Mod-2-Cohomology of Normalizer(MathieuGroup(23),Centre(SylowSubgroup(MathieuGroup(23),2))), a group of order 2688

About the group Ring generators Ring relations Completion information Restriction maps


General information on the group

  • Normalizer(MathieuGroup(23),Centre(SylowSubgroup(MathieuGroup(23),2))) is a group of order 2688.
  • The group order factors as 27 · 3 · 7.
  • The group is defined by Group([(2,17)(3,5)(4,10)(6,15)(7,13)(11,16)(12,20)(18,21),(3,4,18)(5,10,21)(7,16,12)(8,22,23)(9,14,19)(11,20,13),(1,14)(3,5)(4,20)(7,18)(9,19)(10,12)(11,16)(13,21),(2,3)(4,18)(5,17)(7,13)(8,19)(9,22)(10,21)(12,20),(1,22,14,9,19,8,23)(2,3,4,11,21,20,6)(5,10,16,18,12,15,17)]).
  • It is non-abelian.
  • It has 2-Rank 4.
  • The centre of a Sylow 2-subgroup has rank 1.
  • Its Sylow 2-subgroup has 4 conjugacy classes of maximal elementary abelian subgroups, which are of rank 3, 3, 4 and 4, respectively.


Structure of the cohomology ring

The computation was based on 5 stability conditions for H*(Syl2(M22); GF(2)).

General information

  • The cohomology ring is of dimension 4 and depth 2.
  • The depth exceeds the Duflot bound, which is 1.
  • The Poincaré series is
    1  −  t  +  2·t2  +  2·t4  +  3·t6  +  t7  +  4·t8  +  t10  +  2·t12  −  t15  +  t17  +  t18

    (1  +  t) · ( − 1  +  t)4 · (1  +  t  +  t2) · (1  +  t2)2 · (1  +  t4) · (1  +  t  +  t2  +  t3  +  t4  +  t5  +  t6)
  • The a-invariants are -∞,-∞,-3,-6,-4. They were obtained using the filter regular HSOP of the Hilbert-Poincaré test.
  • The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].

About the group Ring generators Ring relations Completion information Restriction maps

Ring generators

The cohomology ring has 23 minimal generators of maximal degree 13:

  1. b_2_0, an element of degree 2
  2. a_3_2, a nilpotent element of degree 3
  3. b_3_1, an element of degree 3
  4. b_3_0, an element of degree 3
  5. b_4_2, an element of degree 4
  6. b_4_0, an element of degree 4
  7. b_5_0, an element of degree 5
  8. b_6_3, an element of degree 6
  9. b_6_1, an element of degree 6
  10. b_7_9, an element of degree 7
  11. a_7_7, a nilpotent element of degree 7
  12. b_7_2, an element of degree 7
  13. b_7_0, an element of degree 7
  14. b_8_7, an element of degree 8
  15. c_8_2, a Duflot element of degree 8
  16. b_8_0, an element of degree 8
  17. b_9_5, an element of degree 9
  18. b_9_1, an element of degree 9
  19. b_9_0, an element of degree 9
  20. b_10_2, an element of degree 10
  21. b_11_1, an element of degree 11
  22. b_12_5, an element of degree 12
  23. b_13_0, an element of degree 13

About the group Ring generators Ring relations Completion information Restriction maps

Ring relations

There are 197 minimal relations of maximal degree 26:

  1. b_2_0·a_3_2
  2. a_3_22
  3. a_3_2·b_3_0
  4. a_3_2·b_3_1
  5. b_3_0·b_3_1
  6. b_4_0·a_3_2
  7. b_4_0·b_3_1
  8. b_4_2·b_3_1
  9. a_3_2·b_5_0
  10. b_2_0·b_6_3
  11. b_3_0·b_5_0 + b_4_02 + b_2_02·b_4_2 + b_2_02·b_4_0
  12. b_3_1·b_5_0
  13. b_2_0·a_7_7
  14. b_6_1·a_3_2
  15. b_6_3·a_3_2
  16. b_2_0·b_7_9
  17. b_6_1·b_3_0 + b_4_0·b_5_0 + b_2_0·b_7_2 + b_2_0·b_7_0 + b_2_0·b_4_2·b_3_0
       + b_2_0·b_4_0·b_3_0
  18. b_6_1·b_3_1 + b_2_0·b_7_2 + b_2_0·b_4_0·b_3_0
  19. b_6_3·b_3_0
  20. b_6_3·b_3_1
  21. a_3_2·a_7_7
  22. a_3_2·b_7_0
  23. a_3_2·b_7_2
  24. a_3_2·b_7_9
  25. b_3_0·a_7_7
  26. b_3_1·a_7_7
  27. b_2_0·b_8_7 + b_2_0·b_4_0·b_4_2 + b_2_0·b_4_02
  28. b_4_0·b_6_3
  29. b_3_0·b_7_0 + b_4_0·b_3_02 + b_4_0·b_6_1 + b_2_0·b_8_0 + b_2_0·b_4_02 + b_2_02·b_6_1
       + b_2_03·b_4_0
  30. b_3_0·b_7_2 + b_4_0·b_3_02
  31. b_3_0·b_7_9
  32. b_3_1·b_7_2 + b_3_1·b_7_0
  33. b_3_1·b_7_9
  34. b_5_02 + b_4_0·b_6_1 + b_2_0·b_8_0 + b_2_02·b_6_1 + b_2_03·b_4_0
  35. b_4_0·a_7_7
  36. b_8_0·a_3_2
  37. b_8_7·a_3_2
  38. b_2_0·b_9_1 + b_2_02·b_7_2 + b_2_02·b_7_0 + b_2_02·b_4_2·b_3_0 + b_2_02·b_4_0·b_3_0
  39. b_2_0·b_9_5
  40. b_4_0·b_7_2 + b_4_02·b_3_0
  41. b_4_0·b_7_9
  42. b_4_2·b_7_2 + b_4_0·b_4_2·b_3_0
  43. b_6_1·b_5_0 + b_4_0·b_7_0 + b_4_02·b_3_0 + b_2_0·b_9_0 + b_2_0·b_4_2·b_5_0
       + b_2_0·b_4_0·b_5_0 + b_2_02·b_4_2·b_3_0
  44. b_6_3·b_5_0
  45. b_8_0·b_3_0 + b_4_0·b_7_0 + b_4_0·b_4_2·b_3_0 + b_2_0·b_4_2·b_5_0 + b_2_02·b_7_2
       + b_2_02·b_7_0 + b_2_02·b_4_2·b_3_0
  46. b_8_0·b_3_1 + b_2_02·b_7_2 + b_2_02·b_4_0·b_3_0
  47. b_8_7·b_3_0 + b_4_0·b_4_2·b_3_0 + b_4_02·b_3_0
  48. b_8_7·b_3_1
  49. a_3_2·b_9_0
  50. a_3_2·b_9_1
  51. a_3_2·b_9_5
  52. b_5_0·a_7_7
  53. b_2_0·b_10_2 + b_2_02·b_4_22 + b_2_02·b_4_0·b_4_2
  54. b_4_0·b_8_7 + b_4_02·b_4_2 + b_4_03
  55. b_6_1·b_6_3 + b_6_12 + b_4_0·b_8_0 + b_4_02·b_4_2 + b_4_03 + b_2_0·b_4_2·b_6_1
       + b_2_0·b_4_0·b_6_1 + b_2_02·b_4_22 + b_2_02·b_4_02 + b_2_04·b_4_2 + b_2_04·b_4_0
       + b_2_02·c_8_2
  56. b_6_32 + b_6_12 + b_4_0·b_8_0 + b_4_02·b_4_2 + b_4_03 + b_2_0·b_4_2·b_6_1
       + b_2_0·b_4_0·b_6_1 + b_2_02·b_4_22 + b_2_02·b_4_02 + b_2_04·b_4_2 + b_2_04·b_4_0
       + b_2_02·c_8_2
  57. b_3_0·b_9_0 + b_4_0·b_8_0 + b_4_02·b_4_2 + b_2_0·b_4_2·b_3_02 + b_2_0·b_4_2·b_6_1
       + b_2_02·b_4_22
  58. b_3_0·b_9_1 + b_2_0·b_4_2·b_3_02 + b_2_0·b_4_0·b_3_02 + b_2_0·b_4_0·b_6_1
       + b_2_02·b_8_0 + b_2_02·b_4_02 + b_2_03·b_6_1 + b_2_04·b_4_0
  59. b_3_0·b_9_5
  60. b_3_1·b_9_0
  61. b_3_1·b_9_1
  62. b_3_1·b_9_5
  63. b_5_0·b_7_0 + b_4_0·b_8_0 + b_4_02·b_4_2 + b_2_0·b_4_2·b_6_1 + b_2_02·b_4_22
       + b_2_02·b_4_0·b_4_2 + b_2_02·b_4_02
  64. b_5_0·b_7_2 + b_4_03 + b_2_02·b_4_0·b_4_2 + b_2_02·b_4_02
  65. b_5_0·b_7_9
  66. b_6_1·a_7_7
  67. b_6_3·a_7_7
  68. b_10_2·a_3_2
  69. b_2_0·b_11_1
  70. b_4_0·b_9_1 + b_2_0·b_4_0·b_7_0 + b_2_0·b_4_0·b_4_2·b_3_0
  71. b_4_0·b_9_5
  72. b_6_1·b_7_0 + b_4_0·b_9_0 + b_2_0·b_4_22·b_3_0 + b_2_0·b_4_0·b_4_2·b_3_0
       + b_2_03·b_4_2·b_3_0 + b_2_03·b_4_0·b_3_0 + b_2_0·c_8_2·b_3_1 + b_2_0·c_8_2·b_3_0
  73. b_6_1·b_7_2 + b_4_02·b_5_0 + b_2_0·b_4_0·b_7_0 + b_2_0·b_4_0·b_4_2·b_3_0
       + b_2_0·c_8_2·b_3_1
  74. b_6_3·b_7_0
  75. b_6_3·b_7_2
  76. b_6_3·b_7_9 + b_6_1·b_7_9
  77. b_8_0·b_5_0 + b_4_0·b_9_0 + b_4_0·b_4_2·b_5_0 + b_2_0·b_4_2·b_7_0 + b_2_02·b_9_0
       + b_2_02·b_4_2·b_5_0 + b_2_03·b_4_2·b_3_0
  78. b_8_7·b_5_0 + b_4_0·b_4_2·b_5_0 + b_4_02·b_5_0
  79. b_10_2·b_3_0 + b_2_0·b_4_22·b_3_0 + b_2_0·b_4_0·b_4_2·b_3_0
  80. b_10_2·b_3_1
  81. a_7_72
  82. a_3_2·b_11_1
  83. a_7_7·b_7_0
  84. a_7_7·b_7_2
  85. a_7_7·b_7_9
  86. b_2_0·b_12_5 + b_2_0·b_4_2·b_8_0 + b_2_0·b_4_0·b_4_22 + b_2_0·b_4_02·b_4_2
       + b_2_02·b_3_1·b_7_0 + b_2_02·b_4_2·b_3_02 + b_2_02·b_4_0·b_6_1 + b_2_03·b_8_0
       + b_2_03·b_4_22 + b_2_03·b_4_02 + b_2_05·b_4_0 + b_2_03·c_8_2
  87. b_4_0·b_10_2 + b_2_0·b_4_0·b_4_22 + b_2_0·b_4_02·b_4_2
  88. b_6_1·b_8_0 + b_4_22·b_3_02 + b_4_0·b_4_2·b_3_02 + b_4_02·b_3_02 + b_4_02·b_6_1
       + b_2_02·b_4_2·b_3_02 + b_2_02·b_4_2·b_6_1 + b_2_02·b_4_0·b_3_02
       + b_2_02·b_4_0·b_6_1 + b_2_03·b_4_22 + b_2_03·b_4_0·b_4_2 + b_2_03·b_4_02
       + b_2_05·b_4_2 + b_2_05·b_4_0 + c_8_2·b_3_02 + b_2_0·b_4_0·c_8_2 + b_2_03·c_8_2
  89. b_6_3·b_8_0
  90. b_6_3·b_8_7 + b_6_1·b_8_7 + b_4_0·b_4_2·b_6_1 + b_4_02·b_6_1
  91. b_3_0·b_11_1
  92. b_3_1·b_11_1
  93. b_5_0·b_9_0 + b_4_22·b_3_02 + b_4_0·b_4_2·b_3_02 + b_4_0·b_4_2·b_6_1
       + b_4_02·b_3_02 + b_4_02·b_6_1 + b_2_0·b_4_2·b_8_0 + b_2_02·b_4_2·b_3_02
       + b_2_02·b_4_2·b_6_1 + b_2_02·b_4_0·b_3_02 + b_2_03·b_4_22 + c_8_2·b_3_02
  94. b_5_0·b_9_1 + b_2_0·b_4_0·b_8_0 + b_2_02·b_4_2·b_6_1 + b_2_03·b_4_02
  95. b_5_0·b_9_5
  96. b_7_02 + b_4_22·b_3_02 + b_4_0·b_4_2·b_3_02 + b_4_0·b_4_2·b_6_1
       + b_2_0·b_4_2·b_8_0 + b_2_0·b_4_03 + b_2_02·b_4_2·b_3_02 + b_2_02·b_4_2·b_6_1
       + b_2_02·b_4_0·b_3_02 + b_2_03·b_4_0·b_4_2 + c_8_2·b_3_12 + c_8_2·b_3_02
  97. b_7_0·b_7_2 + b_4_02·b_3_02 + b_4_02·b_6_1 + b_2_0·b_4_0·b_8_0 + b_2_0·b_4_03
       + b_2_02·b_4_0·b_6_1 + b_2_03·b_4_02 + c_8_2·b_3_12
  98. b_7_0·b_7_9
  99. b_7_22 + b_4_02·b_3_02 + c_8_2·b_3_12
  100. b_7_2·b_7_9
  101. b_8_0·a_7_7
  102. b_8_7·a_7_7
  103. b_12_5·a_3_2
  104. b_2_0·b_13_0 + b_2_0·b_4_0·b_9_0 + b_2_0·b_4_0·b_4_2·b_5_0 + b_2_02·b_4_2·b_7_0
       + b_2_02·b_4_0·b_7_0 + b_2_03·b_4_2·b_5_0 + b_2_04·b_7_2 + b_2_04·b_7_0
       + b_2_02·c_8_2·b_3_0
  105. b_4_0·b_11_1
  106. b_6_1·b_9_0 + b_4_0·b_4_2·b_7_0 + b_4_0·b_4_22·b_3_0 + b_4_02·b_7_0
       + b_2_0·b_4_22·b_5_0 + b_2_0·b_4_0·b_9_0 + b_2_0·b_4_02·b_5_0 + b_2_02·b_4_2·b_7_0
       + b_2_02·b_4_22·b_3_0 + b_2_02·b_4_02·b_3_0 + b_2_03·b_4_2·b_5_0
       + b_2_03·b_4_0·b_5_0 + b_4_0·c_8_2·b_3_0 + b_2_0·c_8_2·b_5_0
  107. b_6_1·b_9_1 + b_2_0·b_4_0·b_9_0 + b_2_0·b_4_0·b_4_2·b_5_0 + b_2_02·b_4_2·b_7_0
       + b_2_02·b_4_0·b_4_2·b_3_0 + b_2_04·b_4_2·b_3_0 + b_2_04·b_4_0·b_3_0
       + b_2_02·c_8_2·b_3_0
  108. b_6_3·b_9_0
  109. b_6_3·b_9_1
  110. b_6_3·b_9_5 + b_6_1·b_9_5
  111. b_8_0·b_7_0 + b_4_0·b_4_22·b_3_0 + b_2_0·b_4_2·b_9_0 + b_2_0·b_4_0·b_4_2·b_5_0
       + b_2_0·b_4_02·b_5_0 + b_2_02·b_4_0·b_7_0 + b_2_02·b_4_0·b_4_2·b_3_0
       + b_2_02·b_4_02·b_3_0 + b_2_04·b_4_2·b_3_0 + b_2_04·b_4_0·b_3_0 + b_4_0·c_8_2·b_3_0
       + b_2_02·c_8_2·b_3_1 + b_2_02·c_8_2·b_3_0
  112. b_8_0·b_7_2 + b_4_02·b_7_0 + b_4_02·b_4_2·b_3_0 + b_2_0·b_4_0·b_4_2·b_5_0
       + b_2_02·b_4_0·b_7_0 + b_2_02·b_4_0·b_4_2·b_3_0 + b_2_02·b_4_02·b_3_0
       + b_2_02·c_8_2·b_3_1
  113. b_8_0·b_7_9
  114. b_8_7·b_7_0 + b_4_0·b_4_2·b_7_0 + b_4_02·b_7_0
  115. b_8_7·b_7_2 + b_4_02·b_4_2·b_3_0 + b_4_03·b_3_0
  116. b_10_2·b_5_0 + b_2_0·b_4_22·b_5_0 + b_2_0·b_4_0·b_4_2·b_5_0
  117. b_12_5·b_3_0 + b_4_0·b_4_2·b_7_0 + b_4_02·b_4_2·b_3_0 + b_2_0·b_4_2·b_3_03
       + b_2_0·b_4_22·b_5_0 + b_2_0·b_4_02·b_5_0 + b_2_02·b_4_2·b_7_0
       + b_2_02·b_4_0·b_4_2·b_3_0 + b_2_02·b_4_02·b_3_0 + b_2_03·b_4_2·b_5_0
       + b_2_04·b_7_2 + b_2_04·b_7_0 + b_2_04·b_4_2·b_3_0 + b_2_04·b_4_0·b_3_0
       + b_2_02·c_8_2·b_3_0
  118. b_12_5·b_3_1 + b_2_0·b_3_12·b_7_0 + b_2_04·b_7_2 + b_2_04·b_4_0·b_3_0
       + b_2_02·c_8_2·b_3_1
  119. a_3_2·b_13_0
  120. a_7_7·b_9_0
  121. a_7_7·b_9_1
  122. a_7_7·b_9_5
  123. b_4_0·b_12_5 + b_4_0·b_4_2·b_8_0 + b_4_02·b_4_22 + b_4_03·b_4_2
       + b_2_0·b_4_0·b_4_2·b_3_02 + b_2_0·b_4_02·b_6_1 + b_2_02·b_4_0·b_8_0
       + b_2_02·b_4_0·b_4_22 + b_2_02·b_4_03 + b_2_04·b_4_02 + b_2_02·b_4_0·c_8_2
  124. b_6_3·b_10_2 + b_6_1·b_10_2 + b_2_0·b_4_22·b_6_1 + b_2_0·b_4_0·b_4_2·b_6_1
  125. b_8_02 + b_4_0·b_4_2·b_8_0 + b_4_02·b_4_22 + b_2_0·b_4_22·b_6_1
       + b_2_0·b_4_0·b_4_2·b_6_1 + b_2_0·b_4_02·b_6_1 + b_2_02·b_4_23
       + b_2_02·b_4_0·b_8_0 + b_2_02·b_4_0·b_4_22 + b_2_02·b_4_03 + b_2_03·b_4_2·b_6_1
       + b_2_03·b_4_0·b_6_1 + b_2_04·b_4_22 + b_2_06·b_4_2 + b_2_06·b_4_0 + b_4_02·c_8_2
       + b_2_04·c_8_2
  126. b_8_0·b_8_7 + b_4_0·b_4_2·b_8_0 + b_4_02·b_8_0
  127. b_3_0·b_13_0 + b_4_02·b_8_0 + b_2_0·b_4_02·b_3_02 + b_2_0·b_4_02·b_6_1
       + b_2_02·b_4_2·b_8_0 + b_2_02·b_4_0·b_8_0 + b_2_02·b_4_02·b_4_2 + b_2_02·b_4_03
       + b_2_03·b_4_2·b_6_1 + b_2_04·b_8_0 + b_2_04·b_4_22 + b_2_05·b_6_1 + b_2_06·b_4_0
       + b_2_0·c_8_2·b_3_02
  128. b_3_1·b_13_0
  129. b_5_0·b_11_1
  130. b_7_0·b_9_0 + b_4_0·b_4_2·b_8_0 + b_2_0·b_4_22·b_6_1 + b_2_0·b_4_0·b_4_2·b_3_02
       + b_2_0·b_4_02·b_6_1 + b_2_02·b_4_2·b_8_0 + b_2_02·b_4_0·b_4_22 + b_2_02·b_4_03
       + b_2_03·b_4_2·b_6_1 + b_2_04·b_4_22 + b_2_04·b_4_0·b_4_2 + b_2_04·b_4_02
       + b_4_02·c_8_2 + b_2_02·b_4_2·c_8_2 + b_2_02·b_4_0·c_8_2
  131. b_7_0·b_9_1 + b_2_0·b_4_22·b_3_02 + b_2_02·b_4_02·b_4_2 + b_2_02·b_4_03
       + b_2_03·b_4_2·b_3_02 + b_2_03·b_4_0·b_3_02 + b_2_0·c_8_2·b_3_02
  132. b_7_0·b_9_5
  133. b_7_2·b_9_0 + b_4_02·b_8_0 + b_4_03·b_4_2 + b_2_0·b_4_0·b_4_2·b_3_02
       + b_2_0·b_4_0·b_4_2·b_6_1 + b_2_02·b_4_0·b_4_22
  134. b_7_2·b_9_1 + b_2_0·b_4_0·b_4_2·b_3_02 + b_2_0·b_4_02·b_3_02
       + b_2_0·b_4_02·b_6_1 + b_2_02·b_4_0·b_8_0 + b_2_02·b_4_03 + b_2_03·b_4_0·b_6_1
       + b_2_04·b_4_02
  135. b_7_2·b_9_5
  136. b_7_9·b_9_0
  137. b_7_9·b_9_1
  138. b_7_9·b_9_5 + b_8_72 + b_4_2·b_6_12 + b_4_0·b_4_2·b_8_0 + b_4_03·b_4_2 + b_4_04
       + b_2_0·b_4_22·b_6_1 + b_2_0·b_4_0·b_4_2·b_6_1 + b_2_02·b_4_23
       + b_2_02·b_4_02·b_4_2 + b_2_04·b_4_22 + b_2_04·b_4_0·b_4_2 + b_2_02·b_4_2·c_8_2
  139. b_10_2·a_7_7
  140. b_4_0·b_13_0 + b_4_02·b_9_0 + b_4_02·b_4_2·b_5_0 + b_2_0·b_4_0·b_4_2·b_7_0
       + b_2_0·b_4_02·b_7_0 + b_2_02·b_4_0·b_4_2·b_5_0 + b_2_03·b_4_0·b_7_0
       + b_2_03·b_4_02·b_3_0 + b_2_0·b_4_0·c_8_2·b_3_0
  141. b_6_3·b_11_1 + b_6_1·b_11_1
  142. b_8_0·b_9_0 + b_4_0·b_4_22·b_5_0 + b_2_0·b_4_22·b_7_0 + b_2_0·b_4_23·b_3_0
       + b_2_0·b_4_0·b_4_2·b_7_0 + b_2_0·b_4_0·b_4_22·b_3_0 + b_2_0·b_4_02·b_7_0
       + b_2_0·b_4_02·b_4_2·b_3_0 + b_2_0·b_4_03·b_3_0 + b_2_03·b_4_2·b_7_0
       + b_2_04·b_4_2·b_5_0 + b_2_04·b_4_0·b_5_0 + b_4_0·c_8_2·b_5_0
       + b_2_0·b_4_2·c_8_2·b_3_0 + b_2_02·c_8_2·b_5_0
  143. b_8_0·b_9_1 + b_2_0·b_4_0·b_4_2·b_7_0 + b_2_02·b_4_2·b_9_0 + b_2_02·b_4_22·b_5_0
       + b_2_02·b_4_0·b_4_2·b_5_0 + b_2_02·b_4_02·b_5_0 + b_2_03·b_4_2·b_7_0
       + b_2_03·b_4_22·b_3_0 + b_2_03·b_4_0·b_7_0 + b_2_03·b_4_02·b_3_0
       + b_2_05·b_4_2·b_3_0 + b_2_05·b_4_0·b_3_0 + b_2_0·b_4_0·c_8_2·b_3_0
       + b_2_03·c_8_2·b_3_0
  144. b_8_0·b_9_5
  145. b_8_7·b_9_0 + b_4_0·b_4_2·b_9_0 + b_4_02·b_9_0
  146. b_8_7·b_9_1 + b_2_0·b_4_0·b_4_2·b_7_0 + b_2_0·b_4_0·b_4_22·b_3_0
       + b_2_0·b_4_02·b_7_0 + b_2_0·b_4_02·b_4_2·b_3_0
  147. b_10_2·b_7_0 + b_2_0·b_4_22·b_7_0 + b_2_0·b_4_0·b_4_2·b_7_0
  148. b_10_2·b_7_2 + b_2_0·b_4_0·b_4_22·b_3_0 + b_2_0·b_4_02·b_4_2·b_3_0
  149. b_10_2·b_7_9 + b_8_7·b_9_5 + b_6_1·b_11_1 + b_4_2·b_6_1·b_7_9
  150. b_12_5·b_5_0 + b_4_0·b_4_2·b_9_0 + b_4_02·b_4_2·b_5_0 + b_2_0·b_4_22·b_7_0
       + b_2_0·b_4_02·b_7_0 + b_2_0·b_4_02·b_4_2·b_3_0 + b_2_0·b_4_03·b_3_0
       + b_2_02·b_4_2·b_9_0 + b_2_03·b_4_2·b_7_0 + b_2_04·b_9_0 + b_2_04·b_4_2·b_5_0
       + b_2_04·b_4_0·b_5_0 + b_2_05·b_4_2·b_3_0 + b_2_02·c_8_2·b_5_0
  151. a_7_7·b_11_1
  152. b_6_3·b_12_5 + b_6_1·b_12_5 + b_4_23·b_3_02 + b_4_0·b_4_22·b_3_02
       + b_4_0·b_4_22·b_6_1 + b_4_02·b_4_2·b_3_02 + b_2_0·b_4_02·b_8_0 + b_2_0·b_4_04
       + b_2_02·b_4_22·b_3_02 + b_2_02·b_4_0·b_4_2·b_3_02 + b_2_02·b_4_0·b_4_2·b_6_1
       + b_2_02·b_4_02·b_3_02 + b_2_02·b_4_02·b_6_1 + b_2_03·b_4_2·b_8_0
       + b_2_03·b_4_23 + b_2_03·b_4_0·b_4_22 + b_2_03·b_4_02·b_4_2 + b_2_03·b_4_03
       + b_2_04·b_4_2·b_3_02 + b_2_04·b_4_0·b_3_02 + b_2_07·b_4_2 + b_2_07·b_4_0
