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Introduction

A very classical and fruitful branch of mathematics is located at the meeting
points of two topics that initially look fairly different: Algebraic Topology. This
Habilitationsschrift is concerned with various points of interaction of topology with
algebraic or combinatorial approaches.

The interactions of topology and algebra are bidirectional. On the one hand,
algebra can provide tools for solving topological problems. E.g., if one tries to find
out whether two topological spaces are homeomorphic or not, one can read algebraic
data (e.g., a group) off the spaces such that the algebraic data are invariant under
homeomorphism. Hence, if one obtains different algebraic data then the spaces are
not homeomorphic. Under very lucky circumstances, one even obtains an “if and
only if”: then, the algebraic data contain the complete topological information.
This is the case, e.g., for the classification of closed surfaces. On the other hand,
the topological application can motivate algebraic studies.

Three problems have to be solved in that context, that I will illustrate with
some well-known homeomorphism invariants.

(1) How can one “read algebraic data off a space”? This very much depends
on the way of presenting the topological data. E.g., if a topological space
has been given the structure of a simplicial complex (a triangulation of the
space), then it is very easy to write down a presentation of its fundamental
group.

(2) How can one prove invariance of the algebraic data under homeomor-
phism? Sometimes this is immediate from the definition, as in the case of
singular homology, sometimes it is very hard, as in the case of simplicial
homology.

(3) How can one solve the algebraic classification problem? Assume we have
two triangulated spaces X and Y , yielding presentations of the fundamen-
tal groups of X and Y . Then in general it is still a very difficult problem
to test whether the two presentations define isomorphic groups.

In the first two of these problems, topological theorems play a prominent rôle.
E.g., it depends on topological theorems whether an approach via triangulations
works (not every topological space has a triangulation), and in some cases it will be
difficult to provide the topological data in a form that is easy to deal with. And if
the first problem is solved and one can try and define a homeomorphism invariant
of compact 3–manifolds by means of triangulations, then one still needs to know
how different triangulations of a manifold are related with each other.

The third problem looks purely algebraic. It may happen that this problem is
unsolvable. In fact, any finitely presented group occurs as the fundamental group
of a compact 4–dimensional manifold, and the isomorphism problem of finitely
presented groups is algorithmically unsolvable. However, topological insight may
provide additional information about the algebraic data, which in some cases may
help. Here, topology can be a source of inspiration for the study of algebraic
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6 INTRODUCTION

structures, or even motivates the definition of new algebraic structures that, in
some cases, become of independent interest.

Last but not least, algebraic structures may be directly blended with topological
structures, as is the case, e.g., for Lie groups. This is another obvious way how
topology and algebra may interact.

In the remainder of the introductory chapter, we describe how the contents of
this Habilitationsschrift fit in that framework.

In the first two chapters, we study the question how different triangulations
of a manifold can be related with each other. In the first chapter, the focus is
on triangulations of surfaces. It was known before that any two triangulations
can be related by diagonal flips and by subdivision of 2-simplices (or the inverse
process) [78]. In contrast to the subdivision, a diagonal flip leaves the number of
vertices unchanged. So a question naturally occurs: Provided two triangulations of
a closed surface have the same number of vertices, is it possible to relate them by
diagonal flips, without subdivisions and without leaving the class of triangulations?

In general, the answer is “no”, as there are examples of several non-isomorphic
triangulations of surfaces over the same number of vertices that do not admit any
diagonal flip at all [2]. Negami [77] has shown by a non-constructive proof that if
the number of vertices is sufficiantly large, then a transformation by diagonal flips
alone is always possible. We provide a constructive version of Negami’s statement:
If two triangulations of a closed surface have the same number of vertices and the
number of vertices exceeds some bound that is linear in the Euler characteristic,
then a transformation by diagonal flips is possible.

