Simon King′s home page:
Mathematics:
Cohomology
→Theory
→Implementation
Jena:
Faculty
David Green
External links:
Singular
Gap
|
Mod-2-Cohomology of SymmetricGroup(9), a group of order 362880
General information on the group
- SymmetricGroup(9) is a group of order 362880.
- The group order factors as 27 · 34 · 5 · 7.
- The group is defined by Group([(1,2,3,4,5,6,7,8,9),(1,2)]).
- It is non-abelian.
- It has 2-Rank 4.
- The centre of a Sylow 2-subgroup has rank 1.
- Its Sylow 2-subgroup has 5 conjugacy classes of maximal elementary abelian subgroups, which are of rank 3, 3, 4, 4 and 4, respectively.
Structure of the cohomology ring
The computation was based on 5 stability conditions for H*(SmallGroup(384,5602); GF(2)).
General information
- The cohomology ring is of dimension 4 and depth 3.
- The depth exceeds the Duflot bound, which is 1.
- The Poincaré series is
1 + 2·t2 + t3 + 3·t4 + 3·t5 + 4·t6 + 4·t7 + 4·t8 + 3·t9 + 3·t10 + 3·t11 + t12 + 2·t13 + t15 |
| (1 + t) · ( − 1 + t)4 · (1 − t + t2) · (1 + t2) · (1 + t + t2)2 · (1 + t + t2 + t3 + t4 + t5 + t6) |
- The a-invariants are -∞,-∞,-∞,-10,-4. They were obtained using the filter regular HSOP of the Hilbert-Poincaré test.
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
Ring generators
The cohomology ring has 8 minimal generators of maximal degree 7:
- b_1_0, an element of degree 1
- b_2_1, an element of degree 2
- b_3_1, an element of degree 3
- b_3_0, an element of degree 3
- c_4_3, a Duflot element of degree 4
- b_5_3, an element of degree 5
- b_6_0, an element of degree 6
- b_7_18, an element of degree 7
Ring relations
There are 10 minimal relations of maximal degree 12:
- b_3_0·b_3_1 + b_1_0·b_5_3 + b_1_03·b_3_1 + b_2_1·b_1_0·b_3_1
- b_6_0·b_1_0
- b_1_0·b_7_18
- b_3_0·b_5_3 + b_1_03·b_5_3 + b_1_05·b_3_1 + b_2_1·b_1_03·b_3_1 + c_4_3·b_1_0·b_3_1
- b_2_1·b_7_18
- b_6_0·b_3_0
- b_3_0·b_7_18
- b_3_1·b_7_18
- b_5_32 + b_1_04·b_3_12 + b_2_1·b_3_1·b_5_3 + b_2_1·b_1_02·b_3_12 + b_2_12·b_6_0
+ c_4_3·b_3_12
- b_5_3·b_7_18
Data used for the Hilbert-Poincaré test
- We proved completion in degree 26 using the Hilbert-Poincaré criterion.
- However, the last relation was already found in degree 12 and the last generator in degree 7.