       + b_4_2·c_8_2·b_3_02 + b_2_0·b_4_0·b_4_2·c_8_2 + b_2_02·c_8_2·b_3_12
       + b_2_02·c_8_2·b_3_02 + b_2_02·b_6_1·c_8_2 + b_2_03·b_4_2·c_8_2 + b_2_05·c_8_2
  153. b_8_0·b_10_2 + b_2_0·b_4_22·b_8_0 + b_2_0·b_4_0·b_4_2·b_8_0
  154. b_5_0·b_13_0 + b_4_0·b_4_22·b_3_02 + b_4_02·b_4_2·b_3_02 + b_4_03·b_3_02
       + b_4_03·b_6_1 + b_2_0·b_4_0·b_4_2·b_8_0 + b_2_0·b_4_02·b_8_0
       + b_2_0·b_4_02·b_4_22 + b_2_0·b_4_03·b_4_2 + b_2_02·b_4_22·b_6_1
       + b_2_02·b_4_0·b_4_2·b_3_02 + b_2_02·b_4_02·b_3_02 + b_2_03·b_4_2·b_8_0
       + b_2_03·b_4_23 + b_2_03·b_4_0·b_8_0 + b_2_03·b_4_0·b_4_22 + b_2_05·b_4_22
       + b_2_05·b_4_0·b_4_2 + b_4_0·c_8_2·b_3_02 + b_2_0·b_4_02·c_8_2
       + b_2_03·b_4_2·c_8_2 + b_2_03·b_4_0·c_8_2
  155. b_7_0·b_11_1
  156. b_7_2·b_11_1
  157. b_7_9·b_11_1 + b_8_7·b_10_2 + b_6_1·b_12_5 + b_6_13 + b_4_2·b_6_1·b_8_7
       + b_4_23·b_3_02 + b_4_03·b_3_02 + b_2_0·b_4_0·b_4_2·b_8_0 + b_2_0·b_4_0·b_4_23
       + b_2_0·b_4_02·b_4_22 + b_2_0·b_4_03·b_4_2 + b_2_02·b_4_22·b_3_02
       + b_2_03·b_4_2·b_8_0 + b_2_03·b_4_0·b_4_22 + b_2_03·b_4_02·b_4_2
       + b_2_03·b_4_03 + b_2_04·b_4_2·b_3_02 + b_2_04·b_4_2·b_6_1
       + b_2_04·b_4_0·b_3_02 + b_2_04·b_4_0·b_6_1 + b_2_05·b_4_22 + b_2_05·b_4_0·b_4_2
       + b_2_07·b_4_2 + b_2_07·b_4_0 + b_4_2·c_8_2·b_3_02 + b_4_0·c_8_2·b_3_02
       + b_2_0·b_4_0·b_4_2·c_8_2 + b_2_0·b_4_02·c_8_2 + b_2_02·c_8_2·b_3_12
       + b_2_02·c_8_2·b_3_02 + b_2_05·c_8_2
  158. b_9_02 + b_4_23·b_3_02 + b_4_0·b_4_22·b_3_02 + b_4_02·b_4_2·b_3_02
       + b_4_02·b_4_2·b_6_1 + b_2_0·b_4_0·b_4_2·b_8_0 + b_2_0·b_4_02·b_8_0 + b_2_0·b_4_04
       + b_2_02·b_4_0·b_4_2·b_3_02 + b_2_03·b_4_2·b_8_0 + b_2_03·b_4_0·b_8_0
       + b_2_03·b_4_02·b_4_2 + b_2_03·b_4_03 + b_2_04·b_4_2·b_6_1 + b_2_04·b_4_0·b_6_1
       + b_2_05·b_4_0·b_4_2 + b_2_05·b_4_02 + b_4_2·c_8_2·b_3_02 + b_4_0·b_6_1·c_8_2
       + b_2_0·b_8_0·c_8_2 + b_2_02·b_6_1·c_8_2 + b_2_03·b_4_0·c_8_2
  159. b_9_0·b_9_1 + b_2_0·b_4_02·b_4_22 + b_2_02·b_4_22·b_3_02
       + b_2_02·b_4_0·b_4_2·b_3_02 + b_2_02·b_4_02·b_6_1 + b_2_03·b_4_2·b_8_0
       + b_2_03·b_4_23 + b_2_03·b_4_0·b_4_22 + b_2_03·b_4_03 + b_2_04·b_4_2·b_6_1
       + b_2_05·b_4_22 + b_2_05·b_4_0·b_4_2 + b_2_05·b_4_02 + b_2_0·b_4_02·c_8_2
       + b_2_03·b_4_2·c_8_2 + b_2_03·b_4_0·c_8_2
  160. b_9_0·b_9_5
  161. b_9_12 + b_2_02·b_4_0·b_4_2·b_3_02 + b_2_02·b_4_0·b_4_2·b_6_1
       + b_2_03·b_4_2·b_8_0 + b_2_03·b_4_03 + b_2_04·b_4_2·b_3_02 + b_2_04·b_4_2·b_6_1
       + b_2_04·b_4_0·b_3_02 + b_2_05·b_4_0·b_4_2 + b_2_02·c_8_2·b_3_02
  162. b_9_1·b_9_5
  163. b_9_52 + b_8_7·b_10_2 + b_6_1·b_12_5 + b_4_2·b_6_1·b_8_7 + b_4_23·b_3_02
       + b_4_0·b_4_22·b_3_02 + b_4_02·b_4_2·b_3_02 + b_4_02·b_4_2·b_6_1
       + b_2_0·b_4_0·b_4_23 + b_2_0·b_4_02·b_8_0 + b_2_0·b_4_03·b_4_2 + b_2_0·b_4_04
       + b_2_02·b_4_22·b_3_02 + b_2_02·b_4_0·b_4_2·b_3_02 + b_2_02·b_4_0·b_4_2·b_6_1
       + b_2_02·b_4_02·b_3_02 + b_2_02·b_4_02·b_6_1 + b_2_03·b_4_2·b_8_0
       + b_2_03·b_4_23 + b_2_03·b_4_0·b_4_22 + b_2_03·b_4_02·b_4_2 + b_2_03·b_4_03
       + b_2_04·b_4_2·b_3_02 + b_2_04·b_4_0·b_3_02 + b_2_07·b_4_2 + b_2_07·b_4_0
       + b_4_2·c_8_2·b_3_02 + b_2_0·b_4_0·b_4_2·c_8_2 + b_2_02·c_8_2·b_3_12
       + b_2_02·c_8_2·b_3_02 + b_2_02·b_6_1·c_8_2 + b_2_03·b_4_2·c_8_2 + b_2_05·c_8_2
  164. b_12_5·a_7_7
  165. b_6_3·b_13_0 + b_6_1·b_13_0 + b_4_02·b_4_22·b_3_0 + b_4_03·b_7_0
       + b_4_03·b_4_2·b_3_0 + b_2_0·b_4_02·b_4_2·b_5_0 + b_2_0·b_4_03·b_5_0
       + b_2_02·b_4_23·b_3_0 + b_2_02·b_4_03·b_3_0 + b_2_03·b_4_2·b_9_0
       + b_2_03·b_4_22·b_5_0 + b_2_03·b_4_0·b_9_0 + b_2_04·b_4_22·b_3_0
       + b_2_04·b_4_0·b_7_0 + b_2_04·b_4_02·b_3_0 + b_2_06·b_4_2·b_3_0
       + b_2_06·b_4_0·b_3_0 + b_4_02·c_8_2·b_3_0 + b_2_02·c_8_2·b_7_2 + b_2_02·c_8_2·b_7_0
       + b_2_04·c_8_2·b_3_0
  166. b_8_0·b_11_1
  167. b_10_2·b_9_0 + b_2_0·b_4_22·b_9_0 + b_2_0·b_4_0·b_4_2·b_9_0
  168. b_10_2·b_9_1 + b_2_02·b_4_22·b_7_0 + b_2_02·b_4_23·b_3_0
       + b_2_02·b_4_0·b_4_2·b_7_0 + b_2_02·b_4_0·b_4_22·b_3_0
  169. b_10_2·b_9_5 + b_8_7·b_11_1 + b_6_1·b_13_0 + b_4_2·b_6_1·b_9_5 + b_4_02·b_4_22·b_3_0
       + b_4_03·b_7_0 + b_4_03·b_4_2·b_3_0 + b_2_0·b_4_02·b_4_2·b_5_0 + b_2_0·b_4_03·b_5_0
       + b_2_02·b_4_23·b_3_0 + b_2_02·b_4_03·b_3_0 + b_2_03·b_4_2·b_9_0
       + b_2_03·b_4_22·b_5_0 + b_2_03·b_4_0·b_9_0 + b_2_04·b_4_22·b_3_0
       + b_2_04·b_4_0·b_7_0 + b_2_04·b_4_02·b_3_0 + b_2_06·b_4_2·b_3_0
       + b_2_06·b_4_0·b_3_0 + b_4_02·c_8_2·b_3_0 + b_2_02·c_8_2·b_7_2 + b_2_02·c_8_2·b_7_0
       + b_2_04·c_8_2·b_3_0
  170. b_12_5·b_7_0 + b_4_0·b_4_22·b_7_0 + b_4_0·b_4_23·b_3_0 + b_4_02·b_4_2·b_7_0
       + b_2_0·b_4_22·b_9_0 + b_2_0·b_4_0·b_4_2·b_3_03 + b_2_0·b_4_0·b_4_22·b_5_0
       + b_2_0·b_4_02·b_9_0 + b_2_02·b_4_22·b_7_0 + b_2_02·b_4_0·b_4_2·b_7_0
       + b_2_02·b_4_0·b_4_22·b_3_0 + b_2_02·b_4_02·b_7_0 + b_2_02·b_4_02·b_4_2·b_3_0
       + b_2_03·b_4_2·b_9_0 + b_2_03·b_4_22·b_5_0 + b_2_03·b_4_02·b_5_0
       + b_2_04·b_4_22·b_3_0 + b_2_04·b_4_0·b_4_2·b_3_0 + b_2_06·b_4_2·b_3_0
       + b_2_06·b_4_0·b_3_0 + b_4_0·b_4_2·c_8_2·b_3_0 + b_2_0·c_8_2·b_3_13
       + b_2_02·c_8_2·b_7_0 + b_2_02·b_4_2·c_8_2·b_3_0 + b_2_04·c_8_2·b_3_1
       + b_2_04·c_8_2·b_3_0
  171. b_12_5·b_7_2 + b_4_02·b_4_2·b_7_0 + b_4_03·b_4_2·b_3_0 + b_2_0·b_4_0·b_4_2·b_3_03
       + b_2_0·b_4_0·b_4_22·b_5_0 + b_2_0·b_4_03·b_5_0 + b_2_02·b_4_0·b_4_2·b_7_0
       + b_2_02·b_4_02·b_4_2·b_3_0 + b_2_02·b_4_03·b_3_0 + b_2_03·b_4_0·b_4_2·b_5_0
       + b_2_04·b_4_0·b_7_0 + b_2_04·b_4_0·b_4_2·b_3_0 + b_2_0·c_8_2·b_3_13
       + b_2_02·c_8_2·b_7_2 + b_2_04·c_8_2·b_3_1
  172. b_12_5·b_7_9 + b_8_7·b_11_1 + b_4_2·b_6_1·b_9_5
  173. a_7_7·b_13_0
  174. b_8_0·b_12_5 + b_4_02·b_4_2·b_8_0 + b_4_02·b_4_23 + b_2_0·b_4_23·b_6_1
       + b_2_0·b_4_0·b_4_22·b_6_1 + b_2_0·b_4_03·b_3_02 + b_2_0·b_4_03·b_6_1
       + b_2_02·b_4_22·b_8_0 + b_2_02·b_4_24 + b_2_02·b_4_0·b_4_2·b_8_0
       + b_2_02·b_4_0·b_4_23 + b_2_02·b_4_02·b_8_0 + b_2_03·b_4_22·b_3_02
       + b_2_03·b_4_0·b_4_2·b_3_02 + b_2_03·b_4_0·b_4_2·b_6_1 + b_2_03·b_4_02·b_3_02
       + b_2_04·b_4_2·b_8_0 + b_2_04·b_4_23 + b_2_04·b_4_0·b_4_22
       + b_2_04·b_4_02·b_4_2 + b_2_05·b_4_0·b_6_1 + b_2_06·b_4_0·b_4_2 + b_2_06·b_4_02
       + b_2_08·b_4_2 + b_2_08·b_4_0 + b_4_02·b_4_2·c_8_2 + b_2_0·b_4_0·c_8_2·b_3_02
       + b_2_02·b_8_0·c_8_2 + b_2_03·c_8_2·b_3_12 + b_2_04·b_4_2·c_8_2
       + b_2_04·b_4_0·c_8_2 + b_2_06·c_8_2
  175. b_10_22 + b_8_7·b_12_5 + b_4_2·b_6_1·b_10_2 + b_4_22·b_6_12 + b_4_02·b_4_2·b_8_0
       + b_4_03·b_4_22 + b_4_04·b_4_2 + b_2_0·b_4_0·b_4_22·b_3_02
       + b_2_0·b_4_02·b_4_2·b_3_02 + b_2_0·b_4_02·b_4_2·b_6_1 + b_2_0·b_4_03·b_6_1
       + b_2_02·b_4_0·b_4_2·b_8_0 + b_2_02·b_4_0·b_4_23 + b_2_02·b_4_02·b_8_0
       + b_2_02·b_4_02·b_4_22 + b_2_02·b_4_03·b_4_2 + b_2_02·b_4_04
       + b_2_04·b_4_23 + b_2_04·b_4_0·b_4_22 + b_2_04·b_4_02·b_4_2 + b_2_04·b_4_03
       + b_6_12·c_8_2 + b_4_0·b_8_0·c_8_2 + b_4_02·b_4_2·c_8_2 + b_4_03·c_8_2
       + b_2_0·b_4_2·b_6_1·c_8_2 + b_2_0·b_4_0·b_6_1·c_8_2 + b_2_02·b_4_0·b_4_2·c_8_2
       + b_2_04·b_4_2·c_8_2 + b_2_04·b_4_0·c_8_2 + b_2_02·c_8_22
  176. b_7_0·b_13_0 + b_4_03·b_4_22 + b_2_0·b_4_23·b_3_02 + b_2_0·b_4_0·b_4_22·b_6_1
       + b_2_0·b_4_02·b_4_2·b_6_1 + b_2_0·b_4_03·b_6_1 + b_2_02·b_4_22·b_8_0
       + b_2_02·b_4_0·b_4_2·b_8_0 + b_2_02·b_4_0·b_4_23 + b_2_02·b_4_02·b_4_22
       + b_2_03·b_4_0·b_4_2·b_3_02 + b_2_03·b_4_0·b_4_2·b_6_1 + b_2_03·b_4_02·b_6_1
       + b_2_04·b_4_2·b_8_0 + b_2_04·b_4_23 + b_2_04·b_4_0·b_8_0 + b_2_04·b_4_0·b_4_22
       + b_2_04·b_4_02·b_4_2 + b_2_04·b_4_03 + b_2_05·b_4_2·b_3_02
       + b_2_05·b_4_2·b_6_1 + b_2_05·b_4_0·b_3_02 + b_2_05·b_4_0·b_6_1
       + b_2_06·b_4_0·b_4_2 + b_2_06·b_4_02 + b_4_03·c_8_2 + b_2_0·b_4_2·c_8_2·b_3_02
       + b_2_0·b_4_0·b_6_1·c_8_2 + b_2_02·b_8_0·c_8_2 + b_2_02·b_4_0·b_4_2·c_8_2
       + b_2_03·c_8_2·b_3_02 + b_2_03·b_6_1·c_8_2 + b_2_04·b_4_0·c_8_2
  177. b_7_2·b_13_0 + b_4_03·b_8_0 + b_2_0·b_4_03·b_3_02 + b_2_0·b_4_03·b_6_1
       + b_2_02·b_4_0·b_4_2·b_8_0 + b_2_02·b_4_02·b_8_0 + b_2_02·b_4_03·b_4_2
       + b_2_02·b_4_04 + b_2_03·b_4_0·b_4_2·b_6_1 + b_2_04·b_4_0·b_8_0
       + b_2_04·b_4_0·b_4_22 + b_2_05·b_4_0·b_6_1 + b_2_06·b_4_02
       + b_2_0·b_4_0·c_8_2·b_3_02
  178. b_7_9·b_13_0 + b_8_7·b_12_5 + b_6_12·b_8_7 + b_4_2·b_6_1·b_10_2 + b_4_22·b_6_12
       + b_4_03·b_8_0 + b_4_04·b_4_2 + b_4_05 + b_2_0·b_4_0·b_4_22·b_3_02
       + b_2_0·b_4_0·b_4_22·b_6_1 + b_2_0·b_4_02·b_4_2·b_3_02
       + b_2_0·b_4_02·b_4_2·b_6_1 + b_2_02·b_4_24 + b_2_02·b_4_0·b_4_2·b_8_0
       + b_2_02·b_4_02·b_8_0 + b_2_02·b_4_02·b_4_22 + b_2_04·b_4_23
       + b_2_04·b_4_02·b_4_2 + b_2_02·b_4_22·c_8_2
  179. b_9_0·b_11_1
  180. b_9_1·b_11_1
  181. b_9_5·b_11_1 + b_8_7·b_12_5 + b_4_2·b_6_1·b_10_2 + b_4_22·b_6_12
       + b_4_02·b_4_2·b_8_0 + b_4_03·b_4_22 + b_4_04·b_4_2 + b_2_0·b_4_0·b_4_22·b_3_02
       + b_2_0·b_4_02·b_4_2·b_3_02 + b_2_0·b_4_02·b_4_2·b_6_1 + b_2_0·b_4_03·b_6_1
       + b_2_02·b_4_24 + b_2_02·b_4_0·b_4_2·b_8_0 + b_2_02·b_4_0·b_4_23
       + b_2_02·b_4_02·b_8_0 + b_2_02·b_4_03·b_4_2 + b_2_02·b_4_04 + b_2_04·b_4_23
       + b_2_04·b_4_0·b_4_22 + b_2_04·b_4_02·b_4_2 + b_2_04·b_4_03
       + b_2_02·b_4_22·c_8_2 + b_2_02·b_4_0·b_4_2·c_8_2 + b_2_02·b_4_02·c_8_2
  182. b_8_0·b_13_0 + b_4_02·b_4_2·b_9_0 + b_2_0·b_4_02·b_4_2·b_7_0 + b_2_0·b_4_03·b_7_0
       + b_2_0·b_4_03·b_4_2·b_3_0 + b_2_0·b_4_04·b_3_0 + b_2_02·b_4_22·b_9_0
       + b_2_02·b_4_0·b_4_2·b_9_0 + b_2_02·b_4_0·b_4_22·b_5_0 + b_2_02·b_4_03·b_5_0
       + b_2_03·b_4_22·b_7_0 + b_2_03·b_4_0·b_4_22·b_3_0 + b_2_03·b_4_02·b_4_2·b_3_0
       + b_2_03·b_4_03·b_3_0 + b_2_04·b_4_22·b_5_0 + b_2_04·b_4_0·b_4_2·b_5_0
       + b_2_05·b_4_02·b_3_0 + b_2_07·b_4_2·b_3_0 + b_2_07·b_4_0·b_3_0
       + b_4_02·c_8_2·b_5_0 + b_2_0·b_4_0·c_8_2·b_7_0 + b_2_0·b_4_0·b_4_2·c_8_2·b_3_0
       + b_2_0·b_4_02·c_8_2·b_3_0 + b_2_02·b_4_2·c_8_2·b_5_0 + b_2_02·b_4_0·c_8_2·b_5_0
       + b_2_03·c_8_2·b_7_2 + b_2_03·c_8_2·b_7_0 + b_2_05·c_8_2·b_3_0
  183. b_10_2·b_11_1 + b_8_7·b_13_0 + b_4_22·b_6_1·b_7_9 + b_4_02·b_4_2·b_9_0
       + b_4_02·b_4_22·b_5_0 + b_4_03·b_9_0 + b_4_03·b_4_2·b_5_0
       + b_2_0·b_4_0·b_4_22·b_7_0 + b_2_0·b_4_03·b_7_0 + b_2_02·b_4_0·b_4_22·b_5_0
       + b_2_02·b_4_02·b_4_2·b_5_0 + b_2_03·b_4_0·b_4_2·b_7_0 + b_2_03·b_4_02·b_7_0
       + b_2_03·b_4_02·b_4_2·b_3_0 + b_2_03·b_4_03·b_3_0 + b_6_1·c_8_2·b_7_9
       + b_2_0·b_4_0·b_4_2·c_8_2·b_3_0 + b_2_0·b_4_02·c_8_2·b_3_0
  184. b_12_5·b_9_0 + b_4_0·b_4_22·b_9_0 + b_4_0·b_4_23·b_5_0 + b_4_02·b_4_2·b_9_0
       + b_2_0·b_4_23·b_7_0 + b_2_0·b_4_24·b_3_0 + b_2_0·b_4_0·b_4_22·b_7_0
       + b_2_0·b_4_0·b_4_23·b_3_0 + b_2_0·b_4_02·b_4_2·b_7_0 + b_2_0·b_4_03·b_7_0
       + b_2_0·b_4_03·b_4_2·b_3_0 + b_2_02·b_4_22·b_9_0 + b_2_02·b_4_0·b_4_2·b_3_03
       + b_2_02·b_4_02·b_9_0 + b_2_02·b_4_02·b_3_03 + b_2_02·b_4_02·b_4_2·b_5_0
       + b_2_03·b_4_22·b_7_0 + b_2_03·b_4_23·b_3_0 + b_2_03·b_4_0·b_4_2·b_7_0
       + b_2_03·b_4_0·b_4_22·b_3_0 + b_2_03·b_4_02·b_4_2·b_3_0 + b_2_04·b_4_2·b_9_0
       + b_2_04·b_4_2·b_3_03 + b_2_04·b_4_0·b_3_03 + b_2_04·b_4_0·b_4_2·b_5_0
       + b_2_04·b_4_02·b_5_0 + b_2_05·b_4_2·b_7_0 + b_2_05·b_4_22·b_3_0
       + b_2_05·b_4_0·b_4_2·b_3_0 + b_2_06·b_4_2·b_5_0 + b_2_06·b_4_0·b_5_0
       + b_4_0·b_4_2·c_8_2·b_5_0 + b_2_0·b_4_22·c_8_2·b_3_0 + b_2_0·b_4_02·c_8_2·b_3_0
       + b_2_02·c_8_2·b_9_0 + b_2_02·c_8_2·b_3_03 + b_2_02·b_4_2·c_8_2·b_5_0
       + b_2_03·b_4_2·c_8_2·b_3_0 + b_2_04·c_8_2·b_5_0
  185. b_12_5·b_9_1 + b_2_0·b_4_0·b_4_23·b_3_0 + b_2_0·b_4_02·b_4_2·b_7_0
       + b_2_0·b_4_02·b_4_22·b_3_0 + b_2_02·b_4_22·b_9_0 + b_2_02·b_4_23·b_5_0
