Simon King′s home page:
Mathematics:
Cohomology
→Theory
→Implementation
Jena:
Faculty
David Green
External links:
Singular
Gap
|
Mod-2-Cohomology of Normalizer(MathieuGroup(23),Centre(SylowSubgroup(MathieuGroup(23),2))), a group of order 2688
General information on the group
- Normalizer(MathieuGroup(23),Centre(SylowSubgroup(MathieuGroup(23),2))) is a group of order 2688.
- The group order factors as 27 · 3 · 7.
- The group is defined by Group([(2,17)(3,5)(4,10)(6,15)(7,13)(11,16)(12,20)(18,21),(3,4,18)(5,10,21)(7,16,12)(8,22,23)(9,14,19)(11,20,13),(1,14)(3,5)(4,20)(7,18)(9,19)(10,12)(11,16)(13,21),(2,3)(4,18)(5,17)(7,13)(8,19)(9,22)(10,21)(12,20),(1,22,14,9,19,8,23)(2,3,4,11,21,20,6)(5,10,16,18,12,15,17)]).
- It is non-abelian.
- It has 2-Rank 4.
- The centre of a Sylow 2-subgroup has rank 1.
- Its Sylow 2-subgroup has 4 conjugacy classes of maximal elementary abelian subgroups, which are of rank 3, 3, 4 and 4, respectively.
Structure of the cohomology ring
The computation was based on 5 stability conditions for H*(Syl2(M22); GF(2)).
General information
- The cohomology ring is of dimension 4 and depth 2.
- The depth exceeds the Duflot bound, which is 1.
- The Poincaré series is
1 − t + 2·t2 + 2·t4 + 3·t6 + t7 + 4·t8 + t10 + 2·t12 − t15 + t17 + t18 |
| (1 + t) · ( − 1 + t)4 · (1 + t + t2) · (1 + t2)2 · (1 + t4) · (1 + t + t2 + t3 + t4 + t5 + t6) |
- The a-invariants are -∞,-∞,-3,-6,-4. They were obtained using the filter regular HSOP of the Hilbert-Poincaré test.
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
Ring generators
The cohomology ring has 23 minimal generators of maximal degree 13:
- b_2_0, an element of degree 2
- a_3_2, a nilpotent element of degree 3
- b_3_1, an element of degree 3
- b_3_0, an element of degree 3
- b_4_2, an element of degree 4
- b_4_0, an element of degree 4
- b_5_0, an element of degree 5
- b_6_3, an element of degree 6
- b_6_1, an element of degree 6
- b_7_9, an element of degree 7
- a_7_7, a nilpotent element of degree 7
- b_7_2, an element of degree 7
- b_7_0, an element of degree 7
- b_8_7, an element of degree 8
- c_8_2, a Duflot element of degree 8
- b_8_0, an element of degree 8
- b_9_5, an element of degree 9
- b_9_1, an element of degree 9
- b_9_0, an element of degree 9
- b_10_2, an element of degree 10
- b_11_1, an element of degree 11
- b_12_5, an element of degree 12
- b_13_0, an element of degree 13
Ring relations
There are 197 minimal relations of maximal degree 26:
- b_2_0·a_3_2
- a_3_22
- a_3_2·b_3_0
- a_3_2·b_3_1
- b_3_0·b_3_1
- b_4_0·a_3_2
- b_4_0·b_3_1
- b_4_2·b_3_1
- a_3_2·b_5_0
- b_2_0·b_6_3
- b_3_0·b_5_0 + b_4_02 + b_2_02·b_4_2 + b_2_02·b_4_0
- b_3_1·b_5_0
- b_2_0·a_7_7
- b_6_1·a_3_2
- b_6_3·a_3_2
- b_2_0·b_7_9
- b_6_1·b_3_0 + b_4_0·b_5_0 + b_2_0·b_7_2 + b_2_0·b_7_0 + b_2_0·b_4_2·b_3_0
+ b_2_0·b_4_0·b_3_0
- b_6_1·b_3_1 + b_2_0·b_7_2 + b_2_0·b_4_0·b_3_0
- b_6_3·b_3_0
- b_6_3·b_3_1
- a_3_2·a_7_7
- a_3_2·b_7_0
- a_3_2·b_7_2
- a_3_2·b_7_9
- b_3_0·a_7_7
- b_3_1·a_7_7
- b_2_0·b_8_7 + b_2_0·b_4_0·b_4_2 + b_2_0·b_4_02
- b_4_0·b_6_3
- b_3_0·b_7_0 + b_4_0·b_3_02 + b_4_0·b_6_1 + b_2_0·b_8_0 + b_2_0·b_4_02 + b_2_02·b_6_1
+ b_2_03·b_4_0
- b_3_0·b_7_2 + b_4_0·b_3_02
- b_3_0·b_7_9
- b_3_1·b_7_2 + b_3_1·b_7_0
- b_3_1·b_7_9
- b_5_02 + b_4_0·b_6_1 + b_2_0·b_8_0 + b_2_02·b_6_1 + b_2_03·b_4_0
- b_4_0·a_7_7
- b_8_0·a_3_2
- b_8_7·a_3_2
- b_2_0·b_9_1 + b_2_02·b_7_2 + b_2_02·b_7_0 + b_2_02·b_4_2·b_3_0 + b_2_02·b_4_0·b_3_0
- b_2_0·b_9_5
- b_4_0·b_7_2 + b_4_02·b_3_0
- b_4_0·b_7_9
- b_4_2·b_7_2 + b_4_0·b_4_2·b_3_0
- b_6_1·b_5_0 + b_4_0·b_7_0 + b_4_02·b_3_0 + b_2_0·b_9_0 + b_2_0·b_4_2·b_5_0
+ b_2_0·b_4_0·b_5_0 + b_2_02·b_4_2·b_3_0
- b_6_3·b_5_0
- b_8_0·b_3_0 + b_4_0·b_7_0 + b_4_0·b_4_2·b_3_0 + b_2_0·b_4_2·b_5_0 + b_2_02·b_7_2
+ b_2_02·b_7_0 + b_2_02·b_4_2·b_3_0
- b_8_0·b_3_1 + b_2_02·b_7_2 + b_2_02·b_4_0·b_3_0
- b_8_7·b_3_0 + b_4_0·b_4_2·b_3_0 + b_4_02·b_3_0
- b_8_7·b_3_1
- a_3_2·b_9_0
- a_3_2·b_9_1
- a_3_2·b_9_5
- b_5_0·a_7_7
- b_2_0·b_10_2 + b_2_02·b_4_22 + b_2_02·b_4_0·b_4_2
- b_4_0·b_8_7 + b_4_02·b_4_2 + b_4_03
- b_6_1·b_6_3 + b_6_12 + b_4_0·b_8_0 + b_4_02·b_4_2 + b_4_03 + b_2_0·b_4_2·b_6_1
+ b_2_0·b_4_0·b_6_1 + b_2_02·b_4_22 + b_2_02·b_4_02 + b_2_04·b_4_2 + b_2_04·b_4_0 + b_2_02·c_8_2
- b_6_32 + b_6_12 + b_4_0·b_8_0 + b_4_02·b_4_2 + b_4_03 + b_2_0·b_4_2·b_6_1
+ b_2_0·b_4_0·b_6_1 + b_2_02·b_4_22 + b_2_02·b_4_02 + b_2_04·b_4_2 + b_2_04·b_4_0 + b_2_02·c_8_2
- b_3_0·b_9_0 + b_4_0·b_8_0 + b_4_02·b_4_2 + b_2_0·b_4_2·b_3_02 + b_2_0·b_4_2·b_6_1
+ b_2_02·b_4_22
- b_3_0·b_9_1 + b_2_0·b_4_2·b_3_02 + b_2_0·b_4_0·b_3_02 + b_2_0·b_4_0·b_6_1
+ b_2_02·b_8_0 + b_2_02·b_4_02 + b_2_03·b_6_1 + b_2_04·b_4_0
- b_3_0·b_9_5
- b_3_1·b_9_0
- b_3_1·b_9_1
- b_3_1·b_9_5
- b_5_0·b_7_0 + b_4_0·b_8_0 + b_4_02·b_4_2 + b_2_0·b_4_2·b_6_1 + b_2_02·b_4_22
+ b_2_02·b_4_0·b_4_2 + b_2_02·b_4_02
- b_5_0·b_7_2 + b_4_03 + b_2_02·b_4_0·b_4_2 + b_2_02·b_4_02
- b_5_0·b_7_9
- b_6_1·a_7_7
- b_6_3·a_7_7
- b_10_2·a_3_2
- b_2_0·b_11_1
- b_4_0·b_9_1 + b_2_0·b_4_0·b_7_0 + b_2_0·b_4_0·b_4_2·b_3_0
- b_4_0·b_9_5
- b_6_1·b_7_0 + b_4_0·b_9_0 + b_2_0·b_4_22·b_3_0 + b_2_0·b_4_0·b_4_2·b_3_0
+ b_2_03·b_4_2·b_3_0 + b_2_03·b_4_0·b_3_0 + b_2_0·c_8_2·b_3_1 + b_2_0·c_8_2·b_3_0
- b_6_1·b_7_2 + b_4_02·b_5_0 + b_2_0·b_4_0·b_7_0 + b_2_0·b_4_0·b_4_2·b_3_0
+ b_2_0·c_8_2·b_3_1
- b_6_3·b_7_0
- b_6_3·b_7_2
- b_6_3·b_7_9 + b_6_1·b_7_9
- b_8_0·b_5_0 + b_4_0·b_9_0 + b_4_0·b_4_2·b_5_0 + b_2_0·b_4_2·b_7_0 + b_2_02·b_9_0
+ b_2_02·b_4_2·b_5_0 + b_2_03·b_4_2·b_3_0
- b_8_7·b_5_0 + b_4_0·b_4_2·b_5_0 + b_4_02·b_5_0
- b_10_2·b_3_0 + b_2_0·b_4_22·b_3_0 + b_2_0·b_4_0·b_4_2·b_3_0
- b_10_2·b_3_1
- a_7_72
- a_3_2·b_11_1
- a_7_7·b_7_0
- a_7_7·b_7_2
- a_7_7·b_7_9
- b_2_0·b_12_5 + b_2_0·b_4_2·b_8_0 + b_2_0·b_4_0·b_4_22 + b_2_0·b_4_02·b_4_2
+ b_2_02·b_3_1·b_7_0 + b_2_02·b_4_2·b_3_02 + b_2_02·b_4_0·b_6_1 + b_2_03·b_8_0 + b_2_03·b_4_22 + b_2_03·b_4_02 + b_2_05·b_4_0 + b_2_03·c_8_2
- b_4_0·b_10_2 + b_2_0·b_4_0·b_4_22 + b_2_0·b_4_02·b_4_2
- b_6_1·b_8_0 + b_4_22·b_3_02 + b_4_0·b_4_2·b_3_02 + b_4_02·b_3_02 + b_4_02·b_6_1
+ b_2_02·b_4_2·b_3_02 + b_2_02·b_4_2·b_6_1 + b_2_02·b_4_0·b_3_02 + b_2_02·b_4_0·b_6_1 + b_2_03·b_4_22 + b_2_03·b_4_0·b_4_2 + b_2_03·b_4_02 + b_2_05·b_4_2 + b_2_05·b_4_0 + c_8_2·b_3_02 + b_2_0·b_4_0·c_8_2 + b_2_03·c_8_2
- b_6_3·b_8_0
- b_6_3·b_8_7 + b_6_1·b_8_7 + b_4_0·b_4_2·b_6_1 + b_4_02·b_6_1
- b_3_0·b_11_1
- b_3_1·b_11_1
- b_5_0·b_9_0 + b_4_22·b_3_02 + b_4_0·b_4_2·b_3_02 + b_4_0·b_4_2·b_6_1
+ b_4_02·b_3_02 + b_4_02·b_6_1 + b_2_0·b_4_2·b_8_0 + b_2_02·b_4_2·b_3_02 + b_2_02·b_4_2·b_6_1 + b_2_02·b_4_0·b_3_02 + b_2_03·b_4_22 + c_8_2·b_3_02
- b_5_0·b_9_1 + b_2_0·b_4_0·b_8_0 + b_2_02·b_4_2·b_6_1 + b_2_03·b_4_02
- b_5_0·b_9_5
- b_7_02 + b_4_22·b_3_02 + b_4_0·b_4_2·b_3_02 + b_4_0·b_4_2·b_6_1
+ b_2_0·b_4_2·b_8_0 + b_2_0·b_4_03 + b_2_02·b_4_2·b_3_02 + b_2_02·b_4_2·b_6_1 + b_2_02·b_4_0·b_3_02 + b_2_03·b_4_0·b_4_2 + c_8_2·b_3_12 + c_8_2·b_3_02
- b_7_0·b_7_2 + b_4_02·b_3_02 + b_4_02·b_6_1 + b_2_0·b_4_0·b_8_0 + b_2_0·b_4_03
+ b_2_02·b_4_0·b_6_1 + b_2_03·b_4_02 + c_8_2·b_3_12
- b_7_0·b_7_9
- b_7_22 + b_4_02·b_3_02 + c_8_2·b_3_12
- b_7_2·b_7_9
- b_8_0·a_7_7
- b_8_7·a_7_7
- b_12_5·a_3_2
- b_2_0·b_13_0 + b_2_0·b_4_0·b_9_0 + b_2_0·b_4_0·b_4_2·b_5_0 + b_2_02·b_4_2·b_7_0
+ b_2_02·b_4_0·b_7_0 + b_2_03·b_4_2·b_5_0 + b_2_04·b_7_2 + b_2_04·b_7_0 + b_2_02·c_8_2·b_3_0
- b_4_0·b_11_1
- b_6_1·b_9_0 + b_4_0·b_4_2·b_7_0 + b_4_0·b_4_22·b_3_0 + b_4_02·b_7_0
+ b_2_0·b_4_22·b_5_0 + b_2_0·b_4_0·b_9_0 + b_2_0·b_4_02·b_5_0 + b_2_02·b_4_2·b_7_0 + b_2_02·b_4_22·b_3_0 + b_2_02·b_4_02·b_3_0 + b_2_03·b_4_2·b_5_0 + b_2_03·b_4_0·b_5_0 + b_4_0·c_8_2·b_3_0 + b_2_0·c_8_2·b_5_0
- b_6_1·b_9_1 + b_2_0·b_4_0·b_9_0 + b_2_0·b_4_0·b_4_2·b_5_0 + b_2_02·b_4_2·b_7_0
+ b_2_02·b_4_0·b_4_2·b_3_0 + b_2_04·b_4_2·b_3_0 + b_2_04·b_4_0·b_3_0 + b_2_02·c_8_2·b_3_0
- b_6_3·b_9_0
- b_6_3·b_9_1
- b_6_3·b_9_5 + b_6_1·b_9_5
- b_8_0·b_7_0 + b_4_0·b_4_22·b_3_0 + b_2_0·b_4_2·b_9_0 + b_2_0·b_4_0·b_4_2·b_5_0
+ b_2_0·b_4_02·b_5_0 + b_2_02·b_4_0·b_7_0 + b_2_02·b_4_0·b_4_2·b_3_0 + b_2_02·b_4_02·b_3_0 + b_2_04·b_4_2·b_3_0 + b_2_04·b_4_0·b_3_0 + b_4_0·c_8_2·b_3_0 + b_2_02·c_8_2·b_3_1 + b_2_02·c_8_2·b_3_0
- b_8_0·b_7_2 + b_4_02·b_7_0 + b_4_02·b_4_2·b_3_0 + b_2_0·b_4_0·b_4_2·b_5_0
+ b_2_02·b_4_0·b_7_0 + b_2_02·b_4_0·b_4_2·b_3_0 + b_2_02·b_4_02·b_3_0 + b_2_02·c_8_2·b_3_1
- b_8_0·b_7_9
- b_8_7·b_7_0 + b_4_0·b_4_2·b_7_0 + b_4_02·b_7_0
- b_8_7·b_7_2 + b_4_02·b_4_2·b_3_0 + b_4_03·b_3_0
- b_10_2·b_5_0 + b_2_0·b_4_22·b_5_0 + b_2_0·b_4_0·b_4_2·b_5_0
- b_12_5·b_3_0 + b_4_0·b_4_2·b_7_0 + b_4_02·b_4_2·b_3_0 + b_2_0·b_4_2·b_3_03
+ b_2_0·b_4_22·b_5_0 + b_2_0·b_4_02·b_5_0 + b_2_02·b_4_2·b_7_0 + b_2_02·b_4_0·b_4_2·b_3_0 + b_2_02·b_4_02·b_3_0 + b_2_03·b_4_2·b_5_0 + b_2_04·b_7_2 + b_2_04·b_7_0 + b_2_04·b_4_2·b_3_0 + b_2_04·b_4_0·b_3_0 + b_2_02·c_8_2·b_3_0