- The following is a filter regular homogeneous system of parameters:
- b_3_1·b_5_3 + b_1_02·b_3_02 + b_1_08 + b_2_1·b_1_0·b_5_3 + b_2_1·b_1_03·b_3_1
+ b_2_14 + c_4_3·b_1_0·b_3_0 + b_2_1·c_4_3·b_1_02 + c_4_32, an element of degree 8
- b_3_14 + b_3_04 + b_1_0·b_3_12·b_5_3 + b_1_03·b_3_13 + b_1_04·b_3_1·b_5_3
+ b_1_06·b_3_02 + b_6_0·b_3_12 + b_6_02 + b_2_1·b_1_05·b_5_3 + b_2_1·b_1_07·b_3_1 + b_2_12·b_1_02·b_3_12 + b_2_12·b_1_02·b_3_02 + b_2_13·b_1_0·b_5_3 + b_2_13·b_1_03·b_3_1 + b_2_13·b_6_0 + b_2_14·b_1_04 + c_4_3·b_3_1·b_5_3 + c_4_3·b_1_02·b_3_12 + c_4_3·b_1_02·b_3_02 + c_4_3·b_1_03·b_5_3 + c_4_3·b_1_05·b_3_1 + c_4_3·b_1_05·b_3_0 + b_2_1·c_4_3·b_3_12 + b_2_1·c_4_3·b_1_0·b_5_3 + b_2_1·c_4_3·b_1_03·b_3_0 + b_2_1·c_4_3·b_1_06 + b_2_12·c_4_3·b_1_0·b_3_0 + b_2_13·c_4_3·b_1_02 + c_4_32·b_1_0·b_3_0 + b_2_12·c_4_32, an element of degree 12
- b_7_182 + b_3_13·b_5_3 + b_1_02·b_3_04 + b_1_03·b_3_12·b_5_3 + b_1_05·b_3_13
+ b_6_0·b_3_1·b_5_3 + b_2_1·b_1_0·b_3_12·b_5_3 + b_2_1·b_1_03·b_3_13 + b_2_1·b_6_0·b_3_12 + b_2_12·b_1_04·b_3_12 + b_2_12·b_1_04·b_3_02 + b_2_13·b_3_1·b_5_3 + b_2_13·b_1_02·b_3_12 + b_2_13·b_1_03·b_5_3 + b_2_13·b_1_05·b_3_1 + b_2_14·b_6_0 + c_4_3·b_1_0·b_3_13 + c_4_3·b_1_0·b_3_03 + c_4_3·b_1_04·b_3_02 + c_4_3·b_1_05·b_5_3 + c_4_3·b_1_07·b_3_1 + b_2_1·c_4_3·b_1_03·b_5_3 + b_2_1·c_4_3·b_1_05·b_3_0 + b_2_12·c_4_3·b_3_12 + b_2_12·c_4_3·b_1_0·b_5_3 + b_2_12·c_4_3·b_1_03·b_3_1 + b_2_12·c_4_3·b_6_0 + b_2_13·c_4_3·b_1_04 + c_4_32·b_3_02 + c_4_32·b_1_03·b_3_1 + c_4_32·b_1_06 + b_2_1·c_4_32·b_1_0·b_3_0 + b_2_1·c_4_32·b_1_04 + b_2_12·c_4_32·b_1_02 + c_4_33·b_1_02, an element of degree 14
- b_1_06 + b_6_0, an element of degree 6
- A Duflot regular sequence is given by c_4_3.
- The Raw Filter Degree Type of the filter regular HSOP is [-1, -1, -1, 24, 36].
- Modifying the above filter regular HSOP, we obtained the following parameters:
- b_2_12 + c_4_3, an element of degree 4
- b_3_14 + b_3_04 + b_1_0·b_3_12·b_5_3 + b_1_03·b_3_13 + b_1_04·b_3_1·b_5_3
+ b_1_06·b_3_02 + b_6_0·b_3_12 + b_6_02 + b_2_1·b_1_05·b_5_3 + b_2_1·b_1_07·b_3_1 + b_2_12·b_1_02·b_3_12 + b_2_12·b_1_02·b_3_02 + b_2_13·b_1_0·b_5_3 + b_2_13·b_1_03·b_3_1 + b_2_13·b_6_0 + b_2_14·b_1_04 + c_4_3·b_3_1·b_5_3 + c_4_3·b_1_02·b_3_12 + c_4_3·b_1_02·b_3_02 + c_4_3·b_1_03·b_5_3 + c_4_3·b_1_05·b_3_1 + c_4_3·b_1_05·b_3_0 + b_2_1·c_4_3·b_3_12 + b_2_1·c_4_3·b_1_0·b_5_3 + b_2_1·c_4_3·b_1_03·b_3_0 + b_2_1·c_4_3·b_1_06 + b_2_12·c_4_3·b_1_0·b_3_0 + b_2_13·c_4_3·b_1_02 + c_4_32·b_1_0·b_3_0 + b_2_12·c_4_32, an element of degree 12