       + b_2_02·b_4_0·b_4_22·b_5_0 + b_2_02·b_4_02·b_3_03 + b_2_02·b_4_03·b_5_0
       + b_2_03·b_4_0·b_4_2·b_7_0 + b_2_03·b_4_02·b_4_2·b_3_0 + b_2_04·b_4_2·b_3_03
       + b_2_04·b_4_22·b_5_0 + b_2_04·b_4_0·b_9_0 + b_2_04·b_4_0·b_3_03
       + b_2_04·b_4_0·b_4_2·b_5_0 + b_2_04·b_4_02·b_5_0 + b_2_05·b_4_2·b_7_0
       + b_2_05·b_4_22·b_3_0 + b_2_07·b_4_2·b_3_0 + b_2_07·b_4_0·b_3_0
       + b_2_0·b_4_0·b_4_2·c_8_2·b_3_0 + b_2_02·c_8_2·b_3_03 + b_2_03·c_8_2·b_7_2
       + b_2_03·c_8_2·b_7_0 + b_2_03·b_4_0·c_8_2·b_3_0 + b_2_05·c_8_2·b_3_0
  186. b_12_5·b_9_5 + b_8_7·b_13_0 + b_6_12·b_9_5 + b_4_2·b_6_1·b_11_1 + b_4_02·b_4_2·b_9_0
       + b_4_02·b_4_22·b_5_0 + b_4_03·b_9_0 + b_4_03·b_4_2·b_5_0
       + b_2_0·b_4_0·b_4_22·b_7_0 + b_2_0·b_4_03·b_7_0 + b_2_02·b_4_0·b_4_22·b_5_0
       + b_2_02·b_4_02·b_4_2·b_5_0 + b_2_03·b_4_0·b_4_2·b_7_0 + b_2_03·b_4_02·b_7_0
       + b_2_03·b_4_02·b_4_2·b_3_0 + b_2_03·b_4_03·b_3_0 + b_2_0·b_4_0·b_4_2·c_8_2·b_3_0
       + b_2_0·b_4_02·c_8_2·b_3_0
  187. b_10_2·b_12_5 + b_6_1·b_8_72 + b_6_12·b_10_2 + b_4_2·b_8_7·b_10_2 + b_4_22·b_7_92
       + b_4_02·b_4_22·b_6_1 + b_4_04·b_6_1 + b_2_0·b_4_23·b_8_0
       + b_2_0·b_4_02·b_4_2·b_8_0 + b_2_0·b_4_02·b_4_23 + b_2_0·b_4_04·b_4_2
       + b_2_02·b_4_23·b_3_02 + b_2_02·b_4_23·b_6_1 + b_2_02·b_4_0·b_4_22·b_3_02
       + b_2_02·b_4_0·b_4_22·b_6_1 + b_2_03·b_4_22·b_8_0 + b_2_03·b_4_0·b_4_2·b_8_0
       + b_2_05·b_4_23 + b_2_05·b_4_0·b_4_22 + c_8_2·b_7_92 + b_6_1·b_8_7·c_8_2
       + b_4_0·b_4_2·b_6_1·c_8_2 + b_4_02·b_6_1·c_8_2
  188. b_9_0·b_13_0 + b_4_02·b_4_22·b_6_1 + b_2_0·b_4_03·b_8_0 + b_2_0·b_4_05
       + b_2_02·b_4_23·b_3_02 + b_2_02·b_4_23·b_6_1 + b_2_02·b_4_0·b_4_22·b_3_02
       + b_2_02·b_4_0·b_4_22·b_6_1 + b_2_02·b_4_03·b_6_1 + b_2_03·b_4_0·b_4_2·b_8_0
       + b_2_03·b_4_02·b_4_22 + b_2_03·b_4_03·b_4_2 + b_2_04·b_4_22·b_3_02
       + b_2_04·b_4_22·b_6_1 + b_2_04·b_4_0·b_4_2·b_3_02 + b_2_04·b_4_0·b_4_2·b_6_1
       + b_2_05·b_4_2·b_8_0 + b_2_05·b_4_02·b_4_2 + b_2_05·b_4_03 + b_2_06·b_4_2·b_6_1
       + b_2_07·b_4_22 + b_2_07·b_4_0·b_4_2 + b_2_07·b_4_02 + b_4_02·b_6_1·c_8_2
       + b_2_0·b_4_03·c_8_2 + b_2_02·b_4_2·b_6_1·c_8_2 + b_2_02·b_4_0·b_6_1·c_8_2
       + b_2_03·b_4_02·c_8_2 + b_2_05·b_4_2·c_8_2 + b_2_05·b_4_0·c_8_2
  189. b_9_1·b_13_0 + b_2_0·b_4_02·b_4_2·b_8_0 + b_2_0·b_4_03·b_4_22
       + b_2_02·b_4_23·b_3_02 + b_2_02·b_4_0·b_4_22·b_6_1
       + b_2_02·b_4_02·b_4_2·b_3_02 + b_2_02·b_4_03·b_6_1 + b_2_03·b_4_0·b_4_23
       + b_2_03·b_4_03·b_4_2 + b_2_04·b_4_22·b_6_1 + b_2_04·b_4_0·b_4_2·b_3_02
       + b_2_04·b_4_0·b_4_2·b_6_1 + b_2_04·b_4_02·b_6_1 + b_2_05·b_4_0·b_8_0
       + b_2_05·b_4_0·b_4_22 + b_2_05·b_4_02·b_4_2 + b_2_05·b_4_03
       + b_2_06·b_4_2·b_3_02 + b_2_06·b_4_0·b_3_02 + b_2_06·b_4_0·b_6_1
       + b_2_07·b_4_02 + b_2_0·b_4_03·c_8_2 + b_2_02·b_4_0·b_6_1·c_8_2
       + b_2_03·b_8_0·c_8_2 + b_2_03·b_4_0·b_4_2·c_8_2 + b_2_04·c_8_2·b_3_02
       + b_2_04·b_6_1·c_8_2 + b_2_05·b_4_0·c_8_2
  190. b_9_5·b_13_0 + b_6_1·b_8_72 + b_6_12·b_10_2 + b_4_2·b_8_7·b_10_2 + b_4_2·b_6_1·b_12_5
       + b_4_22·b_7_92 + b_4_22·b_6_1·b_8_7 + b_4_24·b_3_02 + b_4_0·b_4_23·b_3_02
       + b_4_02·b_4_22·b_3_02 + b_4_04·b_6_1 + b_2_0·b_4_0·b_4_22·b_8_0
       + b_2_0·b_4_0·b_4_24 + b_2_0·b_4_02·b_4_23 + b_2_0·b_4_03·b_4_22
       + b_2_02·b_4_23·b_3_02 + b_2_02·b_4_23·b_6_1 + b_2_02·b_4_0·b_4_22·b_3_02
       + b_2_02·b_4_0·b_4_22·b_6_1 + b_2_02·b_4_02·b_4_2·b_3_02
       + b_2_03·b_4_22·b_8_0 + b_2_04·b_4_22·b_3_02 + b_2_04·b_4_0·b_4_2·b_3_02
       + b_2_05·b_4_23 + b_2_05·b_4_02·b_4_2 + b_2_07·b_4_22 + b_2_07·b_4_0·b_4_2
       + c_8_2·b_7_92 + b_4_22·c_8_2·b_3_02 + b_2_0·b_4_0·b_4_22·c_8_2
       + b_2_02·b_4_2·c_8_2·b_3_02 + b_2_02·b_4_2·b_6_1·c_8_2
       + b_2_03·b_4_0·b_4_2·c_8_2 + b_2_05·b_4_2·c_8_2
  191. b_11_12 + b_6_1·b_8_72 + b_4_2·b_8_7·b_10_2 + b_4_2·b_6_1·b_12_5 + b_4_2·b_6_13
       + b_4_22·b_7_92 + b_4_22·b_6_1·b_8_7 + b_4_24·b_3_02 + b_4_02·b_4_22·b_6_1
       + b_4_03·b_4_2·b_3_02 + b_4_04·b_6_1 + b_2_0·b_4_0·b_4_22·b_8_0
       + b_2_0·b_4_0·b_4_24 + b_2_0·b_4_02·b_4_23 + b_2_0·b_4_03·b_4_22
       + b_2_02·b_4_23·b_3_02 + b_2_03·b_4_22·b_8_0 + b_2_03·b_4_0·b_4_23
       + b_2_03·b_4_02·b_4_22 + b_2_03·b_4_03·b_4_2 + b_2_04·b_4_22·b_3_02
       + b_2_04·b_4_22·b_6_1 + b_2_04·b_4_0·b_4_2·b_3_02 + b_2_04·b_4_0·b_4_2·b_6_1
       + b_2_05·b_4_23 + b_2_05·b_4_0·b_4_22 + b_2_07·b_4_22 + b_2_07·b_4_0·b_4_2
       + c_8_2·b_7_92 + b_4_22·c_8_2·b_3_02 + b_4_0·b_4_2·c_8_2·b_3_02
       + b_2_0·b_4_0·b_4_22·c_8_2 + b_2_0·b_4_02·b_4_2·c_8_2
       + b_2_02·b_4_2·c_8_2·b_3_02 + b_2_05·b_4_2·c_8_2
  192. b_10_2·b_13_0 + b_6_1·b_8_7·b_9_5 + b_4_2·b_8_7·b_11_1 + b_4_22·b_8_7·b_7_9
       + b_4_22·b_6_1·b_9_5 + b_2_0·b_4_0·b_4_22·b_9_0 + b_2_0·b_4_0·b_4_23·b_5_0
       + b_2_0·b_4_02·b_4_2·b_9_0 + b_2_0·b_4_02·b_4_22·b_5_0 + b_2_02·b_4_23·b_7_0
       + b_2_02·b_4_02·b_4_2·b_7_0 + b_2_03·b_4_23·b_5_0 + b_2_03·b_4_0·b_4_22·b_5_0
       + b_2_04·b_4_22·b_7_0 + b_2_04·b_4_0·b_4_2·b_7_0 + b_2_04·b_4_0·b_4_22·b_3_0
       + b_2_04·b_4_02·b_4_2·b_3_0 + b_8_7·c_8_2·b_7_9 + b_6_1·c_8_2·b_9_5
       + b_2_02·b_4_22·c_8_2·b_3_0 + b_2_02·b_4_0·b_4_2·c_8_2·b_3_0
  193. b_12_5·b_11_1 + b_6_1·b_8_7·b_9_5 + b_4_2·b_8_7·b_11_1 + b_4_2·b_6_1·b_13_0
       + b_4_22·b_8_7·b_7_9 + b_4_02·b_4_23·b_3_0 + b_4_03·b_4_2·b_7_0
       + b_4_03·b_4_22·b_3_0 + b_2_0·b_4_02·b_4_22·b_5_0 + b_2_0·b_4_03·b_4_2·b_5_0
       + b_2_02·b_4_24·b_3_0 + b_2_02·b_4_03·b_4_2·b_3_0 + b_2_03·b_4_22·b_9_0
       + b_2_03·b_4_23·b_5_0 + b_2_03·b_4_0·b_4_2·b_9_0 + b_2_04·b_4_23·b_3_0
       + b_2_04·b_4_0·b_4_2·b_7_0 + b_2_04·b_4_02·b_4_2·b_3_0 + b_2_06·b_4_22·b_3_0
       + b_2_06·b_4_0·b_4_2·b_3_0 + b_8_7·c_8_2·b_7_9 + b_4_02·b_4_2·c_8_2·b_3_0
       + b_2_02·b_4_2·c_8_2·b_7_0 + b_2_02·b_4_0·b_4_2·c_8_2·b_3_0
       + b_2_04·b_4_2·c_8_2·b_3_0
  194. b_12_52 + b_6_1·b_8_7·b_10_2 + b_6_12·b_12_5 + b_4_2·b_8_7·b_12_5
       + b_4_2·b_6_12·b_8_7 + b_4_22·b_8_72 + b_4_22·b_6_1·b_10_2 + b_4_23·b_6_12
       + b_4_0·b_4_23·b_8_0 + b_4_02·b_4_22·b_8_0 + b_4_02·b_4_24 + b_4_03·b_4_2·b_8_0
       + b_4_04·b_4_22 + b_2_0·b_4_24·b_3_02 + b_2_0·b_4_24·b_6_1
       + b_2_0·b_4_0·b_4_23·b_3_02 + b_2_0·b_4_0·b_4_23·b_6_1 + b_2_0·b_4_04·b_3_02
       + b_2_02·b_4_23·b_8_0 + b_2_02·b_4_0·b_4_2·b_3_04 + b_2_02·b_4_0·b_4_22·b_8_0
       + b_2_02·b_4_0·b_4_24 + b_2_02·b_4_02·b_3_04 + b_2_02·b_4_02·b_4_2·b_8_0
       + b_2_02·b_4_03·b_8_0 + b_2_02·b_4_03·b_4_22 + b_2_03·b_4_23·b_6_1
       + b_2_03·b_4_0·b_4_22·b_3_02 + b_2_03·b_4_0·b_4_22·b_6_1
       + b_2_03·b_4_02·b_4_2·b_6_1 + b_2_03·b_4_03·b_3_02 + b_2_04·b_4_2·b_3_04
       + b_2_04·b_4_22·b_8_0 + b_2_04·b_4_24 + b_2_04·b_4_0·b_3_04
       + b_2_04·b_4_0·b_4_2·b_8_0 + b_2_04·b_4_02·b_8_0 + b_2_04·b_4_03·b_4_2
       + b_2_04·b_4_04 + b_2_05·b_4_0·b_4_2·b_3_02 + b_2_05·b_4_0·b_4_2·b_6_1
       + b_2_05·b_4_02·b_3_02 + b_2_06·b_4_2·b_8_0 + b_2_06·b_4_23
       + b_2_06·b_4_0·b_4_22 + b_2_07·b_4_2·b_6_1 + b_2_07·b_4_0·b_6_1 + b_2_010·b_4_2
       + b_2_010·b_4_0 + b_8_72·c_8_2 + b_4_03·b_4_2·c_8_2 + b_4_04·c_8_2
       + b_2_0·b_4_22·c_8_2·b_3_02 + b_2_0·b_4_0·b_4_2·c_8_2·b_3_02
       + b_2_0·b_4_02·c_8_2·b_3_02 + b_2_02·c_8_2·b_3_14 + b_2_02·c_8_2·b_3_04
       + b_2_02·b_4_2·b_8_0·c_8_2 + b_2_02·b_4_23·c_8_2 + b_2_02·b_4_0·b_8_0·c_8_2
       + b_2_02·b_4_02·b_4_2·c_8_2 + b_2_02·b_4_03·c_8_2 + b_2_03·c_8_2·b_3_1·b_7_0
       + b_2_03·b_4_2·b_6_1·c_8_2 + b_2_03·b_4_0·c_8_2·b_3_02 + b_2_04·b_8_0·c_8_2
       + b_2_04·b_4_02·c_8_2 + b_2_08·c_8_2
  195. b_11_1·b_13_0 + b_6_1·b_8_7·b_10_2 + b_4_2·b_8_7·b_12_5 + b_4_2·b_6_12·b_8_7
       + b_4_22·b_8_72 + b_4_22·b_6_1·b_10_2 + b_4_0·b_4_23·b_8_0 + b_4_03·b_4_2·b_8_0
       + b_4_03·b_4_23 + b_4_05·b_4_2 + b_2_0·b_4_24·b_6_1 + b_2_0·b_4_0·b_4_23·b_3_02
       + b_2_0·b_4_0·b_4_23·b_6_1 + b_2_0·b_4_02·b_4_22·b_3_02
       + b_2_0·b_4_02·b_4_22·b_6_1 + b_2_0·b_4_03·b_4_2·b_6_1
       + b_2_02·b_4_0·b_4_22·b_8_0 + b_2_02·b_4_02·b_4_2·b_8_0 + b_2_04·b_4_0·b_4_23
       + b_2_04·b_4_02·b_4_22 + b_8_72·c_8_2 + b_4_2·b_6_12·c_8_2
       + b_4_0·b_4_2·b_8_0·c_8_2 + b_4_03·b_4_2·c_8_2 + b_4_04·c_8_2
       + b_2_0·b_4_22·b_6_1·c_8_2 + b_2_0·b_4_0·b_4_2·b_6_1·c_8_2 + b_2_02·b_4_23·c_8_2
       + b_2_02·b_4_02·b_4_2·c_8_2 + b_2_04·b_4_22·c_8_2 + b_2_04·b_4_0·b_4_2·c_8_2
       + b_2_02·b_4_2·c_8_22
  196. b_12_5·b_13_0 + b_6_1·b_8_7·b_11_1 + b_6_12·b_13_0 + b_4_2·b_8_7·b_13_0
       + b_4_22·b_8_7·b_9_5 + b_4_22·b_6_1·b_11_1 + b_4_23·b_6_1·b_7_9
       + b_4_02·b_4_22·b_9_0 + b_4_03·b_4_22·b_5_0 + b_4_04·b_9_0 + b_4_04·b_4_2·b_5_0
       + b_2_0·b_4_02·b_4_23·b_3_0 + b_2_0·b_4_03·b_4_22·b_3_0 + b_2_0·b_4_05·b_3_0
       + b_2_02·b_4_23·b_9_0 + b_2_02·b_4_0·b_4_23·b_5_0
       + b_2_02·b_4_02·b_4_2·b_3_03 + b_2_02·b_4_04·b_5_0 + b_2_03·b_4_23·b_7_0
       + b_2_03·b_4_24·b_3_0 + b_2_03·b_4_02·b_4_2·b_7_0 + b_2_03·b_4_03·b_4_2·b_3_0
       + b_2_03·b_4_04·b_3_0 + b_2_04·b_4_23·b_5_0 + b_2_04·b_4_0·b_4_2·b_9_0
       + b_2_04·b_4_02·b_4_2·b_5_0 + b_2_04·b_4_03·b_5_0 + b_2_06·b_4_22·b_5_0
       + b_2_07·b_4_2·b_7_0 + b_2_09·b_4_2·b_3_0 + b_2_09·b_4_0·b_3_0 + b_8_7·c_8_2·b_9_5
       + b_4_2·b_6_1·c_8_2·b_7_9 + b_4_02·b_4_2·c_8_2·b_5_0 + b_4_03·c_8_2·b_5_0
       + b_2_0·b_4_0·b_4_2·c_8_2·b_7_0 + b_2_0·b_4_0·b_4_22·c_8_2·b_3_0
       + b_2_0·b_4_02·c_8_2·b_7_0 + b_2_02·b_4_2·c_8_2·b_3_03
       + b_2_02·b_4_22·c_8_2·b_5_0 + b_2_03·b_4_0·b_4_2·c_8_2·b_3_0
       + b_2_04·b_4_2·c_8_2·b_5_0 + b_2_04·b_4_0·c_8_2·b_5_0 + b_2_05·c_8_2·b_7_2
       + b_2_05·c_8_2·b_7_0 + b_2_05·b_4_2·c_8_2·b_3_0 + b_2_05·b_4_0·c_8_2·b_3_0
       + b_2_07·c_8_2·b_3_0
  197. b_13_02 + b_6_1·b_8_7·b_12_5 + b_4_2·b_6_1·b_8_72 + b_4_2·b_6_12·b_10_2
       + b_4_23·b_7_92 + b_4_0·b_4_24·b_3_02 + b_4_02·b_4_23·b_3_02
       + b_4_03·b_4_22·b_3_02 + b_2_0·b_4_0·b_4_23·b_8_0 + b_2_0·b_4_02·b_4_24
       + b_2_0·b_4_04·b_4_22 + b_2_0·b_4_05·b_4_2 + b_2_02·b_4_24·b_3_02
       + b_2_02·b_4_24·b_6_1 + b_2_02·b_4_0·b_4_23·b_6_1
       + b_2_02·b_4_02·b_4_22·b_3_02 + b_2_02·b_4_02·b_4_22·b_6_1
       + b_2_02·b_4_03·b_4_2·b_6_1 + b_2_02·b_4_04·b_3_02 + b_2_02·b_4_04·b_6_1
       + b_2_03·b_4_23·b_8_0 + b_2_03·b_4_25 + b_2_03·b_4_0·b_4_22·b_8_0
       + b_2_03·b_4_02·b_4_2·b_8_0 + b_2_03·b_4_02·b_4_23 + b_2_03·b_4_03·b_8_0
       + b_2_03·b_4_03·b_4_22 + b_2_03·b_4_04·b_4_2 + b_2_03·b_4_05
       + b_2_04·b_4_23·b_3_02 + b_2_04·b_4_23·b_6_1 + b_2_04·b_4_0·b_4_22·b_6_1
       + b_2_04·b_4_02·b_4_2·b_3_02 + b_2_04·b_4_03·b_6_1 + b_2_05·b_4_22·b_8_0
       + b_2_05·b_4_24 + b_2_05·b_4_0·b_4_23 + b_2_05·b_4_02·b_4_22
       + b_2_05·b_4_04 + b_2_06·b_4_22·b_3_02 + b_2_06·b_4_22·b_6_1
       + b_2_06·b_4_0·b_4_2·b_3_02 + b_2_06·b_4_0·b_4_2·b_6_1 + b_2_06·b_4_02·b_3_02
       + b_2_07·b_4_2·b_8_0 + b_2_08·b_4_2·b_3_02 + b_2_08·b_4_2·b_6_1
       + b_2_08·b_4_0·b_3_02 + b_2_09·b_4_0·b_4_2 + b_8_7·c_8_2·b_10_2
       + b_6_1·c_8_2·b_12_5 + b_4_2·c_8_2·b_7_92 + b_4_2·b_6_1·b_8_7·c_8_2
       + b_4_23·c_8_2·b_3_02 + b_4_02·b_4_2·c_8_2·b_3_02 + b_4_02·b_4_2·b_6_1·c_8_2
       + b_4_03·b_6_1·c_8_2 + b_2_0·b_4_0·b_4_23·c_8_2 + b_2_0·b_4_02·b_4_22·c_8_2
       + b_2_0·b_4_04·c_8_2 + b_2_02·b_4_02·c_8_2·b_3_02 + b_2_02·b_4_02·b_6_1·c_8_2
       + b_2_03·b_4_2·b_8_0·c_8_2 + b_2_03·b_4_0·b_4_22·c_8_2
       + b_2_04·b_4_2·c_8_2·b_3_02 + b_2_04·b_4_0·c_8_2·b_3_02
       + b_2_05·b_4_0·b_4_2·c_8_2 + b_2_05·b_4_02·c_8_2 + b_2_06·c_8_2·b_3_02
       + b_2_07·b_4_2·c_8_2 + b_2_07·b_4_0·c_8_2 + b_4_2·c_8_22·b_3_02
       + b_2_0·b_4_0·b_4_2·c_8_22 + b_2_02·c_8_22·b_3_12 + b_2_02·b_6_1·c_8_22
       + b_2_03·b_4_2·c_8_22 + b_2_05·c_8_22