- b_12_5·b_3_1 + b_2_0·b_3_12·b_7_0 + b_2_04·b_7_2 + b_2_04·b_4_0·b_3_0
+ b_2_02·c_8_2·b_3_1
- a_3_2·b_13_0
- a_7_7·b_9_0
- a_7_7·b_9_1
- a_7_7·b_9_5
- b_4_0·b_12_5 + b_4_0·b_4_2·b_8_0 + b_4_02·b_4_22 + b_4_03·b_4_2
+ b_2_0·b_4_0·b_4_2·b_3_02 + b_2_0·b_4_02·b_6_1 + b_2_02·b_4_0·b_8_0 + b_2_02·b_4_0·b_4_22 + b_2_02·b_4_03 + b_2_04·b_4_02 + b_2_02·b_4_0·c_8_2
- b_6_3·b_10_2 + b_6_1·b_10_2 + b_2_0·b_4_22·b_6_1 + b_2_0·b_4_0·b_4_2·b_6_1
- b_8_02 + b_4_0·b_4_2·b_8_0 + b_4_02·b_4_22 + b_2_0·b_4_22·b_6_1
+ b_2_0·b_4_0·b_4_2·b_6_1 + b_2_0·b_4_02·b_6_1 + b_2_02·b_4_23 + b_2_02·b_4_0·b_8_0 + b_2_02·b_4_0·b_4_22 + b_2_02·b_4_03 + b_2_03·b_4_2·b_6_1 + b_2_03·b_4_0·b_6_1 + b_2_04·b_4_22 + b_2_06·b_4_2 + b_2_06·b_4_0 + b_4_02·c_8_2 + b_2_04·c_8_2
- b_8_0·b_8_7 + b_4_0·b_4_2·b_8_0 + b_4_02·b_8_0
- b_3_0·b_13_0 + b_4_02·b_8_0 + b_2_0·b_4_02·b_3_02 + b_2_0·b_4_02·b_6_1
+ b_2_02·b_4_2·b_8_0 + b_2_02·b_4_0·b_8_0 + b_2_02·b_4_02·b_4_2 + b_2_02·b_4_03 + b_2_03·b_4_2·b_6_1 + b_2_04·b_8_0 + b_2_04·b_4_22 + b_2_05·b_6_1 + b_2_06·b_4_0 + b_2_0·c_8_2·b_3_02
- b_3_1·b_13_0
- b_5_0·b_11_1
- b_7_0·b_9_0 + b_4_0·b_4_2·b_8_0 + b_2_0·b_4_22·b_6_1 + b_2_0·b_4_0·b_4_2·b_3_02
+ b_2_0·b_4_02·b_6_1 + b_2_02·b_4_2·b_8_0 + b_2_02·b_4_0·b_4_22 + b_2_02·b_4_03 + b_2_03·b_4_2·b_6_1 + b_2_04·b_4_22 + b_2_04·b_4_0·b_4_2 + b_2_04·b_4_02 + b_4_02·c_8_2 + b_2_02·b_4_2·c_8_2 + b_2_02·b_4_0·c_8_2
- b_7_0·b_9_1 + b_2_0·b_4_22·b_3_02 + b_2_02·b_4_02·b_4_2 + b_2_02·b_4_03
+ b_2_03·b_4_2·b_3_02 + b_2_03·b_4_0·b_3_02 + b_2_0·c_8_2·b_3_02
- b_7_0·b_9_5
- b_7_2·b_9_0 + b_4_02·b_8_0 + b_4_03·b_4_2 + b_2_0·b_4_0·b_4_2·b_3_02
+ b_2_0·b_4_0·b_4_2·b_6_1 + b_2_02·b_4_0·b_4_22
- b_7_2·b_9_1 + b_2_0·b_4_0·b_4_2·b_3_02 + b_2_0·b_4_02·b_3_02
+ b_2_0·b_4_02·b_6_1 + b_2_02·b_4_0·b_8_0 + b_2_02·b_4_03 + b_2_03·b_4_0·b_6_1 + b_2_04·b_4_02
- b_7_2·b_9_5
- b_7_9·b_9_0
- b_7_9·b_9_1
- b_7_9·b_9_5 + b_8_72 + b_4_2·b_6_12 + b_4_0·b_4_2·b_8_0 + b_4_03·b_4_2 + b_4_04
+ b_2_0·b_4_22·b_6_1 + b_2_0·b_4_0·b_4_2·b_6_1 + b_2_02·b_4_23 + b_2_02·b_4_02·b_4_2 + b_2_04·b_4_22 + b_2_04·b_4_0·b_4_2 + b_2_02·b_4_2·c_8_2
- b_10_2·a_7_7
- b_4_0·b_13_0 + b_4_02·b_9_0 + b_4_02·b_4_2·b_5_0 + b_2_0·b_4_0·b_4_2·b_7_0
+ b_2_0·b_4_02·b_7_0 + b_2_02·b_4_0·b_4_2·b_5_0 + b_2_03·b_4_0·b_7_0 + b_2_03·b_4_02·b_3_0 + b_2_0·b_4_0·c_8_2·b_3_0
- b_6_3·b_11_1 + b_6_1·b_11_1
- b_8_0·b_9_0 + b_4_0·b_4_22·b_5_0 + b_2_0·b_4_22·b_7_0 + b_2_0·b_4_23·b_3_0
+ b_2_0·b_4_0·b_4_2·b_7_0 + b_2_0·b_4_0·b_4_22·b_3_0 + b_2_0·b_4_02·b_7_0 + b_2_0·b_4_02·b_4_2·b_3_0 + b_2_0·b_4_03·b_3_0 + b_2_03·b_4_2·b_7_0 + b_2_04·b_4_2·b_5_0 + b_2_04·b_4_0·b_5_0 + b_4_0·c_8_2·b_5_0 + b_2_0·b_4_2·c_8_2·b_3_0 + b_2_02·c_8_2·b_5_0
- b_8_0·b_9_1 + b_2_0·b_4_0·b_4_2·b_7_0 + b_2_02·b_4_2·b_9_0 + b_2_02·b_4_22·b_5_0
+ b_2_02·b_4_0·b_4_2·b_5_0 + b_2_02·b_4_02·b_5_0 + b_2_03·b_4_2·b_7_0 + b_2_03·b_4_22·b_3_0 + b_2_03·b_4_0·b_7_0 + b_2_03·b_4_02·b_3_0 + b_2_05·b_4_2·b_3_0 + b_2_05·b_4_0·b_3_0 + b_2_0·b_4_0·c_8_2·b_3_0 + b_2_03·c_8_2·b_3_0
- b_8_0·b_9_5
- b_8_7·b_9_0 + b_4_0·b_4_2·b_9_0 + b_4_02·b_9_0
- b_8_7·b_9_1 + b_2_0·b_4_0·b_4_2·b_7_0 + b_2_0·b_4_0·b_4_22·b_3_0
+ b_2_0·b_4_02·b_7_0 + b_2_0·b_4_02·b_4_2·b_3_0
- b_10_2·b_7_0 + b_2_0·b_4_22·b_7_0 + b_2_0·b_4_0·b_4_2·b_7_0
- b_10_2·b_7_2 + b_2_0·b_4_0·b_4_22·b_3_0 + b_2_0·b_4_02·b_4_2·b_3_0
- b_10_2·b_7_9 + b_8_7·b_9_5 + b_6_1·b_11_1 + b_4_2·b_6_1·b_7_9
- b_12_5·b_5_0 + b_4_0·b_4_2·b_9_0 + b_4_02·b_4_2·b_5_0 + b_2_0·b_4_22·b_7_0
+ b_2_0·b_4_02·b_7_0 + b_2_0·b_4_02·b_4_2·b_3_0 + b_2_0·b_4_03·b_3_0 + b_2_02·b_4_2·b_9_0 + b_2_03·b_4_2·b_7_0 + b_2_04·b_9_0 + b_2_04·b_4_2·b_5_0 + b_2_04·b_4_0·b_5_0 + b_2_05·b_4_2·b_3_0 + b_2_02·c_8_2·b_5_0
- a_7_7·b_11_1
- b_6_3·b_12_5 + b_6_1·b_12_5 + b_4_23·b_3_02 + b_4_0·b_4_22·b_3_02
+ b_4_0·b_4_22·b_6_1 + b_4_02·b_4_2·b_3_02 + b_2_0·b_4_02·b_8_0 + b_2_0·b_4_04 + b_2_02·b_4_22·b_3_02 + b_2_02·b_4_0·b_4_2·b_3_02 + b_2_02·b_4_0·b_4_2·b_6_1 + b_2_02·b_4_02·b_3_02 + b_2_02·b_4_02·b_6_1 + b_2_03·b_4_2·b_8_0 + b_2_03·b_4_23 + b_2_03·b_4_0·b_4_22 + b_2_03·b_4_02·b_4_2 + b_2_03·b_4_03 + b_2_04·b_4_2·b_3_02 + b_2_04·b_4_0·b_3_02 + b_2_07·b_4_2 + b_2_07·b_4_0 + b_4_2·c_8_2·b_3_02 + b_2_0·b_4_0·b_4_2·c_8_2 + b_2_02·c_8_2·b_3_12 + b_2_02·c_8_2·b_3_02 + b_2_02·b_6_1·c_8_2 + b_2_03·b_4_2·c_8_2 + b_2_05·c_8_2
- b_8_0·b_10_2 + b_2_0·b_4_22·b_8_0 + b_2_0·b_4_0·b_4_2·b_8_0
- b_5_0·b_13_0 + b_4_0·b_4_22·b_3_02 + b_4_02·b_4_2·b_3_02 + b_4_03·b_3_02
+ b_4_03·b_6_1 + b_2_0·b_4_0·b_4_2·b_8_0 + b_2_0·b_4_02·b_8_0 + b_2_0·b_4_02·b_4_22 + b_2_0·b_4_03·b_4_2 + b_2_02·b_4_22·b_6_1 + b_2_02·b_4_0·b_4_2·b_3_02 + b_2_02·b_4_02·b_3_02 + b_2_03·b_4_2·b_8_0 + b_2_03·b_4_23 + b_2_03·b_4_0·b_8_0 + b_2_03·b_4_0·b_4_22 + b_2_05·b_4_22 + b_2_05·b_4_0·b_4_2 + b_4_0·c_8_2·b_3_02 + b_2_0·b_4_02·c_8_2 + b_2_03·b_4_2·c_8_2 + b_2_03·b_4_0·c_8_2
- b_7_0·b_11_1
- b_7_2·b_11_1
- b_7_9·b_11_1 + b_8_7·b_10_2 + b_6_1·b_12_5 + b_6_13 + b_4_2·b_6_1·b_8_7
+ b_4_23·b_3_02 + b_4_03·b_3_02 + b_2_0·b_4_0·b_4_2·b_8_0 + b_2_0·b_4_0·b_4_23 + b_2_0·b_4_02·b_4_22 + b_2_0·b_4_03·b_4_2 + b_2_02·b_4_22·b_3_02 + b_2_03·b_4_2·b_8_0 + b_2_03·b_4_0·b_4_22 + b_2_03·b_4_02·b_4_2 + b_2_03·b_4_03 + b_2_04·b_4_2·b_3_02 + b_2_04·b_4_2·b_6_1 + b_2_04·b_4_0·b_3_02 + b_2_04·b_4_0·b_6_1 + b_2_05·b_4_22 + b_2_05·b_4_0·b_4_2 + b_2_07·b_4_2 + b_2_07·b_4_0 + b_4_2·c_8_2·b_3_02 + b_4_0·c_8_2·b_3_02 + b_2_0·b_4_0·b_4_2·c_8_2 + b_2_0·b_4_02·c_8_2 + b_2_02·c_8_2·b_3_12 + b_2_02·c_8_2·b_3_02 + b_2_05·c_8_2
- b_9_02 + b_4_23·b_3_02 + b_4_0·b_4_22·b_3_02 + b_4_02·b_4_2·b_3_02
+ b_4_02·b_4_2·b_6_1 + b_2_0·b_4_0·b_4_2·b_8_0 + b_2_0·b_4_02·b_8_0 + b_2_0·b_4_04 + b_2_02·b_4_0·b_4_2·b_3_02 + b_2_03·b_4_2·b_8_0 + b_2_03·b_4_0·b_8_0 + b_2_03·b_4_02·b_4_2 + b_2_03·b_4_03 + b_2_04·b_4_2·b_6_1 + b_2_04·b_4_0·b_6_1 + b_2_05·b_4_0·b_4_2 + b_2_05·b_4_02 + b_4_2·c_8_2·b_3_02 + b_4_0·b_6_1·c_8_2 + b_2_0·b_8_0·c_8_2 + b_2_02·b_6_1·c_8_2 + b_2_03·b_4_0·c_8_2
- b_9_0·b_9_1 + b_2_0·b_4_02·b_4_22 + b_2_02·b_4_22·b_3_02
+ b_2_02·b_4_0·b_4_2·b_3_02 + b_2_02·b_4_02·b_6_1 + b_2_03·b_4_2·b_8_0 + b_2_03·b_4_23 + b_2_03·b_4_0·b_4_22 + b_2_03·b_4_03 + b_2_04·b_4_2·b_6_1 + b_2_05·b_4_22 + b_2_05·b_4_0·b_4_2 + b_2_05·b_4_02 + b_2_0·b_4_02·c_8_2 + b_2_03·b_4_2·c_8_2 + b_2_03·b_4_0·c_8_2
- b_9_0·b_9_5
- b_9_12 + b_2_02·b_4_0·b_4_2·b_3_02 + b_2_02·b_4_0·b_4_2·b_6_1
+ b_2_03·b_4_2·b_8_0 + b_2_03·b_4_03 + b_2_04·b_4_2·b_3_02 + b_2_04·b_4_2·b_6_1 + b_2_04·b_4_0·b_3_02 + b_2_05·b_4_0·b_4_2 + b_2_02·c_8_2·b_3_02
- b_9_1·b_9_5
- b_9_52 + b_8_7·b_10_2 + b_6_1·b_12_5 + b_4_2·b_6_1·b_8_7 + b_4_23·b_3_02
+ b_4_0·b_4_22·b_3_02 + b_4_02·b_4_2·b_3_02 + b_4_02·b_4_2·b_6_1 + b_2_0·b_4_0·b_4_23 + b_2_0·b_4_02·b_8_0 + b_2_0·b_4_03·b_4_2 + b_2_0·b_4_04 + b_2_02·b_4_22·b_3_02 + b_2_02·b_4_0·b_4_2·b_3_02 + b_2_02·b_4_0·b_4_2·b_6_1 + b_2_02·b_4_02·b_3_02 + b_2_02·b_4_02·b_6_1 + b_2_03·b_4_2·b_8_0 + b_2_03·b_4_23 + b_2_03·b_4_0·b_4_22 + b_2_03·b_4_02·b_4_2 + b_2_03·b_4_03 + b_2_04·b_4_2·b_3_02 + b_2_04·b_4_0·b_3_02 + b_2_07·b_4_2 + b_2_07·b_4_0 + b_4_2·c_8_2·b_3_02 + b_2_0·b_4_0·b_4_2·c_8_2 + b_2_02·c_8_2·b_3_12 + b_2_02·c_8_2·b_3_02 + b_2_02·b_6_1·c_8_2 + b_2_03·b_4_2·c_8_2 + b_2_05·c_8_2
- b_12_5·a_7_7
- b_6_3·b_13_0 + b_6_1·b_13_0 + b_4_02·b_4_22·b_3_0 + b_4_03·b_7_0
+ b_4_03·b_4_2·b_3_0 + b_2_0·b_4_02·b_4_2·b_5_0 + b_2_0·b_4_03·b_5_0 + b_2_02·b_4_23·b_3_0 + b_2_02·b_4_03·b_3_0 + b_2_03·b_4_2·b_9_0 + b_2_03·b_4_22·b_5_0 + b_2_03·b_4_0·b_9_0 + b_2_04·b_4_22·b_3_0 + b_2_04·b_4_0·b_7_0 + b_2_04·b_4_02·b_3_0 + b_2_06·b_4_2·b_3_0 + b_2_06·b_4_0·b_3_0 + b_4_02·c_8_2·b_3_0 + b_2_02·c_8_2·b_7_2 + b_2_02·c_8_2·b_7_0 + b_2_04·c_8_2·b_3_0
- b_8_0·b_11_1
- b_10_2·b_9_0 + b_2_0·b_4_22·b_9_0 + b_2_0·b_4_0·b_4_2·b_9_0
- b_10_2·b_9_1 + b_2_02·b_4_22·b_7_0 + b_2_02·b_4_23·b_3_0
+ b_2_02·b_4_0·b_4_2·b_7_0 + b_2_02·b_4_0·b_4_22·b_3_0
- b_10_2·b_9_5 + b_8_7·b_11_1 + b_6_1·b_13_0 + b_4_2·b_6_1·b_9_5 + b_4_02·b_4_22·b_3_0
+ b_4_03·b_7_0 + b_4_03·b_4_2·b_3_0 + b_2_0·b_4_02·b_4_2·b_5_0 + b_2_0·b_4_03·b_5_0 + b_2_02·b_4_23·b_3_0 + b_2_02·b_4_03·b_3_0 + b_2_03·b_4_2·b_9_0 + b_2_03·b_4_22·b_5_0 + b_2_03·b_4_0·b_9_0 + b_2_04·b_4_22·b_3_0 + b_2_04·b_4_0·b_7_0 + b_2_04·b_4_02·b_3_0 + b_2_06·b_4_2·b_3_0 + b_2_06·b_4_0·b_3_0 + b_4_02·c_8_2·b_3_0 + b_2_02·c_8_2·b_7_2 + b_2_02·c_8_2·b_7_0 + b_2_04·c_8_2·b_3_0
- b_12_5·b_7_0 + b_4_0·b_4_22·b_7_0 + b_4_0·b_4_23·b_3_0 + b_4_02·b_4_2·b_7_0
+ b_2_0·b_4_22·b_9_0 + b_2_0·b_4_0·b_4_2·b_3_03 + b_2_0·b_4_0·b_4_22·b_5_0 + b_2_0·b_4_02·b_9_0 + b_2_02·b_4_22·b_7_0 + b_2_02·b_4_0·b_4_2·b_7_0 + b_2_02·b_4_0·b_4_22·b_3_0 + b_2_02·b_4_02·b_7_0 + b_2_02·b_4_02·b_4_2·b_3_0 + b_2_03·b_4_2·b_9_0 + b_2_03·b_4_22·b_5_0 + b_2_03·b_4_02·b_5_0 + b_2_04·b_4_22·b_3_0 + b_2_04·b_4_0·b_4_2·b_3_0 + b_2_06·b_4_2·b_3_0 + b_2_06·b_4_0·b_3_0 + b_4_0·b_4_2·c_8_2·b_3_0 + b_2_0·c_8_2·b_3_13 + b_2_02·c_8_2·b_7_0 + b_2_02·b_4_2·c_8_2·b_3_0 + b_2_04·c_8_2·b_3_1 + b_2_04·c_8_2·b_3_0