- b_7_182 + b_3_13·b_5_3 + b_1_02·b_3_04 + b_1_03·b_3_12·b_5_3 + b_1_05·b_3_13
+ b_6_0·b_3_1·b_5_3 + b_2_1·b_1_0·b_3_12·b_5_3 + b_2_1·b_1_03·b_3_13 + b_2_1·b_6_0·b_3_12 + b_2_12·b_1_04·b_3_12 + b_2_12·b_1_04·b_3_02 + b_2_13·b_3_1·b_5_3 + b_2_13·b_1_02·b_3_12 + b_2_13·b_1_03·b_5_3 + b_2_13·b_1_05·b_3_1 + b_2_14·b_6_0 + c_4_3·b_1_0·b_3_13 + c_4_3·b_1_0·b_3_03 + c_4_3·b_1_04·b_3_02 + c_4_3·b_1_05·b_5_3 + c_4_3·b_1_07·b_3_1 + b_2_1·c_4_3·b_1_03·b_5_3 + b_2_1·c_4_3·b_1_05·b_3_0 + b_2_12·c_4_3·b_3_12 + b_2_12·c_4_3·b_1_0·b_5_3 + b_2_12·c_4_3·b_1_03·b_3_1 + b_2_12·c_4_3·b_6_0 + b_2_13·c_4_3·b_1_04 + c_4_32·b_3_02 + c_4_32·b_1_03·b_3_1 + c_4_32·b_1_06 + b_2_1·c_4_32·b_1_0·b_3_0 + b_2_1·c_4_32·b_1_04 + b_2_12·c_4_32·b_1_02 + c_4_33·b_1_02, an element of degree 14
- b_1_06 + b_6_0, an element of degree 6
- We found that there exists some HSOP over a finite extension field, in degrees 4,12,6,7.
Restriction maps
- b_1_0 → b_1_1
- b_2_1 → b_2_4
- b_3_1 → b_3_0 + b_1_0·b_1_12 + b_1_02·b_1_1
- b_3_0 → b_3_1 + b_1_0·b_1_12 + b_1_02·b_1_1
- c_4_3 → b_1_02·b_1_12 + b_1_04 + b_2_4·b_1_0·b_1_1 + b_2_4·b_1_02 + b_2_3·b_2_4 + b_2_32
+ c_4_15
- b_5_3 → b_1_0·b_1_14 + b_1_02·b_3_0 + b_1_04·b_1_1 + b_2_4·b_1_0·b_1_12
+ b_2_4·b_1_02·b_1_1 + b_2_3·b_3_0 + b_2_3·b_2_4·b_1_0 + c_4_15·b_1_0
- b_6_0 → b_3_92 + b_2_3·b_1_0·b_3_0 + b_2_32·b_1_02 + b_2_3·c_4_15
- b_7_18 → c_4_15·b_3_9
Restriction map to the greatest el. ab. subgp. in the centre of a Sylow subgroup, which is of rank 1
- b_1_0 → 0, an element of degree 1
- b_2_1 → 0, an element of degree 2
- b_3_1 → 0, an element of degree 3
- b_3_0 → 0, an element of degree 3
- c_4_3 → c_1_04, an element of degree 4
- b_5_3 → 0, an element of degree 5
- b_6_0 → 0, an element of degree 6
- b_7_18 → 0, an element of degree 7
Restriction map to a maximal el. ab. subgp. of rank 3 in a Sylow subgroup
- b_1_0 → 0, an element of degree 1
- b_2_1 → c_1_1·c_1_2 + c_1_12, an element of degree 2
- b_3_1 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_3_0 → 0, an element of degree 3
- c_4_3 → c_1_24 + c_1_1·c_1_23 + c_1_12·c_1_22 + c_1_0·c_1_1·c_1_22
+ c_1_0·c_1_12·c_1_2 + c_1_02·c_1_22 + c_1_02·c_1_1·c_1_2 + c_1_02·c_1_12 + c_1_04, an element of degree 4