About the group Ring generators Ring relations Completion information Restriction maps

Data used for the Hilbert-Poincaré test

  • We proved completion in degree 26 using the Hilbert-Poincaré criterion.
  • The completion test was perfect: It applied in the last degree in which a generator or relation was found.
  • The following is a filter regular homogeneous system of parameters:
    1. b_8_7 + b_8_0 + b_4_22 + b_4_02 + b_2_0·b_6_1 + b_2_02·b_4_2 + b_2_04 + c_8_2, an element of degree 8
    2. b_3_14 + b_3_04 + b_6_12 + b_4_2·b_8_7 + b_4_2·b_8_0 + b_2_02·b_8_0
         + b_2_02·b_4_22 + b_2_02·b_4_02 + b_2_03·b_6_1 + b_2_04·b_4_0 + b_4_2·c_8_2
         + b_4_0·c_8_2, an element of degree 12
    3. b_7_92 + b_6_1·b_8_7 + b_4_22·b_3_02 + b_4_0·b_4_2·b_6_1 + b_4_02·b_3_02
         + b_2_0·b_4_2·b_8_0 + b_2_0·b_4_0·b_4_22 + b_2_0·b_4_02·b_4_2 + b_2_0·b_4_03
         + b_2_02·b_4_2·b_3_02 + b_2_02·b_4_2·b_6_1 + b_2_02·b_4_0·b_3_02
         + b_2_03·b_4_0·b_4_2 + c_8_2·b_3_12 + c_8_2·b_3_02 + b_6_3·c_8_2 + b_2_0·b_4_2·c_8_2
         + b_2_0·b_4_0·c_8_2, an element of degree 14
    4. b_4_2 + b_4_0, an element of degree 4
  • A Duflot regular sequence is given by c_8_2.
  • The Raw Filter Degree Type of the filter regular HSOP is [-1, -1, 17, 28, 34].
  • Modifying the above filter regular HSOP, we obtained the following parameters:
    1. c_8_2, an element of degree 8
    2. b_4_2 + b_4_0 + b_2_02, an element of degree 4
    3. b_7_9 + b_4_2·b_3_0 + b_4_0·b_3_0, an element of degree 7
    4. b_3_12 + b_3_02 + b_6_1, an element of degree 6