- b_12_5·b_7_2 + b_4_02·b_4_2·b_7_0 + b_4_03·b_4_2·b_3_0 + b_2_0·b_4_0·b_4_2·b_3_03
+ b_2_0·b_4_0·b_4_22·b_5_0 + b_2_0·b_4_03·b_5_0 + b_2_02·b_4_0·b_4_2·b_7_0 + b_2_02·b_4_02·b_4_2·b_3_0 + b_2_02·b_4_03·b_3_0 + b_2_03·b_4_0·b_4_2·b_5_0 + b_2_04·b_4_0·b_7_0 + b_2_04·b_4_0·b_4_2·b_3_0 + b_2_0·c_8_2·b_3_13 + b_2_02·c_8_2·b_7_2 + b_2_04·c_8_2·b_3_1
- b_12_5·b_7_9 + b_8_7·b_11_1 + b_4_2·b_6_1·b_9_5
- a_7_7·b_13_0
- b_8_0·b_12_5 + b_4_02·b_4_2·b_8_0 + b_4_02·b_4_23 + b_2_0·b_4_23·b_6_1
+ b_2_0·b_4_0·b_4_22·b_6_1 + b_2_0·b_4_03·b_3_02 + b_2_0·b_4_03·b_6_1 + b_2_02·b_4_22·b_8_0 + b_2_02·b_4_24 + b_2_02·b_4_0·b_4_2·b_8_0 + b_2_02·b_4_0·b_4_23 + b_2_02·b_4_02·b_8_0 + b_2_03·b_4_22·b_3_02 + b_2_03·b_4_0·b_4_2·b_3_02 + b_2_03·b_4_0·b_4_2·b_6_1 + b_2_03·b_4_02·b_3_02 + b_2_04·b_4_2·b_8_0 + b_2_04·b_4_23 + b_2_04·b_4_0·b_4_22 + b_2_04·b_4_02·b_4_2 + b_2_05·b_4_0·b_6_1 + b_2_06·b_4_0·b_4_2 + b_2_06·b_4_02 + b_2_08·b_4_2 + b_2_08·b_4_0 + b_4_02·b_4_2·c_8_2 + b_2_0·b_4_0·c_8_2·b_3_02 + b_2_02·b_8_0·c_8_2 + b_2_03·c_8_2·b_3_12 + b_2_04·b_4_2·c_8_2 + b_2_04·b_4_0·c_8_2 + b_2_06·c_8_2
- b_10_22 + b_8_7·b_12_5 + b_4_2·b_6_1·b_10_2 + b_4_22·b_6_12 + b_4_02·b_4_2·b_8_0
+ b_4_03·b_4_22 + b_4_04·b_4_2 + b_2_0·b_4_0·b_4_22·b_3_02 + b_2_0·b_4_02·b_4_2·b_3_02 + b_2_0·b_4_02·b_4_2·b_6_1 + b_2_0·b_4_03·b_6_1 + b_2_02·b_4_0·b_4_2·b_8_0 + b_2_02·b_4_0·b_4_23 + b_2_02·b_4_02·b_8_0 + b_2_02·b_4_02·b_4_22 + b_2_02·b_4_03·b_4_2 + b_2_02·b_4_04 + b_2_04·b_4_23 + b_2_04·b_4_0·b_4_22 + b_2_04·b_4_02·b_4_2 + b_2_04·b_4_03 + b_6_12·c_8_2 + b_4_0·b_8_0·c_8_2 + b_4_02·b_4_2·c_8_2 + b_4_03·c_8_2 + b_2_0·b_4_2·b_6_1·c_8_2 + b_2_0·b_4_0·b_6_1·c_8_2 + b_2_02·b_4_0·b_4_2·c_8_2 + b_2_04·b_4_2·c_8_2 + b_2_04·b_4_0·c_8_2 + b_2_02·c_8_22
- b_7_0·b_13_0 + b_4_03·b_4_22 + b_2_0·b_4_23·b_3_02 + b_2_0·b_4_0·b_4_22·b_6_1
+ b_2_0·b_4_02·b_4_2·b_6_1 + b_2_0·b_4_03·b_6_1 + b_2_02·b_4_22·b_8_0 + b_2_02·b_4_0·b_4_2·b_8_0 + b_2_02·b_4_0·b_4_23 + b_2_02·b_4_02·b_4_22 + b_2_03·b_4_0·b_4_2·b_3_02 + b_2_03·b_4_0·b_4_2·b_6_1 + b_2_03·b_4_02·b_6_1 + b_2_04·b_4_2·b_8_0 + b_2_04·b_4_23 + b_2_04·b_4_0·b_8_0 + b_2_04·b_4_0·b_4_22 + b_2_04·b_4_02·b_4_2 + b_2_04·b_4_03 + b_2_05·b_4_2·b_3_02 + b_2_05·b_4_2·b_6_1 + b_2_05·b_4_0·b_3_02 + b_2_05·b_4_0·b_6_1 + b_2_06·b_4_0·b_4_2 + b_2_06·b_4_02 + b_4_03·c_8_2 + b_2_0·b_4_2·c_8_2·b_3_02 + b_2_0·b_4_0·b_6_1·c_8_2 + b_2_02·b_8_0·c_8_2 + b_2_02·b_4_0·b_4_2·c_8_2 + b_2_03·c_8_2·b_3_02 + b_2_03·b_6_1·c_8_2 + b_2_04·b_4_0·c_8_2
- b_7_2·b_13_0 + b_4_03·b_8_0 + b_2_0·b_4_03·b_3_02 + b_2_0·b_4_03·b_6_1
+ b_2_02·b_4_0·b_4_2·b_8_0 + b_2_02·b_4_02·b_8_0 + b_2_02·b_4_03·b_4_2 + b_2_02·b_4_04 + b_2_03·b_4_0·b_4_2·b_6_1 + b_2_04·b_4_0·b_8_0 + b_2_04·b_4_0·b_4_22 + b_2_05·b_4_0·b_6_1 + b_2_06·b_4_02 + b_2_0·b_4_0·c_8_2·b_3_02
- b_7_9·b_13_0 + b_8_7·b_12_5 + b_6_12·b_8_7 + b_4_2·b_6_1·b_10_2 + b_4_22·b_6_12
+ b_4_03·b_8_0 + b_4_04·b_4_2 + b_4_05 + b_2_0·b_4_0·b_4_22·b_3_02 + b_2_0·b_4_0·b_4_22·b_6_1 + b_2_0·b_4_02·b_4_2·b_3_02 + b_2_0·b_4_02·b_4_2·b_6_1 + b_2_02·b_4_24 + b_2_02·b_4_0·b_4_2·b_8_0 + b_2_02·b_4_02·b_8_0 + b_2_02·b_4_02·b_4_22 + b_2_04·b_4_23 + b_2_04·b_4_02·b_4_2 + b_2_02·b_4_22·c_8_2
- b_9_0·b_11_1
- b_9_1·b_11_1
- b_9_5·b_11_1 + b_8_7·b_12_5 + b_4_2·b_6_1·b_10_2 + b_4_22·b_6_12
+ b_4_02·b_4_2·b_8_0 + b_4_03·b_4_22 + b_4_04·b_4_2 + b_2_0·b_4_0·b_4_22·b_3_02 + b_2_0·b_4_02·b_4_2·b_3_02 + b_2_0·b_4_02·b_4_2·b_6_1 + b_2_0·b_4_03·b_6_1 + b_2_02·b_4_24 + b_2_02·b_4_0·b_4_2·b_8_0 + b_2_02·b_4_0·b_4_23 + b_2_02·b_4_02·b_8_0 + b_2_02·b_4_03·b_4_2 + b_2_02·b_4_04 + b_2_04·b_4_23 + b_2_04·b_4_0·b_4_22 + b_2_04·b_4_02·b_4_2 + b_2_04·b_4_03 + b_2_02·b_4_22·c_8_2 + b_2_02·b_4_0·b_4_2·c_8_2 + b_2_02·b_4_02·c_8_2
- b_8_0·b_13_0 + b_4_02·b_4_2·b_9_0 + b_2_0·b_4_02·b_4_2·b_7_0 + b_2_0·b_4_03·b_7_0
+ b_2_0·b_4_03·b_4_2·b_3_0 + b_2_0·b_4_04·b_3_0 + b_2_02·b_4_22·b_9_0 + b_2_02·b_4_0·b_4_2·b_9_0 + b_2_02·b_4_0·b_4_22·b_5_0 + b_2_02·b_4_03·b_5_0 + b_2_03·b_4_22·b_7_0 + b_2_03·b_4_0·b_4_22·b_3_0 + b_2_03·b_4_02·b_4_2·b_3_0 + b_2_03·b_4_03·b_3_0 + b_2_04·b_4_22·b_5_0 + b_2_04·b_4_0·b_4_2·b_5_0 + b_2_05·b_4_02·b_3_0 + b_2_07·b_4_2·b_3_0 + b_2_07·b_4_0·b_3_0 + b_4_02·c_8_2·b_5_0 + b_2_0·b_4_0·c_8_2·b_7_0 + b_2_0·b_4_0·b_4_2·c_8_2·b_3_0 + b_2_0·b_4_02·c_8_2·b_3_0 + b_2_02·b_4_2·c_8_2·b_5_0 + b_2_02·b_4_0·c_8_2·b_5_0 + b_2_03·c_8_2·b_7_2 + b_2_03·c_8_2·b_7_0 + b_2_05·c_8_2·b_3_0
- b_10_2·b_11_1 + b_8_7·b_13_0 + b_4_22·b_6_1·b_7_9 + b_4_02·b_4_2·b_9_0
+ b_4_02·b_4_22·b_5_0 + b_4_03·b_9_0 + b_4_03·b_4_2·b_5_0 + b_2_0·b_4_0·b_4_22·b_7_0 + b_2_0·b_4_03·b_7_0 + b_2_02·b_4_0·b_4_22·b_5_0 + b_2_02·b_4_02·b_4_2·b_5_0 + b_2_03·b_4_0·b_4_2·b_7_0 + b_2_03·b_4_02·b_7_0 + b_2_03·b_4_02·b_4_2·b_3_0 + b_2_03·b_4_03·b_3_0 + b_6_1·c_8_2·b_7_9 + b_2_0·b_4_0·b_4_2·c_8_2·b_3_0 + b_2_0·b_4_02·c_8_2·b_3_0
- b_12_5·b_9_0 + b_4_0·b_4_22·b_9_0 + b_4_0·b_4_23·b_5_0 + b_4_02·b_4_2·b_9_0
+ b_2_0·b_4_23·b_7_0 + b_2_0·b_4_24·b_3_0 + b_2_0·b_4_0·b_4_22·b_7_0 + b_2_0·b_4_0·b_4_23·b_3_0 + b_2_0·b_4_02·b_4_2·b_7_0 + b_2_0·b_4_03·b_7_0 + b_2_0·b_4_03·b_4_2·b_3_0 + b_2_02·b_4_22·b_9_0 + b_2_02·b_4_0·b_4_2·b_3_03 + b_2_02·b_4_02·b_9_0 + b_2_02·b_4_02·b_3_03 + b_2_02·b_4_02·b_4_2·b_5_0 + b_2_03·b_4_22·b_7_0 + b_2_03·b_4_23·b_3_0 + b_2_03·b_4_0·b_4_2·b_7_0 + b_2_03·b_4_0·b_4_22·b_3_0 + b_2_03·b_4_02·b_4_2·b_3_0 + b_2_04·b_4_2·b_9_0 + b_2_04·b_4_2·b_3_03 + b_2_04·b_4_0·b_3_03 + b_2_04·b_4_0·b_4_2·b_5_0 + b_2_04·b_4_02·b_5_0 + b_2_05·b_4_2·b_7_0 + b_2_05·b_4_22·b_3_0 + b_2_05·b_4_0·b_4_2·b_3_0 + b_2_06·b_4_2·b_5_0 + b_2_06·b_4_0·b_5_0 + b_4_0·b_4_2·c_8_2·b_5_0 + b_2_0·b_4_22·c_8_2·b_3_0 + b_2_0·b_4_02·c_8_2·b_3_0 + b_2_02·c_8_2·b_9_0 + b_2_02·c_8_2·b_3_03 + b_2_02·b_4_2·c_8_2·b_5_0 + b_2_03·b_4_2·c_8_2·b_3_0 + b_2_04·c_8_2·b_5_0
- b_12_5·b_9_1 + b_2_0·b_4_0·b_4_23·b_3_0 + b_2_0·b_4_02·b_4_2·b_7_0
+ b_2_0·b_4_02·b_4_22·b_3_0 + b_2_02·b_4_22·b_9_0 + b_2_02·b_4_23·b_5_0 + b_2_02·b_4_0·b_4_22·b_5_0 + b_2_02·b_4_02·b_3_03 + b_2_02·b_4_03·b_5_0 + b_2_03·b_4_0·b_4_2·b_7_0 + b_2_03·b_4_02·b_4_2·b_3_0 + b_2_04·b_4_2·b_3_03 + b_2_04·b_4_22·b_5_0 + b_2_04·b_4_0·b_9_0 + b_2_04·b_4_0·b_3_03 + b_2_04·b_4_0·b_4_2·b_5_0 + b_2_04·b_4_02·b_5_0 + b_2_05·b_4_2·b_7_0 + b_2_05·b_4_22·b_3_0 + b_2_07·b_4_2·b_3_0 + b_2_07·b_4_0·b_3_0 + b_2_0·b_4_0·b_4_2·c_8_2·b_3_0 + b_2_02·c_8_2·b_3_03 + b_2_03·c_8_2·b_7_2 + b_2_03·c_8_2·b_7_0 + b_2_03·b_4_0·c_8_2·b_3_0 + b_2_05·c_8_2·b_3_0
- b_12_5·b_9_5 + b_8_7·b_13_0 + b_6_12·b_9_5 + b_4_2·b_6_1·b_11_1 + b_4_02·b_4_2·b_9_0
+ b_4_02·b_4_22·b_5_0 + b_4_03·b_9_0 + b_4_03·b_4_2·b_5_0 + b_2_0·b_4_0·b_4_22·b_7_0 + b_2_0·b_4_03·b_7_0 + b_2_02·b_4_0·b_4_22·b_5_0 + b_2_02·b_4_02·b_4_2·b_5_0 + b_2_03·b_4_0·b_4_2·b_7_0 + b_2_03·b_4_02·b_7_0 + b_2_03·b_4_02·b_4_2·b_3_0 + b_2_03·b_4_03·b_3_0 + b_2_0·b_4_0·b_4_2·c_8_2·b_3_0 + b_2_0·b_4_02·c_8_2·b_3_0
- b_10_2·b_12_5 + b_6_1·b_8_72 + b_6_12·b_10_2 + b_4_2·b_8_7·b_10_2 + b_4_22·b_7_92
+ b_4_02·b_4_22·b_6_1 + b_4_04·b_6_1 + b_2_0·b_4_23·b_8_0 + b_2_0·b_4_02·b_4_2·b_8_0 + b_2_0·b_4_02·b_4_23 + b_2_0·b_4_04·b_4_2 + b_2_02·b_4_23·b_3_02 + b_2_02·b_4_23·b_6_1 + b_2_02·b_4_0·b_4_22·b_3_02 + b_2_02·b_4_0·b_4_22·b_6_1 + b_2_03·b_4_22·b_8_0 + b_2_03·b_4_0·b_4_2·b_8_0 + b_2_05·b_4_23 + b_2_05·b_4_0·b_4_22 + c_8_2·b_7_92 + b_6_1·b_8_7·c_8_2 + b_4_0·b_4_2·b_6_1·c_8_2 + b_4_02·b_6_1·c_8_2
- b_9_0·b_13_0 + b_4_02·b_4_22·b_6_1 + b_2_0·b_4_03·b_8_0 + b_2_0·b_4_05
+ b_2_02·b_4_23·b_3_02 + b_2_02·b_4_23·b_6_1 + b_2_02·b_4_0·b_4_22·b_3_02 + b_2_02·b_4_0·b_4_22·b_6_1 + b_2_02·b_4_03·b_6_1 + b_2_03·b_4_0·b_4_2·b_8_0 + b_2_03·b_4_02·b_4_22 + b_2_03·b_4_03·b_4_2 + b_2_04·b_4_22·b_3_02 + b_2_04·b_4_22·b_6_1 + b_2_04·b_4_0·b_4_2·b_3_02 + b_2_04·b_4_0·b_4_2·b_6_1 + b_2_05·b_4_2·b_8_0 + b_2_05·b_4_02·b_4_2 + b_2_05·b_4_03 + b_2_06·b_4_2·b_6_1 + b_2_07·b_4_22 + b_2_07·b_4_0·b_4_2 + b_2_07·b_4_02 + b_4_02·b_6_1·c_8_2 + b_2_0·b_4_03·c_8_2 + b_2_02·b_4_2·b_6_1·c_8_2 + b_2_02·b_4_0·b_6_1·c_8_2 + b_2_03·b_4_02·c_8_2 + b_2_05·b_4_2·c_8_2 + b_2_05·b_4_0·c_8_2
- b_9_1·b_13_0 + b_2_0·b_4_02·b_4_2·b_8_0 + b_2_0·b_4_03·b_4_22
+ b_2_02·b_4_23·b_3_02 + b_2_02·b_4_0·b_4_22·b_6_1 + b_2_02·b_4_02·b_4_2·b_3_02 + b_2_02·b_4_03·b_6_1 + b_2_03·b_4_0·b_4_23 + b_2_03·b_4_03·b_4_2 + b_2_04·b_4_22·b_6_1 + b_2_04·b_4_0·b_4_2·b_3_02 + b_2_04·b_4_0·b_4_2·b_6_1 + b_2_04·b_4_02·b_6_1 + b_2_05·b_4_0·b_8_0 + b_2_05·b_4_0·b_4_22 + b_2_05·b_4_02·b_4_2 + b_2_05·b_4_03 + b_2_06·b_4_2·b_3_02 + b_2_06·b_4_0·b_3_02 + b_2_06·b_4_0·b_6_1 + b_2_07·b_4_02 + b_2_0·b_4_03·c_8_2 + b_2_02·b_4_0·b_6_1·c_8_2 + b_2_03·b_8_0·c_8_2 + b_2_03·b_4_0·b_4_2·c_8_2 + b_2_04·c_8_2·b_3_02 + b_2_04·b_6_1·c_8_2 + b_2_05·b_4_0·c_8_2
