,54)(16,46,69,57)(17,90,37,65)(18,84)(21,25,75,58)(24,52,28,49)(30,86,73,85)(31,82,64,34)(32,66)(36,56,70,62)(42,95,97,81)(43,60,47,79)(44,94,100,59)(48,72)(51,53)(55,93,99,63)(78,88)(87,96),(3,55)(4,69)(5,10)(6,64)(7,42)(8,97)(9,71)(12,50)(14,82)(15,91)(16,35)(17,73)(18,84)(19,57)(20,31)(21,70)(22,34)(23,93)(24,94)(25,62)(26,95)(27,40)(28,59)(30,37)(33,39)(36,75)(38,83)(44,49)(45,92)(46,89)(48,72)(52,100)(54,98)(56,58)(61,63)(65,86)(67,68)(77,99)(80,81)(85,90),(2,6)(3,4)(5,92)(7,98)(8,60)(9,53)(10,50)(11,39)(12,45)(13,27)(14,22)(15,43)(16,70)(17,23)(18,34)(19,46)(20,76)(21,58)(25,93)(26,79)(29,68)(30,77)(35,56)(36,37)(38,66)(42,81)(48,72)(49,78)(52,88)(54,80)(55,63)(57,85)(59,87)(61,69)(62,73)(65,86)(75,99)(82,84)(89,90)(94,96),(1,2)(3,7)(4,19)(5,21)(6,34)(8,77)(9,38)(10,70)(11,79)(12,39)(13,43)(14,31)(15,54)(16,46)(17,85)(18,72)(20,82)(22,64)(23,80)(24,52)(25,92)(26,61)(27,56)(28,49)(29,47)(30,65)(32,66)(33,50)(35,89)(36,68)(37,86)(40,58)(41,60)(42,55)(44,59)(45,62)(48,84)(51,53)(57,69)(63,95)(67,75)(71,83)(73,90)(74,76)(78,88)(81,93)(87,96)(91,98)(94,100)(97,99),(1,3)(2,8)(4,16)(6,56)(7,72)(10,48)(11,46)(12,30)(13,79)(14,23)(18,77)(19,43)(20,61)(21,55)(22,62)(24,66)(25,92)(26,64)(27,31)(28,53)(29,35)(32,49)(33,90)(34,80)(36,84)(37,54)(40,58)(41,47)(45,82)(51,52)(57,89)(60,69)(63,95)(67,97)(68,76)(70,74)(71,96)(81,93)(83,87)(85,91)]).
  • It is non-abelian.
  • It has 2-Rank 4.
  • The centre of a Sylow 2-subgroup has rank 1.
  • Its Sylow 2-subgroup has 9 conjugacy classes of maximal elementary abelian subgroups, which are of rank 3, 3, 3, 3, 3, 3, 4, 4 and 4, respectively.


Structure of the cohomology ring

The computation was based on 3 stability conditions for H*(Syl2HS; GF(2)).

General information

  • The cohomology ring is of dimension 4 and depth 2.
  • The depth exceeds the Duflot bound, which is 1.
  • The Poincaré series is
    (2)·(1/2  −  t  +  5/2·t2  −  5/2·t3  +  3·t4  −  5/2·t5  +  3·t6  −  5/2·t7  +  5/2·t8  −  2·t9  +  t10)

    ( − 1  +  t)4 · (1  +  t  +  t2) · (1  +  t2)2 · (1  +  t4)

About the group Ring generators Ring relations Completion information Restriction maps

Ring generators

The cohomology ring has 16 minimal generators of maximal degree 8:

  1. b_1_0, an element of degree 1
  2. b_2_2, an element of degree 2
  3. b_2_1, an element of degree 2
  4. a_3_6, a nilpotent element of degree 3
  5. b_3_4, an element of degree 3
  6. b_3_1, an element of degree 3
  7. b_3_0, an element of degree 3
  8. b_4_5, an element of degree 4
  9. b_4_1, an element of degree 4
  10. b_4_0, an element of degree 4
  11. b_5_5, an element of degree 5
  12. b_5_0, an element of degree 5
  13. b_6_6, an element of degree 6
  14. b_6_4, an element of degree 6
  15. b_7_10, an element of degree 7
  16. c_8_8, a Duflot element of degree 8

About the group Ring generators Ring relations Completion information Restriction maps

Ring relations

There are 76 minimal relations of maximal degree 14:

  1. b_1_0·a_3_6
  2. b_2_2·b_1_02 + b_2_22 + b_2_1·b_1_02
  3. b_1_0·b_3_1 + b_2_1·b_2_2
  4. b_1_0·b_3_4
  5. b_2_1·a_3_6
  6. b_2_2·a_3_6
  7. b_2_2·b_3_1 + b_2_1·b_2_2·b_1_0 + b_2_12·b_1_0
  8. b_2_2·b_3_4
  9. b_4_0·b_1_0 + b_2_2·b_3_0 + b_2_22·b_1_0 + b_2_1·b_1_03 + b_2_1·b_2_2·b_1_0
  10. b_4_5·b_1_0 + b_2_1·b_2_2·b_1_0
  11. a_3_62
  12. a_3_6·b_3_0
  13. a_3_6·b_3_1
  14. a_3_6·b_3_4
  15. b_2_2·b_4_5 + b_2_1·b_2_22
  16. b_2_2·b_1_0·b_3_0 + b_2_2·b_4_0 + b_2_23 + b_2_1·b_1_0·b_3_0 + b_2_12·b_1_02
  17. b_1_0·b_5_5 + b_2_1·b_1_0·b_3_0 + b_2_1·b_2_22 + b_2_12·b_1_02 + b_2_12·b_2_2
  18. b_3_12 + b_3_0·b_3_4 + b_2_12·b_2_2 + b_2_13
  19. b_3_1·b_3_4 + b_3_0·b_3_4 + b_3_0·b_3_1 + b_2_1·b_4_0 + b_2_1·b_2_22 + b_2_12·b_1_02
       + b_2_12·b_2_2
  20. b_3_42 + b_3_0·b_3_1 + b_2_1·b_4_5 + b_2_1·b_4_0 + b_2_1·b_2_22 + b_2_12·b_1_02
  21. b_4_0·a_3_6
  22. b_4_5·a_3_6
  23. b_2_1·b_5_5 + b_2_12·b_3_1 + b_2_12·b_3_0 + b_2_12·b_2_2·b_1_0
  24. b_2_2·b_5_5 + b_2_1·b_2_2·b_3_0 + b_2_1·b_2_22·b_1_0 + b_2_12·b_2_2·b_1_0
       + b_2_13·b_1_0
  25. b_4_1·b_3_4 + b_4_0·b_3_4 + b_2_12·b_3_4
  26. b_4_5·b_3_0 + b_4_0·b_3_1 + b_2_1·b_2_22·b_1_0 + b_2_12·b_3_4 + b_2_12·b_3_0
       + b_2_12·b_2_2·b_1_0 + b_2_13·b_1_0
  27. b_4_5·b_3_1 + b_4_0·b_3_4 + b_2_12·b_3_4 + b_2_12·b_2_2·b_1_0 + b_2_13·b_1_0
  28. b_4_5·b_3_4 + b_4_0·b_3_4 + b_4_0·b_3_1 + b_2_1·b_2_2·b_3_0 + b_2_1·b_2_22·b_1_0
       + b_2_12·b_3_0 + b_2_12·b_2_2·b_1_0 + b_2_13·b_1_0
  29. b_6_6·b_1_0 + b_2_2·b_4_1·b_1_0 + b_2_22·b_3_0 + b_2_1·b_4_1·b_1_0 + b_2_12·b_1_03
  30. b_1_04·b_3_0 + b_6_4·b_1_0 + b_4_1·b_1_03 + b_2_2·b_5_0 + b_2_22·b_3_0 + b_2_23·b_1_0
       + b_2_1·b_1_02·b_3_0 + b_2_1·b_2_22·b_1_0
  31. b_2_1·b_3_02 + b_2_1·b_1_0·b_5_0 + b_2_1·b_6_6 + b_2_1·b_4_1·b_1_02
       + b_2_1·b_2_2·b_4_1 + b_2_1·b_2_23 + b_2_12·b_1_0·b_3_0 + b_2_12·b_1_04
       + b_2_12·b_4_0 + b_2_12·b_2_22 + b_2_13·b_1_02 + b_2_13·b_2_2 + a_3_6·b_5_5
       + a_3_6·b_5_0
  32. b_2_1·b_3_0·b_3_4 + b_2_1·b_3_0·b_3_1 + b_2_1·b_6_6 + b_2_1·b_2_2·b_4_1
       + b_2_1·b_2_2·b_4_0 + b_2_1·b_2_23 + b_2_12·b_4_5 + b_2_12·b_4_1 + b_2_12·b_4_0
       + b_2_12·b_2_22 + b_2_13·b_1_02 + a_3_6·b_5_5 + a_3_6·b_5_0
  33. b_2_2·b_6_6 + b_2_22·b_4_1 + b_2_22·b_4_0 + b_2_24 + b_2_1·b_2_2·b_4_1 + a_3_6·b_5_5
  34. b_2_2·b_1_0·b_5_0 + b_2_2·b_6_4 + b_2_22·b_4_1 + b_2_24 + b_2_1·b_1_0·b_5_0
       + b_2_1·b_1_03·b_3_0 + b_2_1·b_4_1·b_1_02 + b_2_1·b_2_23
  35. b_4_02 + b_2_2·b_3_02 + b_2_24 + b_2_1·b_1_0·b_5_0 + b_2_1·b_4_1·b_1_02
       + b_2_1·b_2_2·b_4_0 + b_2_12·b_1_0·b_3_0 + b_2_12·b_4_1 + b_2_12·b_4_0
       + b_2_13·b_1_02 + b_2_13·b_2_2
  36. b_4_0·b_4_5 + b_2_1·b_2_2·b_4_0 + b_2_12·b_4_5 + b_2_13·b_2_2
  37. b_4_1·b_4_5 + b_2_1·b_2_2·b_4_1 + a_3_6·b_5_0
  38. b_4_52 + b_2_12·b_2_22
  39. b_1_0·b_7_10 + b_2_24 + b_2_13·b_1_02 + a_3_6·b_5_0
  40. b_3_0·b_5_5 + b_2_1·b_3_0·b_3_1 + b_2_1·b_1_0·b_5_0 + b_2_1·b_6_6 + b_2_1·b_4_1·b_1_02
       + b_2_1·b_2_2·b_4_1 + b_2_1·b_2_2·b_4_0 + b_2_12·b_1_04 + b_2_12·b_4_0
       + b_2_12·b_2_22 + b_2_13·b_2_2
  41. b_3_1·b_5_0 + b_2_1·b_3_0·b_3_1 + b_2_1·b_1_03·b_3_0 + b_2_1·b_6_6 + b_2_1·b_6_4
       + b_2_1·b_4_1·b_1_02 + b_2_1·b_2_2·b_4_1 + b_2_1·b_2_23 + b_2_12·b_1_0·b_3_0
       + b_2_12·b_4_5 + b_2_12·b_4_1 + b_2_12·b_4_0 + a_3_6·b_5_5
  42. b_3_1·b_5_5 + b_2_1·b_6_6 + b_2_1·b_2_2·b_4_1 + b_2_1·b_2_2·b_4_0 + b_2_1·b_2_23
       + b_2_12·b_4_5 + b_2_12·b_4_1 + b_2_12·b_4_0 + b_2_13·b_1_02 + b_2_13·b_2_2
       + b_2_14 + a_3_6·b_5_0
  43. b_3_4·b_5_0 + b_2_1·b_3_0·b_3_1 + b_2_1·b_6_6 + b_2_1·b_2_2·b_4_1 + b_2_1·b_2_2·b_4_0
       + b_2_1·b_2_23 + b_2_12·b_4_1 + b_2_12·b_4_0 + b_2_12·b_2_22 + b_2_13·b_1_02
       + b_2_13·b_2_2 + a_3_6·b_5_5 + a_3_6·b_5_0
  44. b_3_4·b_5_5 + b_2_1·b_3_0·b_3_1 + b_2_12·b_4_0 + b_2_12·b_2_22 + b_2_13·b_1_02
       + b_2_13·b_2_2
  45. b_2_1·b_4_1·b_3_1 + b_2_1·b_4_0·b_3_4 + b_2_1·b_4_0·b_3_0 + b_2_1·b_2_2·b_5_0
       + b_2_1·b_2_2·b_4_1·b_1_0 + b_2_1·b_2_23·b_1_0 + b_2_12·b_1_02·b_3_0 + b_2_13·b_3_4
       + b_2_13·b_3_0 + b_2_13·b_1_03 + b_2_13·b_2_2·b_1_0
  46. b_2_1·b_7_10 + b_2_1·b_4_0·b_3_4 + b_2_1·b_4_0·b_3_1 + b_2_1·b_2_23·b_1_0
       + b_2_12·b_2_2·b_3_0 + b_2_13·b_3_0 + b_2_13·b_2_2·b_1_0 + b_6_4·a_3_6
  47. b_2_2·b_7_10 + b_2_24·b_1_0 + b_2_1·b_2_23·b_1_0 + b_2_13·b_2_2·b_1_0 + b_6_4·a_3_6
  48. b_4_0·b_5_5 + b_2_1·b_4_0·b_3_1 + b_2_1·b_4_0·b_3_0 + b_2_1·b_2_22·b_3_0
       + b_2_1·b_2_23·b_1_0 + b_2_13·b_1_03 + b_6_4·a_3_6
  49. b_4_5·b_5_0 + b_2_1·b_4_0·b_3_1 + b_2_1·b_2_2·b_5_0 + b_2_12·b_2_2·b_3_0
       + b_2_12·b_2_22·b_1_0 + b_2_13·b_3_4 + b_2_13·b_3_0 + b_2_13·b_2_2·b_1_0
       + b_2_14·b_1_0
  50. b_4_5·b_5_5 + b_2_1·b_4_0·b_3_4 + b_2_1·b_4_0·b_3_1 + b_2_13·b_3_0
  51. b_6_6·b_3_0 + b_6_4·b_3_4 + b_6_4·b_3_1 + b_2_2·b_4_1·b_3_0 + b_2_2·b_4_0·b_3_0