About the group Ring generators Ring relations Completion information Restriction maps

Restriction maps

Expressing the generators as elements of H*(Syl2(M22); GF(2))

  1. b_2_0b_1_22 + b_1_02 + b_2_5
  2. a_3_2b_2_4·b_1_2
  3. b_3_1b_2_5·b_1_0
  4. b_3_0b_2_5·b_1_2
  5. b_4_2b_1_14 + b_4_13 + b_4_10 + b_4_9 + b_2_4·b_1_02 + b_2_42
  6. b_4_0b_1_2·b_3_8 + b_4_10 + b_2_4·b_1_02
  7. b_5_0b_4_10·b_1_2 + b_4_9·b_1_2 + b_2_5·b_3_8 + b_2_4·b_1_03
  8. b_6_3b_4_13·b_1_12 + b_4_9·b_1_12 + b_2_4·b_4_13 + b_2_4·b_4_9 + b_2_42·b_1_12
  9. b_6_1b_6_31 + b_6_30 + b_4_9·b_1_22 + b_2_5·b_4_13 + b_2_5·b_4_9 + b_2_4·b_4_13 + b_2_4·b_4_9
       + b_2_42·b_1_12
  10. b_7_9b_2_4·b_4_13·b_1_1 + b_2_4·b_4_9·b_1_1
  11. a_7_7b_2_4·b_5_21 + b_2_4·b_5_20 + b_2_4·b_5_17 + b_2_4·b_1_12·b_3_8 + b_2_42·b_3_8
  12. b_7_2b_2_5·b_5_17
  13. b_7_0b_4_13·b_1_23 + b_2_5·b_5_21 + b_2_5·b_4_9·b_1_2 + b_2_52·b_3_8 + b_2_42·b_1_03
  14. b_8_7b_4_10·b_4_13 + b_4_9·b_4_13 + b_2_4·b_4_9·b_1_12 + b_2_42·b_1_1·b_3_8
       + b_2_42·b_1_14 + b_2_43·b_1_12 + b_2_43·b_1_02
  15. c_8_2b_1_1·b_7_41 + b_8_52 + b_6_30·b_1_12 + b_4_13·b_1_1·b_3_8 + b_4_132
       + b_4_9·b_1_2·b_3_8 + b_4_9·b_1_24 + b_4_9·b_1_1·b_3_8 + b_4_9·b_1_14 + b_4_9·b_4_13
       + b_4_9·b_4_10 + b_2_5·b_1_2·b_5_21 + b_2_5·b_6_31 + b_2_5·b_6_30 + b_2_5·b_4_9·b_1_22
       + b_2_52·b_4_13 + b_2_52·b_4_10 + b_2_4·b_6_31 + b_2_4·b_4_13·b_1_12
       + b_2_4·b_4_9·b_1_12 + b_2_42·b_1_1·b_3_8 + b_2_42·b_1_14 + b_2_42·b_4_13
       + b_2_42·b_4_9 + b_2_43·b_1_12 + b_2_43·b_1_02 + c_8_55
  16. b_8_0b_1_2·b_7_41 + b_1_1·b_7_41 + b_8_54 + b_8_52 + b_6_30·b_1_12 + b_4_13·b_1_1·b_3_8
       + b_4_132 + b_4_9·b_1_2·b_3_8 + b_4_9·b_1_24 + b_4_9·b_1_1·b_3_8 + b_4_9·b_1_14
       + b_4_9·b_4_10 + b_2_5·b_1_2·b_5_21 + b_2_5·b_6_31 + b_2_5·b_6_30 + b_2_5·b_4_13·b_1_22
       + b_2_5·b_4_9·b_1_22 + b_2_52·b_4_13 + b_2_52·b_4_10 + b_2_52·b_4_9 + b_2_4·b_1_06
       + b_2_4·b_4_13·b_1_12 + b_2_4·b_4_9·b_1_12 + b_2_42·b_1_1·b_3_8 + b_2_42·b_1_04
  17. b_9_5b_4_9·b_4_13·b_1_1 + b_4_92·b_1_1 + b_2_4·b_4_13·b_3_8 + b_2_4·b_4_9·b_3_8
       + b_2_43·b_1_13
  18. b_9_1b_4_10·b_5_20 + b_4_9·b_4_10·b_1_2 + b_4_92·b_1_2 + b_2_5·b_4_9·b_3_8 + b_2_52·b_5_21
       + b_2_52·b_5_17 + b_2_52·b_4_13·b_1_2 + b_2_52·b_4_9·b_1_2 + b_2_53·b_3_8
       + b_2_42·b_1_05
  19. b_9_0b_4_10·b_5_21 + b_4_9·b_5_21 + b_4_9·b_5_20 + b_4_9·b_1_12·b_3_8 + b_4_9·b_4_13·b_1_2
       + b_4_92·b_1_1 + b_2_5·b_7_41 + b_2_52·b_5_21 + b_2_52·b_5_17 + b_2_52·b_4_13·b_1_2
       + b_2_52·b_4_9·b_1_2 + b_2_53·b_3_8 + b_2_4·b_6_30·b_1_0 + b_2_4·b_4_9·b_3_8
       + b_2_42·b_5_17 + b_2_42·b_4_9·b_1_1
  20. b_10_2b_4_13·b_1_1·b_5_21 + b_4_13·b_1_1·b_5_20 + b_4_13·b_6_30 + b_4_132·b_1_1·b_1_2
       + b_4_9·b_1_1·b_5_20 + b_2_5·b_4_132 + b_2_5·b_4_9·b_4_13 + b_2_4·b_8_52
       + b_2_4·b_6_30·b_1_02 + b_2_4·b_4_9·b_1_1·b_3_8 + b_2_42·b_1_13·b_3_8
       + b_2_42·b_6_30 + b_2_42·b_4_13·b_1_12 + b_2_42·b_4_9·b_1_12
       + b_2_43·b_1_1·b_3_8 + b_2_43·b_1_04 + b_2_43·b_4_9 + b_2_44·b_1_02
  21. b_11_1b_4_132·b_1_13 + b_4_9·b_4_13·b_1_13 + b_2_4·b_4_13·b_5_20 + b_2_4·b_4_9·b_5_20
       + b_2_4·b_4_92·b_1_1 + b_2_42·b_4_9·b_1_13 + b_2_43·b_1_12·b_3_8
       + b_2_43·b_1_15 + b_2_44·b_1_13
  22. b_12_5b_4_13·b_1_1·b_7_41 + b_4_13·b_8_54 + b_4_133 + b_4_9·b_8_52 + b_4_9·b_6_30·b_1_12
       + b_4_9·b_4_13·b_1_1·b_3_8 + b_4_9·b_4_132 + b_4_92·b_1_24 + b_4_92·b_1_1·b_3_8
       + b_4_92·b_4_10 + b_2_5·b_4_132·b_1_22 + b_2_5·b_4_9·b_6_31
       + b_2_5·b_4_9·b_4_10·b_1_22 + b_2_5·b_4_92·b_1_22 + b_2_52·b_8_54
       + b_2_52·b_8_52 + b_2_52·b_4_10·b_4_13 + b_2_52·b_4_92 + b_2_53·b_1_2·b_5_21
       + b_2_53·b_4_13·b_1_22 + b_2_53·b_4_10·b_1_22 + b_2_53·b_4_9·b_1_22
       + b_2_54·b_4_13 + b_2_54·b_4_10 + b_2_4·b_6_30·b_1_04 + b_2_4·b_4_132·b_1_12
       + b_2_4·b_4_9·b_1_16 + b_2_4·b_4_9·b_4_13·b_1_12 + b_2_42·b_1_15·b_3_8
       + b_2_42·b_1_18 + b_2_42·b_6_30·b_1_12 + b_2_42·b_6_30·b_1_02
       + b_2_42·b_4_13·b_1_1·b_3_8 + b_2_42·b_4_9·b_4_13 + b_2_43·b_1_13·b_3_8
       + b_2_43·b_1_16 + b_2_43·b_1_06 + b_2_44·b_1_1·b_3_8 + b_2_44·b_1_04
       + b_2_45·b_1_12 + b_2_45·b_1_02 + c_8_55·b_1_04 + b_2_52·c_8_55
  23. b_13_0b_4_132·b_1_12·b_3_8 + b_4_9·b_4_13·b_5_20 + b_4_9·b_4_13·b_1_12·b_3_8
       + b_4_92·b_5_20 + b_4_92·b_4_13·b_1_2 + b_4_92·b_4_10·b_1_2 + b_4_93·b_1_2
       + b_2_5·b_4_10·b_7_41 + b_2_5·b_4_9·b_4_10·b_3_8 + b_2_5·b_4_92·b_3_8
       + b_2_5·b_4_92·b_1_23 + b_2_52·b_4_13·b_5_21 + b_2_52·b_4_132·b_1_2
       + b_2_52·b_4_10·b_5_21 + b_2_52·b_4_10·b_4_13·b_1_2 + b_2_52·b_4_9·b_5_21
       + b_2_52·b_4_9·b_1_25 + b_2_53·b_4_10·b_3_8 + b_2_53·b_4_9·b_1_23
       + b_2_54·b_4_13·b_1_2 + b_2_54·b_4_10·b_1_2 + b_2_4·b_4_13·b_7_41
       + b_2_4·b_4_13·b_6_30·b_1_1 + b_2_4·b_4_132·b_3_8 + b_2_4·b_4_9·b_7_41
       + b_2_4·b_4_9·b_6_30·b_1_1 + b_2_4·b_4_9·b_4_13·b_1_13 + b_2_4·b_4_92·b_3_8
       + b_2_42·b_6_30·b_1_03 + b_2_42·b_4_13·b_5_20 + b_2_42·b_4_132·b_1_1
       + b_2_42·b_4_9·b_5_20 + b_2_42·b_4_9·b_1_15 + b_2_42·b_4_92·b_1_1
       + b_2_43·b_1_14·b_3_8 + b_2_43·b_6_30·b_1_1 + b_2_43·b_6_30·b_1_0
       + b_2_43·b_4_13·b_3_8 + b_2_43·b_4_9·b_1_13 + b_2_44·b_5_20 + b_2_44·b_5_17
       + b_2_44·b_1_12·b_3_8 + b_2_44·b_4_13·b_1_1 + b_2_44·b_4_9·b_1_1 + b_2_45·b_3_8
       + b_2_52·c_8_55·b_1_2

Restriction map to the greatest el. ab. subgp. in the centre of a Sylow subgroup, which is of rank 1

  1. b_2_00, an element of degree 2
  2. a_3_20, an element of degree 3
  3. b_3_10, an element of degree 3
  4. b_3_00, an element of degree 3
  5. b_4_20, an element of degree 4
  6. b_4_00, an element of degree 4
  7. b_5_00, an element of degree 5
  8. b_6_30, an element of degree 6
  9. b_6_10, an element of degree 6
  10. b_7_90, an element of degree 7
  11. a_7_70, an element of degree 7
  12. b_7_20, an element of degree 7
  13. b_7_00, an element of degree 7
  14. b_8_70, an element of degree 8
  15. c_8_2c_1_08, an element of degree 8
  16. b_8_00, an element of degree 8
  17. b_9_50, an element of degree 9
  18. b_9_10, an element of degree 9
  19. b_9_00, an element of degree 9
  20. b_10_20, an element of degree 10
  21. b_11_10, an element of degree 11
  22. b_12_50, an element of degree 12
  23. b_13_00, an element of degree 13

Restriction map to a maximal el. ab. subgp. of rank 3 in a Sylow subgroup

  1. b_2_0c_1_12, an element of degree 2
  2. a_3_20, an element of degree 3
  3. b_3_10, an element of degree 3
  4. b_3_00, an element of degree 3
  5. b_4_2c_1_24 + c_1_13·c_1_2, an element of degree 4
  6. b_4_0c_1_12·c_1_22 + c_1_13·c_1_2, an element of degree 4
  7. b_5_0c_1_13·c_1_22 + c_1_14·c_1_2, an element of degree 5
  8. b_6_30, an element of degree 6
  9. b_6_1c_1_0·c_1_13·c_1_22 + c_1_0·c_1_14·c_1_2 + c_1_02·c_1_12·c_1_22
       + c_1_02·c_1_13·c_1_2 + c_1_02·c_1_14 + c_1_04·c_1_12, an element of degree 6
  10. b_7_90, an element of degree 7
  11. a_7_70, an element of degree 7
  12. b_7_20, an element of degree 7
  13. b_7_0c_1_13·c_1_24 + c_1_15·c_1_22, an element of degree 7
  14. b_8_7c_1_12·c_1_26 + c_1_13·c_1_25 + c_1_14·c_1_24 + c_1_15·c_1_23, an element of degree 8
  15. c_8_2c_1_12·c_1_26 + c_1_13·c_1_25 + c_1_14·c_1_24 + c_1_15·c_1_23
       + c_1_0·c_1_13·c_1_24 + c_1_0·c_1_15·c_1_22 + c_1_02·c_1_14·c_1_22
       + c_1_02·c_1_15·c_1_2 + c_1_04·c_1_24 + c_1_04·c_1_13·c_1_2 + c_1_04·c_1_14
       + c_1_08, an element of degree 8
  16. b_8_0c_1_14·c_1_24 + c_1_17·c_1_2 + c_1_0·c_1_13·c_1_24 + c_1_0·c_1_16·c_1_2
       + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22 + c_1_02·c_1_16
       + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_13·c_1_2 + c_1_04·c_1_14, an element of degree 8
  17. b_9_50, an element of degree 9
  18. b_9_1c_1_15·c_1_24 + c_1_17·c_1_22, an element of degree 9
  19. b_9_0c_1_0·c_1_14·c_1_24 + c_1_0·c_1_16·c_1_22 + c_1_02·c_1_13·c_1_24
       + c_1_02·c_1_16·c_1_2 + c_1_04·c_1_13·c_1_22 + c_1_04·c_1_14·c_1_2, an element of degree 9
  20. b_10_2c_1_12·c_1_28 + c_1_14·c_1_26 + c_1_15·c_1_25 + c_1_17·c_1_23, an element of degree 10
  21. b_11_10, an element of degree 11
  22. b_12_5c_1_12·c_1_210 + c_1_13·c_1_29 + c_1_14·c_1_28 + c_1_19·c_1_23
       + c_1_0·c_1_13·c_1_28 + c_1_0·c_1_17·c_1_24 + c_1_0·c_1_19·c_1_22
       + c_1_0·c_1_110·c_1_2 + c_1_02·c_1_12·c_1_28 + c_1_02·c_1_14·c_1_26
       + c_1_02·c_1_15·c_1_25 + c_1_02·c_1_16·c_1_24 + c_1_02·c_1_17·c_1_23
       + c_1_02·c_1_19·c_1_2 + c_1_02·c_1_110 + c_1_04·c_1_12·c_1_26
       + c_1_04·c_1_13·c_1_25 + c_1_04·c_1_15·c_1_23 + c_1_04·c_1_16·c_1_22
       + c_1_08·c_1_14, an element of degree 12
  23. b_13_0c_1_0·c_1_16·c_1_26 + c_1_0·c_1_17·c_1_25 + c_1_0·c_1_18·c_1_24
       + c_1_0·c_1_19·c_1_23 + c_1_02·c_1_15·c_1_26 + c_1_02·c_1_16·c_1_25
       + c_1_02·c_1_18·c_1_23 + c_1_02·c_1_19·c_1_22 + c_1_04·c_1_15·c_1_24
       + c_1_04·c_1_17·c_1_22, an element of degree 13

