Simon King′s home page:
Mathematics:
Cohomology
→Theory
→Implementation
Jena:
Faculty
David Green
External links:
Singular
Gap
|
Mod-3-Cohomology of U3(3), a group of order 6048
General information on the group
- U3(3) is a group of order 6048.
- The group order factors as 25 · 33 · 7.
- The group is defined by Group([(2,3)(4,6)(5,8)(7,11)(9,13)(10,15)(12,14)(16,20)(17,22)(18,23)(24,27)(25,28),(1,2,4,7,12,17)(3,5,9,14,19,22)(6,10,13,18,24,23)(8,11,16,21,26,28)(20,25,27)]).
- It is non-abelian.
- It has 3-Rank 2.
- The centre of a Sylow 3-subgroup has rank 1.
- Its Sylow 3-subgroup has 4 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 2.
Structure of the cohomology ring
This cohomology ring is isomorphic to the cohomology ring of a subgroup, namely H*(SmallGroup(216,86); GF(3)).
General information
- The cohomology ring is of dimension 2 and depth 2.
- The depth exceeds the Duflot bound, which is 1.
- The Poincaré series is
1 − 2·t + 2·t2 − t3 + 2·t4 − 3·t5 + 2·t6 − t7 + 2·t8 − 2·t9 + t10 |
| ( − 1 + t)2 · (1 − t + t2) · (1 + t2) · (1 + t + t2) · (1 − t2 + t4) |
- The a-invariants are -∞,-∞,-2. They were obtained using the filter regular HSOP of the Hilbert-Poincaré test.
- The filter degree type of any filter regular HSOP is [-1, -2, -2].
Ring generators
The cohomology ring has 8 minimal generators of maximal degree 12:
- a_3_0, a nilpotent element of degree 3
- a_4_1, a nilpotent element of degree 4
- b_4_0, an element of degree 4
- a_5_0, a nilpotent element of degree 5
- a_9_1, a nilpotent element of degree 9
- b_10_0, an element of degree 10
- a_11_1, a nilpotent element of degree 11
- c_12_1, a Duflot element of degree 12
Ring relations
There are 4 "obvious" relations:
a_3_02, a_5_02, a_9_12, a_11_12
Apart from that, there are 16 minimal relations of maximal degree 21:
- a_4_1·a_3_0
- a_4_12
- a_4_1·b_4_0 − a_3_0·a_5_0
- a_4_1·a_5_0
- a_3_0·a_9_1
- a_4_1·a_9_1
- b_10_0·a_3_0 − b_4_0·a_9_1
- a_5_0·a_9_1 − a_3_0·a_11_1
- a_4_1·b_10_0 + a_3_0·a_11_1
- a_4_1·a_11_1
- b_10_0·a_5_0 + b_4_0·a_11_1
- a_5_0·a_11_1
- b_10_0·a_9_1 + b_4_0·c_12_1·a_3_0
- a_9_1·a_11_1 − c_12_1·a_3_0·a_5_0
- b_10_02 + b_4_02·c_12_1
- b_10_0·a_11_1 − b_4_0·c_12_1·a_5_0
Data used for the Hilbert-Poincaré test
- We proved completion in degree 21 using the Hilbert-Poincaré criterion.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_12_1, an element of degree 12
- b_4_0, an element of degree 4
- A Duflot regular sequence is given by c_12_1.
- The Raw Filter Degree Type of the filter regular HSOP is [-1, -1, 14].