- b_5_3 → c_1_1·c_1_24 + c_1_12·c_1_23, an element of degree 5
- b_6_0 → c_1_0·c_1_1·c_1_24 + c_1_0·c_1_12·c_1_23 + c_1_02·c_1_24
+ c_1_02·c_1_1·c_1_23 + c_1_02·c_1_12·c_1_22 + c_1_04·c_1_22, an element of degree 6
- b_7_18 → 0, an element of degree 7
Restriction map to a maximal el. ab. subgp. of rank 3 in a Sylow subgroup
- b_1_0 → 0, an element of degree 1
- b_2_1 → 0, an element of degree 2
- b_3_1 → 0, an element of degree 3
- b_3_0 → 0, an element of degree 3
- c_4_3 → c_1_24 + c_1_12·c_1_22 + c_1_14 + c_1_0·c_1_1·c_1_22 + c_1_0·c_1_12·c_1_2
+ c_1_02·c_1_22 + c_1_02·c_1_1·c_1_2 + c_1_02·c_1_12 + c_1_04, an element of degree 4
- b_5_3 → 0, an element of degree 5
- b_6_0 → c_1_12·c_1_24 + c_1_14·c_1_22 + c_1_0·c_1_1·c_1_24 + c_1_0·c_1_14·c_1_2
+ c_1_02·c_1_24 + c_1_02·c_1_12·c_1_22 + c_1_02·c_1_14 + c_1_04·c_1_22 + c_1_04·c_1_1·c_1_2 + c_1_04·c_1_12, an element of degree 6
- b_7_18 → c_1_0·c_1_12·c_1_24 + c_1_0·c_1_14·c_1_22 + c_1_02·c_1_1·c_1_24
+ c_1_02·c_1_14·c_1_2 + c_1_04·c_1_1·c_1_22 + c_1_04·c_1_12·c_1_2, an element of degree 7
Restriction map to a maximal el. ab. subgp. of rank 4 in a Sylow subgroup
- b_1_0 → c_1_2, an element of degree 1
- b_2_1 → c_1_1·c_1_3 + c_1_12 + c_1_0·c_1_3 + c_1_0·c_1_2, an element of degree 2
- b_3_1 → c_1_2·c_1_32 + c_1_22·c_1_3 + c_1_1·c_1_32 + c_1_12·c_1_3 + c_1_0·c_1_32
+ c_1_02·c_1_3, an element of degree 3
- b_3_0 → c_1_2·c_1_32 + c_1_22·c_1_3 + c_1_1·c_1_2·c_1_3 + c_1_12·c_1_2 + c_1_0·c_1_2·c_1_3
+ c_1_02·c_1_2, an element of degree 3
- c_4_3 → c_1_34 + c_1_22·c_1_32 + c_1_1·c_1_33 + c_1_1·c_1_2·c_1_32 + c_1_12·c_1_32
+ c_1_12·c_1_2·c_1_3 + c_1_0·c_1_33 + c_1_0·c_1_22·c_1_3 + c_1_0·c_1_1·c_1_2·c_1_3 + c_1_0·c_1_12·c_1_2 + c_1_02·c_1_2·c_1_3 + c_1_02·c_1_1·c_1_3 + c_1_02·c_1_12 + c_1_03·c_1_3 + c_1_03·c_1_2 + c_1_04, an element of degree 4
- b_5_3 → c_1_2·c_1_34 + c_1_24·c_1_3 + c_1_1·c_1_34 + c_1_1·c_1_2·c_1_33
+ c_1_1·c_1_22·c_1_32 + c_1_12·c_1_33 + c_1_12·c_1_2·c_1_32 + c_1_12·c_1_22·c_1_3 + c_1_0·c_1_34 + c_1_0·c_1_2·c_1_33 + c_1_0·c_1_23·c_1_3 + c_1_0·c_1_1·c_1_2·c_1_32 + c_1_0·c_1_12·c_1_2·c_1_3 + c_1_02·c_1_33 + c_1_02·c_1_2·c_1_32 + c_1_02·c_1_1·c_1_32 + c_1_02·c_1_12·c_1_3 + c_1_03·c_1_32 + c_1_03·c_1_2·c_1_3 + c_1_04·c_1_3, an element of degree 5
- b_6_0 → 0, an element of degree 6
- b_7_18 → 0, an element of degree 7