In the second chapter, the dimension increases by one, as we consider triangu-
lations of the 3–dimensional projective space. We give an upper bound in terms
of the number of tetrahedra for the length of a minimal transformation sequence
relating any two triangulations of RP3 (see [51]). Here, the elementary transfor-
mations are contraction of edges and the inverse process. The basic approach of
tackling that problem was exposed in [48] and [50], that was part of our doctoral
thesis. There, we studied triangulations of S3. The extension of our approach from
S3 to RP

3 involves techniques that have not been used in the doctoral thesis.
The most important tool for the proof, that is only outlined in Chapter 2, is

the theory of normal surfaces and their generalisations. Originally introduced by H.
Kneser [57], normal surfaces became a very powerful tool for the algorithmic classi-
fication of a large class of compact 3–dimensional spaces by work of W. Haken [31],
[32]. Haken’s techniques assume the existence of incompressible surfaces. Therefore
the somehow “simplemost” closed 3–manifold, namely the sphere S3, is inaccessible
for Haken’s algorithms. This inconvenient situation was improved when H. Rubin-
stein suggested a recognition algorithm for S3, based on a generalisation of normal
surfaces [84]. The correctness of Rubinstein’s algorithm was proven by A. Thomp-
son [95]. A main textbook on algorithmic methods in low-dimensional topology
is [68].

The set of normal surfaces is equipped with a partial addition. Haken [31], [32]
showed that there is a finite set of so-called fundamental surfaces that additively
generate the set of normal surfaces. The fundamental surfaces can be constructed
by means of Integer Programming; see also [33], [48].

The set of normal surfaces is infinite. However, often it is possible to restrict
the quest for an interesting surface F in a 3–manifold M to a finite set of normal
surfaces: The idea is to prove the existence of a homeomorphism of M taking
F to a normal surface that can be expressed as a sum of fundamental surfaces
with bounded coefficients. One approach to find such homeomorphism is Hemion’s
Unwinding Technique. In G. Hemion’s book [35], the proof of the Unwinding
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Technique is left as an exercise to the reader, which is very unfortunate since the
technical details of the proof soon turn out to be extremely nasty. Therefore it is
common belief of the experts that the Unwinding Technique can not be taken for
granted.

In Chapter 3, we provide some evidence that the Unwinding Technique is er-
roneous. Although we did not succeed in constructing an actual counterexample,
our considerations show at least that a proof of the Unwinding Technique would go
far beyond the scope of an exercise in a textbook. Our approach is based on the
approximation of irrational numbers by continued fractions.

Chapter 4 is an intermezzo on phytology. The aim is to explain a long-standing
observation about the leaf arrangement of higher plants: If the leaves are arranged
along a spiral around the stem, then the angle between two adjacent leaves (di-
vergence angle) strongly tends towards 137.5◦, which is the Golden Section times
180◦. There have been various explanations of that observation. E.g., experimental
results indicate that a divergence angle of 137.5◦ maximizes the light capture and
thus the photosynthetic activity of the plant, which is a strong benefit and thus
explains the evolution of that divergence angle. Based on very mild and natural as-
sumptions, we construct a simple model for the light capture of plants with helical
leaf arrangement. The model only has three parameters, one of them a proportion-
ality constant. It turns out that, when choosing two of the parameters according
to the experimental setting, an adjustment of the proportionality constant by least
square fit suffices to perfectly explain the available experimental data. Hence, sim-
ple though the model is, it is very realistic. An even more simplistic version of our
model allows an analytic study, and this is how it connects with the previous chap-
ter: Again, we can use approximation of irrational numbers by continued fractions.
It turns out that the simplified light capture model atteins the optimum exactly
for the “Golden” divergence angle.

These results are exposed in a joint paper [53]. I contributed the construction
of the model and the number theoretical analysis. F. Beck provided the numerical
simulations, and U. Lüttge provided the phytological background.

Chapter 5 returns to topology. Here, the dimension is arbitrary, and the al-
gebraic structure has a very combinatorial flavour: Oriented Matroids. Oriented
Matroids did occur in various contexts, therefore yielding various axiomatics that in
the end all turned out to be equivalent. We add one more axiomatics, allowing a new
proof of the Topological Representation Theorem for Oriented Matroids. That the-
orem states a one-one correspondence of the set of Oriented Matroids with the set of
equivalence classes of pseudosphere arrangements up to homeomorphism. A pseu-
dosphere is a tame oriented sub-sphere of co-dimension one in a (high-dimensional)
oriented sphere. A pseudosphere arrangement is a set of pseudospheres so that any
“small” sub-arrangement is equivalent (by a homeomorphism) to an arrangement
of hyperspheres. Not any Oriented Matroid can be realised by an arrangement
of hyperspheres, but any Oriented Matroid can be realised by an arrangement of
pseudospheres.