       + b_2_23·b_3_0 + b_2_1·b_4_1·b_3_0 + b_2_1·b_4_0·b_3_4 + b_2_1·b_4_0·b_3_1
       + b_2_1·b_2_2·b_5_0 + b_2_1·b_2_2·b_4_1·b_1_0 + b_2_1·b_2_23·b_1_0 + b_2_12·b_5_0
       + b_2_12·b_1_02·b_3_0 + b_2_12·b_2_2·b_3_0 + b_2_12·b_2_22·b_1_0 + b_2_13·b_3_0
       + b_2_14·b_1_0 + b_6_6·a_3_6 + b_6_4·a_3_6
  52. b_6_6·b_3_1 + b_6_4·b_3_1 + b_2_1·b_4_0·b_3_0 + b_2_1·b_2_2·b_4_1·b_1_0
       + b_2_1·b_2_22·b_3_0 + b_2_12·b_5_0 + b_2_12·b_4_1·b_1_0 + b_2_12·b_2_2·b_3_0
       + b_2_13·b_3_4 + b_2_13·b_3_0 + b_2_13·b_1_03 + b_2_13·b_2_2·b_1_0 + b_6_6·a_3_6
  53. b_6_6·b_3_4 + b_6_4·b_3_4 + b_2_1·b_4_0·b_3_1 + b_2_12·b_2_2·b_3_0
       + b_2_12·b_2_22·b_1_0 + b_2_13·b_3_0 + b_2_13·b_2_2·b_1_0 + b_2_14·b_1_0
  54. b_1_03·b_3_02 + b_6_4·b_3_4 + b_6_4·b_3_1 + b_6_4·b_3_0 + b_4_1·b_1_02·b_3_0
       + b_4_0·b_5_0 + b_2_2·b_4_0·b_3_0 + b_2_22·b_5_0 + b_2_1·b_4_1·b_1_03
       + b_2_1·b_4_0·b_3_1 + b_2_1·b_2_2·b_4_1·b_1_0 + b_2_12·b_5_0 + b_2_12·b_1_02·b_3_0
       + b_2_12·b_1_05 + b_2_12·b_4_1·b_1_0 + b_2_12·b_2_22·b_1_0 + b_2_13·b_3_4
       + b_2_13·b_3_0 + b_2_13·b_1_03 + b_2_14·b_1_0
  55. b_3_02·b_3_1 + b_6_4·b_3_1 + b_2_1·b_4_0·b_3_1 + b_2_1·b_4_0·b_3_0 + b_2_1·b_2_2·b_5_0
       + b_2_1·b_2_2·b_4_1·b_1_0 + b_2_1·b_2_22·b_3_0 + b_2_1·b_2_23·b_1_0 + b_2_12·b_5_0
       + b_2_12·b_2_22·b_1_0 + b_2_13·b_3_4 + b_2_13·b_3_0 + b_2_14·b_1_0 + b_6_4·a_3_6
  56. b_3_02·b_3_4 + b_6_4·b_3_4 + b_2_1·b_4_0·b_3_4 + b_2_1·b_4_0·b_3_1
       + b_2_12·b_2_2·b_3_0 + b_2_12·b_2_22·b_1_0 + b_2_13·b_3_0 + b_2_13·b_2_2·b_1_0
       + b_2_14·b_1_0
  57. b_4_0·b_6_6 + b_4_0·b_6_4 + b_2_2·b_3_0·b_5_0 + b_2_22·b_3_02 + b_2_22·b_6_4
       + b_2_23·b_4_1 + b_2_1·b_3_0·b_5_0 + b_2_1·b_1_03·b_5_0 + b_2_1·b_6_4·b_1_02
       + b_2_1·b_4_1·b_1_0·b_3_0 + b_2_1·b_4_1·b_1_04 + b_2_1·b_4_0·b_4_1
       + b_2_1·b_2_22·b_4_0 + b_2_12·b_1_0·b_5_0 + b_2_12·b_1_06 + b_2_12·b_6_6
       + b_2_12·b_2_2·b_4_0 + b_2_12·b_2_23 + b_2_13·b_1_0·b_3_0 + b_2_13·b_1_04
       + b_2_13·b_4_1 + a_3_6·b_7_10
  58. b_4_0·b_3_0·b_3_4 + b_4_0·b_3_0·b_3_1 + b_4_0·b_6_4 + b_2_2·b_3_0·b_5_0
       + b_2_2·b_4_0·b_4_1 + b_2_22·b_6_4 + b_2_23·b_4_1 + b_2_23·b_4_0 + b_2_25
       + b_2_1·b_3_0·b_5_0 + b_2_1·b_1_03·b_5_0 + b_2_1·b_6_4·b_1_02
       + b_2_1·b_4_1·b_1_0·b_3_0 + b_2_1·b_4_1·b_1_04 + b_2_1·b_2_24 + b_2_12·b_1_06
       + b_2_12·b_6_6 + b_2_12·b_4_1·b_1_02 + b_2_12·b_2_23 + b_2_13·b_1_0·b_3_0
       + b_2_13·b_1_04 + b_2_13·b_4_5 + b_2_13·b_4_0 + b_2_13·b_2_22 + b_2_14·b_1_02
  59. b_4_5·b_6_4 + b_4_0·b_3_0·b_3_1 + b_2_12·b_3_0·b_3_1 + b_2_12·b_1_03·b_3_0
       + b_2_12·b_4_1·b_1_02 + b_2_12·b_2_2·b_4_1 + b_2_12·b_2_2·b_4_0
       + b_2_13·b_1_0·b_3_0 + b_2_13·b_4_5 + b_2_13·b_4_1 + b_2_14·b_2_2
  60. b_4_5·b_6_6 + b_4_0·b_3_0·b_3_1 + b_2_1·b_2_2·b_6_4 + b_2_1·b_2_22·b_4_1
       + b_2_1·b_2_22·b_4_0 + b_2_1·b_2_24 + b_2_12·b_3_0·b_3_1 + b_2_12·b_1_03·b_3_0
       + b_2_12·b_4_1·b_1_02 + b_2_12·b_2_2·b_4_0 + b_2_13·b_1_0·b_3_0 + b_2_13·b_4_1
  61. b_3_0·b_7_10 + b_4_0·b_6_4 + b_2_2·b_3_0·b_5_0 + b_2_2·b_4_0·b_4_1 + b_2_22·b_6_4
       + b_2_23·b_4_1 + b_2_1·b_3_0·b_5_0 + b_2_1·b_1_03·b_5_0 + b_2_1·b_6_4·b_1_02
       + b_2_1·b_4_1·b_1_0·b_3_0 + b_2_1·b_4_1·b_1_04 + b_2_1·b_2_2·b_6_4 + b_2_1·b_2_24
       + b_2_12·b_1_03·b_3_0 + b_2_12·b_1_06 + b_2_12·b_2_23 + b_2_13·b_1_0·b_3_0
       + b_2_13·b_1_04 + b_2_13·b_4_5 + b_2_13·b_2_22 + b_2_14·b_1_02 + b_2_14·b_2_2
       + a_3_6·b_7_10
  62. b_3_1·b_7_10 + b_4_0·b_3_0·b_3_1 + b_2_1·b_2_2·b_6_4 + b_2_1·b_2_24
       + b_2_12·b_3_0·b_3_1 + b_2_12·b_1_03·b_3_0 + b_2_12·b_4_1·b_1_02
       + b_2_12·b_2_2·b_4_1 + b_2_12·b_2_2·b_4_0 + b_2_12·b_2_23 + b_2_13·b_1_0·b_3_0
       + b_2_13·b_4_1 + b_2_14·b_2_2 + a_3_6·b_7_10
  63. b_3_4·b_7_10 + b_4_0·b_3_0·b_3_1 + b_4_0·b_6_4 + b_2_2·b_3_0·b_5_0 + b_2_2·b_4_0·b_4_1
       + b_2_22·b_6_4 + b_2_23·b_4_1 + b_2_23·b_4_0 + b_2_25 + b_2_1·b_3_0·b_5_0
       + b_2_1·b_1_03·b_5_0 + b_2_1·b_6_4·b_1_02 + b_2_1·b_4_1·b_1_0·b_3_0
       + b_2_1·b_4_1·b_1_04 + b_2_1·b_2_24 + b_2_12·b_3_0·b_3_1 + b_2_12·b_1_06
       + b_2_12·b_4_1·b_1_02 + b_2_12·b_2_2·b_4_1 + b_2_12·b_2_2·b_4_0
       + b_2_13·b_1_0·b_3_0 + b_2_13·b_1_04 + b_2_13·b_4_5 + b_2_13·b_4_1 + b_2_14·b_2_2
  64. b_5_02 + b_6_4·b_1_0·b_3_0 + b_4_1·b_3_02 + b_4_1·b_1_03·b_3_0 + b_4_12·b_1_02
       + b_4_0·b_3_02 + b_2_2·b_3_0·b_5_0 + b_2_2·b_4_0·b_4_1 + b_2_1·b_1_03·b_5_0
       + b_2_1·b_1_08 + b_2_1·b_4_1·b_1_0·b_3_0 + b_2_1·b_4_1·b_1_04 + b_2_1·b_2_2·b_6_4
       + b_2_1·b_2_22·b_4_0 + b_2_12·b_1_03·b_3_0 + b_2_12·b_1_06 + b_2_13·b_2_22
       + c_8_8·b_1_02
  65. b_5_0·b_5_5 + b_2_1·b_3_0·b_5_0 + b_2_1·b_2_2·b_6_4 + b_2_1·b_2_22·b_4_1
       + b_2_1·b_2_24 + b_2_12·b_3_0·b_3_1 + b_2_12·b_1_0·b_5_0 + b_2_12·b_6_6
       + b_2_12·b_6_4 + b_2_12·b_2_2·b_4_1 + b_2_13·b_1_0·b_3_0 + b_2_13·b_4_5