- b_9_5·b_13_0 + b_6_1·b_8_72 + b_6_12·b_10_2 + b_4_2·b_8_7·b_10_2 + b_4_2·b_6_1·b_12_5
+ b_4_22·b_7_92 + b_4_22·b_6_1·b_8_7 + b_4_24·b_3_02 + b_4_0·b_4_23·b_3_02 + b_4_02·b_4_22·b_3_02 + b_4_04·b_6_1 + b_2_0·b_4_0·b_4_22·b_8_0 + b_2_0·b_4_0·b_4_24 + b_2_0·b_4_02·b_4_23 + b_2_0·b_4_03·b_4_22 + b_2_02·b_4_23·b_3_02 + b_2_02·b_4_23·b_6_1 + b_2_02·b_4_0·b_4_22·b_3_02 + b_2_02·b_4_0·b_4_22·b_6_1 + b_2_02·b_4_02·b_4_2·b_3_02 + b_2_03·b_4_22·b_8_0 + b_2_04·b_4_22·b_3_02 + b_2_04·b_4_0·b_4_2·b_3_02 + b_2_05·b_4_23 + b_2_05·b_4_02·b_4_2 + b_2_07·b_4_22 + b_2_07·b_4_0·b_4_2 + c_8_2·b_7_92 + b_4_22·c_8_2·b_3_02 + b_2_0·b_4_0·b_4_22·c_8_2 + b_2_02·b_4_2·c_8_2·b_3_02 + b_2_02·b_4_2·b_6_1·c_8_2 + b_2_03·b_4_0·b_4_2·c_8_2 + b_2_05·b_4_2·c_8_2
- b_11_12 + b_6_1·b_8_72 + b_4_2·b_8_7·b_10_2 + b_4_2·b_6_1·b_12_5 + b_4_2·b_6_13
+ b_4_22·b_7_92 + b_4_22·b_6_1·b_8_7 + b_4_24·b_3_02 + b_4_02·b_4_22·b_6_1 + b_4_03·b_4_2·b_3_02 + b_4_04·b_6_1 + b_2_0·b_4_0·b_4_22·b_8_0 + b_2_0·b_4_0·b_4_24 + b_2_0·b_4_02·b_4_23 + b_2_0·b_4_03·b_4_22 + b_2_02·b_4_23·b_3_02 + b_2_03·b_4_22·b_8_0 + b_2_03·b_4_0·b_4_23 + b_2_03·b_4_02·b_4_22 + b_2_03·b_4_03·b_4_2 + b_2_04·b_4_22·b_3_02 + b_2_04·b_4_22·b_6_1 + b_2_04·b_4_0·b_4_2·b_3_02 + b_2_04·b_4_0·b_4_2·b_6_1 + b_2_05·b_4_23 + b_2_05·b_4_0·b_4_22 + b_2_07·b_4_22 + b_2_07·b_4_0·b_4_2 + c_8_2·b_7_92 + b_4_22·c_8_2·b_3_02 + b_4_0·b_4_2·c_8_2·b_3_02 + b_2_0·b_4_0·b_4_22·c_8_2 + b_2_0·b_4_02·b_4_2·c_8_2 + b_2_02·b_4_2·c_8_2·b_3_02 + b_2_05·b_4_2·c_8_2
- b_10_2·b_13_0 + b_6_1·b_8_7·b_9_5 + b_4_2·b_8_7·b_11_1 + b_4_22·b_8_7·b_7_9
+ b_4_22·b_6_1·b_9_5 + b_2_0·b_4_0·b_4_22·b_9_0 + b_2_0·b_4_0·b_4_23·b_5_0 + b_2_0·b_4_02·b_4_2·b_9_0 + b_2_0·b_4_02·b_4_22·b_5_0 + b_2_02·b_4_23·b_7_0 + b_2_02·b_4_02·b_4_2·b_7_0 + b_2_03·b_4_23·b_5_0 + b_2_03·b_4_0·b_4_22·b_5_0 + b_2_04·b_4_22·b_7_0 + b_2_04·b_4_0·b_4_2·b_7_0 + b_2_04·b_4_0·b_4_22·b_3_0 + b_2_04·b_4_02·b_4_2·b_3_0 + b_8_7·c_8_2·b_7_9 + b_6_1·c_8_2·b_9_5 + b_2_02·b_4_22·c_8_2·b_3_0 + b_2_02·b_4_0·b_4_2·c_8_2·b_3_0
- b_12_5·b_11_1 + b_6_1·b_8_7·b_9_5 + b_4_2·b_8_7·b_11_1 + b_4_2·b_6_1·b_13_0
+ b_4_22·b_8_7·b_7_9 + b_4_02·b_4_23·b_3_0 + b_4_03·b_4_2·b_7_0 + b_4_03·b_4_22·b_3_0 + b_2_0·b_4_02·b_4_22·b_5_0 + b_2_0·b_4_03·b_4_2·b_5_0 + b_2_02·b_4_24·b_3_0 + b_2_02·b_4_03·b_4_2·b_3_0 + b_2_03·b_4_22·b_9_0 + b_2_03·b_4_23·b_5_0 + b_2_03·b_4_0·b_4_2·b_9_0 + b_2_04·b_4_23·b_3_0 + b_2_04·b_4_0·b_4_2·b_7_0 + b_2_04·b_4_02·b_4_2·b_3_0 + b_2_06·b_4_22·b_3_0 + b_2_06·b_4_0·b_4_2·b_3_0 + b_8_7·c_8_2·b_7_9 + b_4_02·b_4_2·c_8_2·b_3_0 + b_2_02·b_4_2·c_8_2·b_7_0 + b_2_02·b_4_0·b_4_2·c_8_2·b_3_0 + b_2_04·b_4_2·c_8_2·b_3_0
- b_12_52 + b_6_1·b_8_7·b_10_2 + b_6_12·b_12_5 + b_4_2·b_8_7·b_12_5
+ b_4_2·b_6_12·b_8_7 + b_4_22·b_8_72 + b_4_22·b_6_1·b_10_2 + b_4_23·b_6_12 + b_4_0·b_4_23·b_8_0 + b_4_02·b_4_22·b_8_0 + b_4_02·b_4_24 + b_4_03·b_4_2·b_8_0 + b_4_04·b_4_22 + b_2_0·b_4_24·b_3_02 + b_2_0·b_4_24·b_6_1 + b_2_0·b_4_0·b_4_23·b_3_02 + b_2_0·b_4_0·b_4_23·b_6_1 + b_2_0·b_4_04·b_3_02 + b_2_02·b_4_23·b_8_0 + b_2_02·b_4_0·b_4_2·b_3_04 + b_2_02·b_4_0·b_4_22·b_8_0 + b_2_02·b_4_0·b_4_24 + b_2_02·b_4_02·b_3_04 + b_2_02·b_4_02·b_4_2·b_8_0 + b_2_02·b_4_03·b_8_0 + b_2_02·b_4_03·b_4_22 + b_2_03·b_4_23·b_6_1 + b_2_03·b_4_0·b_4_22·b_3_02 + b_2_03·b_4_0·b_4_22·b_6_1 + b_2_03·b_4_02·b_4_2·b_6_1 + b_2_03·b_4_03·b_3_02 + b_2_04·b_4_2·b_3_04 + b_2_04·b_4_22·b_8_0 + b_2_04·b_4_24 + b_2_04·b_4_0·b_3_04 + b_2_04·b_4_0·b_4_2·b_8_0 + b_2_04·b_4_02·b_8_0 + b_2_04·b_4_03·b_4_2 + b_2_04·b_4_04 + b_2_05·b_4_0·b_4_2·b_3_02 + b_2_05·b_4_0·b_4_2·b_6_1 + b_2_05·b_4_02·b_3_02 + b_2_06·b_4_2·b_8_0 + b_2_06·b_4_23 + b_2_06·b_4_0·b_4_22 + b_2_07·b_4_2·b_6_1 + b_2_07·b_4_0·b_6_1 + b_2_010·b_4_2 + b_2_010·b_4_0 + b_8_72·c_8_2 + b_4_03·b_4_2·c_8_2 + b_4_04·c_8_2 + b_2_0·b_4_22·c_8_2·b_3_02 + b_2_0·b_4_0·b_4_2·c_8_2·b_3_02 + b_2_0·b_4_02·c_8_2·b_3_02 + b_2_02·c_8_2·b_3_14 + b_2_02·c_8_2·b_3_04 + b_2_02·b_4_2·b_8_0·c_8_2 + b_2_02·b_4_23·c_8_2 + b_2_02·b_4_0·b_8_0·c_8_2 + b_2_02·b_4_02·b_4_2·c_8_2 + b_2_02·b_4_03·c_8_2 + b_2_03·c_8_2·b_3_1·b_7_0 + b_2_03·b_4_2·b_6_1·c_8_2 + b_2_03·b_4_0·c_8_2·b_3_02 + b_2_04·b_8_0·c_8_2 + b_2_04·b_4_02·c_8_2 + b_2_08·c_8_2
- b_11_1·b_13_0 + b_6_1·b_8_7·b_10_2 + b_4_2·b_8_7·b_12_5 + b_4_2·b_6_12·b_8_7
+ b_4_22·b_8_72 + b_4_22·b_6_1·b_10_2 + b_4_0·b_4_23·b_8_0 + b_4_03·b_4_2·b_8_0 + b_4_03·b_4_23 + b_4_05·b_4_2 + b_2_0·b_4_24·b_6_1 + b_2_0·b_4_0·b_4_23·b_3_02 + b_2_0·b_4_0·b_4_23·b_6_1 + b_2_0·b_4_02·b_4_22·b_3_02 + b_2_0·b_4_02·b_4_22·b_6_1 + b_2_0·b_4_03·b_4_2·b_6_1 + b_2_02·b_4_0·b_4_22·b_8_0 + b_2_02·b_4_02·b_4_2·b_8_0 + b_2_04·b_4_0·b_4_23 + b_2_04·b_4_02·b_4_22 + b_8_72·c_8_2 + b_4_2·b_6_12·c_8_2 + b_4_0·b_4_2·b_8_0·c_8_2 + b_4_03·b_4_2·c_8_2 + b_4_04·c_8_2 + b_2_0·b_4_22·b_6_1·c_8_2 + b_2_0·b_4_0·b_4_2·b_6_1·c_8_2 + b_2_02·b_4_23·c_8_2 + b_2_02·b_4_02·b_4_2·c_8_2 + b_2_04·b_4_22·c_8_2 + b_2_04·b_4_0·b_4_2·c_8_2 + b_2_02·b_4_2·c_8_22
- b_12_5·b_13_0 + b_6_1·b_8_7·b_11_1 + b_6_12·b_13_0 + b_4_2·b_8_7·b_13_0
+ b_4_22·b_8_7·b_9_5 + b_4_22·b_6_1·b_11_1 + b_4_23·b_6_1·b_7_9 + b_4_02·b_4_22·b_9_0 + b_4_03·b_4_22·b_5_0 + b_4_04·b_9_0 + b_4_04·b_4_2·b_5_0 + b_2_0·b_4_02·b_4_23·b_3_0 + b_2_0·b_4_03·b_4_22·b_3_0 + b_2_0·b_4_05·b_3_0 + b_2_02·b_4_23·b_9_0 + b_2_02·b_4_0·b_4_23·b_5_0 + b_2_02·b_4_02·b_4_2·b_3_03 + b_2_02·b_4_04·b_5_0 + b_2_03·b_4_23·b_7_0 + b_2_03·b_4_24·b_3_0 + b_2_03·b_4_02·b_4_2·b_7_0 + b_2_03·b_4_03·b_4_2·b_3_0 + b_2_03·b_4_04·b_3_0 + b_2_04·b_4_23·b_5_0 + b_2_04·b_4_0·b_4_2·b_9_0 + b_2_04·b_4_02·b_4_2·b_5_0 + b_2_04·b_4_03·b_5_0 + b_2_06·b_4_22·b_5_0 + b_2_07·b_4_2·b_7_0 + b_2_09·b_4_2·b_3_0 + b_2_09·b_4_0·b_3_0 + b_8_7·c_8_2·b_9_5 + b_4_2·b_6_1·c_8_2·b_7_9 + b_4_02·b_4_2·c_8_2·b_5_0 + b_4_03·c_8_2·b_5_0 + b_2_0·b_4_0·b_4_2·c_8_2·b_7_0 + b_2_0·b_4_0·b_4_22·c_8_2·b_3_0 + b_2_0·b_4_02·c_8_2·b_7_0 + b_2_02·b_4_2·c_8_2·b_3_03 + b_2_02·b_4_22·c_8_2·b_5_0 + b_2_03·b_4_0·b_4_2·c_8_2·b_3_0 + b_2_04·b_4_2·c_8_2·b_5_0 + b_2_04·b_4_0·c_8_2·b_5_0 + b_2_05·c_8_2·b_7_2 + b_2_05·c_8_2·b_7_0 + b_2_05·b_4_2·c_8_2·b_3_0 + b_2_05·b_4_0·c_8_2·b_3_0 + b_2_07·c_8_2·b_3_0
- b_13_02 + b_6_1·b_8_7·b_12_5 + b_4_2·b_6_1·b_8_72 + b_4_2·b_6_12·b_10_2
+ b_4_23·b_7_92 + b_4_0·b_4_24·b_3_02 + b_4_02·b_4_23·b_3_02 + b_4_03·b_4_22·b_3_02 + b_2_0·b_4_0·b_4_23·b_8_0 + b_2_0·b_4_02·b_4_24 + b_2_0·b_4_04·b_4_22 + b_2_0·b_4_05·b_4_2 + b_2_02·b_4_24·b_3_02 + b_2_02·b_4_24·b_6_1 + b_2_02·b_4_0·b_4_23·b_6_1 + b_2_02·b_4_02·b_4_22·b_3_02 + b_2_02·b_4_02·b_4_22·b_6_1 + b_2_02·b_4_03·b_4_2·b_6_1 + b_2_02·b_4_04·b_3_02 + b_2_02·b_4_04·b_6_1 + b_2_03·b_4_23·b_8_0 + b_2_03·b_4_25 + b_2_03·b_4_0·b_4_22·b_8_0 + b_2_03·b_4_02·b_4_2·b_8_0 + b_2_03·b_4_02·b_4_23 + b_2_03·b_4_03·b_8_0 + b_2_03·b_4_03·b_4_22 + b_2_03·b_4_04·b_4_2 + b_2_03·b_4_05 + b_2_04·b_4_23·b_3_02 + b_2_04·b_4_23·b_6_1 + b_2_04·b_4_0·b_4_22·b_6_1 + b_2_04·b_4_02·b_4_2·b_3_02 + b_2_04·b_4_03·b_6_1 + b_2_05·b_4_22·b_8_0 + b_2_05·b_4_24 + b_2_05·b_4_0·b_4_23 + b_2_05·b_4_02·b_4_22 + b_2_05·b_4_04 + b_2_06·b_4_22·b_3_02 + b_2_06·b_4_22·b_6_1 + b_2_06·b_4_0·b_4_2·b_3_02 + b_2_06·b_4_0·b_4_2·b_6_1 + b_2_06·b_4_02·b_3_02 + b_2_07·b_4_2·b_8_0 + b_2_08·b_4_2·b_3_02 + b_2_08·b_4_2·b_6_1 + b_2_08·b_4_0·b_3_02 + b_2_09·b_4_0·b_4_2 + b_8_7·c_8_2·b_10_2 + b_6_1·c_8_2·b_12_5 + b_4_2·c_8_2·b_7_92 + b_4_2·b_6_1·b_8_7·c_8_2 + b_4_23·c_8_2·b_3_02 + b_4_02·b_4_2·c_8_2·b_3_02 + b_4_02·b_4_2·b_6_1·c_8_2 + b_4_03·b_6_1·c_8_2 + b_2_0·b_4_0·b_4_23·c_8_2 + b_2_0·b_4_02·b_4_22·c_8_2 + b_2_0·b_4_04·c_8_2 + b_2_02·b_4_02·c_8_2·b_3_02 + b_2_02·b_4_02·b_6_1·c_8_2 + b_2_03·b_4_2·b_8_0·c_8_2 + b_2_03·b_4_0·b_4_22·c_8_2 + b_2_04·b_4_2·c_8_2·b_3_02 + b_2_04·b_4_0·c_8_2·b_3_02 + b_2_05·b_4_0·b_4_2·c_8_2 + b_2_05·b_4_02·c_8_2 + b_2_06·c_8_2·b_3_02 + b_2_07·b_4_2·c_8_2 + b_2_07·b_4_0·c_8_2 + b_4_2·c_8_22·b_3_02 + b_2_0·b_4_0·b_4_2·c_8_22 + b_2_02·c_8_22·b_3_12 + b_2_02·b_6_1·c_8_22 + b_2_03·b_4_2·c_8_22 + b_2_05·c_8_22
Data used for the Hilbert-Poincaré test
- We proved completion in degree 26 using the Hilbert-Poincaré criterion.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- b_8_7 + b_8_0 + b_4_22 + b_4_02 + b_2_0·b_6_1 + b_2_02·b_4_2 + b_2_04 + c_8_2, an element of degree 8
- b_3_14 + b_3_04 + b_6_12 + b_4_2·b_8_7 + b_4_2·b_8_0 + b_2_02·b_8_0
+ b_2_02·b_4_22 + b_2_02·b_4_02 + b_2_03·b_6_1 + b_2_04·b_4_0 + b_4_2·c_8_2 + b_4_0·c_8_2, an element of degree 12
- b_7_92 + b_6_1·b_8_7 + b_4_22·b_3_02 + b_4_0·b_4_2·b_6_1 + b_4_02·b_3_02
+ b_2_0·b_4_2·b_8_0 + b_2_0·b_4_0·b_4_22 + b_2_0·b_4_02·b_4_2 + b_2_0·b_4_03 + b_2_02·b_4_2·b_3_02 + b_2_02·b_4_2·b_6_1 + b_2_02·b_4_0·b_3_02 + b_2_03·b_4_0·b_4_2 + c_8_2·b_3_12 + c_8_2·b_3_02 + b_6_3·c_8_2 + b_2_0·b_4_2·c_8_2 + b_2_0·b_4_0·c_8_2, an element of degree 14
- b_4_2 + b_4_0, an element of degree 4
- A Duflot regular sequence is given by c_8_2.