Restriction map to a maximal el. ab. subgp. of rank 4 in a Sylow subgroup
- b_1_0 → c_1_2, an element of degree 1
- b_2_1 → c_1_32 + c_1_2·c_1_3 + c_1_1·c_1_3 + c_1_12 + c_1_0·c_1_2, an element of degree 2
- b_3_1 → 0, an element of degree 3
- b_3_0 → c_1_1·c_1_32 + c_1_1·c_1_2·c_1_3 + c_1_12·c_1_3 + c_1_12·c_1_2 + c_1_02·c_1_2, an element of degree 3
- c_4_3 → c_1_0·c_1_1·c_1_32 + c_1_0·c_1_1·c_1_2·c_1_3 + c_1_0·c_1_12·c_1_3
+ c_1_0·c_1_12·c_1_2 + c_1_02·c_1_32 + c_1_02·c_1_2·c_1_3 + c_1_02·c_1_1·c_1_3 + c_1_02·c_1_12 + c_1_03·c_1_2 + c_1_04, an element of degree 4
- b_5_3 → 0, an element of degree 5
- b_6_0 → 0, an element of degree 6
- b_7_18 → 0, an element of degree 7
Restriction map to a maximal el. ab. subgp. of rank 4 in a Sylow subgroup
- b_1_0 → 0, an element of degree 1
- b_2_1 → c_1_1·c_1_3 + c_1_1·c_1_2 + c_1_12 + c_1_0·c_1_2, an element of degree 2
- b_3_1 → c_1_1·c_1_32 + c_1_1·c_1_22 + c_1_12·c_1_3 + c_1_12·c_1_2 + c_1_0·c_1_22
+ c_1_02·c_1_2, an element of degree 3
- b_3_0 → 0, an element of degree 3
- c_4_3 → c_1_34 + c_1_22·c_1_32 + c_1_24 + c_1_1·c_1_33 + c_1_1·c_1_23
+ c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22 + c_1_0·c_1_2·c_1_32 + c_1_0·c_1_22·c_1_3 + c_1_0·c_1_23 + c_1_0·c_1_1·c_1_32 + c_1_0·c_1_1·c_1_2·c_1_3 + c_1_0·c_1_12·c_1_3 + c_1_02·c_1_32 + c_1_02·c_1_2·c_1_3 + c_1_02·c_1_1·c_1_3 + c_1_02·c_1_1·c_1_2 + c_1_02·c_1_12 + c_1_03·c_1_2 + c_1_04, an element of degree 4
- b_5_3 → c_1_1·c_1_34 + c_1_1·c_1_24 + c_1_12·c_1_33 + c_1_12·c_1_2·c_1_32
+ c_1_12·c_1_22·c_1_3 + c_1_12·c_1_23 + c_1_0·c_1_24 + c_1_0·c_1_1·c_1_2·c_1_32 + c_1_0·c_1_1·c_1_22·c_1_3 + c_1_0·c_1_12·c_1_2·c_1_3 + c_1_02·c_1_23 + c_1_02·c_1_1·c_1_2·c_1_3 + c_1_02·c_1_1·c_1_22 + c_1_02·c_1_12·c_1_2 + c_1_03·c_1_22 + c_1_04·c_1_2, an element of degree 5
- b_6_0 → c_1_22·c_1_34 + c_1_24·c_1_32 + c_1_1·c_1_2·c_1_34 + c_1_1·c_1_22·c_1_33
+ c_1_1·c_1_23·c_1_32 + c_1_1·c_1_24·c_1_3 + c_1_12·c_1_2·c_1_33 + c_1_12·c_1_23·c_1_3 + c_1_0·c_1_23·c_1_32 + c_1_0·c_1_24·c_1_3 + c_1_0·c_1_1·c_1_34 + c_1_0·c_1_1·c_1_22·c_1_32 + c_1_0·c_1_12·c_1_33 + c_1_0·c_1_12·c_1_2·c_1_32 + c_1_02·c_1_34 + c_1_02·c_1_23·c_1_3 + c_1_02·c_1_1·c_1_33 + c_1_02·c_1_1·c_1_22·c_1_3 + c_1_02·c_1_12·c_1_32 + c_1_02·c_1_12·c_1_2·c_1_3 + c_1_03·c_1_2·c_1_32 + c_1_03·c_1_22·c_1_3 + c_1_04·c_1_32 + c_1_04·c_1_2·c_1_3, an element of degree 6
- b_7_18 → 0, an element of degree 7
|