       + b_2_13·b_4_1 + b_2_13·b_4_0
  66. b_5_52 + b_2_12·b_3_0·b_3_1 + b_2_12·b_1_0·b_5_0 + b_2_12·b_4_1·b_1_02
       + b_2_12·b_2_2·b_4_0 + b_2_12·b_2_23 + b_2_13·b_1_0·b_3_0 + b_2_13·b_1_04
       + b_2_13·b_4_5 + b_2_13·b_4_1 + b_2_13·b_2_22 + b_2_14·b_1_02 + b_2_15
  67. b_4_0·b_7_10 + b_2_24·b_3_0 + b_2_25·b_1_0 + b_2_1·b_2_23·b_3_0 + b_2_1·b_2_24·b_1_0
       + b_2_12·b_4_0·b_3_4 + b_2_12·b_4_0·b_3_1 + b_2_12·b_2_23·b_1_0 + b_2_14·b_3_0
       + b_2_14·b_1_03 + b_2_15·b_1_0
  68. b_4_5·b_7_10 + b_2_1·b_2_24·b_1_0 + b_2_12·b_2_23·b_1_0 + b_2_14·b_2_2·b_1_0
  69. b_6_4·b_5_5 + b_2_1·b_6_4·b_3_1 + b_2_1·b_6_4·b_3_0 + b_2_1·b_2_22·b_5_0
       + b_2_1·b_2_22·b_4_1·b_1_0 + b_2_1·b_2_24·b_1_0 + b_2_12·b_6_4·b_1_0
       + b_2_12·b_2_2·b_5_0 + b_2_12·b_2_22·b_3_0 + b_2_13·b_1_02·b_3_0
       + b_2_13·b_2_22·b_1_0
  70. b_6_6·b_5_0 + b_2_2·b_4_1·b_5_0 + b_2_2·b_4_0·b_5_0 + b_2_23·b_5_0 + b_2_1·b_6_4·b_3_4
       + b_2_1·b_6_4·b_3_1 + b_2_1·b_4_1·b_5_0 + b_2_12·b_4_0·b_3_1 + b_2_12·b_2_2·b_5_0
       + b_2_12·b_2_2·b_4_1·b_1_0 + b_2_12·b_2_23·b_1_0 + b_2_13·b_5_0
       + b_2_13·b_1_02·b_3_0 + b_2_13·b_2_2·b_3_0 + b_2_13·b_2_22·b_1_0 + b_2_14·b_3_4
       + b_2_14·b_3_0 + b_2_15·b_1_0
  71. b_1_03·b_3_0·b_5_0 + b_6_4·b_5_0 + b_4_1·b_1_02·b_5_0 + b_4_0·b_4_1·b_3_0
       + b_2_2·b_3_03 + b_2_2·b_4_12·b_1_0 + b_2_2·b_4_0·b_5_0 + b_2_22·b_4_0·b_3_0
       + b_2_23·b_4_1·b_1_0 + b_2_1·b_6_4·b_3_0 + b_2_1·b_4_1·b_1_02·b_3_0
       + b_2_1·b_4_0·b_5_0 + b_2_1·b_2_2·b_4_1·b_3_0 + b_2_1·b_2_22·b_4_1·b_1_0
       + b_2_1·b_2_24·b_1_0 + b_2_12·b_1_07 + b_2_12·b_6_4·b_1_0 + b_2_12·b_4_1·b_3_0
       + b_2_12·b_4_1·b_1_03 + b_2_12·b_4_0·b_3_4 + b_2_12·b_4_0·b_3_0
       + b_2_12·b_2_2·b_5_0 + b_2_12·b_2_2·b_4_1·b_1_0 + b_2_13·b_1_02·b_3_0
       + b_2_13·b_1_05 + b_2_13·b_4_1·b_1_0 + b_2_13·b_2_22·b_1_0 + b_2_14·b_3_4
       + b_2_14·b_2_2·b_1_0 + b_2_2·c_8_8·b_1_0
  72. b_6_4·b_3_0·b_3_4 + b_6_4·b_3_0·b_3_1 + b_6_4·b_1_03·b_3_0 + b_6_42
       + b_4_1·b_6_4·b_1_02 + b_2_2·b_4_1·b_3_02 + b_2_2·b_4_1·b_6_4
       + b_2_2·b_4_0·b_3_02 + b_2_22·b_3_0·b_5_0 + b_2_24·b_4_1 + b_2_26
       + b_2_1·b_1_02·b_3_0·b_5_0 + b_2_1·b_6_4·b_1_0·b_3_0 + b_2_1·b_4_1·b_1_03·b_3_0
       + b_2_1·b_4_0·b_6_4 + b_2_1·b_2_2·b_4_0·b_4_1 + b_2_1·b_2_22·b_6_4
       + b_2_1·b_2_23·b_4_0 + b_2_12·b_1_03·b_5_0 + b_2_12·b_6_4·b_1_02
       + b_2_12·b_4_1·b_1_0·b_3_0 + b_2_12·b_4_12 + b_2_12·b_2_2·b_6_4 + b_2_12·b_2_24
       + b_2_13·b_6_6 + b_2_13·b_4_1·b_1_02 + b_2_13·b_2_2·b_4_1 + b_2_13·b_2_2·b_4_0
       + b_2_14·b_1_04 + b_2_14·b_4_5 + b_2_14·b_4_0 + b_2_14·b_2_22 + b_2_15·b_1_02
       + b_2_22·c_8_8
  73. b_5_0·b_7_10 + b_2_23·b_6_4 + b_2_24·b_4_1 + b_2_26 + b_2_1·b_4_0·b_6_4
       + b_2_1·b_2_2·b_3_0·b_5_0 + b_2_1·b_2_2·b_4_0·b_4_1 + b_2_1·b_2_22·b_6_4
       + b_2_1·b_2_25 + b_2_12·b_3_0·b_5_0 + b_2_12·b_1_03·b_5_0 + b_2_12·b_6_4·b_1_02
       + b_2_12·b_4_1·b_1_0·b_3_0 + b_2_12·b_4_1·b_1_04 + b_2_12·b_2_2·b_6_4
       + b_2_12·b_2_22·b_4_1 + b_2_12·b_2_24 + b_2_13·b_1_0·b_5_0 + b_2_13·b_1_06
       + b_2_13·b_4_1·b_1_02 + b_2_13·b_2_23 + b_2_14·b_1_04 + b_2_14·b_4_5
       + b_2_14·b_2_22 + b_2_15·b_1_02 + b_2_15·b_2_2 + b_4_1·a_3_6·b_5_0
  74. b_5_5·b_7_10 + b_6_4·b_1_03·b_3_0 + b_6_4·b_6_6 + b_6_42 + b_4_1·b_6_4·b_1_02
       + b_2_2·b_4_1·b_3_02 + b_2_2·b_4_0·b_3_02 + b_2_22·b_4_0·b_4_1 + b_2_24·b_4_0
       + b_2_1·b_1_02·b_3_0·b_5_0 + b_2_1·b_6_4·b_1_0·b_3_0 + b_2_1·b_4_1·b_1_03·b_3_0
       + b_2_1·b_4_1·b_6_4 + b_2_1·b_4_0·b_6_4 + b_2_1·b_2_2·b_4_0·b_4_1 + b_2_1·b_2_23·b_4_0
       + b_2_1·b_2_25 + b_2_12·b_3_0·b_5_0 + b_2_12·b_1_03·b_5_0
       + b_2_12·b_4_1·b_1_0·b_3_0 + b_2_12·b_4_12 + b_2_12·b_2_22·b_4_1
       + b_2_13·b_1_0·b_5_0 + b_2_13·b_6_6 + b_2_13·b_4_1·b_1_02 + b_2_13·b_2_2·b_4_1
       + b_2_13·b_2_2·b_4_0 + b_2_14·b_1_0·b_3_0 + b_2_14·b_4_5 + b_2_14·b_4_0
       + b_2_15·b_2_2 + b_4_1·a_3_6·b_5_5 + b_2_22·c_8_8
  75. b_6_4·b_7_10 + b_4_0·b_6_4·b_3_0 + b_2_2·b_3_02·b_5_0 + b_2_2·b_4_0·b_4_1·b_3_0
       + b_2_22·b_4_0·b_5_0 + b_2_23·b_4_0·b_3_0 + b_2_24·b_4_1·b_1_0 + b_2_26·b_1_0
       + b_2_1·b_6_4·b_5_0 + b_2_1·b_4_12·b_1_03 + b_2_1·b_4_0·b_4_1·b_3_0
       + b_2_1·b_2_2·b_4_12·b_1_0 + b_2_1·b_2_22·b_4_1·b_3_0 + b_2_1·b_2_23·b_4_1·b_1_0
       + b_2_1·b_2_25·b_1_0 + b_2_12·b_1_09 + b_2_12·b_6_4·b_3_4 + b_2_12·b_6_4·b_3_1
       + b_2_12·b_6_4·b_3_0 + b_2_12·b_6_4·b_1_03 + b_2_12·b_4_1·b_5_0
       + b_2_12·b_2_2·b_4_1·b_3_0 + b_2_12·b_2_22·b_5_0 + b_2_13·b_4_1·b_3_0
       + b_2_13·b_4_0·b_3_4 + b_2_13·b_4_0·b_3_0 + b_2_13·b_2_2·b_5_0
       + b_2_13·b_2_23·b_1_0 + b_2_14·b_5_0 + b_2_14·b_4_1·b_1_0 + b_2_15·b_3_4
       + b_4_1·b_6_4·a_3_6 + b_2_1·c_8_8·b_1_03 + b_2_1·b_2_2·c_8_8·b_1_0
  76. b_7_102 + b_2_27 + b_2_1·b_2_26 + b_2_16·b_1_02