- The Raw Filter Degree Type of the filter regular HSOP is [-1, -1, 17, 28, 34].
- Modifying the above filter regular HSOP, we obtained the following parameters:
- c_8_2, an element of degree 8
- b_4_2 + b_4_0 + b_2_02, an element of degree 4
- b_7_9 + b_4_2·b_3_0 + b_4_0·b_3_0, an element of degree 7
- b_3_12 + b_3_02 + b_6_1, an element of degree 6
Restriction maps
Expressing the generators as elements of H*(Syl2(M22); GF(2))
- b_2_0 → b_1_22 + b_1_02 + b_2_5
- a_3_2 → b_2_4·b_1_2
- b_3_1 → b_2_5·b_1_0
- b_3_0 → b_2_5·b_1_2
- b_4_2 → b_1_14 + b_4_13 + b_4_10 + b_4_9 + b_2_4·b_1_02 + b_2_42
- b_4_0 → b_1_2·b_3_8 + b_4_10 + b_2_4·b_1_02
- b_5_0 → b_4_10·b_1_2 + b_4_9·b_1_2 + b_2_5·b_3_8 + b_2_4·b_1_03
- b_6_3 → b_4_13·b_1_12 + b_4_9·b_1_12 + b_2_4·b_4_13 + b_2_4·b_4_9 + b_2_42·b_1_12
- b_6_1 → b_6_31 + b_6_30 + b_4_9·b_1_22 + b_2_5·b_4_13 + b_2_5·b_4_9 + b_2_4·b_4_13 + b_2_4·b_4_9
+ b_2_42·b_1_12
- b_7_9 → b_2_4·b_4_13·b_1_1 + b_2_4·b_4_9·b_1_1
- a_7_7 → b_2_4·b_5_21 + b_2_4·b_5_20 + b_2_4·b_5_17 + b_2_4·b_1_12·b_3_8 + b_2_42·b_3_8
- b_7_2 → b_2_5·b_5_17
- b_7_0 → b_4_13·b_1_23 + b_2_5·b_5_21 + b_2_5·b_4_9·b_1_2 + b_2_52·b_3_8 + b_2_42·b_1_03
- b_8_7 → b_4_10·b_4_13 + b_4_9·b_4_13 + b_2_4·b_4_9·b_1_12 + b_2_42·b_1_1·b_3_8
+ b_2_42·b_1_14 + b_2_43·b_1_12 + b_2_43·b_1_02
- c_8_2 → b_1_1·b_7_41 + b_8_52 + b_6_30·b_1_12 + b_4_13·b_1_1·b_3_8 + b_4_132
+ b_4_9·b_1_2·b_3_8 + b_4_9·b_1_24 + b_4_9·b_1_1·b_3_8 + b_4_9·b_1_14 + b_4_9·b_4_13 + b_4_9·b_4_10 + b_2_5·b_1_2·b_5_21 + b_2_5·b_6_31 + b_2_5·b_6_30 + b_2_5·b_4_9·b_1_22 + b_2_52·b_4_13 + b_2_52·b_4_10 + b_2_4·b_6_31 + b_2_4·b_4_13·b_1_12 + b_2_4·b_4_9·b_1_12 + b_2_42·b_1_1·b_3_8 + b_2_42·b_1_14 + b_2_42·b_4_13 + b_2_42·b_4_9 + b_2_43·b_1_12 + b_2_43·b_1_02 + c_8_55
- b_8_0 → b_1_2·b_7_41 + b_1_1·b_7_41 + b_8_54 + b_8_52 + b_6_30·b_1_12 + b_4_13·b_1_1·b_3_8
+ b_4_132 + b_4_9·b_1_2·b_3_8 + b_4_9·b_1_24 + b_4_9·b_1_1·b_3_8 + b_4_9·b_1_14 + b_4_9·b_4_10 + b_2_5·b_1_2·b_5_21 + b_2_5·b_6_31 + b_2_5·b_6_30 + b_2_5·b_4_13·b_1_22 + b_2_5·b_4_9·b_1_22 + b_2_52·b_4_13 + b_2_52·b_4_10 + b_2_52·b_4_9 + b_2_4·b_1_06 + b_2_4·b_4_13·b_1_12 + b_2_4·b_4_9·b_1_12 + b_2_42·b_1_1·b_3_8 + b_2_42·b_1_04
- b_9_5 → b_4_9·b_4_13·b_1_1 + b_4_92·b_1_1 + b_2_4·b_4_13·b_3_8 + b_2_4·b_4_9·b_3_8
+ b_2_43·b_1_13
- b_9_1 → b_4_10·b_5_20 + b_4_9·b_4_10·b_1_2 + b_4_92·b_1_2 + b_2_5·b_4_9·b_3_8 + b_2_52·b_5_21
+ b_2_52·b_5_17 + b_2_52·b_4_13·b_1_2 + b_2_52·b_4_9·b_1_2 + b_2_53·b_3_8 + b_2_42·b_1_05
- b_9_0 → b_4_10·b_5_21 + b_4_9·b_5_21 + b_4_9·b_5_20 + b_4_9·b_1_12·b_3_8 + b_4_9·b_4_13·b_1_2
+ b_4_92·b_1_1 + b_2_5·b_7_41 + b_2_52·b_5_21 + b_2_52·b_5_17 + b_2_52·b_4_13·b_1_2 + b_2_52·b_4_9·b_1_2 + b_2_53·b_3_8 + b_2_4·b_6_30·b_1_0 + b_2_4·b_4_9·b_3_8 + b_2_42·b_5_17 + b_2_42·b_4_9·b_1_1
- b_10_2 → b_4_13·b_1_1·b_5_21 + b_4_13·b_1_1·b_5_20 + b_4_13·b_6_30 + b_4_132·b_1_1·b_1_2
+ b_4_9·b_1_1·b_5_20 + b_2_5·b_4_132 + b_2_5·b_4_9·b_4_13 + b_2_4·b_8_52 + b_2_4·b_6_30·b_1_02 + b_2_4·b_4_9·b_1_1·b_3_8 + b_2_42·b_1_13·b_3_8 + b_2_42·b_6_30 + b_2_42·b_4_13·b_1_12 + b_2_42·b_4_9·b_1_12 + b_2_43·b_1_1·b_3_8 + b_2_43·b_1_04 + b_2_43·b_4_9 + b_2_44·b_1_02
- b_11_1 → b_4_132·b_1_13 + b_4_9·b_4_13·b_1_13 + b_2_4·b_4_13·b_5_20 + b_2_4·b_4_9·b_5_20
+ b_2_4·b_4_92·b_1_1 + b_2_42·b_4_9·b_1_13 + b_2_43·b_1_12·b_3_8 + b_2_43·b_1_15 + b_2_44·b_1_13
- b_12_5 → b_4_13·b_1_1·b_7_41 + b_4_13·b_8_54 + b_4_133 + b_4_9·b_8_52 + b_4_9·b_6_30·b_1_12
+ b_4_9·b_4_13·b_1_1·b_3_8 + b_4_9·b_4_132 + b_4_92·b_1_24 + b_4_92·b_1_1·b_3_8 + b_4_92·b_4_10 + b_2_5·b_4_132·b_1_22 + b_2_5·b_4_9·b_6_31 + b_2_5·b_4_9·b_4_10·b_1_22 + b_2_5·b_4_92·b_1_22 + b_2_52·b_8_54 + b_2_52·b_8_52 + b_2_52·b_4_10·b_4_13 + b_2_52·b_4_92 + b_2_53·b_1_2·b_5_21 + b_2_53·b_4_13·b_1_22 + b_2_53·b_4_10·b_1_22 + b_2_53·b_4_9·b_1_22 + b_2_54·b_4_13 + b_2_54·b_4_10 + b_2_4·b_6_30·b_1_04 + b_2_4·b_4_132·b_1_12 + b_2_4·b_4_9·b_1_16 + b_2_4·b_4_9·b_4_13·b_1_12 + b_2_42·b_1_15·b_3_8 + b_2_42·b_1_18 + b_2_42·b_6_30·b_1_12 + b_2_42·b_6_30·b_1_02 + b_2_42·b_4_13·b_1_1·b_3_8 + b_2_42·b_4_9·b_4_13 + b_2_43·b_1_13·b_3_8 + b_2_43·b_1_16 + b_2_43·b_1_06 + b_2_44·b_1_1·b_3_8 + b_2_44·b_1_04 + b_2_45·b_1_12 + b_2_45·b_1_02 + c_8_55·b_1_04 + b_2_52·c_8_55
- b_13_0 → b_4_132·b_1_12·b_3_8 + b_4_9·b_4_13·b_5_20 + b_4_9·b_4_13·b_1_12·b_3_8
+ b_4_92·b_5_20 + b_4_92·b_4_13·b_1_2 + b_4_92·b_4_10·b_1_2 + b_4_93·b_1_2 + b_2_5·b_4_10·b_7_41 + b_2_5·b_4_9·b_4_10·b_3_8 + b_2_5·b_4_92·b_3_8 + b_2_5·b_4_92·b_1_23 + b_2_52·b_4_13·b_5_21 + b_2_52·b_4_132·b_1_2 + b_2_52·b_4_10·b_5_21 + b_2_52·b_4_10·b_4_13·b_1_2 + b_2_52·b_4_9·b_5_21 + b_2_52·b_4_9·b_1_25 + b_2_53·b_4_10·b_3_8 + b_2_53·b_4_9·b_1_23 + b_2_54·b_4_13·b_1_2 + b_2_54·b_4_10·b_1_2 + b_2_4·b_4_13·b_7_41 + b_2_4·b_4_13·b_6_30·b_1_1 + b_2_4·b_4_132·b_3_8 + b_2_4·b_4_9·b_7_41 + b_2_4·b_4_9·b_6_30·b_1_1 + b_2_4·b_4_9·b_4_13·b_1_13 + b_2_4·b_4_92·b_3_8 + b_2_42·b_6_30·b_1_03 + b_2_42·b_4_13·b_5_20 + b_2_42·b_4_132·b_1_1 + b_2_42·b_4_9·b_5_20 + b_2_42·b_4_9·b_1_15 + b_2_42·b_4_92·b_1_1 + b_2_43·b_1_14·b_3_8 + b_2_43·b_6_30·b_1_1 + b_2_43·b_6_30·b_1_0 + b_2_43·b_4_13·b_3_8 + b_2_43·b_4_9·b_1_13 + b_2_44·b_5_20 + b_2_44·b_5_17 + b_2_44·b_1_12·b_3_8 + b_2_44·b_4_13·b_1_1 + b_2_44·b_4_9·b_1_1 + b_2_45·b_3_8 + b_2_52·c_8_55·b_1_2
Restriction map to the greatest el. ab. subgp. in the centre of a Sylow subgroup, which is of rank 1
- b_2_0 → 0, an element of degree 2
- a_3_2 → 0, an element of degree 3
- b_3_1 → 0, an element of degree 3
- b_3_0 → 0, an element of degree 3
- b_4_2 → 0, an element of degree 4
- b_4_0 → 0, an element of degree 4
- b_5_0 → 0, an element of degree 5
- b_6_3 → 0, an element of degree 6
- b_6_1 → 0, an element of degree 6
- b_7_9 → 0, an element of degree 7
- a_7_7 → 0, an element of degree 7
- b_7_2 → 0, an element of degree 7
- b_7_0 → 0, an element of degree 7
- b_8_7 → 0, an element of degree 8
- c_8_2 → c_1_08, an element of degree 8
- b_8_0 → 0, an element of degree 8
- b_9_5 → 0, an element of degree 9
- b_9_1 → 0, an element of degree 9
- b_9_0 → 0, an element of degree 9
- b_10_2 → 0, an element of degree 10
- b_11_1 → 0, an element of degree 11
- b_12_5 → 0, an element of degree 12
- b_13_0 → 0, an element of degree 13
Restriction map to a maximal el. ab. subgp. of rank 3 in a Sylow subgroup
- b_2_0 → c_1_12, an element of degree 2
- a_3_2 → 0, an element of degree 3
- b_3_1 → 0, an element of degree 3
- b_3_0 → 0, an element of degree 3
- b_4_2 → c_1_24 + c_1_13·c_1_2, an element of degree 4
- b_4_0 → c_1_12·c_1_22 + c_1_13·c_1_2, an element of degree 4
- b_5_0 → c_1_13·c_1_22 + c_1_14·c_1_2, an element of degree 5
- b_6_3 → 0, an element of degree 6
- b_6_1 → c_1_0·c_1_13·c_1_22 + c_1_0·c_1_14·c_1_2 + c_1_02·c_1_12·c_1_22
+ c_1_02·c_1_13·c_1_2 + c_1_02·c_1_14 + c_1_04·c_1_12, an element of degree 6
- b_7_9 → 0, an element of degree 7
- a_7_7 → 0, an element of degree 7
- b_7_2 → 0, an element of degree 7
- b_7_0 → c_1_13·c_1_24 + c_1_15·c_1_22, an element of degree 7
- b_8_7 → c_1_12·c_1_26 + c_1_13·c_1_25 + c_1_14·c_1_24 + c_1_15·c_1_23, an element of degree 8
- c_8_2 → c_1_12·c_1_26 + c_1_13·c_1_25 + c_1_14·c_1_24 + c_1_15·c_1_23
+ c_1_0·c_1_13·c_1_24 + c_1_0·c_1_15·c_1_22 + c_1_02·c_1_14·c_1_22 + c_1_02·c_1_15·c_1_2 + c_1_04·c_1_24 + c_1_04·c_1_13·c_1_2 + c_1_04·c_1_14 + c_1_08, an element of degree 8
- b_8_0 → c_1_14·c_1_24 + c_1_17·c_1_2 + c_1_0·c_1_13·c_1_24 + c_1_0·c_1_16·c_1_2
+ c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22 + c_1_02·c_1_16 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_13·c_1_2 + c_1_04·c_1_14, an element of degree 8
- b_9_5 → 0, an element of degree 9
- b_9_1 → c_1_15·c_1_24 + c_1_17·c_1_22, an element of degree 9
- b_9_0 → c_1_0·c_1_14·c_1_24 + c_1_0·c_1_16·c_1_22 + c_1_02·c_1_13·c_1_24
+ c_1_02·c_1_16·c_1_2 + c_1_04·c_1_13·c_1_22 + c_1_04·c_1_14·c_1_2, an element of degree 9
- b_10_2 → c_1_12·c_1_28 + c_1_14·c_1_26 + c_1_15·c_1_25 + c_1_17·c_1_23, an element of degree 10
- b_11_1 → 0, an element of degree 11
- b_12_5 → c_1_12·c_1_210 + c_1_13·c_1_29 + c_1_14·c_1_28 + c_1_19·c_1_23
+ c_1_0·c_1_13·c_1_28 + c_1_0·c_1_17·c_1_24 + c_1_0·c_1_19·c_1_22 + c_1_0·c_1_110·c_1_2 + c_1_02·c_1_12·c_1_28 + c_1_02·c_1_14·c_1_26 + c_1_02·c_1_15·c_1_25 + c_1_02·c_1_16·c_1_24 + c_1_02·c_1_17·c_1_23 + c_1_02·c_1_19·c_1_2 + c_1_02·c_1_110 + c_1_04·c_1_12·c_1_26 + c_1_04·c_1_13·c_1_25 + c_1_04·c_1_15·c_1_23 + c_1_04·c_1_16·c_1_22 + c_1_08·c_1_14, an element of degree 12
- b_13_0 → c_1_0·c_1_16·c_1_26 + c_1_0·c_1_17·c_1_25 + c_1_0·c_1_18·c_1_24
+ c_1_0·c_1_19·c_1_23 + c_1_02·c_1_15·c_1_26 + c_1_02·c_1_16·c_1_25 + c_1_02·c_1_18·c_1_23 + c_1_02·c_1_19·c_1_22 + c_1_04·c_1_15·c_1_24 + c_1_04·c_1_17·c_1_22, an element of degree 13
Restriction map to a maximal el. ab. subgp. of rank 3 in a Sylow subgroup
- b_2_0 → c_1_22 + c_1_1·c_1_2 + c_1_12, an element of degree 2
- a_3_2 → 0, an element of degree 3
- b_3_1 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_3_0 → 0, an element of degree 3
- b_4_2 → 0, an element of degree 4
- b_4_0 → 0, an element of degree 4