Restriction maps
- a_3_0 → a_3_0
- a_4_1 → a_4_1
- b_4_0 → b_4_0
- a_5_0 → a_5_0
- a_9_1 → a_9_1
- b_10_0 → b_10_0
- a_11_1 → a_11_1
- c_12_1 → c_12_1
Restriction map to the greatest el. ab. subgp. in the centre of a Sylow subgroup, which is of rank 1
- a_3_0 → 0, an element of degree 3
- a_4_1 → 0, an element of degree 4
- b_4_0 → 0, an element of degree 4
- a_5_0 → 0, an element of degree 5
- a_9_1 → 0, an element of degree 9
- b_10_0 → 0, an element of degree 10
- a_11_1 → 0, an element of degree 11
- c_12_1 → − c_2_06, an element of degree 12
Restriction map to a maximal el. ab. subgp. of rank 2 in a Sylow subgroup
- a_3_0 → c_2_2·a_1_1, an element of degree 3
- a_4_1 → − c_2_2·a_1_0·a_1_1, an element of degree 4
- b_4_0 → c_2_22, an element of degree 4
- a_5_0 → c_2_22·a_1_0 − c_2_1·c_2_2·a_1_1, an element of degree 5
- a_9_1 → − c_2_1·c_2_23·a_1_1 + c_2_13·c_2_2·a_1_1, an element of degree 9
- b_10_0 → − c_2_1·c_2_24 + c_2_13·c_2_22, an element of degree 10
- a_11_1 → c_2_1·c_2_24·a_1_0 − c_2_12·c_2_23·a_1_1 − c_2_13·c_2_22·a_1_0
+ c_2_14·c_2_2·a_1_1, an element of degree 11
- c_12_1 → − c_2_12·c_2_24 − c_2_14·c_2_22 − c_2_16, an element of degree 12
Restriction map to a maximal el. ab. subgp. of rank 2 in a Sylow subgroup
- a_3_0 → c_2_2·a_1_1, an element of degree 3
- a_4_1 → c_2_2·a_1_0·a_1_1, an element of degree 4
- b_4_0 → c_2_22, an element of degree 4
- a_5_0 → − c_2_22·a_1_0 + c_2_1·c_2_2·a_1_1, an element of degree 5
- a_9_1 → c_2_1·c_2_23·a_1_1 − c_2_13·c_2_2·a_1_1, an element of degree 9
- b_10_0 → c_2_1·c_2_24 − c_2_13·c_2_22, an element of degree 10
- a_11_1 → c_2_1·c_2_24·a_1_0 − c_2_12·c_2_23·a_1_1 − c_2_13·c_2_22·a_1_0
+ c_2_14·c_2_2·a_1_1, an element of degree 11
- c_12_1 → − c_2_12·c_2_24 − c_2_14·c_2_22 − c_2_16, an element of degree 12
Restriction map to a maximal el. ab. subgp. of rank 2 in a Sylow subgroup
- a_3_0 → c_2_2·a_1_1, an element of degree 3
- a_4_1 → c_2_2·a_1_0·a_1_1, an element of degree 4
- b_4_0 → c_2_22, an element of degree 4
- a_5_0 → − c_2_22·a_1_0 + c_2_1·c_2_2·a_1_1, an element of degree 5
- a_9_1 → c_2_1·c_2_23·a_1_1 − c_2_13·c_2_2·a_1_1, an element of degree 9
- b_10_0 → c_2_1·c_2_24 − c_2_13·c_2_22, an element of degree 10
- a_11_1 → c_2_1·c_2_24·a_1_0 − c_2_12·c_2_23·a_1_1 − c_2_13·c_2_22·a_1_0
+ c_2_14·c_2_2·a_1_1, an element of degree 11
- c_12_1 → − c_2_12·c_2_24 − c_2_14·c_2_22 − c_2_16, an element of degree 12
Restriction map to a maximal el. ab. subgp. of rank 2 in a Sylow subgroup
- a_3_0 → c_2_2·a_1_1, an element of degree 3
- a_4_1 → − c_2_2·a_1_0·a_1_1, an element of degree 4
- b_4_0 → c_2_22, an element of degree 4
- a_5_0 → c_2_22·a_1_0 − c_2_1·c_2_2·a_1_1, an element of degree 5
- a_9_1 → − c_2_1·c_2_23·a_1_1 + c_2_13·c_2_2·a_1_1, an element of degree 9
- b_10_0 → − c_2_1·c_2_24 + c_2_13·c_2_22, an element of degree 10
- a_11_1 → c_2_1·c_2_24·a_1_0 − c_2_12·c_2_23·a_1_1 − c_2_13·c_2_22·a_1_0
+ c_2_14·c_2_2·a_1_1, an element of degree 11
- c_12_1 → − c_2_12·c_2_24 − c_2_14·c_2_22 − c_2_16, an element of degree 12
|