About the group Ring generators Ring relations Completion information Restriction maps

Data used for the Hilbert-Poincaré test

  • We proved completion in degree 17 using the Hilbert-Poincaré criterion.
  • However, the last relation was already found in degree 14 and the last generator in degree 8.
  • The following is a filter regular homogeneous system of parameters:
    1. b_3_0·b_5_0 + b_1_08 + b_4_1·b_1_0·b_3_0 + b_4_12 + b_4_0·b_4_1 + b_2_2·b_3_02
         + b_2_2·b_6_4 + b_2_22·b_4_1 + b_2_22·b_4_0 + b_2_24 + b_2_1·b_1_03·b_3_0
         + b_2_1·b_1_06 + b_2_1·b_6_6 + b_2_1·b_6_4 + b_2_1·b_4_1·b_1_02 + b_2_1·b_2_23
         + b_2_12·b_1_0·b_3_0 + b_2_12·b_1_04 + b_2_12·b_4_1 + b_2_12·b_4_0
         + b_2_12·b_2_22 + b_2_13·b_2_2 + b_2_14 + c_8_8, an element of degree 8
    2. b_3_04 + b_1_0·b_3_02·b_5_0 + b_6_62 + b_6_4·b_3_0·b_3_1 + b_6_4·b_3_02
         + b_6_4·b_1_0·b_5_0 + b_6_4·b_6_6 + b_6_42 + b_4_1·b_3_0·b_5_0 + b_4_1·b_1_03·b_5_0
         + b_4_1·b_6_4·b_1_02 + b_4_12·b_1_0·b_3_0 + b_4_12·b_1_04 + b_4_0·b_4_12
         + b_2_2·b_4_1·b_3_02 + b_2_2·b_4_1·b_6_4 + b_2_2·b_4_0·b_3_02 + b_2_22·b_3_0·b_5_0
         + b_2_22·b_4_12 + b_2_22·b_4_0·b_4_1 + b_2_23·b_3_02 + b_2_23·b_6_4
         + b_2_1·b_1_02·b_3_0·b_5_0 + b_2_1·b_4_1·b_1_03·b_3_0 + b_2_1·b_4_1·b_1_06
         + b_2_1·b_2_2·b_4_12 + b_2_1·b_2_25 + b_2_12·b_1_08 + b_2_12·b_4_1·b_1_0·b_3_0
         + b_2_12·b_4_1·b_1_04 + b_2_12·b_2_2·b_6_4 + b_2_12·b_2_22·b_4_0
         + b_2_12·b_2_24 + b_2_13·b_1_03·b_3_0 + b_2_13·b_6_6 + b_2_13·b_4_1·b_1_02
         + b_2_13·b_2_2·b_4_1 + b_2_13·b_2_23 + b_2_14·b_1_0·b_3_0 + b_2_14·b_4_1
         + b_2_14·b_2_22 + b_2_15·b_2_2 + b_2_16 + c_8_8·b_1_0·b_3_0 + b_4_1·c_8_8
         + b_4_0·c_8_8, an element of degree 12
    3. b_3_03·b_5_0 + b_6_42·b_1_02 + b_4_1·b_1_02·b_3_0·b_5_0 + b_4_12·b_1_03·b_3_0
         + b_4_12·b_1_06 + b_4_0·b_4_1·b_3_02 + b_2_2·b_3_04 + b_2_2·b_4_1·b_3_0·b_5_0
         + b_2_2·b_4_0·b_3_0·b_5_0 + b_2_22·b_4_1·b_6_4 + b_2_23·b_3_0·b_5_0
         + b_2_23·b_4_12 + b_2_23·b_4_0·b_4_1 + b_2_25·b_4_1 + b_2_25·b_4_0 + b_2_27
         + b_2_1·b_1_012 + b_2_1·b_6_4·b_3_0·b_3_1 + b_2_1·b_6_4·b_1_0·b_5_0
         + b_2_1·b_6_4·b_6_6 + b_2_1·b_4_1·b_1_08 + b_2_1·b_4_1·b_6_4·b_1_02
         + b_2_1·b_2_2·b_4_1·b_6_4 + b_2_1·b_2_22·b_4_12 + b_2_1·b_2_22·b_4_0·b_4_1
         + b_2_1·b_2_24·b_4_0 + b_2_12·b_1_02·b_3_0·b_5_0 + b_2_12·b_6_4·b_1_0·b_3_0
         + b_2_12·b_4_12·b_1_02 + b_2_12·b_2_2·b_4_12 + b_2_12·b_2_23·b_4_1
         + b_2_13·b_3_0·b_5_0 + b_2_13·b_1_08 + b_2_13·b_4_1·b_1_0·b_3_0
         + b_2_13·b_4_1·b_1_04 + b_2_13·b_4_12 + b_2_14·b_1_0·b_5_0
         + b_2_14·b_1_03·b_3_0 + b_2_14·b_1_06 + b_2_14·b_6_4 + b_2_14·b_4_1·b_1_02
         + b_2_14·b_2_2·b_4_0 + b_2_15·b_1_0·b_3_0 + b_2_15·b_4_0 + b_2_16·b_1_02 + b_2_17
         + c_8_8·b_3_0·b_3_1 + c_8_8·b_3_02 + c_8_8·b_1_0·b_5_0 + c_8_8·b_1_06 + b_6_6·c_8_8
         + b_2_2·b_4_1·c_8_8 + b_2_2·b_4_0·c_8_8 + b_2_23·c_8_8 + b_2_1·c_8_8·b_1_0·b_3_0
         + b_2_1·b_4_1·c_8_8 + b_2_1·b_4_0·c_8_8 + b_2_1·b_2_22·c_8_8 + b_2_12·c_8_8·b_1_02
         + b_2_13·c_8_8, an element of degree 14
    4. b_1_0, an element of degree 1
  • A Duflot regular sequence is given by c_8_8.
  • Modifying the above filter regular HSOP, we obtained the following parameters:
    1. b_3_0·b_5_0 + b_1_08 + b_4_1·b_1_0·b_3_0 + b_4_12 + b_4_0·b_4_1 + b_2_2·b_3_02
         + b_2_2·b_6_4 + b_2_22·b_4_1 + b_2_22·b_4_0 + b_2_24 + b_2_1·b_1_03·b_3_0
         + b_2_1·b_1_06 + b_2_1·b_6_6 + b_2_1·b_6_4 + b_2_1·b_4_1·b_1_02 + b_2_1·b_2_23
         + b_2_12·b_1_0·b_3_0 + b_2_12·b_1_04 + b_2_12·b_4_1 + b_2_12·b_4_0
         + b_2_12·b_2_22 + b_2_13·b_2_2 + b_2_14 + c_8_8, an element of degree 8
    2. b_3_04 + b_1_0·b_3_02·b_5_0 + b_6_62 + b_6_4·b_3_0·b_3_1 + b_6_4·b_3_02
         + b_6_4·b_1_0·b_5_0 + b_6_4·b_6_6 + b_6_42 + b_4_1·b_3_0·b_5_0 + b_4_1·b_1_03·b_5_0
         + b_4_1·b_6_4·b_1_02 + b_4_12·b_1_0·b_3_0 + b_4_12·b_1_04 + b_4_0·b_4_12
         + b_2_2·b_4_1·b_3_02 + b_2_2·b_4_1·b_6_4 + b_2_2·b_4_0·b_3_02 + b_2_22·b_3_0·b_5_0
         + b_2_22·b_4_12 + b_2_22·b_4_0·b_4_1 + b_2_23·b_3_02 + b_2_23·b_6_4
         + b_2_1·b_1_02·b_3_0·b_5_0 + b_2_1·b_4_1·b_1_03·b_3_0 + b_2_1·b_4_1·b_1_06
         + b_2_1·b_2_2·b_4_12 + b_2_1·b_2_25 + b_2_12·b_1_08 + b_2_12·b_4_1·b_1_0·b_3_0
         + b_2_12·b_4_1·b_1_04 + b_2_12·b_2_2·b_6_4 + b_2_12·b_2_22·b_4_0
         + b_2_12·b_2_24 + b_2_13·b_1_03·b_3_0 + b_2_13·b_6_6 + b_2_13·b_4_1·b_1_02
         + b_2_13·b_2_2·b_4_1 + b_2_13·b_2_23 + b_2_14·b_1_0·b_3_0 + b_2_14·b_4_1
         + b_2_14·b_2_22 + b_2_15·b_2_2 + b_2_16 + c_8_8·b_1_0·b_3_0 + b_4_1·c_8_8
         + b_4_0·c_8_8, an element of degree 12
    3. b_4_1 + b_2_12, an element of degree 4
    4. b_1_0, an element of degree 1
  • We found that there exists some HSOP over a finite extension field, in degrees 8,4,1,6.


About the group Ring generators Ring relations Completion information Restriction maps

Restriction maps

Expressing the generators as elements of H*(Syl2HS; GF(2))

  1. b_1_0b_1_1
  2. b_2_2b_2_3
  3. b_2_1b_1_02 + b_2_4
  4. a_3_6a_3_4
  5. b_3_4b_2_4·b_1_0
  6. b_3_1b_3_11
  7. b_3_0b_3_13 + b_3_12 + b_2_6·b_1_2 + b_2_6·b_1_1 + b_2_5·b_1_2
  8. b_4_5b_2_4·b_2_5 + b_2_42 + b_1_0·a_3_4
  9. b_4_1b_1_24 + b_1_0·b_3_11 + b_4_22 + b_4_21 + b_2_6·b_1_12 + b_2_62 + b_2_4·b_1_02
       + b_2_42
  10. b_4_0b_1_2·b_3_12 + b_4_21 + b_2_5·b_1_02 + b_2_52 + b_2_3·b_2_6
  11. b_5_5b_4_22·b_1_0 + b_2_4·b_3_13 + b_2_42·b_1_0 + b_2_5·a_3_4
  12. b_5_0b_5_31 + b_4_21·b_1_2 + b_2_6·b_3_13 + b_2_6·b_3_12 + b_2_6·b_1_23 + b_2_6·b_1_13
       + b_2_62·b_1_2 + b_2_5·b_1_23 + b_2_52·b_1_0 + b_2_4·b_3_13 + b_2_5·a_3_4
  13. b_6_6b_2_6·b_1_2·b_3_12 + b_2_5·b_1_2·b_3_12 + b_2_5·b_4_22 + b_2_5·b_2_6·b_1_22
       + b_2_5·b_2_62 + b_2_4·b_1_04 + b_2_4·b_4_21 + b_2_43
  14. b_6_4b_6_43 + b_4_21·b_1_22 + b_2_6·b_4_22 + b_2_62·b_1_12 + b_2_5·b_1_04 + b_2_5·b_4_21
       + b_2_5·b_2_6·b_1_22 + b_2_52·b_1_22 + b_2_53 + b_2_4·b_1_04 + b_2_4·b_4_22
       + b_2_3·b_2_62
  15. b_7_10b_2_5·b_4_22·b_1_0 + b_2_5·b_4_21·b_1_2 + b_2_5·b_4_21·b_1_0 + b_2_5·b_2_6·b_1_23
       + b_2_52·b_3_12 + b_2_53·b_1_2 + b_2_53·b_1_0 + b_2_4·b_2_5·b_1_03 + b_2_42·b_3_11
       + b_2_42·b_1_03 + b_2_43·b_1_0 + b_2_32·b_2_6·b_1_1 + a_7_17 + b_2_52·a_3_4
  16. c_8_8b_4_222 + b_4_21·b_1_04 + b_2_6·b_1_1·b_5_31 + b_2_6·b_6_43 + b_2_6·b_4_22·b_1_12
       + b_2_62·b_1_2·b_3_12 + b_2_62·b_1_24 + b_2_62·b_1_1·b_3_13 + b_2_62·b_1_14
       + b_2_62·b_4_22 + b_2_63·b_1_22 + b_2_63·b_1_12 + b_2_5·b_2_6·b_1_24
       + b_2_5·b_2_63 + b_2_52·b_1_24 + b_2_52·b_4_22 + b_2_52·b_4_21 + b_2_54
       + b_2_4·b_4_21·b_1_02 + b_2_42·b_4_22 + b_2_44 + b_2_33·b_2_6 + b_2_52·b_1_0·a_3_4
       + c_8_83