- b_5_0 → 0, an element of degree 5
- b_6_3 → 0, an element of degree 6
- b_6_1 → c_1_0·c_1_1·c_1_24 + c_1_0·c_1_14·c_1_2 + c_1_02·c_1_24
+ c_1_02·c_1_12·c_1_22 + c_1_02·c_1_14 + c_1_04·c_1_22 + c_1_04·c_1_1·c_1_2 + c_1_04·c_1_12, an element of degree 6
- b_7_9 → 0, an element of degree 7
- a_7_7 → 0, an element of degree 7
- b_7_2 → c_1_0·c_1_12·c_1_24 + c_1_0·c_1_14·c_1_22 + c_1_02·c_1_1·c_1_24
+ c_1_02·c_1_14·c_1_2 + c_1_04·c_1_1·c_1_22 + c_1_04·c_1_12·c_1_2, an element of degree 7
- b_7_0 → c_1_0·c_1_12·c_1_24 + c_1_0·c_1_14·c_1_22 + c_1_02·c_1_1·c_1_24
+ c_1_02·c_1_14·c_1_2 + c_1_04·c_1_1·c_1_22 + c_1_04·c_1_12·c_1_2, an element of degree 7
- b_8_7 → 0, an element of degree 8
- c_8_2 → c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_24
+ c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
- b_8_0 → c_1_0·c_1_1·c_1_26 + c_1_0·c_1_12·c_1_25 + c_1_0·c_1_13·c_1_24
+ c_1_0·c_1_14·c_1_23 + c_1_0·c_1_15·c_1_22 + c_1_0·c_1_16·c_1_2 + c_1_02·c_1_26 + c_1_02·c_1_1·c_1_25 + c_1_02·c_1_13·c_1_23 + c_1_02·c_1_15·c_1_2 + c_1_02·c_1_16 + c_1_04·c_1_24 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14, an element of degree 8
- b_9_5 → 0, an element of degree 9
- b_9_1 → 0, an element of degree 9
- b_9_0 → 0, an element of degree 9
- b_10_2 → 0, an element of degree 10
- b_11_1 → 0, an element of degree 11
- b_12_5 → c_1_0·c_1_1·c_1_210 + c_1_0·c_1_12·c_1_29 + c_1_0·c_1_13·c_1_28
+ c_1_0·c_1_18·c_1_23 + c_1_0·c_1_19·c_1_22 + c_1_0·c_1_110·c_1_2 + c_1_02·c_1_210 + c_1_02·c_1_1·c_1_29 + c_1_02·c_1_12·c_1_28 + c_1_02·c_1_14·c_1_26 + c_1_02·c_1_15·c_1_25 + c_1_02·c_1_16·c_1_24 + c_1_02·c_1_18·c_1_22 + c_1_02·c_1_19·c_1_2 + c_1_02·c_1_110 + c_1_04·c_1_12·c_1_26 + c_1_04·c_1_13·c_1_25 + c_1_04·c_1_15·c_1_23 + c_1_04·c_1_16·c_1_22 + c_1_08·c_1_24 + c_1_08·c_1_12·c_1_22 + c_1_08·c_1_14, an element of degree 12
- b_13_0 → 0, an element of degree 13
Restriction map to a maximal el. ab. subgp. of rank 4 in a Sylow subgroup
- b_2_0 → 0, an element of degree 2
- a_3_2 → 0, an element of degree 3
- b_3_1 → 0, an element of degree 3
- b_3_0 → 0, an element of degree 3
- b_4_2 → c_1_34 + c_1_22·c_1_32 + c_1_24 + c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3
+ c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22 + c_1_14, an element of degree 4
- b_4_0 → 0, an element of degree 4
- b_5_0 → 0, an element of degree 5
- b_6_3 → c_1_22·c_1_34 + c_1_24·c_1_32 + c_1_1·c_1_2·c_1_34 + c_1_1·c_1_24·c_1_3
+ c_1_12·c_1_34 + c_1_12·c_1_22·c_1_32 + c_1_12·c_1_24 + c_1_14·c_1_32 + c_1_14·c_1_2·c_1_3 + c_1_14·c_1_22, an element of degree 6
- b_6_1 → c_1_22·c_1_34 + c_1_24·c_1_32 + c_1_1·c_1_2·c_1_34 + c_1_1·c_1_24·c_1_3
+ c_1_12·c_1_34 + c_1_12·c_1_22·c_1_32 + c_1_12·c_1_24 + c_1_14·c_1_32 + c_1_14·c_1_2·c_1_3 + c_1_14·c_1_22, an element of degree 6
- b_7_9 → c_1_1·c_1_22·c_1_34 + c_1_1·c_1_24·c_1_32 + c_1_12·c_1_2·c_1_34
+ c_1_12·c_1_24·c_1_3 + c_1_14·c_1_2·c_1_32 + c_1_14·c_1_22·c_1_3, an element of degree 7
- a_7_7 → 0, an element of degree 7
- b_7_2 → 0, an element of degree 7
- b_7_0 → 0, an element of degree 7
- b_8_7 → c_1_22·c_1_36 + c_1_23·c_1_35 + c_1_25·c_1_33 + c_1_26·c_1_32
+ c_1_1·c_1_2·c_1_36 + c_1_1·c_1_22·c_1_35 + c_1_1·c_1_24·c_1_33 + c_1_1·c_1_26·c_1_3 + c_1_12·c_1_36 + c_1_12·c_1_25·c_1_3 + c_1_12·c_1_26 + c_1_13·c_1_35 + c_1_13·c_1_24·c_1_3 + c_1_13·c_1_25 + c_1_14·c_1_22·c_1_32 + c_1_14·c_1_23·c_1_3 + c_1_15·c_1_33 + c_1_15·c_1_22·c_1_3 + c_1_15·c_1_23 + c_1_16·c_1_32 + c_1_16·c_1_2·c_1_3 + c_1_16·c_1_22 + c_1_0·c_1_1·c_1_22·c_1_34 + c_1_0·c_1_1·c_1_24·c_1_32 + c_1_0·c_1_12·c_1_2·c_1_34 + c_1_0·c_1_12·c_1_24·c_1_3 + c_1_0·c_1_14·c_1_2·c_1_32 + c_1_0·c_1_14·c_1_22·c_1_3, an element of degree 8
- c_8_2 → c_1_22·c_1_36 + c_1_23·c_1_35 + c_1_25·c_1_33 + c_1_26·c_1_32
+ c_1_1·c_1_2·c_1_36 + c_1_1·c_1_22·c_1_35 + c_1_1·c_1_24·c_1_33 + c_1_1·c_1_26·c_1_3 + c_1_12·c_1_36 + c_1_12·c_1_25·c_1_3 + c_1_12·c_1_26 + c_1_13·c_1_35 + c_1_13·c_1_24·c_1_3 + c_1_13·c_1_25 + c_1_14·c_1_22·c_1_32 + c_1_14·c_1_23·c_1_3 + c_1_15·c_1_33 + c_1_15·c_1_22·c_1_3 + c_1_15·c_1_23 + c_1_16·c_1_32 + c_1_16·c_1_2·c_1_3 + c_1_16·c_1_22 + c_1_02·c_1_22·c_1_34 + c_1_02·c_1_24·c_1_32 + c_1_02·c_1_1·c_1_2·c_1_34 + c_1_02·c_1_1·c_1_24·c_1_3 + c_1_02·c_1_12·c_1_34 + c_1_02·c_1_12·c_1_22·c_1_32 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_32 + c_1_02·c_1_14·c_1_2·c_1_3 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_34 + c_1_04·c_1_22·c_1_32 + c_1_04·c_1_24 + c_1_04·c_1_1·c_1_2·c_1_32 + c_1_04·c_1_1·c_1_22·c_1_3 + c_1_04·c_1_12·c_1_32 + c_1_04·c_1_12·c_1_2·c_1_3 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
- b_8_0 → 0, an element of degree 8
- b_9_5 → c_1_23·c_1_36 + c_1_24·c_1_35 + c_1_25·c_1_34 + c_1_26·c_1_33
+ c_1_1·c_1_24·c_1_34 + c_1_1·c_1_26·c_1_32 + c_1_12·c_1_2·c_1_36 + c_1_12·c_1_22·c_1_35 + c_1_12·c_1_24·c_1_33 + c_1_12·c_1_25·c_1_32 + c_1_13·c_1_36 + c_1_13·c_1_24·c_1_32 + c_1_13·c_1_26 + c_1_14·c_1_35 + c_1_14·c_1_23·c_1_32 + c_1_14·c_1_25 + c_1_15·c_1_34 + c_1_15·c_1_22·c_1_32 + c_1_15·c_1_24 + c_1_16·c_1_33 + c_1_16·c_1_2·c_1_32 + c_1_16·c_1_23 + c_1_02·c_1_1·c_1_22·c_1_34 + c_1_02·c_1_1·c_1_24·c_1_32 + c_1_02·c_1_12·c_1_2·c_1_34 + c_1_02·c_1_12·c_1_24·c_1_3 + c_1_02·c_1_14·c_1_2·c_1_32 + c_1_02·c_1_14·c_1_22·c_1_3, an element of degree 9
- b_9_1 → 0, an element of degree 9
- b_9_0 → 0, an element of degree 9
- b_10_2 → c_1_1·c_1_22·c_1_37 + c_1_1·c_1_25·c_1_34 + c_1_1·c_1_26·c_1_33
+ c_1_1·c_1_27·c_1_32 + c_1_12·c_1_2·c_1_37 + c_1_12·c_1_25·c_1_33 + c_1_12·c_1_26·c_1_32 + c_1_12·c_1_27·c_1_3 + c_1_13·c_1_23·c_1_34 + c_1_13·c_1_24·c_1_33 + c_1_14·c_1_22·c_1_34 + c_1_14·c_1_23·c_1_33 + c_1_15·c_1_2·c_1_34 + c_1_15·c_1_22·c_1_33 + c_1_15·c_1_23·c_1_32 + c_1_15·c_1_24·c_1_3 + c_1_16·c_1_2·c_1_33 + c_1_16·c_1_23·c_1_3 + c_1_17·c_1_2·c_1_32 + c_1_17·c_1_22·c_1_3 + c_1_0·c_1_23·c_1_36 + c_1_0·c_1_24·c_1_35 + c_1_0·c_1_25·c_1_34 + c_1_0·c_1_26·c_1_33 + c_1_0·c_1_1·c_1_24·c_1_34 + c_1_0·c_1_1·c_1_26·c_1_32 + c_1_0·c_1_12·c_1_2·c_1_36 + c_1_0·c_1_12·c_1_22·c_1_35 + c_1_0·c_1_12·c_1_24·c_1_33 + c_1_0·c_1_12·c_1_25·c_1_32 + c_1_0·c_1_13·c_1_36 + c_1_0·c_1_13·c_1_24·c_1_32 + c_1_0·c_1_13·c_1_26 + c_1_0·c_1_14·c_1_35 + c_1_0·c_1_14·c_1_23·c_1_32 + c_1_0·c_1_14·c_1_25 + c_1_0·c_1_15·c_1_34 + c_1_0·c_1_15·c_1_22·c_1_32 + c_1_0·c_1_15·c_1_24 + c_1_0·c_1_16·c_1_33 + c_1_0·c_1_16·c_1_2·c_1_32 + c_1_0·c_1_16·c_1_23 + c_1_02·c_1_22·c_1_36 + c_1_02·c_1_23·c_1_35 + c_1_02·c_1_25·c_1_33 + c_1_02·c_1_26·c_1_32 + c_1_02·c_1_1·c_1_2·c_1_36 + c_1_02·c_1_1·c_1_22·c_1_35 + c_1_02·c_1_1·c_1_24·c_1_33 + c_1_02·c_1_1·c_1_26·c_1_3 + c_1_02·c_1_12·c_1_36 + c_1_02·c_1_12·c_1_25·c_1_3 + c_1_02·c_1_12·c_1_26 + c_1_02·c_1_13·c_1_35 + c_1_02·c_1_13·c_1_24·c_1_3 + c_1_02·c_1_13·c_1_25 + c_1_02·c_1_14·c_1_22·c_1_32 + c_1_02·c_1_14·c_1_23·c_1_3 + c_1_02·c_1_15·c_1_33 + c_1_02·c_1_15·c_1_22·c_1_3 + c_1_02·c_1_15·c_1_23 + c_1_02·c_1_16·c_1_32 + c_1_02·c_1_16·c_1_2·c_1_3 + c_1_02·c_1_16·c_1_22 + c_1_03·c_1_1·c_1_22·c_1_34 + c_1_03·c_1_1·c_1_24·c_1_32 + c_1_03·c_1_12·c_1_2·c_1_34 + c_1_03·c_1_12·c_1_24·c_1_3 + c_1_03·c_1_14·c_1_2·c_1_32 + c_1_03·c_1_14·c_1_22·c_1_3 + c_1_04·c_1_22·c_1_34 + c_1_04·c_1_24·c_1_32 + c_1_04·c_1_1·c_1_2·c_1_34 + c_1_04·c_1_1·c_1_24·c_1_3 + c_1_04·c_1_12·c_1_34 + c_1_04·c_1_12·c_1_22·c_1_32 + c_1_04·c_1_12·c_1_24 + c_1_04·c_1_14·c_1_32 + c_1_04·c_1_14·c_1_2·c_1_3 + c_1_04·c_1_14·c_1_22, an element of degree 10
- b_11_1 → c_1_23·c_1_38 + c_1_25·c_1_36 + c_1_26·c_1_35 + c_1_28·c_1_33
+ c_1_1·c_1_22·c_1_38 + c_1_1·c_1_26·c_1_34 + c_1_12·c_1_25·c_1_34 + c_1_12·c_1_28·c_1_3 + c_1_13·c_1_38 + c_1_13·c_1_24·c_1_34 + c_1_13·c_1_28 + c_1_14·c_1_2·c_1_36 + c_1_14·c_1_22·c_1_35 + c_1_14·c_1_23·c_1_34 + c_1_14·c_1_24·c_1_33 + c_1_15·c_1_36 + c_1_15·c_1_22·c_1_34 + c_1_15·c_1_26 + c_1_16·c_1_35 + c_1_16·c_1_2·c_1_34 + c_1_16·c_1_25 + c_1_18·c_1_33 + c_1_18·c_1_22·c_1_3 + c_1_18·c_1_23 + c_1_04·c_1_1·c_1_22·c_1_34 + c_1_04·c_1_1·c_1_24·c_1_32 + c_1_04·c_1_12·c_1_2·c_1_34 + c_1_04·c_1_12·c_1_24·c_1_3 + c_1_04·c_1_14·c_1_2·c_1_32 + c_1_04·c_1_14·c_1_22·c_1_3, an element of degree 11
- b_12_5 → c_1_22·c_1_310 + c_1_23·c_1_39 + c_1_29·c_1_33 + c_1_210·c_1_32