Restriction map to a maximal el. ab. subgp. of rank 3 in a Sylow subgroup

  1. b_2_0c_1_22 + c_1_1·c_1_2 + c_1_12, an element of degree 2
  2. a_3_20, an element of degree 3
  3. b_3_1c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
  4. b_3_00, an element of degree 3
  5. b_4_20, an element of degree 4
  6. b_4_00, an element of degree 4
  7. b_5_00, an element of degree 5
  8. b_6_30, an element of degree 6
  9. b_6_1c_1_0·c_1_1·c_1_24 + c_1_0·c_1_14·c_1_2 + c_1_02·c_1_24
       + c_1_02·c_1_12·c_1_22 + c_1_02·c_1_14 + c_1_04·c_1_22 + c_1_04·c_1_1·c_1_2
       + c_1_04·c_1_12, an element of degree 6
  10. b_7_90, an element of degree 7
  11. a_7_70, an element of degree 7
  12. b_7_2c_1_0·c_1_12·c_1_24 + c_1_0·c_1_14·c_1_22 + c_1_02·c_1_1·c_1_24
       + c_1_02·c_1_14·c_1_2 + c_1_04·c_1_1·c_1_22 + c_1_04·c_1_12·c_1_2, an element of degree 7
  13. b_7_0c_1_0·c_1_12·c_1_24 + c_1_0·c_1_14·c_1_22 + c_1_02·c_1_1·c_1_24
       + c_1_02·c_1_14·c_1_2 + c_1_04·c_1_1·c_1_22 + c_1_04·c_1_12·c_1_2, an element of degree 7
  14. b_8_70, an element of degree 8
  15. c_8_2c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_24
       + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
  16. b_8_0c_1_0·c_1_1·c_1_26 + c_1_0·c_1_12·c_1_25 + c_1_0·c_1_13·c_1_24
       + c_1_0·c_1_14·c_1_23 + c_1_0·c_1_15·c_1_22 + c_1_0·c_1_16·c_1_2
       + c_1_02·c_1_26 + c_1_02·c_1_1·c_1_25 + c_1_02·c_1_13·c_1_23
       + c_1_02·c_1_15·c_1_2 + c_1_02·c_1_16 + c_1_04·c_1_24
       + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14, an element of degree 8
  17. b_9_50, an element of degree 9
  18. b_9_10, an element of degree 9
  19. b_9_00, an element of degree 9
  20. b_10_20, an element of degree 10
  21. b_11_10, an element of degree 11
  22. b_12_5c_1_0·c_1_1·c_1_210 + c_1_0·c_1_12·c_1_29 + c_1_0·c_1_13·c_1_28
       + c_1_0·c_1_18·c_1_23 + c_1_0·c_1_19·c_1_22 + c_1_0·c_1_110·c_1_2
       + c_1_02·c_1_210 + c_1_02·c_1_1·c_1_29 + c_1_02·c_1_12·c_1_28
       + c_1_02·c_1_14·c_1_26 + c_1_02·c_1_15·c_1_25 + c_1_02·c_1_16·c_1_24
       + c_1_02·c_1_18·c_1_22 + c_1_02·c_1_19·c_1_2 + c_1_02·c_1_110
       + c_1_04·c_1_12·c_1_26 + c_1_04·c_1_13·c_1_25 + c_1_04·c_1_15·c_1_23
       + c_1_04·c_1_16·c_1_22 + c_1_08·c_1_24 + c_1_08·c_1_12·c_1_22
       + c_1_08·c_1_14, an element of degree 12
  23. b_13_00, an element of degree 13

Restriction map to a maximal el. ab. subgp. of rank 4 in a Sylow subgroup

  1. b_2_00, an element of degree 2
  2. a_3_20, an element of degree 3
  3. b_3_10, an element of degree 3
  4. b_3_00, an element of degree 3
  5. b_4_2c_1_34 + c_1_22·c_1_32 + c_1_24 + c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3
       + c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22 + c_1_14, an element of degree 4
  6. b_4_00, an element of degree 4
  7. b_5_00, an element of degree 5
  8. b_6_3c_1_22·c_1_34 + c_1_24·c_1_32 + c_1_1·c_1_2·c_1_34 + c_1_1·c_1_24·c_1_3
       + c_1_12·c_1_34 + c_1_12·c_1_22·c_1_32 + c_1_12·c_1_24 + c_1_14·c_1_32
       + c_1_14·c_1_2·c_1_3 + c_1_14·c_1_22, an element of degree 6
  9. b_6_1c_1_22·c_1_34 + c_1_24·c_1_32 + c_1_1·c_1_2·c_1_34 + c_1_1·c_1_24·c_1_3
       + c_1_12·c_1_34 + c_1_12·c_1_22·c_1_32 + c_1_12·c_1_24 + c_1_14·c_1_32
       + c_1_14·c_1_2·c_1_3 + c_1_14·c_1_22, an element of degree 6
  10. b_7_9c_1_1·c_1_22·c_1_34 + c_1_1·c_1_24·c_1_32 + c_1_12·c_1_2·c_1_34
       + c_1_12·c_1_24·c_1_3 + c_1_14·c_1_2·c_1_32 + c_1_14·c_1_22·c_1_3, an element of degree 7
  11. a_7_70, an element of degree 7
  12. b_7_20, an element of degree 7
  13. b_7_00, an element of degree 7
  14. b_8_7c_1_22·c_1_36 + c_1_23·c_1_35 + c_1_25·c_1_33 + c_1_26·c_1_32
       + c_1_1·c_1_2·c_1_36 + c_1_1·c_1_22·c_1_35 + c_1_1·c_1_24·c_1_33
       + c_1_1·c_1_26·c_1_3 + c_1_12·c_1_36 + c_1_12·c_1_25·c_1_3 + c_1_12·c_1_26
       + c_1_13·c_1_35 + c_1_13·c_1_24·c_1_3 + c_1_13·c_1_25
       + c_1_14·c_1_22·c_1_32 + c_1_14·c_1_23·c_1_3 + c_1_15·c_1_33
       + c_1_15·c_1_22·c_1_3 + c_1_15·c_1_23 + c_1_16·c_1_32 + c_1_16·c_1_2·c_1_3
       + c_1_16·c_1_22 + c_1_0·c_1_1·c_1_22·c_1_34 + c_1_0·c_1_1·c_1_24·c_1_32
       + c_1_0·c_1_12·c_1_2·c_1_34 + c_1_0·c_1_12·c_1_24·c_1_3
       + c_1_0·c_1_14·c_1_2·c_1_32 + c_1_0·c_1_14·c_1_22·c_1_3, an element of degree 8
  15. c_8_2c_1_22·c_1_36 + c_1_23·c_1_35 + c_1_25·c_1_33 + c_1_26·c_1_32
       + c_1_1·c_1_2·c_1_36 + c_1_1·c_1_22·c_1_35 + c_1_1·c_1_24·c_1_33
       + c_1_1·c_1_26·c_1_3 + c_1_12·c_1_36 + c_1_12·c_1_25·c_1_3 + c_1_12·c_1_26
       + c_1_13·c_1_35 + c_1_13·c_1_24·c_1_3 + c_1_13·c_1_25
       + c_1_14·c_1_22·c_1_32 + c_1_14·c_1_23·c_1_3 + c_1_15·c_1_33
       + c_1_15·c_1_22·c_1_3 + c_1_15·c_1_23 + c_1_16·c_1_32 + c_1_16·c_1_2·c_1_3
       + c_1_16·c_1_22 + c_1_02·c_1_22·c_1_34 + c_1_02·c_1_24·c_1_32
       + c_1_02·c_1_1·c_1_2·c_1_34 + c_1_02·c_1_1·c_1_24·c_1_3
       + c_1_02·c_1_12·c_1_34 + c_1_02·c_1_12·c_1_22·c_1_32
       + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_32 + c_1_02·c_1_14·c_1_2·c_1_3
       + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_34 + c_1_04·c_1_22·c_1_32
       + c_1_04·c_1_24 + c_1_04·c_1_1·c_1_2·c_1_32 + c_1_04·c_1_1·c_1_22·c_1_3
       + c_1_04·c_1_12·c_1_32 + c_1_04·c_1_12·c_1_2·c_1_3 + c_1_04·c_1_12·c_1_22
       + c_1_04·c_1_14 + c_1_08, an element of degree 8
  16. b_8_00, an element of degree 8
  17. b_9_5c_1_23·c_1_36 + c_1_24·c_1_35 + c_1_25·c_1_34 + c_1_26·c_1_33
       + c_1_1·c_1_24·c_1_34 + c_1_1·c_1_26·c_1_32 + c_1_12·c_1_2·c_1_36
       + c_1_12·c_1_22·c_1_35 + c_1_12·c_1_24·c_1_33 + c_1_12·c_1_25·c_1_32
       + c_1_13·c_1_36 + c_1_13·c_1_24·c_1_32 + c_1_13·c_1_26 + c_1_14·c_1_35
       + c_1_14·c_1_23·c_1_32 + c_1_14·c_1_25 + c_1_15·c_1_34
       + c_1_15·c_1_22·c_1_32 + c_1_15·c_1_24 + c_1_16·c_1_33
       + c_1_16·c_1_2·c_1_32 + c_1_16·c_1_23 + c_1_02·c_1_1·c_1_22·c_1_34
       + c_1_02·c_1_1·c_1_24·c_1_32 + c_1_02·c_1_12·c_1_2·c_1_34
       + c_1_02·c_1_12·c_1_24·c_1_3 + c_1_02·c_1_14·c_1_2·c_1_32
       + c_1_02·c_1_14·c_1_22·c_1_3, an element of degree 9
  18. b_9_10, an element of degree 9
  19. b_9_00, an element of degree 9
  20. b_10_2c_1_1·c_1_22·c_1_37 + c_1_1·c_1_25·c_1_34 + c_1_1·c_1_26·c_1_33
       + c_1_1·c_1_27·c_1_32 + c_1_12·c_1_2·c_1_37 + c_1_12·c_1_25·c_1_33
       + c_1_12·c_1_26·c_1_32 + c_1_12·c_1_27·c_1_3 + c_1_13·c_1_23·c_1_34
       + c_1_13·c_1_24·c_1_33 + c_1_14·c_1_22·c_1_34 + c_1_14·c_1_23·c_1_33
       + c_1_15·c_1_2·c_1_34 + c_1_15·c_1_22·c_1_33 + c_1_15·c_1_23·c_1_32
       + c_1_15·c_1_24·c_1_3 + c_1_16·c_1_2·c_1_33 + c_1_16·c_1_23·c_1_3
       + c_1_17·c_1_2·c_1_32 + c_1_17·c_1_22·c_1_3 + c_1_0·c_1_23·c_1_36
       + c_1_0·c_1_24·c_1_35 + c_1_0·c_1_25·c_1_34 + c_1_0·c_1_26·c_1_33
       + c_1_0·c_1_1·c_1_24·c_1_34 + c_1_0·c_1_1·c_1_26·c_1_32
       + c_1_0·c_1_12·c_1_2·c_1_36 + c_1_0·c_1_12·c_1_22·c_1_35
       + c_1_0·c_1_12·c_1_24·c_1_33 + c_1_0·c_1_12·c_1_25·c_1_32
       + c_1_0·c_1_13·c_1_36 + c_1_0·c_1_13·c_1_24·c_1_32 + c_1_0·c_1_13·c_1_26
       + c_1_0·c_1_14·c_1_35 + c_1_0·c_1_14·c_1_23·c_1_32 + c_1_0·c_1_14·c_1_25
       + c_1_0·c_1_15·c_1_34 + c_1_0·c_1_15·c_1_22·c_1_32 + c_1_0·c_1_15·c_1_24
       + c_1_0·c_1_16·c_1_33 + c_1_0·c_1_16·c_1_2·c_1_32 + c_1_0·c_1_16·c_1_23
       + c_1_02·c_1_22·c_1_36 + c_1_02·c_1_23·c_1_35 + c_1_02·c_1_25·c_1_33
       + c_1_02·c_1_26·c_1_32 + c_1_02·c_1_1·c_1_2·c_1_36
       + c_1_02·c_1_1·c_1_22·c_1_35 + c_1_02·c_1_1·c_1_24·c_1_33
       + c_1_02·c_1_1·c_1_26·c_1_3 + c_1_02·c_1_12·c_1_36
       + c_1_02·c_1_12·c_1_25·c_1_3 + c_1_02·c_1_12·c_1_26 + c_1_02·c_1_13·c_1_35
       + c_1_02·c_1_13·c_1_24·c_1_3 + c_1_02·c_1_13·c_1_25
       + c_1_02·c_1_14·c_1_22·c_1_32 + c_1_02·c_1_14·c_1_23·c_1_3
       + c_1_02·c_1_15·c_1_33 + c_1_02·c_1_15·c_1_22·c_1_3 + c_1_02·c_1_15·c_1_23
       + c_1_02·c_1_16·c_1_32 + c_1_02·c_1_16·c_1_2·c_1_3 + c_1_02·c_1_16·c_1_22
       + c_1_03·c_1_1·c_1_22·c_1_34 + c_1_03·c_1_1·c_1_24·c_1_32
       + c_1_03·c_1_12·c_1_2·c_1_34 + c_1_03·c_1_12·c_1_24·c_1_3
       + c_1_03·c_1_14·c_1_2·c_1_32 + c_1_03·c_1_14·c_1_22·c_1_3
       + c_1_04·c_1_22·c_1_34 + c_1_04·c_1_24·c_1_32 + c_1_04·c_1_1·c_1_2·c_1_34
       + c_1_04·c_1_1·c_1_24·c_1_3 + c_1_04·c_1_12·c_1_34
       + c_1_04·c_1_12·c_1_22·c_1_32 + c_1_04·c_1_12·c_1_24
       + c_1_04·c_1_14·c_1_32 + c_1_04·c_1_14·c_1_2·c_1_3 + c_1_04·c_1_14·c_1_22, an element of degree 10
  21. b_11_1c_1_23·c_1_38 + c_1_25·c_1_36 + c_1_26·c_1_35 + c_1_28·c_1_33
       + c_1_1·c_1_22·c_1_38 + c_1_1·c_1_26·c_1_34 + c_1_12·c_1_25·c_1_34
       + c_1_12·c_1_28·c_1_3 + c_1_13·c_1_38 + c_1_13·c_1_24·c_1_34
       + c_1_13·c_1_28 + c_1_14·c_1_2·c_1_36 + c_1_14·c_1_22·c_1_35
       + c_1_14·c_1_23·c_1_34 + c_1_14·c_1_24·c_1_33 + c_1_15·c_1_36
       + c_1_15·c_1_22·c_1_34 + c_1_15·c_1_26 + c_1_16·c_1_35
       + c_1_16·c_1_2·c_1_34 + c_1_16·c_1_25 + c_1_18·c_1_33 + c_1_18·c_1_22·c_1_3
       + c_1_18·c_1_23 + c_1_04·c_1_1·c_1_22·c_1_34 + c_1_04·c_1_1·c_1_24·c_1_32
       + c_1_04·c_1_12·c_1_2·c_1_34 + c_1_04·c_1_12·c_1_24·c_1_3
       + c_1_04·c_1_14·c_1_2·c_1_32 + c_1_04·c_1_14·c_1_22·c_1_3, an element of degree 11
  22. b_12_5c_1_22·c_1_310 + c_1_23·c_1_39 + c_1_29·c_1_33 + c_1_210·c_1_32
       + c_1_1·c_1_2·c_1_310 + c_1_1·c_1_24·c_1_37 + c_1_1·c_1_26·c_1_35
       + c_1_1·c_1_27·c_1_34 + c_1_1·c_1_29·c_1_32 + c_1_1·c_1_210·c_1_3
       + c_1_12·c_1_310 + c_1_12·c_1_2·c_1_39 + c_1_12·c_1_25·c_1_35
       + c_1_12·c_1_28·c_1_32 + c_1_12·c_1_210 + c_1_13·c_1_39
       + c_1_13·c_1_24·c_1_35 + c_1_13·c_1_25·c_1_34 + c_1_13·c_1_28·c_1_3
       + c_1_13·c_1_29 + c_1_14·c_1_2·c_1_37 + c_1_14·c_1_23·c_1_35
       + c_1_14·c_1_26·c_1_32 + c_1_14·c_1_27·c_1_3 + c_1_15·c_1_22·c_1_35
       + c_1_15·c_1_25·c_1_32 + c_1_16·c_1_2·c_1_35 + c_1_16·c_1_22·c_1_34
       + c_1_16·c_1_24·c_1_32 + c_1_16·c_1_25·c_1_3 + c_1_17·c_1_2·c_1_34
       + c_1_17·c_1_24·c_1_3 + c_1_18·c_1_2·c_1_33 + c_1_18·c_1_22·c_1_32
       + c_1_19·c_1_33 + c_1_19·c_1_2·c_1_32 + c_1_19·c_1_23 + c_1_110·c_1_32
       + c_1_110·c_1_2·c_1_3 + c_1_110·c_1_22 + c_1_0·c_1_23·c_1_38
       + c_1_0·c_1_25·c_1_36 + c_1_0·c_1_26·c_1_35 + c_1_0·c_1_28·c_1_33
       + c_1_0·c_1_1·c_1_22·c_1_38 + c_1_0·c_1_1·c_1_26·c_1_34
       + c_1_0·c_1_12·c_1_25·c_1_34 + c_1_0·c_1_12·c_1_28·c_1_3
       + c_1_0·c_1_13·c_1_38 + c_1_0·c_1_13·c_1_24·c_1_34 + c_1_0·c_1_13·c_1_28
       + c_1_0·c_1_14·c_1_2·c_1_36 + c_1_0·c_1_14·c_1_22·c_1_35
       + c_1_0·c_1_14·c_1_23·c_1_34 + c_1_0·c_1_14·c_1_24·c_1_33
       + c_1_0·c_1_15·c_1_36 + c_1_0·c_1_15·c_1_22·c_1_34 + c_1_0·c_1_15·c_1_26
       + c_1_0·c_1_16·c_1_35 + c_1_0·c_1_16·c_1_2·c_1_34 + c_1_0·c_1_16·c_1_25
       + c_1_0·c_1_18·c_1_33 + c_1_0·c_1_18·c_1_22·c_1_3 + c_1_0·c_1_18·c_1_23
       + c_1_02·c_1_22·c_1_38 + c_1_02·c_1_28·c_1_32 + c_1_02·c_1_1·c_1_2·c_1_38
       + c_1_02·c_1_1·c_1_28·c_1_3 + c_1_02·c_1_12·c_1_38
       + c_1_02·c_1_12·c_1_24·c_1_34 + c_1_02·c_1_12·c_1_28
       + c_1_02·c_1_14·c_1_22·c_1_34 + c_1_02·c_1_14·c_1_24·c_1_32
       + c_1_02·c_1_18·c_1_32 + c_1_02·c_1_18·c_1_2·c_1_3 + c_1_02·c_1_18·c_1_22
       + c_1_04·c_1_22·c_1_36 + c_1_04·c_1_23·c_1_35 + c_1_04·c_1_25·c_1_33
       + c_1_04·c_1_26·c_1_32 + c_1_04·c_1_1·c_1_2·c_1_36
       + c_1_04·c_1_1·c_1_22·c_1_35 + c_1_04·c_1_1·c_1_24·c_1_33
       + c_1_04·c_1_1·c_1_26·c_1_3 + c_1_04·c_1_12·c_1_36
       + c_1_04·c_1_12·c_1_25·c_1_3 + c_1_04·c_1_12·c_1_26 + c_1_04·c_1_13·c_1_35
       + c_1_04·c_1_13·c_1_24·c_1_3 + c_1_04·c_1_13·c_1_25
       + c_1_04·c_1_14·c_1_22·c_1_32 + c_1_04·c_1_14·c_1_23·c_1_3
       + c_1_04·c_1_15·c_1_33 + c_1_04·c_1_15·c_1_22·c_1_3 + c_1_04·c_1_15·c_1_23
       + c_1_04·c_1_16·c_1_32 + c_1_04·c_1_16·c_1_2·c_1_3 + c_1_04·c_1_16·c_1_22
       + c_1_05·c_1_1·c_1_22·c_1_34 + c_1_05·c_1_1·c_1_24·c_1_32
       + c_1_05·c_1_12·c_1_2·c_1_34 + c_1_05·c_1_12·c_1_24·c_1_3
       + c_1_05·c_1_14·c_1_2·c_1_32 + c_1_05·c_1_14·c_1_22·c_1_3, an element of degree 12
  23. b_13_0c_1_1·c_1_22·c_1_310 + c_1_1·c_1_24·c_1_38 + c_1_1·c_1_26·c_1_36
       + c_1_1·c_1_210·c_1_32 + c_1_12·c_1_2·c_1_310 + c_1_12·c_1_24·c_1_37
       + c_1_12·c_1_25·c_1_36 + c_1_12·c_1_27·c_1_34 + c_1_12·c_1_28·c_1_33
       + c_1_12·c_1_210·c_1_3 + c_1_13·c_1_24·c_1_36 + c_1_13·c_1_26·c_1_34
       + c_1_14·c_1_2·c_1_38 + c_1_14·c_1_22·c_1_37 + c_1_14·c_1_23·c_1_36
       + c_1_14·c_1_25·c_1_34 + c_1_14·c_1_27·c_1_32 + c_1_14·c_1_28·c_1_3
       + c_1_15·c_1_22·c_1_36 + c_1_15·c_1_26·c_1_32 + c_1_16·c_1_2·c_1_36
       + c_1_16·c_1_26·c_1_3 + c_1_17·c_1_22·c_1_34 + c_1_17·c_1_24·c_1_32
       + c_1_18·c_1_22·c_1_33 + c_1_18·c_1_23·c_1_32 + c_1_110·c_1_2·c_1_32
       + c_1_110·c_1_22·c_1_3 + c_1_0·c_1_24·c_1_38 + c_1_0·c_1_28·c_1_34
       + c_1_0·c_1_12·c_1_22·c_1_38 + c_1_0·c_1_12·c_1_28·c_1_32
       + c_1_0·c_1_14·c_1_38 + c_1_0·c_1_14·c_1_24·c_1_34 + c_1_0·c_1_14·c_1_28
       + c_1_0·c_1_18·c_1_34 + c_1_0·c_1_18·c_1_22·c_1_32 + c_1_0·c_1_18·c_1_24
       + c_1_02·c_1_23·c_1_38 + c_1_02·c_1_25·c_1_36 + c_1_02·c_1_26·c_1_35
       + c_1_02·c_1_28·c_1_33 + c_1_02·c_1_1·c_1_22·c_1_38
       + c_1_02·c_1_1·c_1_26·c_1_34 + c_1_02·c_1_12·c_1_25·c_1_34
       + c_1_02·c_1_12·c_1_28·c_1_3 + c_1_02·c_1_13·c_1_38
       + c_1_02·c_1_13·c_1_24·c_1_34 + c_1_02·c_1_13·c_1_28
       + c_1_02·c_1_14·c_1_2·c_1_36 + c_1_02·c_1_14·c_1_22·c_1_35
       + c_1_02·c_1_14·c_1_23·c_1_34 + c_1_02·c_1_14·c_1_24·c_1_33
       + c_1_02·c_1_15·c_1_36 + c_1_02·c_1_15·c_1_22·c_1_34
       + c_1_02·c_1_15·c_1_26 + c_1_02·c_1_16·c_1_35
       + c_1_02·c_1_16·c_1_2·c_1_34 + c_1_02·c_1_16·c_1_25
       + c_1_02·c_1_18·c_1_33 + c_1_02·c_1_18·c_1_22·c_1_3 + c_1_02·c_1_18·c_1_23
       + c_1_04·c_1_23·c_1_36 + c_1_04·c_1_24·c_1_35 + c_1_04·c_1_25·c_1_34
       + c_1_04·c_1_26·c_1_33 + c_1_04·c_1_1·c_1_24·c_1_34
       + c_1_04·c_1_1·c_1_26·c_1_32 + c_1_04·c_1_12·c_1_2·c_1_36
       + c_1_04·c_1_12·c_1_22·c_1_35 + c_1_04·c_1_12·c_1_24·c_1_33
       + c_1_04·c_1_12·c_1_25·c_1_32 + c_1_04·c_1_13·c_1_36
       + c_1_04·c_1_13·c_1_24·c_1_32 + c_1_04·c_1_13·c_1_26
       + c_1_04·c_1_14·c_1_35 + c_1_04·c_1_14·c_1_23·c_1_32
       + c_1_04·c_1_14·c_1_25 + c_1_04·c_1_15·c_1_34
       + c_1_04·c_1_15·c_1_22·c_1_32 + c_1_04·c_1_15·c_1_24
       + c_1_04·c_1_16·c_1_33 + c_1_04·c_1_16·c_1_2·c_1_32
       + c_1_04·c_1_16·c_1_23 + c_1_06·c_1_1·c_1_22·c_1_34
       + c_1_06·c_1_1·c_1_24·c_1_32 + c_1_06·c_1_12·c_1_2·c_1_34
       + c_1_06·c_1_12·c_1_24·c_1_3 + c_1_06·c_1_14·c_1_2·c_1_32
       + c_1_06·c_1_14·c_1_22·c_1_3, an element of degree 13