Restriction map to the greatest el. ab. subgp. in the centre of a Sylow subgroup, which is of rank 1

  1. b_1_00, an element of degree 1
  2. b_2_20, an element of degree 2
  3. b_2_10, an element of degree 2
  4. a_3_60, an element of degree 3
  5. b_3_40, an element of degree 3
  6. b_3_10, an element of degree 3
  7. b_3_00, an element of degree 3
  8. b_4_50, an element of degree 4
  9. b_4_10, an element of degree 4
  10. b_4_00, an element of degree 4
  11. b_5_50, an element of degree 5
  12. b_5_00, an element of degree 5
  13. b_6_60, an element of degree 6
  14. b_6_40, an element of degree 6
  15. b_7_100, an element of degree 7
  16. c_8_8c_1_08, an element of degree 8

Restriction map to a maximal el. ab. subgp. of rank 3 in a Sylow subgroup

  1. b_1_00, an element of degree 1
  2. b_2_20, an element of degree 2
  3. b_2_10, an element of degree 2
  4. a_3_60, an element of degree 3
  5. b_3_40, an element of degree 3
  6. b_3_10, an element of degree 3
  7. b_3_00, an element of degree 3
  8. b_4_50, an element of degree 4
  9. b_4_1c_1_24 + c_1_12·c_1_22 + c_1_14, an element of degree 4
  10. b_4_00, an element of degree 4
  11. b_5_50, an element of degree 5
  12. b_5_00, an element of degree 5
  13. b_6_6c_1_12·c_1_24 + c_1_14·c_1_22, an element of degree 6
  14. b_6_40, an element of degree 6
  15. b_7_100, an element of degree 7
  16. c_8_8c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_24
       + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8

Restriction map to a maximal el. ab. subgp. of rank 3 in a Sylow subgroup

  1. b_1_00, an element of degree 1
  2. b_2_20, an element of degree 2
  3. b_2_10, an element of degree 2
  4. a_3_60, an element of degree 3
  5. b_3_40, an element of degree 3
  6. b_3_10, an element of degree 3
  7. b_3_0c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
  8. b_4_50, an element of degree 4
  9. b_4_1c_1_24 + c_1_12·c_1_22 + c_1_14, an element of degree 4
  10. b_4_00, an element of degree 4
  11. b_5_50, an element of degree 5
  12. b_5_0c_1_1·c_1_24 + c_1_14·c_1_2, an element of degree 5
  13. b_6_60, an element of degree 6
  14. b_6_40, an element of degree 6
  15. b_7_100, an element of degree 7
  16. c_8_8c_1_12·c_1_26 + c_1_13·c_1_25 + c_1_15·c_1_23 + c_1_16·c_1_22
       + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_24
       + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8

Restriction map to a maximal el. ab. subgp. of rank 3 in a Sylow subgroup

  1. b_1_00, an element of degree 1
  2. b_2_20, an element of degree 2
  3. b_2_1c_1_22, an element of degree 2
  4. a_3_60, an element of degree 3
  5. b_3_40, an element of degree 3
  6. b_3_1c_1_23, an element of degree 3
  7. b_3_0c_1_23 + c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
  8. b_4_50, an element of degree 4
  9. b_4_1c_1_1·c_1_23 + c_1_14, an element of degree 4
  10. b_4_0c_1_24 + c_1_1·c_1_23 + c_1_12·c_1_22, an element of degree 4
  11. b_5_5c_1_1·c_1_24 + c_1_12·c_1_23, an element of degree 5
  12. b_5_0c_1_25 + c_1_12·c_1_23 + c_1_14·c_1_2, an element of degree 5
  13. b_6_6c_1_1·c_1_25 + c_1_14·c_1_22, an element of degree 6
  14. b_6_4c_1_26 + c_1_12·c_1_24 + c_1_14·c_1_22, an element of degree 6
  15. b_7_100, an element of degree 7
  16. c_8_8c_1_28 + c_1_1·c_1_27 + c_1_14·c_1_24 + c_1_02·c_1_12·c_1_24
       + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_24 + c_1_04·c_1_12·c_1_22
       + c_1_04·c_1_14 + c_1_08, an element of degree 8

Restriction map to a maximal el. ab. subgp. of rank 3 in a Sylow subgroup

  1. b_1_00, an element of degree 1
  2. b_2_20, an element of degree 2
  3. b_2_10, an element of degree 2
  4. a_3_60, an element of degree 3
  5. b_3_40, an element of degree 3
  6. b_3_10, an element of degree 3
  7. b_3_0c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
  8. b_4_50, an element of degree 4
  9. b_4_1c_1_24 + c_1_12·c_1_22 + c_1_14, an element of degree 4
  10. b_4_00, an element of degree 4
  11. b_5_50, an element of degree 5
  12. b_5_0c_1_1·c_1_24 + c_1_14·c_1_2, an element of degree 5
  13. b_6_60, an element of degree 6
  14. b_6_40, an element of degree 6
  15. b_7_100, an element of degree 7
  16. c_8_8c_1_12·c_1_26 + c_1_13·c_1_25 + c_1_15·c_1_23 + c_1_16·c_1_22
       + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_24
       + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8

Restriction map to a maximal el. ab. subgp. of rank 3 in a Sylow subgroup

  1. b_1_00, an element of degree 1
  2. b_2_20, an element of degree 2
  3. b_2_10, an element of degree 2
  4. a_3_60, an element of degree 3
  5. b_3_40, an element of degree 3
  6. b_3_10, an element of degree 3
  7. b_3_00, an element of degree 3
  8. b_4_50, an element of degree 4
  9. b_4_1c_1_24 + c_1_12·c_1_22 + c_1_14, an element of degree 4
  10. b_4_00, an element of degree 4
  11. b_5_50, an element of degree 5
  12. b_5_00, an element of degree 5
  13. b_6_6c_1_12·c_1_24 + c_1_14·c_1_22, an element of degree 6
  14. b_6_40, an element of degree 6
  15. b_7_100, an element of degree 7
  16. c_8_8c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_24
       + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8

Restriction map to a maximal el. ab. subgp. of rank 3 in a Sylow subgroup

  1. b_1_00, an element of degree 1
  2. b_2_20, an element of degree 2
  3. b_2_1c_1_22 + c_1_1·c_1_2 + c_1_12, an element of degree 2
  4. a_3_60, an element of degree 3
  5. b_3_4c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
  6. b_3_1c_1_23 + c_1_1·c_1_22 + c_1_13, an element of degree 3
  7. b_3_0c_1_23 + c_1_12·c_1_2 + c_1_13, an element of degree 3
  8. b_4_50, an element of degree 4
  9. b_4_10, an element of degree 4
  10. b_4_0c_1_24 + c_1_12·c_1_22 + c_1_14, an element of degree 4
  11. b_5_5c_1_1·c_1_24 + c_1_14·c_1_2, an element of degree 5
  12. b_5_0c_1_25 + c_1_1·c_1_24 + c_1_15, an element of degree 5
  13. b_6_6c_1_1·c_1_25 + c_1_13·c_1_23 + c_1_14·c_1_22 + c_1_15·c_1_2, an element of degree 6
  14. b_6_4c_1_26 + c_1_14·c_1_22 + c_1_16, an element of degree 6
  15. b_7_100, an element of degree 7
  16. c_8_8c_1_28 + c_1_1·c_1_27 + c_1_12·c_1_26 + c_1_14·c_1_24 + c_1_15·c_1_23
       + c_1_17·c_1_2 + c_1_18 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22
       + c_1_04·c_1_24 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8