+ c_1_1·c_1_2·c_1_310 + c_1_1·c_1_24·c_1_37 + c_1_1·c_1_26·c_1_35 + c_1_1·c_1_27·c_1_34 + c_1_1·c_1_29·c_1_32 + c_1_1·c_1_210·c_1_3 + c_1_12·c_1_310 + c_1_12·c_1_2·c_1_39 + c_1_12·c_1_25·c_1_35 + c_1_12·c_1_28·c_1_32 + c_1_12·c_1_210 + c_1_13·c_1_39 + c_1_13·c_1_24·c_1_35 + c_1_13·c_1_25·c_1_34 + c_1_13·c_1_28·c_1_3 + c_1_13·c_1_29 + c_1_14·c_1_2·c_1_37 + c_1_14·c_1_23·c_1_35 + c_1_14·c_1_26·c_1_32 + c_1_14·c_1_27·c_1_3 + c_1_15·c_1_22·c_1_35 + c_1_15·c_1_25·c_1_32 + c_1_16·c_1_2·c_1_35 + c_1_16·c_1_22·c_1_34 + c_1_16·c_1_24·c_1_32 + c_1_16·c_1_25·c_1_3 + c_1_17·c_1_2·c_1_34 + c_1_17·c_1_24·c_1_3 + c_1_18·c_1_2·c_1_33 + c_1_18·c_1_22·c_1_32 + c_1_19·c_1_33 + c_1_19·c_1_2·c_1_32 + c_1_19·c_1_23 + c_1_110·c_1_32 + c_1_110·c_1_2·c_1_3 + c_1_110·c_1_22 + c_1_0·c_1_23·c_1_38 + c_1_0·c_1_25·c_1_36 + c_1_0·c_1_26·c_1_35 + c_1_0·c_1_28·c_1_33 + c_1_0·c_1_1·c_1_22·c_1_38 + c_1_0·c_1_1·c_1_26·c_1_34 + c_1_0·c_1_12·c_1_25·c_1_34 + c_1_0·c_1_12·c_1_28·c_1_3 + c_1_0·c_1_13·c_1_38 + c_1_0·c_1_13·c_1_24·c_1_34 + c_1_0·c_1_13·c_1_28 + c_1_0·c_1_14·c_1_2·c_1_36 + c_1_0·c_1_14·c_1_22·c_1_35 + c_1_0·c_1_14·c_1_23·c_1_34 + c_1_0·c_1_14·c_1_24·c_1_33 + c_1_0·c_1_15·c_1_36 + c_1_0·c_1_15·c_1_22·c_1_34 + c_1_0·c_1_15·c_1_26 + c_1_0·c_1_16·c_1_35 + c_1_0·c_1_16·c_1_2·c_1_34 + c_1_0·c_1_16·c_1_25 + c_1_0·c_1_18·c_1_33 + c_1_0·c_1_18·c_1_22·c_1_3 + c_1_0·c_1_18·c_1_23 + c_1_02·c_1_22·c_1_38 + c_1_02·c_1_28·c_1_32 + c_1_02·c_1_1·c_1_2·c_1_38 + c_1_02·c_1_1·c_1_28·c_1_3 + c_1_02·c_1_12·c_1_38 + c_1_02·c_1_12·c_1_24·c_1_34 + c_1_02·c_1_12·c_1_28 + c_1_02·c_1_14·c_1_22·c_1_34 + c_1_02·c_1_14·c_1_24·c_1_32 + c_1_02·c_1_18·c_1_32 + c_1_02·c_1_18·c_1_2·c_1_3 + c_1_02·c_1_18·c_1_22 + c_1_04·c_1_22·c_1_36 + c_1_04·c_1_23·c_1_35 + c_1_04·c_1_25·c_1_33 + c_1_04·c_1_26·c_1_32 + c_1_04·c_1_1·c_1_2·c_1_36 + c_1_04·c_1_1·c_1_22·c_1_35 + c_1_04·c_1_1·c_1_24·c_1_33 + c_1_04·c_1_1·c_1_26·c_1_3 + c_1_04·c_1_12·c_1_36 + c_1_04·c_1_12·c_1_25·c_1_3 + c_1_04·c_1_12·c_1_26 + c_1_04·c_1_13·c_1_35 + c_1_04·c_1_13·c_1_24·c_1_3 + c_1_04·c_1_13·c_1_25 + c_1_04·c_1_14·c_1_22·c_1_32 + c_1_04·c_1_14·c_1_23·c_1_3 + c_1_04·c_1_15·c_1_33 + c_1_04·c_1_15·c_1_22·c_1_3 + c_1_04·c_1_15·c_1_23 + c_1_04·c_1_16·c_1_32 + c_1_04·c_1_16·c_1_2·c_1_3 + c_1_04·c_1_16·c_1_22 + c_1_05·c_1_1·c_1_22·c_1_34 + c_1_05·c_1_1·c_1_24·c_1_32 + c_1_05·c_1_12·c_1_2·c_1_34 + c_1_05·c_1_12·c_1_24·c_1_3 + c_1_05·c_1_14·c_1_2·c_1_32 + c_1_05·c_1_14·c_1_22·c_1_3, an element of degree 12
- b_13_0 → c_1_1·c_1_22·c_1_310 + c_1_1·c_1_24·c_1_38 + c_1_1·c_1_26·c_1_36
+ c_1_1·c_1_210·c_1_32 + c_1_12·c_1_2·c_1_310 + c_1_12·c_1_24·c_1_37 + c_1_12·c_1_25·c_1_36 + c_1_12·c_1_27·c_1_34 + c_1_12·c_1_28·c_1_33 + c_1_12·c_1_210·c_1_3 + c_1_13·c_1_24·c_1_36 + c_1_13·c_1_26·c_1_34 + c_1_14·c_1_2·c_1_38 + c_1_14·c_1_22·c_1_37 + c_1_14·c_1_23·c_1_36 + c_1_14·c_1_25·c_1_34 + c_1_14·c_1_27·c_1_32 + c_1_14·c_1_28·c_1_3 + c_1_15·c_1_22·c_1_36 + c_1_15·c_1_26·c_1_32 + c_1_16·c_1_2·c_1_36 + c_1_16·c_1_26·c_1_3 + c_1_17·c_1_22·c_1_34 + c_1_17·c_1_24·c_1_32 + c_1_18·c_1_22·c_1_33 + c_1_18·c_1_23·c_1_32 + c_1_110·c_1_2·c_1_32 + c_1_110·c_1_22·c_1_3 + c_1_0·c_1_24·c_1_38 + c_1_0·c_1_28·c_1_34 + c_1_0·c_1_12·c_1_22·c_1_38 + c_1_0·c_1_12·c_1_28·c_1_32 + c_1_0·c_1_14·c_1_38 + c_1_0·c_1_14·c_1_24·c_1_34 + c_1_0·c_1_14·c_1_28 + c_1_0·c_1_18·c_1_34 + c_1_0·c_1_18·c_1_22·c_1_32 + c_1_0·c_1_18·c_1_24 + c_1_02·c_1_23·c_1_38 + c_1_02·c_1_25·c_1_36 + c_1_02·c_1_26·c_1_35 + c_1_02·c_1_28·c_1_33 + c_1_02·c_1_1·c_1_22·c_1_38 + c_1_02·c_1_1·c_1_26·c_1_34 + c_1_02·c_1_12·c_1_25·c_1_34 + c_1_02·c_1_12·c_1_28·c_1_3 + c_1_02·c_1_13·c_1_38 + c_1_02·c_1_13·c_1_24·c_1_34 + c_1_02·c_1_13·c_1_28 + c_1_02·c_1_14·c_1_2·c_1_36 + c_1_02·c_1_14·c_1_22·c_1_35 + c_1_02·c_1_14·c_1_23·c_1_34 + c_1_02·c_1_14·c_1_24·c_1_33 + c_1_02·c_1_15·c_1_36 + c_1_02·c_1_15·c_1_22·c_1_34 + c_1_02·c_1_15·c_1_26 + c_1_02·c_1_16·c_1_35 + c_1_02·c_1_16·c_1_2·c_1_34 + c_1_02·c_1_16·c_1_25 + c_1_02·c_1_18·c_1_33 + c_1_02·c_1_18·c_1_22·c_1_3 + c_1_02·c_1_18·c_1_23 + c_1_04·c_1_23·c_1_36 + c_1_04·c_1_24·c_1_35 + c_1_04·c_1_25·c_1_34 + c_1_04·c_1_26·c_1_33 + c_1_04·c_1_1·c_1_24·c_1_34 + c_1_04·c_1_1·c_1_26·c_1_32 + c_1_04·c_1_12·c_1_2·c_1_36 + c_1_04·c_1_12·c_1_22·c_1_35 + c_1_04·c_1_12·c_1_24·c_1_33 + c_1_04·c_1_12·c_1_25·c_1_32 + c_1_04·c_1_13·c_1_36 + c_1_04·c_1_13·c_1_24·c_1_32 + c_1_04·c_1_13·c_1_26 + c_1_04·c_1_14·c_1_35 + c_1_04·c_1_14·c_1_23·c_1_32 + c_1_04·c_1_14·c_1_25 + c_1_04·c_1_15·c_1_34 + c_1_04·c_1_15·c_1_22·c_1_32 + c_1_04·c_1_15·c_1_24 + c_1_04·c_1_16·c_1_33 + c_1_04·c_1_16·c_1_2·c_1_32 + c_1_04·c_1_16·c_1_23 + c_1_06·c_1_1·c_1_22·c_1_34 + c_1_06·c_1_1·c_1_24·c_1_32 + c_1_06·c_1_12·c_1_2·c_1_34 + c_1_06·c_1_12·c_1_24·c_1_3 + c_1_06·c_1_14·c_1_2·c_1_32 + c_1_06·c_1_14·c_1_22·c_1_3, an element of degree 13
Restriction map to a maximal el. ab. subgp. of rank 4 in a Sylow subgroup
- b_2_0 → c_1_22 + c_1_1·c_1_2 + c_1_12, an element of degree 2
- a_3_2 → 0, an element of degree 3
- b_3_1 → 0, an element of degree 3
- b_3_0 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_4_2 → c_1_34 + c_1_23·c_1_3 + c_1_1·c_1_22·c_1_3 + c_1_13·c_1_3 + c_1_0·c_1_1·c_1_22
+ c_1_0·c_1_12·c_1_2, an element of degree 4
- b_4_0 → c_1_22·c_1_32 + c_1_23·c_1_3 + c_1_1·c_1_2·c_1_32 + c_1_12·c_1_32
+ c_1_12·c_1_2·c_1_3 + c_1_13·c_1_3 + c_1_0·c_1_1·c_1_22 + c_1_0·c_1_12·c_1_2, an element of degree 4
- b_5_0 → c_1_23·c_1_32 + c_1_24·c_1_3 + c_1_1·c_1_22·c_1_32 + c_1_12·c_1_22·c_1_3
+ c_1_13·c_1_32 + c_1_14·c_1_3 + c_1_02·c_1_1·c_1_22 + c_1_02·c_1_12·c_1_2, an element of degree 5
- b_6_3 → 0, an element of degree 6
- b_6_1 → c_1_1·c_1_22·c_1_33 + c_1_1·c_1_24·c_1_3 + c_1_12·c_1_2·c_1_33
+ c_1_14·c_1_2·c_1_3 + c_1_0·c_1_23·c_1_32 + c_1_0·c_1_24·c_1_3 + c_1_0·c_1_1·c_1_22·c_1_32 + c_1_0·c_1_12·c_1_22·c_1_3 + c_1_0·c_1_13·c_1_32 + c_1_0·c_1_14·c_1_3 + c_1_02·c_1_22·c_1_32 + c_1_02·c_1_23·c_1_3 + c_1_02·c_1_24 + c_1_02·c_1_1·c_1_2·c_1_32 + c_1_02·c_1_12·c_1_32 + c_1_02·c_1_12·c_1_2·c_1_3 + c_1_02·c_1_12·c_1_22 + c_1_02·c_1_13·c_1_3 + c_1_02·c_1_14 + c_1_03·c_1_1·c_1_22 + c_1_03·c_1_12·c_1_2 + c_1_04·c_1_22 + c_1_04·c_1_1·c_1_2 + c_1_04·c_1_12, an element of degree 6
- b_7_9 → 0, an element of degree 7
- a_7_7 → 0, an element of degree 7
- b_7_2 → c_1_1·c_1_24·c_1_32 + c_1_1·c_1_25·c_1_3 + c_1_12·c_1_24·c_1_3
+ c_1_13·c_1_23·c_1_3 + c_1_14·c_1_2·c_1_32 + c_1_15·c_1_2·c_1_3 + c_1_0·c_1_12·c_1_24 + c_1_0·c_1_14·c_1_22, an element of degree 7
- b_7_0 → c_1_23·c_1_34 + c_1_25·c_1_32 + c_1_1·c_1_24·c_1_32 + c_1_1·c_1_25·c_1_3
+ c_1_12·c_1_2·c_1_34 + c_1_12·c_1_24·c_1_3 + c_1_13·c_1_34 + c_1_13·c_1_23·c_1_3 + c_1_15·c_1_32 + c_1_15·c_1_2·c_1_3 + c_1_0·c_1_12·c_1_24 + c_1_0·c_1_14·c_1_22 + c_1_02·c_1_1·c_1_24 + c_1_02·c_1_14·c_1_2 + c_1_04·c_1_1·c_1_22 + c_1_04·c_1_12·c_1_2, an element of degree 7
- b_8_7 → c_1_22·c_1_36 + c_1_23·c_1_35 + c_1_24·c_1_34 + c_1_25·c_1_33
+ c_1_1·c_1_2·c_1_36 + c_1_1·c_1_25·c_1_32 + c_1_12·c_1_36 + c_1_12·c_1_2·c_1_35 + c_1_12·c_1_22·c_1_34 + c_1_12·c_1_24·c_1_32 + c_1_13·c_1_35 + c_1_13·c_1_23·c_1_32 + c_1_14·c_1_34 + c_1_14·c_1_2·c_1_33 + c_1_15·c_1_33 + c_1_15·c_1_2·c_1_32 + c_1_0·c_1_1·c_1_22·c_1_34 + c_1_0·c_1_1·c_1_24·c_1_32 + c_1_0·c_1_12·c_1_2·c_1_34 + c_1_0·c_1_12·c_1_24·c_1_3 + c_1_0·c_1_14·c_1_2·c_1_32 + c_1_0·c_1_14·c_1_22·c_1_3, an element of degree 8
- c_8_2 → c_1_22·c_1_36 + c_1_23·c_1_35 + c_1_24·c_1_34 + c_1_25·c_1_33
+ c_1_1·c_1_2·c_1_36 + c_1_1·c_1_22·c_1_35 + c_1_1·c_1_24·c_1_33 + c_1_1·c_1_26·c_1_3 + c_1_12·c_1_36 + c_1_12·c_1_22·c_1_34 + c_1_12·c_1_25·c_1_3 + c_1_13·c_1_35 + c_1_13·c_1_24·c_1_3 + c_1_14·c_1_34 + c_1_14·c_1_23·c_1_3 + c_1_15·c_1_33 + c_1_15·c_1_22·c_1_3 + c_1_16·c_1_2·c_1_3 + c_1_0·c_1_23·c_1_34 + c_1_0·c_1_25·c_1_32 + c_1_0·c_1_1·c_1_22·c_1_34 + c_1_0·c_1_1·c_1_24·c_1_32 + c_1_0·c_1_12·c_1_24·c_1_3 + c_1_0·c_1_13·c_1_34 + c_1_0·c_1_14·c_1_22·c_1_3 + c_1_0·c_1_15·c_1_32 + c_1_02·c_1_24·c_1_32 + c_1_02·c_1_25·c_1_3 + c_1_02·c_1_1·c_1_24·c_1_3 + c_1_02·c_1_12·c_1_22·c_1_32 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_32 + c_1_02·c_1_14·c_1_22 + c_1_02·c_1_15·c_1_3 + c_1_03·c_1_1·c_1_24 + c_1_03·c_1_14·c_1_2 + c_1_04·c_1_34 + c_1_04·c_1_23·c_1_3 + c_1_04·c_1_24 + c_1_04·c_1_1·c_1_22·c_1_3 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_13·c_1_3 + c_1_04·c_1_14 + c_1_05·c_1_1·c_1_22 + c_1_05·c_1_12·c_1_2 + c_1_08, an element of degree 8
- b_8_0 → c_1_24·c_1_34 + c_1_27·c_1_3 + c_1_1·c_1_22·c_1_35 + c_1_1·c_1_25·c_1_32
+ c_1_1·c_1_26·c_1_3 + c_1_12·c_1_2·c_1_35 + c_1_12·c_1_22·c_1_34 + c_1_12·c_1_24·c_1_32 + c_1_12·c_1_25·c_1_3 + c_1_13·c_1_23·c_1_32 + c_1_14·c_1_34 + c_1_14·c_1_23·c_1_3 + c_1_15·c_1_2·c_1_32 + c_1_17·c_1_3 + c_1_0·c_1_23·c_1_34 + c_1_0·c_1_26·c_1_3 + c_1_0·c_1_1·c_1_22·c_1_34 + c_1_0·c_1_1·c_1_24·c_1_32 + c_1_0·c_1_1·c_1_25·c_1_3 + c_1_0·c_1_1·c_1_26 + c_1_0·c_1_12·c_1_24·c_1_3 + c_1_0·c_1_12·c_1_25 + c_1_0·c_1_13·c_1_34 + c_1_0·c_1_13·c_1_23·c_1_3 + c_1_0·c_1_13·c_1_24 + c_1_0·c_1_14·c_1_2·c_1_32 + c_1_0·c_1_14·c_1_22·c_1_3 + c_1_0·c_1_14·c_1_23 + c_1_0·c_1_15·c_1_2·c_1_3 + c_1_0·c_1_15·c_1_22 + c_1_0·c_1_16·c_1_3 + c_1_0·c_1_16·c_1_2 + c_1_02·c_1_22·c_1_34 + c_1_02·c_1_24·c_1_32 + c_1_02·c_1_26 + c_1_02·c_1_1·c_1_2·c_1_34 + c_1_02·c_1_1·c_1_24·c_1_3 + c_1_02·c_1_1·c_1_25 + c_1_02·c_1_12·c_1_34 + c_1_02·c_1_12·c_1_22·c_1_32 + c_1_02·c_1_13·c_1_23 + c_1_02·c_1_14·c_1_32 + c_1_02·c_1_14·c_1_2·c_1_3 + c_1_02·c_1_15·c_1_2 + c_1_02·c_1_16 + c_1_04·c_1_22·c_1_32 + c_1_04·c_1_23·c_1_3 + c_1_04·c_1_24 + c_1_04·c_1_1·c_1_2·c_1_32 + c_1_04·c_1_12·c_1_32 + c_1_04·c_1_12·c_1_2·c_1_3 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_13·c_1_3 + c_1_04·c_1_14 + c_1_05·c_1_1·c_1_22 + c_1_05·c_1_12·c_1_2, an element of degree 8
- b_9_5 → 0, an element of degree 9
- b_9_1 → c_1_25·c_1_34 + c_1_27·c_1_32 + c_1_12·c_1_26·c_1_3 + c_1_13·c_1_24·c_1_32