Restriction map to a maximal el. ab. subgp. of rank 4 in a Sylow subgroup

  1. b_2_0c_1_22 + c_1_1·c_1_2 + c_1_12, an element of degree 2
  2. a_3_20, an element of degree 3
  3. b_3_10, an element of degree 3
  4. b_3_0c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
  5. b_4_2c_1_34 + c_1_23·c_1_3 + c_1_1·c_1_22·c_1_3 + c_1_13·c_1_3 + c_1_0·c_1_1·c_1_22
       + c_1_0·c_1_12·c_1_2, an element of degree 4
  6. b_4_0c_1_22·c_1_32 + c_1_23·c_1_3 + c_1_1·c_1_2·c_1_32 + c_1_12·c_1_32
       + c_1_12·c_1_2·c_1_3 + c_1_13·c_1_3 + c_1_0·c_1_1·c_1_22 + c_1_0·c_1_12·c_1_2, an element of degree 4
  7. b_5_0c_1_23·c_1_32 + c_1_24·c_1_3 + c_1_1·c_1_22·c_1_32 + c_1_12·c_1_22·c_1_3
       + c_1_13·c_1_32 + c_1_14·c_1_3 + c_1_02·c_1_1·c_1_22 + c_1_02·c_1_12·c_1_2, an element of degree 5
  8. b_6_30, an element of degree 6
  9. b_6_1c_1_1·c_1_22·c_1_33 + c_1_1·c_1_24·c_1_3 + c_1_12·c_1_2·c_1_33
       + c_1_14·c_1_2·c_1_3 + c_1_0·c_1_23·c_1_32 + c_1_0·c_1_24·c_1_3
       + c_1_0·c_1_1·c_1_22·c_1_32 + c_1_0·c_1_12·c_1_22·c_1_3 + c_1_0·c_1_13·c_1_32
       + c_1_0·c_1_14·c_1_3 + c_1_02·c_1_22·c_1_32 + c_1_02·c_1_23·c_1_3
       + c_1_02·c_1_24 + c_1_02·c_1_1·c_1_2·c_1_32 + c_1_02·c_1_12·c_1_32
       + c_1_02·c_1_12·c_1_2·c_1_3 + c_1_02·c_1_12·c_1_22 + c_1_02·c_1_13·c_1_3
       + c_1_02·c_1_14 + c_1_03·c_1_1·c_1_22 + c_1_03·c_1_12·c_1_2 + c_1_04·c_1_22
       + c_1_04·c_1_1·c_1_2 + c_1_04·c_1_12, an element of degree 6
  10. b_7_90, an element of degree 7
  11. a_7_70, an element of degree 7
  12. b_7_2c_1_1·c_1_24·c_1_32 + c_1_1·c_1_25·c_1_3 + c_1_12·c_1_24·c_1_3
       + c_1_13·c_1_23·c_1_3 + c_1_14·c_1_2·c_1_32 + c_1_15·c_1_2·c_1_3
       + c_1_0·c_1_12·c_1_24 + c_1_0·c_1_14·c_1_22, an element of degree 7
  13. b_7_0c_1_23·c_1_34 + c_1_25·c_1_32 + c_1_1·c_1_24·c_1_32 + c_1_1·c_1_25·c_1_3
       + c_1_12·c_1_2·c_1_34 + c_1_12·c_1_24·c_1_3 + c_1_13·c_1_34
       + c_1_13·c_1_23·c_1_3 + c_1_15·c_1_32 + c_1_15·c_1_2·c_1_3
       + c_1_0·c_1_12·c_1_24 + c_1_0·c_1_14·c_1_22 + c_1_02·c_1_1·c_1_24
       + c_1_02·c_1_14·c_1_2 + c_1_04·c_1_1·c_1_22 + c_1_04·c_1_12·c_1_2, an element of degree 7
  14. b_8_7c_1_22·c_1_36 + c_1_23·c_1_35 + c_1_24·c_1_34 + c_1_25·c_1_33
       + c_1_1·c_1_2·c_1_36 + c_1_1·c_1_25·c_1_32 + c_1_12·c_1_36
       + c_1_12·c_1_2·c_1_35 + c_1_12·c_1_22·c_1_34 + c_1_12·c_1_24·c_1_32
       + c_1_13·c_1_35 + c_1_13·c_1_23·c_1_32 + c_1_14·c_1_34
       + c_1_14·c_1_2·c_1_33 + c_1_15·c_1_33 + c_1_15·c_1_2·c_1_32
       + c_1_0·c_1_1·c_1_22·c_1_34 + c_1_0·c_1_1·c_1_24·c_1_32
       + c_1_0·c_1_12·c_1_2·c_1_34 + c_1_0·c_1_12·c_1_24·c_1_3
       + c_1_0·c_1_14·c_1_2·c_1_32 + c_1_0·c_1_14·c_1_22·c_1_3, an element of degree 8
  15. c_8_2c_1_22·c_1_36 + c_1_23·c_1_35 + c_1_24·c_1_34 + c_1_25·c_1_33
       + c_1_1·c_1_2·c_1_36 + c_1_1·c_1_22·c_1_35 + c_1_1·c_1_24·c_1_33
       + c_1_1·c_1_26·c_1_3 + c_1_12·c_1_36 + c_1_12·c_1_22·c_1_34
       + c_1_12·c_1_25·c_1_3 + c_1_13·c_1_35 + c_1_13·c_1_24·c_1_3 + c_1_14·c_1_34
       + c_1_14·c_1_23·c_1_3 + c_1_15·c_1_33 + c_1_15·c_1_22·c_1_3
       + c_1_16·c_1_2·c_1_3 + c_1_0·c_1_23·c_1_34 + c_1_0·c_1_25·c_1_32
       + c_1_0·c_1_1·c_1_22·c_1_34 + c_1_0·c_1_1·c_1_24·c_1_32
       + c_1_0·c_1_12·c_1_24·c_1_3 + c_1_0·c_1_13·c_1_34 + c_1_0·c_1_14·c_1_22·c_1_3
       + c_1_0·c_1_15·c_1_32 + c_1_02·c_1_24·c_1_32 + c_1_02·c_1_25·c_1_3
       + c_1_02·c_1_1·c_1_24·c_1_3 + c_1_02·c_1_12·c_1_22·c_1_32
       + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_32 + c_1_02·c_1_14·c_1_22
       + c_1_02·c_1_15·c_1_3 + c_1_03·c_1_1·c_1_24 + c_1_03·c_1_14·c_1_2
       + c_1_04·c_1_34 + c_1_04·c_1_23·c_1_3 + c_1_04·c_1_24
       + c_1_04·c_1_1·c_1_22·c_1_3 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_13·c_1_3
       + c_1_04·c_1_14 + c_1_05·c_1_1·c_1_22 + c_1_05·c_1_12·c_1_2 + c_1_08, an element of degree 8
  16. b_8_0c_1_24·c_1_34 + c_1_27·c_1_3 + c_1_1·c_1_22·c_1_35 + c_1_1·c_1_25·c_1_32
       + c_1_1·c_1_26·c_1_3 + c_1_12·c_1_2·c_1_35 + c_1_12·c_1_22·c_1_34
       + c_1_12·c_1_24·c_1_32 + c_1_12·c_1_25·c_1_3 + c_1_13·c_1_23·c_1_32
       + c_1_14·c_1_34 + c_1_14·c_1_23·c_1_3 + c_1_15·c_1_2·c_1_32 + c_1_17·c_1_3
       + c_1_0·c_1_23·c_1_34 + c_1_0·c_1_26·c_1_3 + c_1_0·c_1_1·c_1_22·c_1_34
       + c_1_0·c_1_1·c_1_24·c_1_32 + c_1_0·c_1_1·c_1_25·c_1_3 + c_1_0·c_1_1·c_1_26
       + c_1_0·c_1_12·c_1_24·c_1_3 + c_1_0·c_1_12·c_1_25 + c_1_0·c_1_13·c_1_34
       + c_1_0·c_1_13·c_1_23·c_1_3 + c_1_0·c_1_13·c_1_24 + c_1_0·c_1_14·c_1_2·c_1_32
       + c_1_0·c_1_14·c_1_22·c_1_3 + c_1_0·c_1_14·c_1_23 + c_1_0·c_1_15·c_1_2·c_1_3
       + c_1_0·c_1_15·c_1_22 + c_1_0·c_1_16·c_1_3 + c_1_0·c_1_16·c_1_2
       + c_1_02·c_1_22·c_1_34 + c_1_02·c_1_24·c_1_32 + c_1_02·c_1_26
       + c_1_02·c_1_1·c_1_2·c_1_34 + c_1_02·c_1_1·c_1_24·c_1_3 + c_1_02·c_1_1·c_1_25
       + c_1_02·c_1_12·c_1_34 + c_1_02·c_1_12·c_1_22·c_1_32
       + c_1_02·c_1_13·c_1_23 + c_1_02·c_1_14·c_1_32 + c_1_02·c_1_14·c_1_2·c_1_3
       + c_1_02·c_1_15·c_1_2 + c_1_02·c_1_16 + c_1_04·c_1_22·c_1_32
       + c_1_04·c_1_23·c_1_3 + c_1_04·c_1_24 + c_1_04·c_1_1·c_1_2·c_1_32
       + c_1_04·c_1_12·c_1_32 + c_1_04·c_1_12·c_1_2·c_1_3 + c_1_04·c_1_12·c_1_22
       + c_1_04·c_1_13·c_1_3 + c_1_04·c_1_14 + c_1_05·c_1_1·c_1_22
       + c_1_05·c_1_12·c_1_2, an element of degree 8
  17. b_9_50, an element of degree 9
  18. b_9_1c_1_25·c_1_34 + c_1_27·c_1_32 + c_1_12·c_1_26·c_1_3 + c_1_13·c_1_24·c_1_32
       + c_1_13·c_1_25·c_1_3 + c_1_14·c_1_2·c_1_34 + c_1_15·c_1_34
       + c_1_15·c_1_22·c_1_32 + c_1_15·c_1_23·c_1_3 + c_1_16·c_1_2·c_1_32
       + c_1_16·c_1_22·c_1_3 + c_1_17·c_1_32 + c_1_02·c_1_1·c_1_26
       + c_1_02·c_1_12·c_1_25 + c_1_02·c_1_13·c_1_24 + c_1_02·c_1_14·c_1_23
       + c_1_02·c_1_15·c_1_22 + c_1_02·c_1_16·c_1_2 + c_1_04·c_1_1·c_1_24
       + c_1_04·c_1_14·c_1_2, an element of degree 9
  19. b_9_0c_1_1·c_1_22·c_1_36 + c_1_1·c_1_27·c_1_3 + c_1_12·c_1_2·c_1_36
       + c_1_12·c_1_24·c_1_33 + c_1_12·c_1_26·c_1_3 + c_1_14·c_1_22·c_1_33
       + c_1_15·c_1_23·c_1_3 + c_1_17·c_1_2·c_1_3 + c_1_0·c_1_24·c_1_34
       + c_1_0·c_1_26·c_1_32 + c_1_0·c_1_12·c_1_22·c_1_34 + c_1_0·c_1_12·c_1_26
       + c_1_0·c_1_13·c_1_25 + c_1_0·c_1_14·c_1_34 + c_1_0·c_1_14·c_1_22·c_1_32
       + c_1_0·c_1_15·c_1_23 + c_1_0·c_1_16·c_1_32 + c_1_0·c_1_16·c_1_22
       + c_1_02·c_1_23·c_1_34 + c_1_02·c_1_26·c_1_3 + c_1_02·c_1_1·c_1_24·c_1_32
       + c_1_02·c_1_12·c_1_2·c_1_34 + c_1_02·c_1_12·c_1_24·c_1_3
       + c_1_02·c_1_13·c_1_34 + c_1_02·c_1_14·c_1_2·c_1_32 + c_1_02·c_1_16·c_1_3
       + c_1_03·c_1_12·c_1_24 + c_1_03·c_1_14·c_1_22 + c_1_04·c_1_23·c_1_32
       + c_1_04·c_1_24·c_1_3 + c_1_04·c_1_1·c_1_22·c_1_32 + c_1_04·c_1_1·c_1_24
       + c_1_04·c_1_12·c_1_22·c_1_3 + c_1_04·c_1_13·c_1_32 + c_1_04·c_1_14·c_1_3
       + c_1_04·c_1_14·c_1_2 + c_1_06·c_1_1·c_1_22 + c_1_06·c_1_12·c_1_2, an element of degree 9
  20. b_10_2c_1_22·c_1_38 + c_1_24·c_1_36 + c_1_25·c_1_35 + c_1_27·c_1_33
       + c_1_1·c_1_2·c_1_38 + c_1_1·c_1_24·c_1_35 + c_1_1·c_1_26·c_1_33
       + c_1_1·c_1_27·c_1_32 + c_1_12·c_1_38 + c_1_12·c_1_22·c_1_36
       + c_1_12·c_1_25·c_1_33 + c_1_12·c_1_26·c_1_32 + c_1_14·c_1_36
       + c_1_14·c_1_23·c_1_33 + c_1_15·c_1_35 + c_1_15·c_1_23·c_1_32
       + c_1_17·c_1_33 + c_1_17·c_1_2·c_1_32 + c_1_0·c_1_1·c_1_24·c_1_34
       + c_1_0·c_1_1·c_1_26·c_1_32 + c_1_0·c_1_12·c_1_25·c_1_32
       + c_1_0·c_1_12·c_1_26·c_1_3 + c_1_0·c_1_13·c_1_24·c_1_32
       + c_1_0·c_1_13·c_1_25·c_1_3 + c_1_0·c_1_14·c_1_2·c_1_34
       + c_1_0·c_1_14·c_1_23·c_1_32 + c_1_0·c_1_15·c_1_22·c_1_32
       + c_1_0·c_1_15·c_1_23·c_1_3 + c_1_0·c_1_16·c_1_2·c_1_32
       + c_1_0·c_1_16·c_1_22·c_1_3, an element of degree 10
  21. b_11_10, an element of degree 11
  22. b_12_5c_1_22·c_1_310 + c_1_23·c_1_39 + c_1_24·c_1_38 + c_1_29·c_1_33
       + c_1_1·c_1_2·c_1_310 + c_1_1·c_1_22·c_1_39 + c_1_1·c_1_25·c_1_36
       + c_1_1·c_1_29·c_1_32 + c_1_12·c_1_310 + c_1_12·c_1_22·c_1_38
       + c_1_12·c_1_24·c_1_36 + c_1_12·c_1_26·c_1_34 + c_1_12·c_1_27·c_1_33
       + c_1_12·c_1_29·c_1_3 + c_1_13·c_1_39 + c_1_13·c_1_23·c_1_36
       + c_1_13·c_1_25·c_1_34 + c_1_14·c_1_38 + c_1_14·c_1_26·c_1_32
       + c_1_14·c_1_27·c_1_3 + c_1_15·c_1_2·c_1_36 + c_1_15·c_1_23·c_1_34
       + c_1_15·c_1_24·c_1_33 + c_1_15·c_1_25·c_1_32 + c_1_16·c_1_22·c_1_34
       + c_1_16·c_1_23·c_1_33 + c_1_16·c_1_24·c_1_32 + c_1_16·c_1_25·c_1_3
       + c_1_17·c_1_22·c_1_33 + c_1_17·c_1_24·c_1_3 + c_1_18·c_1_2·c_1_33
       + c_1_18·c_1_22·c_1_32 + c_1_18·c_1_23·c_1_3 + c_1_19·c_1_33
       + c_1_19·c_1_2·c_1_32 + c_1_19·c_1_22·c_1_3 + c_1_0·c_1_23·c_1_38
       + c_1_0·c_1_27·c_1_34 + c_1_0·c_1_29·c_1_32 + c_1_0·c_1_210·c_1_3
       + c_1_0·c_1_1·c_1_24·c_1_36 + c_1_0·c_1_1·c_1_25·c_1_35
       + c_1_0·c_1_1·c_1_27·c_1_33 + c_1_0·c_1_1·c_1_28·c_1_32
       + c_1_0·c_1_1·c_1_29·c_1_3 + c_1_0·c_1_12·c_1_2·c_1_38
       + c_1_0·c_1_12·c_1_24·c_1_35 + c_1_0·c_1_12·c_1_26·c_1_33
       + c_1_0·c_1_12·c_1_27·c_1_32 + c_1_0·c_1_13·c_1_38
       + c_1_0·c_1_13·c_1_23·c_1_35 + c_1_0·c_1_13·c_1_24·c_1_34
       + c_1_0·c_1_13·c_1_26·c_1_32 + c_1_0·c_1_13·c_1_28
       + c_1_0·c_1_14·c_1_2·c_1_36 + c_1_0·c_1_14·c_1_25·c_1_32
       + c_1_0·c_1_14·c_1_26·c_1_3 + c_1_0·c_1_15·c_1_2·c_1_35
       + c_1_0·c_1_15·c_1_22·c_1_34 + c_1_0·c_1_15·c_1_23·c_1_33
       + c_1_0·c_1_15·c_1_25·c_1_3 + c_1_0·c_1_15·c_1_26 + c_1_0·c_1_16·c_1_2·c_1_34
       + c_1_0·c_1_16·c_1_24·c_1_3 + c_1_0·c_1_16·c_1_25 + c_1_0·c_1_17·c_1_34
       + c_1_0·c_1_17·c_1_2·c_1_33 + c_1_0·c_1_17·c_1_22·c_1_32
       + c_1_0·c_1_18·c_1_23 + c_1_0·c_1_19·c_1_32 + c_1_0·c_1_19·c_1_2·c_1_3
       + c_1_0·c_1_110·c_1_3 + c_1_02·c_1_22·c_1_38 + c_1_02·c_1_24·c_1_36
       + c_1_02·c_1_25·c_1_35 + c_1_02·c_1_26·c_1_34 + c_1_02·c_1_27·c_1_33
       + c_1_02·c_1_29·c_1_3 + c_1_02·c_1_210 + c_1_02·c_1_1·c_1_2·c_1_38
       + c_1_02·c_1_1·c_1_24·c_1_35 + c_1_02·c_1_1·c_1_26·c_1_33
       + c_1_02·c_1_1·c_1_27·c_1_32 + c_1_02·c_1_1·c_1_28·c_1_3
       + c_1_02·c_1_1·c_1_29 + c_1_02·c_1_12·c_1_38
       + c_1_02·c_1_12·c_1_22·c_1_36 + c_1_02·c_1_12·c_1_24·c_1_34
       + c_1_02·c_1_12·c_1_25·c_1_33 + c_1_02·c_1_12·c_1_26·c_1_32
       + c_1_02·c_1_12·c_1_27·c_1_3 + c_1_02·c_1_12·c_1_28
       + c_1_02·c_1_13·c_1_26·c_1_3 + c_1_02·c_1_14·c_1_36
       + c_1_02·c_1_14·c_1_23·c_1_33 + c_1_02·c_1_14·c_1_25·c_1_3
       + c_1_02·c_1_14·c_1_26 + c_1_02·c_1_15·c_1_35
       + c_1_02·c_1_15·c_1_23·c_1_32 + c_1_02·c_1_15·c_1_25
       + c_1_02·c_1_16·c_1_34 + c_1_02·c_1_16·c_1_24 + c_1_02·c_1_17·c_1_33
       + c_1_02·c_1_17·c_1_2·c_1_32 + c_1_02·c_1_17·c_1_22·c_1_3
       + c_1_02·c_1_18·c_1_22 + c_1_02·c_1_19·c_1_3 + c_1_02·c_1_19·c_1_2
       + c_1_02·c_1_110 + c_1_03·c_1_1·c_1_24·c_1_34 + c_1_03·c_1_1·c_1_26·c_1_32
       + c_1_03·c_1_1·c_1_28 + c_1_03·c_1_12·c_1_25·c_1_32
       + c_1_03·c_1_12·c_1_26·c_1_3 + c_1_03·c_1_13·c_1_24·c_1_32
       + c_1_03·c_1_13·c_1_25·c_1_3 + c_1_03·c_1_13·c_1_26
       + c_1_03·c_1_14·c_1_2·c_1_34 + c_1_03·c_1_14·c_1_23·c_1_32
       + c_1_03·c_1_14·c_1_25 + c_1_03·c_1_15·c_1_22·c_1_32
       + c_1_03·c_1_15·c_1_23·c_1_3 + c_1_03·c_1_15·c_1_24
       + c_1_03·c_1_16·c_1_2·c_1_32 + c_1_03·c_1_16·c_1_22·c_1_3
       + c_1_03·c_1_16·c_1_23 + c_1_03·c_1_18·c_1_2 + c_1_04·c_1_22·c_1_36
       + c_1_04·c_1_23·c_1_35 + c_1_04·c_1_25·c_1_33 + c_1_04·c_1_26·c_1_32
       + c_1_04·c_1_1·c_1_2·c_1_36 + c_1_04·c_1_1·c_1_25·c_1_32
       + c_1_04·c_1_12·c_1_36 + c_1_04·c_1_12·c_1_2·c_1_35
       + c_1_04·c_1_12·c_1_24·c_1_32 + c_1_04·c_1_12·c_1_26
       + c_1_04·c_1_13·c_1_35 + c_1_04·c_1_13·c_1_23·c_1_32
       + c_1_04·c_1_13·c_1_25 + c_1_04·c_1_14·c_1_2·c_1_33
       + c_1_04·c_1_14·c_1_22·c_1_32 + c_1_04·c_1_15·c_1_33
       + c_1_04·c_1_15·c_1_2·c_1_32 + c_1_04·c_1_15·c_1_23
       + c_1_04·c_1_16·c_1_32 + c_1_04·c_1_16·c_1_22
       + c_1_05·c_1_1·c_1_22·c_1_34 + c_1_05·c_1_1·c_1_24·c_1_32
       + c_1_05·c_1_12·c_1_2·c_1_34 + c_1_05·c_1_12·c_1_24·c_1_3
       + c_1_05·c_1_14·c_1_2·c_1_32 + c_1_05·c_1_14·c_1_22·c_1_3
       + c_1_06·c_1_12·c_1_24 + c_1_06·c_1_14·c_1_22 + c_1_08·c_1_24
       + c_1_08·c_1_12·c_1_22 + c_1_08·c_1_14, an element of degree 12
  23. b_13_0c_1_1·c_1_25·c_1_37 + c_1_1·c_1_28·c_1_34 + c_1_1·c_1_29·c_1_33
       + c_1_1·c_1_210·c_1_32 + c_1_12·c_1_28·c_1_33 + c_1_12·c_1_210·c_1_3
       + c_1_13·c_1_23·c_1_37 + c_1_13·c_1_29·c_1_3 + c_1_14·c_1_22·c_1_37
       + c_1_14·c_1_26·c_1_33 + c_1_14·c_1_27·c_1_32 + c_1_14·c_1_28·c_1_3
       + c_1_15·c_1_2·c_1_37 + c_1_15·c_1_25·c_1_33 + c_1_15·c_1_26·c_1_32
       + c_1_16·c_1_24·c_1_33 + c_1_17·c_1_24·c_1_32 + c_1_18·c_1_2·c_1_34
       + c_1_18·c_1_23·c_1_32 + c_1_18·c_1_24·c_1_3 + c_1_19·c_1_2·c_1_33
       + c_1_19·c_1_23·c_1_3 + c_1_110·c_1_2·c_1_32 + c_1_110·c_1_22·c_1_3
       + c_1_0·c_1_26·c_1_36 + c_1_0·c_1_27·c_1_35 + c_1_0·c_1_28·c_1_34
       + c_1_0·c_1_29·c_1_33 + c_1_0·c_1_1·c_1_26·c_1_35
       + c_1_0·c_1_1·c_1_27·c_1_34 + c_1_0·c_1_1·c_1_28·c_1_33
       + c_1_0·c_1_1·c_1_210·c_1_3 + c_1_0·c_1_12·c_1_24·c_1_36
       + c_1_0·c_1_12·c_1_25·c_1_35 + c_1_0·c_1_12·c_1_29·c_1_3
       + c_1_0·c_1_13·c_1_25·c_1_34 + c_1_0·c_1_13·c_1_28·c_1_3
       + c_1_0·c_1_14·c_1_23·c_1_35 + c_1_0·c_1_14·c_1_24·c_1_34
       + c_1_0·c_1_16·c_1_36 + c_1_0·c_1_16·c_1_22·c_1_34 + c_1_0·c_1_17·c_1_35
       + c_1_0·c_1_17·c_1_2·c_1_34 + c_1_0·c_1_18·c_1_34 + c_1_0·c_1_18·c_1_23·c_1_3
       + c_1_0·c_1_19·c_1_33 + c_1_0·c_1_19·c_1_22·c_1_3 + c_1_0·c_1_110·c_1_2·c_1_3
       + c_1_02·c_1_25·c_1_36 + c_1_02·c_1_26·c_1_35 + c_1_02·c_1_28·c_1_33
       + c_1_02·c_1_29·c_1_32 + c_1_02·c_1_1·c_1_25·c_1_35
       + c_1_02·c_1_1·c_1_27·c_1_33 + c_1_02·c_1_1·c_1_210
       + c_1_02·c_1_12·c_1_24·c_1_35 + c_1_02·c_1_12·c_1_26·c_1_33
       + c_1_02·c_1_12·c_1_28·c_1_3 + c_1_02·c_1_12·c_1_29
       + c_1_02·c_1_13·c_1_23·c_1_35 + c_1_02·c_1_14·c_1_2·c_1_36
       + c_1_02·c_1_14·c_1_22·c_1_35 + c_1_02·c_1_14·c_1_24·c_1_33
       + c_1_02·c_1_15·c_1_36 + c_1_02·c_1_15·c_1_2·c_1_35
       + c_1_02·c_1_15·c_1_23·c_1_33 + c_1_02·c_1_15·c_1_26
       + c_1_02·c_1_16·c_1_35 + c_1_02·c_1_16·c_1_25
       + c_1_02·c_1_17·c_1_2·c_1_33 + c_1_02·c_1_18·c_1_33
       + c_1_02·c_1_18·c_1_2·c_1_32 + c_1_02·c_1_18·c_1_22·c_1_3
       + c_1_02·c_1_19·c_1_32 + c_1_02·c_1_19·c_1_22 + c_1_02·c_1_110·c_1_2
       + c_1_03·c_1_1·c_1_25·c_1_34 + c_1_03·c_1_1·c_1_28·c_1_3
       + c_1_03·c_1_12·c_1_26·c_1_32 + c_1_03·c_1_13·c_1_23·c_1_34
       + c_1_03·c_1_13·c_1_25·c_1_32 + c_1_03·c_1_14·c_1_22·c_1_34
       + c_1_03·c_1_15·c_1_2·c_1_34 + c_1_03·c_1_15·c_1_23·c_1_32
       + c_1_03·c_1_16·c_1_22·c_1_32 + c_1_03·c_1_18·c_1_2·c_1_3
       + c_1_04·c_1_25·c_1_34 + c_1_04·c_1_27·c_1_32
       + c_1_04·c_1_12·c_1_24·c_1_33 + c_1_04·c_1_13·c_1_24·c_1_32
       + c_1_04·c_1_14·c_1_2·c_1_34 + c_1_04·c_1_14·c_1_22·c_1_33
       + c_1_04·c_1_15·c_1_34 + c_1_04·c_1_15·c_1_22·c_1_32
       + c_1_04·c_1_16·c_1_2·c_1_32 + c_1_04·c_1_17·c_1_32
       + c_1_05·c_1_1·c_1_25·c_1_32 + c_1_05·c_1_1·c_1_26·c_1_3
       + c_1_05·c_1_12·c_1_25·c_1_3 + c_1_05·c_1_13·c_1_23·c_1_32
       + c_1_05·c_1_13·c_1_24·c_1_3 + c_1_05·c_1_14·c_1_22·c_1_32
       + c_1_05·c_1_14·c_1_23·c_1_3 + c_1_05·c_1_15·c_1_2·c_1_32
       + c_1_05·c_1_15·c_1_22·c_1_3 + c_1_05·c_1_16·c_1_2·c_1_3
       + c_1_06·c_1_1·c_1_24·c_1_32 + c_1_06·c_1_1·c_1_25·c_1_3
       + c_1_06·c_1_12·c_1_24·c_1_3 + c_1_06·c_1_13·c_1_23·c_1_3
       + c_1_06·c_1_14·c_1_2·c_1_32 + c_1_06·c_1_15·c_1_2·c_1_3
       + c_1_07·c_1_12·c_1_24 + c_1_07·c_1_14·c_1_22 + c_1_08·c_1_1·c_1_24
       + c_1_08·c_1_14·c_1_2, an element of degree 13


About the group Ring generators Ring relations Completion information Restriction maps




Simon King
Department of Mathematics and Computer Science
Friedrich-Schiller-Universität Jena
07737 Jena
GERMANY
E-mail: simon dot king at uni hyphen jena dot de
Tel: +49 (0)3641 9-46161
Fax: +49 (0)3641 9-46162
Office: Zi. 3529, Ernst-Abbe-Platz 2



Last change: 14.12.2010