Restriction map to a maximal el. ab. subgp. of rank 4 in a Sylow subgroup

  1. b_1_0c_1_3 + c_1_2 + c_1_1, an element of degree 1
  2. b_2_20, an element of degree 2
  3. b_2_10, an element of degree 2
  4. a_3_60, an element of degree 3
  5. b_3_40, an element of degree 3
  6. b_3_10, an element of degree 3
  7. b_3_0c_1_1·c_1_32 + c_1_12·c_1_3 + c_1_0·c_1_32 + c_1_0·c_1_22 + c_1_0·c_1_12
       + c_1_02·c_1_3 + c_1_02·c_1_2 + c_1_02·c_1_1, an element of degree 3
  8. b_4_50, an element of degree 4
  9. b_4_1c_1_22·c_1_32 + c_1_1·c_1_33 + c_1_1·c_1_22·c_1_3 + c_1_12·c_1_32
       + c_1_12·c_1_22 + c_1_13·c_1_3 + c_1_0·c_1_33 + c_1_0·c_1_2·c_1_32
       + c_1_0·c_1_22·c_1_3 + c_1_0·c_1_23 + c_1_0·c_1_1·c_1_32 + c_1_0·c_1_1·c_1_22
       + c_1_0·c_1_12·c_1_3 + c_1_0·c_1_12·c_1_2 + c_1_0·c_1_13 + c_1_02·c_1_32
       + c_1_02·c_1_22 + c_1_02·c_1_12, an element of degree 4
  10. b_4_00, an element of degree 4
  11. b_5_50, an element of degree 5
  12. b_5_0c_1_22·c_1_33 + c_1_23·c_1_32 + c_1_1·c_1_34 + c_1_1·c_1_2·c_1_33
       + c_1_1·c_1_22·c_1_32 + c_1_1·c_1_23·c_1_3 + c_1_12·c_1_33
       + c_1_12·c_1_2·c_1_32 + c_1_12·c_1_22·c_1_3 + c_1_12·c_1_23 + c_1_13·c_1_32
       + c_1_13·c_1_2·c_1_3 + c_1_13·c_1_22 + c_1_14·c_1_3 + c_1_0·c_1_34
       + c_1_0·c_1_24 + c_1_0·c_1_14 + c_1_04·c_1_3 + c_1_04·c_1_2 + c_1_04·c_1_1, an element of degree 5
  13. b_6_60, an element of degree 6
  14. b_6_4c_1_22·c_1_34 + c_1_24·c_1_32 + c_1_1·c_1_2·c_1_34 + c_1_1·c_1_22·c_1_33
       + c_1_1·c_1_23·c_1_32 + c_1_1·c_1_24·c_1_3 + c_1_12·c_1_34
       + c_1_12·c_1_2·c_1_33 + c_1_12·c_1_22·c_1_32 + c_1_12·c_1_23·c_1_3
       + c_1_12·c_1_24 + c_1_13·c_1_2·c_1_32 + c_1_13·c_1_22·c_1_3 + c_1_14·c_1_32
       + c_1_14·c_1_2·c_1_3 + c_1_14·c_1_22, an element of degree 6
  15. b_7_100, an element of degree 7
  16. c_8_8c_1_12·c_1_36 + c_1_13·c_1_35 + c_1_15·c_1_33 + c_1_16·c_1_32
       + c_1_0·c_1_12·c_1_35 + c_1_0·c_1_12·c_1_2·c_1_34 + c_1_0·c_1_13·c_1_34
       + c_1_0·c_1_14·c_1_33 + c_1_0·c_1_14·c_1_2·c_1_32 + c_1_0·c_1_15·c_1_32
       + c_1_02·c_1_36 + c_1_02·c_1_26 + c_1_02·c_1_1·c_1_35
       + c_1_02·c_1_1·c_1_24·c_1_3 + c_1_02·c_1_12·c_1_34
       + c_1_02·c_1_12·c_1_22·c_1_32 + c_1_02·c_1_14·c_1_32 + c_1_02·c_1_15·c_1_3
       + c_1_02·c_1_16 + c_1_03·c_1_35 + c_1_03·c_1_2·c_1_34 + c_1_03·c_1_24·c_1_3
       + c_1_03·c_1_25 + c_1_03·c_1_1·c_1_34 + c_1_03·c_1_1·c_1_24
       + c_1_03·c_1_14·c_1_3 + c_1_03·c_1_14·c_1_2 + c_1_03·c_1_15 + c_1_04·c_1_34
       + c_1_04·c_1_22·c_1_32 + c_1_04·c_1_24 + c_1_04·c_1_1·c_1_33
       + c_1_04·c_1_1·c_1_22·c_1_3 + c_1_04·c_1_12·c_1_32 + c_1_04·c_1_12·c_1_22
       + c_1_04·c_1_13·c_1_3 + c_1_04·c_1_14 + c_1_05·c_1_33 + c_1_05·c_1_2·c_1_32
       + c_1_05·c_1_22·c_1_3 + c_1_05·c_1_23 + c_1_05·c_1_1·c_1_32
       + c_1_05·c_1_1·c_1_22 + c_1_05·c_1_12·c_1_3 + c_1_05·c_1_12·c_1_2
       + c_1_05·c_1_13 + c_1_06·c_1_32 + c_1_06·c_1_22 + c_1_06·c_1_12 + c_1_08, an element of degree 8

Restriction map to a maximal el. ab. subgp. of rank 4 in a Sylow subgroup

  1. b_1_0c_1_3 + c_1_2 + c_1_1, an element of degree 1
  2. b_2_2c_1_32 + c_1_2·c_1_3 + c_1_1·c_1_3, an element of degree 2
  3. b_2_1c_1_2·c_1_3 + c_1_1·c_1_3, an element of degree 2
  4. a_3_60, an element of degree 3
  5. b_3_40, an element of degree 3
  6. b_3_1c_1_2·c_1_32 + c_1_1·c_1_32, an element of degree 3
  7. b_3_0c_1_33 + c_1_2·c_1_32 + c_1_22·c_1_3 + c_1_0·c_1_32 + c_1_0·c_1_22
       + c_1_0·c_1_12 + c_1_02·c_1_3 + c_1_02·c_1_2 + c_1_02·c_1_1, an element of degree 3
  8. b_4_5c_1_2·c_1_33 + c_1_22·c_1_32 + c_1_1·c_1_33 + c_1_12·c_1_32, an element of degree 4
  9. b_4_1c_1_34 + c_1_23·c_1_3 + c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22
       + c_1_0·c_1_2·c_1_32 + c_1_0·c_1_23 + c_1_0·c_1_1·c_1_32 + c_1_0·c_1_1·c_1_22
       + c_1_0·c_1_12·c_1_2 + c_1_0·c_1_13 + c_1_02·c_1_2·c_1_3 + c_1_02·c_1_22
       + c_1_02·c_1_1·c_1_3 + c_1_02·c_1_12, an element of degree 4
  10. b_4_0c_1_2·c_1_33 + c_1_22·c_1_32 + c_1_23·c_1_3 + c_1_1·c_1_22·c_1_3
       + c_1_12·c_1_2·c_1_3 + c_1_13·c_1_3 + c_1_0·c_1_33 + c_1_0·c_1_22·c_1_3
       + c_1_0·c_1_12·c_1_3 + c_1_02·c_1_32 + c_1_02·c_1_2·c_1_3 + c_1_02·c_1_1·c_1_3, an element of degree 4
  11. b_5_5c_1_1·c_1_2·c_1_33 + c_1_12·c_1_33 + c_1_12·c_1_2·c_1_32 + c_1_13·c_1_32
       + c_1_0·c_1_2·c_1_33 + c_1_0·c_1_23·c_1_3 + c_1_0·c_1_1·c_1_33
       + c_1_0·c_1_1·c_1_22·c_1_3 + c_1_0·c_1_12·c_1_2·c_1_3 + c_1_0·c_1_13·c_1_3
       + c_1_02·c_1_2·c_1_32 + c_1_02·c_1_22·c_1_3 + c_1_02·c_1_1·c_1_32
       + c_1_02·c_1_12·c_1_3, an element of degree 5
  12. b_5_0c_1_2·c_1_34 + c_1_1·c_1_23·c_1_3 + c_1_12·c_1_33 + c_1_12·c_1_2·c_1_32
       + c_1_12·c_1_22·c_1_3 + c_1_12·c_1_23 + c_1_13·c_1_32 + c_1_13·c_1_2·c_1_3
       + c_1_13·c_1_22 + c_1_14·c_1_3 + c_1_0·c_1_34 + c_1_0·c_1_2·c_1_33
       + c_1_0·c_1_23·c_1_3 + c_1_0·c_1_24 + c_1_0·c_1_1·c_1_33
       + c_1_0·c_1_1·c_1_22·c_1_3 + c_1_0·c_1_12·c_1_2·c_1_3 + c_1_0·c_1_13·c_1_3
       + c_1_0·c_1_14 + c_1_02·c_1_2·c_1_32 + c_1_02·c_1_22·c_1_3
       + c_1_02·c_1_1·c_1_32 + c_1_02·c_1_12·c_1_3 + c_1_04·c_1_3 + c_1_04·c_1_2
       + c_1_04·c_1_1, an element of degree 5
  13. b_6_6c_1_22·c_1_34 + c_1_24·c_1_32 + c_1_1·c_1_35 + c_1_1·c_1_2·c_1_34
       + c_1_1·c_1_22·c_1_33 + c_1_12·c_1_2·c_1_33 + c_1_12·c_1_22·c_1_32
       + c_1_14·c_1_32 + c_1_0·c_1_35 + c_1_0·c_1_22·c_1_33 + c_1_0·c_1_12·c_1_33
       + c_1_02·c_1_34 + c_1_02·c_1_2·c_1_33 + c_1_02·c_1_1·c_1_33, an element of degree 6
  14. b_6_4c_1_22·c_1_34 + c_1_23·c_1_33 + c_1_24·c_1_32 + c_1_1·c_1_35
       + c_1_1·c_1_2·c_1_34 + c_1_1·c_1_24·c_1_3 + c_1_12·c_1_2·c_1_33
       + c_1_12·c_1_24 + c_1_14·c_1_2·c_1_3 + c_1_14·c_1_22 + c_1_0·c_1_35
       + c_1_0·c_1_2·c_1_34 + c_1_0·c_1_23·c_1_32 + c_1_0·c_1_24·c_1_3
       + c_1_0·c_1_1·c_1_34 + c_1_0·c_1_1·c_1_22·c_1_32 + c_1_0·c_1_12·c_1_2·c_1_32
       + c_1_0·c_1_13·c_1_32 + c_1_0·c_1_14·c_1_3 + c_1_02·c_1_2·c_1_33
       + c_1_02·c_1_22·c_1_32 + c_1_02·c_1_1·c_1_33 + c_1_02·c_1_12·c_1_32
       + c_1_04·c_1_32 + c_1_04·c_1_2·c_1_3 + c_1_04·c_1_1·c_1_3, an element of degree 6
  15. b_7_10c_1_37 + c_1_2·c_1_36 + c_1_22·c_1_35 + c_1_24·c_1_33 + c_1_1·c_1_36
       + c_1_12·c_1_35 + c_1_14·c_1_33, an element of degree 7
  16. c_8_8c_1_38 + c_1_22·c_1_36 + c_1_24·c_1_34 + c_1_25·c_1_33 + c_1_27·c_1_3
       + c_1_1·c_1_37 + c_1_1·c_1_22·c_1_35 + c_1_1·c_1_26·c_1_3 + c_1_12·c_1_36
       + c_1_12·c_1_22·c_1_34 + c_1_12·c_1_24·c_1_32 + c_1_12·c_1_25·c_1_3
       + c_1_13·c_1_35 + c_1_13·c_1_24·c_1_3 + c_1_14·c_1_34 + c_1_14·c_1_2·c_1_33
       + c_1_14·c_1_23·c_1_3 + c_1_15·c_1_22·c_1_3 + c_1_16·c_1_32
       + c_1_16·c_1_2·c_1_3 + c_1_17·c_1_3 + c_1_0·c_1_37 + c_1_0·c_1_2·c_1_36
       + c_1_0·c_1_22·c_1_35 + c_1_0·c_1_25·c_1_32 + c_1_0·c_1_1·c_1_36
       + c_1_0·c_1_1·c_1_2·c_1_35 + c_1_0·c_1_1·c_1_22·c_1_34
       + c_1_0·c_1_1·c_1_23·c_1_33 + c_1_0·c_1_12·c_1_22·c_1_33
       + c_1_0·c_1_12·c_1_23·c_1_32 + c_1_0·c_1_12·c_1_24·c_1_3
       + c_1_0·c_1_13·c_1_34 + c_1_0·c_1_13·c_1_2·c_1_33
       + c_1_0·c_1_13·c_1_22·c_1_32 + c_1_0·c_1_14·c_1_33
       + c_1_0·c_1_14·c_1_2·c_1_32 + c_1_0·c_1_14·c_1_22·c_1_3 + c_1_02·c_1_36
       + c_1_02·c_1_2·c_1_35 + c_1_02·c_1_22·c_1_34 + c_1_02·c_1_23·c_1_33
       + c_1_02·c_1_25·c_1_3 + c_1_02·c_1_26 + c_1_02·c_1_1·c_1_2·c_1_34
       + c_1_02·c_1_1·c_1_22·c_1_33 + c_1_02·c_1_1·c_1_23·c_1_32
       + c_1_02·c_1_12·c_1_2·c_1_33 + c_1_02·c_1_12·c_1_23·c_1_3
       + c_1_02·c_1_13·c_1_33 + c_1_02·c_1_13·c_1_2·c_1_32
       + c_1_02·c_1_13·c_1_22·c_1_3 + c_1_02·c_1_14·c_1_32
       + c_1_02·c_1_14·c_1_2·c_1_3 + c_1_02·c_1_16 + c_1_03·c_1_35
       + c_1_03·c_1_2·c_1_34 + c_1_03·c_1_24·c_1_3 + c_1_03·c_1_25
       + c_1_03·c_1_1·c_1_34 + c_1_03·c_1_1·c_1_24 + c_1_03·c_1_14·c_1_3
       + c_1_03·c_1_14·c_1_2 + c_1_03·c_1_15 + c_1_04·c_1_2·c_1_33
       + c_1_04·c_1_23·c_1_3 + c_1_04·c_1_24 + c_1_04·c_1_12·c_1_2·c_1_3
       + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_05·c_1_33
       + c_1_05·c_1_2·c_1_32 + c_1_05·c_1_22·c_1_3 + c_1_05·c_1_23
       + c_1_05·c_1_1·c_1_32 + c_1_05·c_1_1·c_1_22 + c_1_05·c_1_12·c_1_3
       + c_1_05·c_1_12·c_1_2 + c_1_05·c_1_13 + c_1_06·c_1_32 + c_1_06·c_1_22
       + c_1_06·c_1_12 + c_1_08, an element of degree 8