+ c_1_13·c_1_25·c_1_3 + c_1_14·c_1_2·c_1_34 + c_1_15·c_1_34 + c_1_15·c_1_22·c_1_32 + c_1_15·c_1_23·c_1_3 + c_1_16·c_1_2·c_1_32 + c_1_16·c_1_22·c_1_3 + c_1_17·c_1_32 + c_1_02·c_1_1·c_1_26 + c_1_02·c_1_12·c_1_25 + c_1_02·c_1_13·c_1_24 + c_1_02·c_1_14·c_1_23 + c_1_02·c_1_15·c_1_22 + c_1_02·c_1_16·c_1_2 + c_1_04·c_1_1·c_1_24 + c_1_04·c_1_14·c_1_2, an element of degree 9
- b_9_0 → c_1_1·c_1_22·c_1_36 + c_1_1·c_1_27·c_1_3 + c_1_12·c_1_2·c_1_36
+ c_1_12·c_1_24·c_1_33 + c_1_12·c_1_26·c_1_3 + c_1_14·c_1_22·c_1_33 + c_1_15·c_1_23·c_1_3 + c_1_17·c_1_2·c_1_3 + c_1_0·c_1_24·c_1_34 + c_1_0·c_1_26·c_1_32 + c_1_0·c_1_12·c_1_22·c_1_34 + c_1_0·c_1_12·c_1_26 + c_1_0·c_1_13·c_1_25 + c_1_0·c_1_14·c_1_34 + c_1_0·c_1_14·c_1_22·c_1_32 + c_1_0·c_1_15·c_1_23 + c_1_0·c_1_16·c_1_32 + c_1_0·c_1_16·c_1_22 + c_1_02·c_1_23·c_1_34 + c_1_02·c_1_26·c_1_3 + c_1_02·c_1_1·c_1_24·c_1_32 + c_1_02·c_1_12·c_1_2·c_1_34 + c_1_02·c_1_12·c_1_24·c_1_3 + c_1_02·c_1_13·c_1_34 + c_1_02·c_1_14·c_1_2·c_1_32 + c_1_02·c_1_16·c_1_3 + c_1_03·c_1_12·c_1_24 + c_1_03·c_1_14·c_1_22 + c_1_04·c_1_23·c_1_32 + c_1_04·c_1_24·c_1_3 + c_1_04·c_1_1·c_1_22·c_1_32 + c_1_04·c_1_1·c_1_24 + c_1_04·c_1_12·c_1_22·c_1_3 + c_1_04·c_1_13·c_1_32 + c_1_04·c_1_14·c_1_3 + c_1_04·c_1_14·c_1_2 + c_1_06·c_1_1·c_1_22 + c_1_06·c_1_12·c_1_2, an element of degree 9
- b_10_2 → c_1_22·c_1_38 + c_1_24·c_1_36 + c_1_25·c_1_35 + c_1_27·c_1_33
+ c_1_1·c_1_2·c_1_38 + c_1_1·c_1_24·c_1_35 + c_1_1·c_1_26·c_1_33 + c_1_1·c_1_27·c_1_32 + c_1_12·c_1_38 + c_1_12·c_1_22·c_1_36 + c_1_12·c_1_25·c_1_33 + c_1_12·c_1_26·c_1_32 + c_1_14·c_1_36 + c_1_14·c_1_23·c_1_33 + c_1_15·c_1_35 + c_1_15·c_1_23·c_1_32 + c_1_17·c_1_33 + c_1_17·c_1_2·c_1_32 + c_1_0·c_1_1·c_1_24·c_1_34 + c_1_0·c_1_1·c_1_26·c_1_32 + c_1_0·c_1_12·c_1_25·c_1_32 + c_1_0·c_1_12·c_1_26·c_1_3 + c_1_0·c_1_13·c_1_24·c_1_32 + c_1_0·c_1_13·c_1_25·c_1_3 + c_1_0·c_1_14·c_1_2·c_1_34 + c_1_0·c_1_14·c_1_23·c_1_32 + c_1_0·c_1_15·c_1_22·c_1_32 + c_1_0·c_1_15·c_1_23·c_1_3 + c_1_0·c_1_16·c_1_2·c_1_32 + c_1_0·c_1_16·c_1_22·c_1_3, an element of degree 10
- b_11_1 → 0, an element of degree 11
- b_12_5 → c_1_22·c_1_310 + c_1_23·c_1_39 + c_1_24·c_1_38 + c_1_29·c_1_33
+ c_1_1·c_1_2·c_1_310 + c_1_1·c_1_22·c_1_39 + c_1_1·c_1_25·c_1_36 + c_1_1·c_1_29·c_1_32 + c_1_12·c_1_310 + c_1_12·c_1_22·c_1_38 + c_1_12·c_1_24·c_1_36 + c_1_12·c_1_26·c_1_34 + c_1_12·c_1_27·c_1_33 + c_1_12·c_1_29·c_1_3 + c_1_13·c_1_39 + c_1_13·c_1_23·c_1_36 + c_1_13·c_1_25·c_1_34 + c_1_14·c_1_38 + c_1_14·c_1_26·c_1_32 + c_1_14·c_1_27·c_1_3 + c_1_15·c_1_2·c_1_36 + c_1_15·c_1_23·c_1_34 + c_1_15·c_1_24·c_1_33 + c_1_15·c_1_25·c_1_32 + c_1_16·c_1_22·c_1_34 + c_1_16·c_1_23·c_1_33 + c_1_16·c_1_24·c_1_32 + c_1_16·c_1_25·c_1_3 + c_1_17·c_1_22·c_1_33 + c_1_17·c_1_24·c_1_3 + c_1_18·c_1_2·c_1_33 + c_1_18·c_1_22·c_1_32 + c_1_18·c_1_23·c_1_3 + c_1_19·c_1_33 + c_1_19·c_1_2·c_1_32 + c_1_19·c_1_22·c_1_3 + c_1_0·c_1_23·c_1_38 + c_1_0·c_1_27·c_1_34 + c_1_0·c_1_29·c_1_32 + c_1_0·c_1_210·c_1_3 + c_1_0·c_1_1·c_1_24·c_1_36 + c_1_0·c_1_1·c_1_25·c_1_35 + c_1_0·c_1_1·c_1_27·c_1_33 + c_1_0·c_1_1·c_1_28·c_1_32 + c_1_0·c_1_1·c_1_29·c_1_3 + c_1_0·c_1_12·c_1_2·c_1_38 + c_1_0·c_1_12·c_1_24·c_1_35 + c_1_0·c_1_12·c_1_26·c_1_33 + c_1_0·c_1_12·c_1_27·c_1_32 + c_1_0·c_1_13·c_1_38 + c_1_0·c_1_13·c_1_23·c_1_35 + c_1_0·c_1_13·c_1_24·c_1_34 + c_1_0·c_1_13·c_1_26·c_1_32 + c_1_0·c_1_13·c_1_28 + c_1_0·c_1_14·c_1_2·c_1_36 + c_1_0·c_1_14·c_1_25·c_1_32 + c_1_0·c_1_14·c_1_26·c_1_3 + c_1_0·c_1_15·c_1_2·c_1_35 + c_1_0·c_1_15·c_1_22·c_1_34 + c_1_0·c_1_15·c_1_23·c_1_33 + c_1_0·c_1_15·c_1_25·c_1_3 + c_1_0·c_1_15·c_1_26 + c_1_0·c_1_16·c_1_2·c_1_34 + c_1_0·c_1_16·c_1_24·c_1_3 + c_1_0·c_1_16·c_1_25 + c_1_0·c_1_17·c_1_34 + c_1_0·c_1_17·c_1_2·c_1_33 + c_1_0·c_1_17·c_1_22·c_1_32 + c_1_0·c_1_18·c_1_23 + c_1_0·c_1_19·c_1_32 + c_1_0·c_1_19·c_1_2·c_1_3 + c_1_0·c_1_110·c_1_3 + c_1_02·c_1_22·c_1_38 + c_1_02·c_1_24·c_1_36 + c_1_02·c_1_25·c_1_35 + c_1_02·c_1_26·c_1_34 + c_1_02·c_1_27·c_1_33 + c_1_02·c_1_29·c_1_3 + c_1_02·c_1_210 + c_1_02·c_1_1·c_1_2·c_1_38 + c_1_02·c_1_1·c_1_24·c_1_35 + c_1_02·c_1_1·c_1_26·c_1_33 + c_1_02·c_1_1·c_1_27·c_1_32 + c_1_02·c_1_1·c_1_28·c_1_3 + c_1_02·c_1_1·c_1_29 + c_1_02·c_1_12·c_1_38 + c_1_02·c_1_12·c_1_22·c_1_36 + c_1_02·c_1_12·c_1_24·c_1_34 + c_1_02·c_1_12·c_1_25·c_1_33 + c_1_02·c_1_12·c_1_26·c_1_32 + c_1_02·c_1_12·c_1_27·c_1_3 + c_1_02·c_1_12·c_1_28 + c_1_02·c_1_13·c_1_26·c_1_3 + c_1_02·c_1_14·c_1_36 + c_1_02·c_1_14·c_1_23·c_1_33 + c_1_02·c_1_14·c_1_25·c_1_3 + c_1_02·c_1_14·c_1_26 + c_1_02·c_1_15·c_1_35 + c_1_02·c_1_15·c_1_23·c_1_32 + c_1_02·c_1_15·c_1_25 + c_1_02·c_1_16·c_1_34 + c_1_02·c_1_16·c_1_24 + c_1_02·c_1_17·c_1_33 + c_1_02·c_1_17·c_1_2·c_1_32 + c_1_02·c_1_17·c_1_22·c_1_3 + c_1_02·c_1_18·c_1_22 + c_1_02·c_1_19·c_1_3 + c_1_02·c_1_19·c_1_2 + c_1_02·c_1_110 + c_1_03·c_1_1·c_1_24·c_1_34 + c_1_03·c_1_1·c_1_26·c_1_32 + c_1_03·c_1_1·c_1_28 + c_1_03·c_1_12·c_1_25·c_1_32 + c_1_03·c_1_12·c_1_26·c_1_3 + c_1_03·c_1_13·c_1_24·c_1_32 + c_1_03·c_1_13·c_1_25·c_1_3 + c_1_03·c_1_13·c_1_26 + c_1_03·c_1_14·c_1_2·c_1_34 + c_1_03·c_1_14·c_1_23·c_1_32 + c_1_03·c_1_14·c_1_25 + c_1_03·c_1_15·c_1_22·c_1_32 + c_1_03·c_1_15·c_1_23·c_1_3 + c_1_03·c_1_15·c_1_24 + c_1_03·c_1_16·c_1_2·c_1_32 + c_1_03·c_1_16·c_1_22·c_1_3 + c_1_03·c_1_16·c_1_23 + c_1_03·c_1_18·c_1_2 + c_1_04·c_1_22·c_1_36 + c_1_04·c_1_23·c_1_35 + c_1_04·c_1_25·c_1_33 + c_1_04·c_1_26·c_1_32 + c_1_04·c_1_1·c_1_2·c_1_36 + c_1_04·c_1_1·c_1_25·c_1_32 + c_1_04·c_1_12·c_1_36 + c_1_04·c_1_12·c_1_2·c_1_35 + c_1_04·c_1_12·c_1_24·c_1_32 + c_1_04·c_1_12·c_1_26 + c_1_04·c_1_13·c_1_35 + c_1_04·c_1_13·c_1_23·c_1_32 + c_1_04·c_1_13·c_1_25 + c_1_04·c_1_14·c_1_2·c_1_33 + c_1_04·c_1_14·c_1_22·c_1_32 + c_1_04·c_1_15·c_1_33 + c_1_04·c_1_15·c_1_2·c_1_32 + c_1_04·c_1_15·c_1_23 + c_1_04·c_1_16·c_1_32 + c_1_04·c_1_16·c_1_22 + c_1_05·c_1_1·c_1_22·c_1_34 + c_1_05·c_1_1·c_1_24·c_1_32 + c_1_05·c_1_12·c_1_2·c_1_34 + c_1_05·c_1_12·c_1_24·c_1_3 + c_1_05·c_1_14·c_1_2·c_1_32 + c_1_05·c_1_14·c_1_22·c_1_3 + c_1_06·c_1_12·c_1_24 + c_1_06·c_1_14·c_1_22 + c_1_08·c_1_24 + c_1_08·c_1_12·c_1_22 + c_1_08·c_1_14, an element of degree 12
- b_13_0 → c_1_1·c_1_25·c_1_37 + c_1_1·c_1_28·c_1_34 + c_1_1·c_1_29·c_1_33
+ c_1_1·c_1_210·c_1_32 + c_1_12·c_1_28·c_1_33 + c_1_12·c_1_210·c_1_3 + c_1_13·c_1_23·c_1_37 + c_1_13·c_1_29·c_1_3 + c_1_14·c_1_22·c_1_37 + c_1_14·c_1_26·c_1_33 + c_1_14·c_1_27·c_1_32 + c_1_14·c_1_28·c_1_3 + c_1_15·c_1_2·c_1_37 + c_1_15·c_1_25·c_1_33 + c_1_15·c_1_26·c_1_32 + c_1_16·c_1_24·c_1_33 + c_1_17·c_1_24·c_1_32 + c_1_18·c_1_2·c_1_34 + c_1_18·c_1_23·c_1_32 + c_1_18·c_1_24·c_1_3 + c_1_19·c_1_2·c_1_33 + c_1_19·c_1_23·c_1_3 + c_1_110·c_1_2·c_1_32 + c_1_110·c_1_22·c_1_3 + c_1_0·c_1_26·c_1_36 + c_1_0·c_1_27·c_1_35 + c_1_0·c_1_28·c_1_34 + c_1_0·c_1_29·c_1_33 + c_1_0·c_1_1·c_1_26·c_1_35 + c_1_0·c_1_1·c_1_27·c_1_34 + c_1_0·c_1_1·c_1_28·c_1_33 + c_1_0·c_1_1·c_1_210·c_1_3 + c_1_0·c_1_12·c_1_24·c_1_36 + c_1_0·c_1_12·c_1_25·c_1_35 + c_1_0·c_1_12·c_1_29·c_1_3 + c_1_0·c_1_13·c_1_25·c_1_34 + c_1_0·c_1_13·c_1_28·c_1_3 + c_1_0·c_1_14·c_1_23·c_1_35 + c_1_0·c_1_14·c_1_24·c_1_34 + c_1_0·c_1_16·c_1_36 + c_1_0·c_1_16·c_1_22·c_1_34 + c_1_0·c_1_17·c_1_35 + c_1_0·c_1_17·c_1_2·c_1_34 + c_1_0·c_1_18·c_1_34 + c_1_0·c_1_18·c_1_23·c_1_3 + c_1_0·c_1_19·c_1_33 + c_1_0·c_1_19·c_1_22·c_1_3 + c_1_0·c_1_110·c_1_2·c_1_3 + c_1_02·c_1_25·c_1_36 + c_1_02·c_1_26·c_1_35 + c_1_02·c_1_28·c_1_33 + c_1_02·c_1_29·c_1_32 + c_1_02·c_1_1·c_1_25·c_1_35 + c_1_02·c_1_1·c_1_27·c_1_33 + c_1_02·c_1_1·c_1_210 + c_1_02·c_1_12·c_1_24·c_1_35 + c_1_02·c_1_12·c_1_26·c_1_33 + c_1_02·c_1_12·c_1_28·c_1_3 + c_1_02·c_1_12·c_1_29 + c_1_02·c_1_13·c_1_23·c_1_35 + c_1_02·c_1_14·c_1_2·c_1_36 + c_1_02·c_1_14·c_1_22·c_1_35 + c_1_02·c_1_14·c_1_24·c_1_33 + c_1_02·c_1_15·c_1_36 + c_1_02·c_1_15·c_1_2·c_1_35 + c_1_02·c_1_15·c_1_23·c_1_33 + c_1_02·c_1_15·c_1_26 + c_1_02·c_1_16·c_1_35 + c_1_02·c_1_16·c_1_25 + c_1_02·c_1_17·c_1_2·c_1_33 + c_1_02·c_1_18·c_1_33 + c_1_02·c_1_18·c_1_2·c_1_32 + c_1_02·c_1_18·c_1_22·c_1_3 + c_1_02·c_1_19·c_1_32 + c_1_02·c_1_19·c_1_22 + c_1_02·c_1_110·c_1_2 + c_1_03·c_1_1·c_1_25·c_1_34 + c_1_03·c_1_1·c_1_28·c_1_3 + c_1_03·c_1_12·c_1_26·c_1_32 + c_1_03·c_1_13·c_1_23·c_1_34 + c_1_03·c_1_13·c_1_25·c_1_32 + c_1_03·c_1_14·c_1_22·c_1_34 + c_1_03·c_1_15·c_1_2·c_1_34 + c_1_03·c_1_15·c_1_23·c_1_32 + c_1_03·c_1_16·c_1_22·c_1_32 + c_1_03·c_1_18·c_1_2·c_1_3 + c_1_04·c_1_25·c_1_34 + c_1_04·c_1_27·c_1_32 + c_1_04·c_1_12·c_1_24·c_1_33 + c_1_04·c_1_13·c_1_24·c_1_32 + c_1_04·c_1_14·c_1_2·c_1_34 + c_1_04·c_1_14·c_1_22·c_1_33 + c_1_04·c_1_15·c_1_34 + c_1_04·c_1_15·c_1_22·c_1_32 + c_1_04·c_1_16·c_1_2·c_1_32 + c_1_04·c_1_17·c_1_32 + c_1_05·c_1_1·c_1_25·c_1_32 + c_1_05·c_1_1·c_1_26·c_1_3 + c_1_05·c_1_12·c_1_25·c_1_3 + c_1_05·c_1_13·c_1_23·c_1_32 + c_1_05·c_1_13·c_1_24·c_1_3 + c_1_05·c_1_14·c_1_22·c_1_32 + c_1_05·c_1_14·c_1_23·c_1_3 + c_1_05·c_1_15·c_1_2·c_1_32 + c_1_05·c_1_15·c_1_22·c_1_3 + c_1_05·c_1_16·c_1_2·c_1_3 + c_1_06·c_1_1·c_1_24·c_1_32 + c_1_06·c_1_1·c_1_25·c_1_3 + c_1_06·c_1_12·c_1_24·c_1_3 + c_1_06·c_1_13·c_1_23·c_1_3 + c_1_06·c_1_14·c_1_2·c_1_32 + c_1_06·c_1_15·c_1_2·c_1_3 + c_1_07·c_1_12·c_1_24 + c_1_07·c_1_14·c_1_22 + c_1_08·c_1_1·c_1_24 + c_1_08·c_1_14·c_1_2, an element of degree 13
|