Restriction map to a maximal el. ab. subgp. of rank 4 in a Sylow subgroup

  1. b_1_0c_1_2, an element of degree 1
  2. b_2_2c_1_22, an element of degree 2
  3. b_2_10, an element of degree 2
  4. a_3_60, an element of degree 3
  5. b_3_40, an element of degree 3
  6. b_3_10, an element of degree 3
  7. b_3_0c_1_2·c_1_32 + c_1_22·c_1_3 + c_1_23 + c_1_1·c_1_32 + c_1_1·c_1_22
       + c_1_12·c_1_3 + c_1_12·c_1_2 + c_1_0·c_1_22 + c_1_02·c_1_2, an element of degree 3
  8. b_4_50, an element of degree 4
  9. b_4_1c_1_34 + c_1_22·c_1_32 + c_1_24 + c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3
       + c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22 + c_1_14, an element of degree 4
  10. b_4_0c_1_22·c_1_32 + c_1_23·c_1_3 + c_1_1·c_1_2·c_1_32 + c_1_1·c_1_23
       + c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22 + c_1_0·c_1_23 + c_1_02·c_1_22, an element of degree 4
  11. b_5_50, an element of degree 5
  12. b_5_0c_1_23·c_1_32 + c_1_24·c_1_3 + c_1_1·c_1_34 + c_1_1·c_1_22·c_1_32
       + c_1_1·c_1_23·c_1_3 + c_1_1·c_1_24 + c_1_12·c_1_2·c_1_32 + c_1_12·c_1_22·c_1_3
       + c_1_12·c_1_23 + c_1_14·c_1_3 + c_1_0·c_1_24 + c_1_04·c_1_2, an element of degree 5
  13. b_6_6c_1_22·c_1_34 + c_1_25·c_1_3 + c_1_1·c_1_24·c_1_3 + c_1_1·c_1_25
       + c_1_12·c_1_22·c_1_32 + c_1_14·c_1_22 + c_1_0·c_1_25 + c_1_02·c_1_24, an element of degree 6
  14. b_6_4c_1_22·c_1_34 + c_1_25·c_1_3 + c_1_1·c_1_2·c_1_34 + c_1_1·c_1_25
       + c_1_14·c_1_2·c_1_3 + c_1_14·c_1_22 + c_1_0·c_1_25 + c_1_04·c_1_22, an element of degree 6
  15. b_7_10c_1_27, an element of degree 7
  16. c_8_8c_1_24·c_1_34 + c_1_27·c_1_3 + c_1_28 + c_1_1·c_1_2·c_1_36
       + c_1_1·c_1_22·c_1_35 + c_1_1·c_1_24·c_1_33 + c_1_1·c_1_25·c_1_32
       + c_1_1·c_1_26·c_1_3 + c_1_1·c_1_27 + c_1_12·c_1_36 + c_1_12·c_1_24·c_1_32
       + c_1_12·c_1_25·c_1_3 + c_1_13·c_1_35 + c_1_13·c_1_24·c_1_3 + c_1_14·c_1_24
       + c_1_15·c_1_33 + c_1_15·c_1_22·c_1_3 + c_1_16·c_1_32 + c_1_16·c_1_2·c_1_3
       + c_1_0·c_1_27 + c_1_0·c_1_1·c_1_24·c_1_32 + c_1_0·c_1_1·c_1_25·c_1_3
       + c_1_0·c_1_12·c_1_2·c_1_34 + c_1_0·c_1_12·c_1_23·c_1_32
       + c_1_0·c_1_12·c_1_24·c_1_3 + c_1_0·c_1_14·c_1_2·c_1_32
       + c_1_02·c_1_22·c_1_34 + c_1_02·c_1_25·c_1_3 + c_1_02·c_1_26
       + c_1_02·c_1_1·c_1_23·c_1_32 + c_1_02·c_1_1·c_1_25 + c_1_02·c_1_12·c_1_34
       + c_1_02·c_1_12·c_1_23·c_1_3 + c_1_02·c_1_14·c_1_32 + c_1_02·c_1_14·c_1_22
       + c_1_03·c_1_25 + c_1_04·c_1_34 + c_1_04·c_1_23·c_1_3
       + c_1_04·c_1_1·c_1_22·c_1_3 + c_1_04·c_1_1·c_1_23 + c_1_04·c_1_12·c_1_32
       + c_1_04·c_1_14 + c_1_05·c_1_23 + c_1_06·c_1_22 + c_1_08, an element of degree 8


About the group Ring generators Ring relations Completion information Restriction maps




Simon King
Department of Mathematics and Computer Science
Friedrich-Schiller-Universität Jena
07737 Jena
GERMANY
E-mail: simon dot king at uni hyphen jena dot de
Tel: +49 (0)3641 9-46161
Fax: +49 (0)3641 9-46162
Office: Zi. 3529, Ernst-Abbe-Platz 2



Last change: 14.12.2010