The new axiomatics, which is based on so-called hyperline sequences, not only
yields a new proof of the Topological Representation Theorem. It also gives a very
short proof of the fact that even arrangements of “wild” spheres allow to read off
an Oriented Matroid.

A natural generalisation of arrangements of pseudospheres appear to be “ar-
rangements of co-dimension one sub-manifolds”. Along that line, Oriented Ma-
troids are (weakly) related to normal surfaces discussed in previous chapters. We
discuss the question to what extent a generalisation of the topological notion of
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arrangement corresponds to a natural generalisation of the combinatorial notion of
Oriented Matroids defined in terms of hyperline sequences.

Most of the contents of Chapter 5 are published in a joint paper with J.
Bokowski, S. Mock and I. Streinu. Hyperline sequences have been introduced by
Bokowski; Bokowski, Mock and Streinu used hyperline sequences for a proof of the
Topological Representation Theorem in rank 3. My contribution was the formu-
lation of the axiomatics based on Bokowski’s ideas, a proof of the equivalence to
previous definitions of Oriented Matroids, an extension of the rank-3-proof to arbi-
trary rank, which involved some advanced results from topology, and the study of
“wild” arrangements.

Oriented Matroids can be understood as invariants of oriented pseudosphere
arrangements under homeomorphisms. The Topological Representation Theorem
even implies that they are complete invariants. That point of view connects Chap-
ter 5 with the next chapter.

Chapter 6 is devoted to a certain type of homeomorphism invariants for compact
3–dimensional manifolds. The prototype of these invariants has been introduced by
V. Turaev and O. Viro [96]. Originally, the Turaev–Viro invariants associate to any
compact 3–manifold an element of an algebraic extension of the rational numbers,
only depending on the homeomorphism type of the manifold. These invariants are
defined in terms of state sums, that depend on the choice of a triangulation of the
manifold. The state sum is a polynomial, and a Turaev–Viro invariant is obtained
by evaluation of the state sum at certain values. These values are provided by the
representation theory of Quantum Groups at roots of unity.

We generalise the Turaev–Viro invariants, avoiding the use of representation
theory. Let R be the ring in which the state sums live. We define an ideal I ⊂ R
such that the image of the state sum in the quotient ring R/I is a homeomorphism
invariant of compact 3–manifolds. We call these ideal Turaev–Viro invariants. By
definition, they are at least as strong as the “classical” Turaev–Viro invariants.
A problem, however, is the practical computation, as we have to deal with quo-
tient rings of polynomial rings with many variables (usually more than twenty).
Fortunately, modern computer algebra systems (such as Singular [21]) allow to
compute ideal Turaev–Viro invariants, based on Gröbner basis methods. It turns
out that the ideal invariants are considerably stronger than the classical invariants
associated to Quantum Groups.

Ideal Turaev–Viro invariants are a potential tool to disprove the Andrews–
Curtis conjecture. This 40 year old conjecture from combinatorial group theory
has a topological counterpart. Essentially, one defines an equivalence relation
(3–deformation) on compact 2–dimensional cellular complexes, and the conjecture
states that there is only one equivalence class containing contractible complexes.

Nearly as old as the conjecture are several infinite classes of potential coun-
terexamples. Obviously, a 3–deformation invariant could be used to verify whether
one of the candidates is actually a counterexample for the Andrews–Curtis conjec-
ture. Turaev–Viro invariants can be modified to yield 3–deformation invariants.
However, by a result of I. Bobtcheva and F. Quinn [6], it is impossible to detect
Andrews–Curtis counterexamples by Turaev–Viro invariants associated to Quan-
tum Groups. The main reason is that these are multiplicative under connected sum
of 3–manifolds.

Examples show that our ideal Turaev–Viro invariants are not multiplicative un-
der connected sum. Hence, even after the result of Bobtcheva and Quinn, the pos-
sibility remains to detect Andrews–Curtis counterexamples by ideal Turaev–Viro
invariants. Unfortunately, so far we did not succeed in finding a counterexample.
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In the last part of Chapter 6, we briefly discuss an analogous approach towards
the construction of new invariants for knots and links.

The polynomial ring R containing the state sums is naturally equipped with
an action of some finite permutation group, acting on the variables in some non-
standard way. The state sums are invariant under the group action, and so is
the ideal I used in the definition of ideal Turaev–Viro invariants. This motivated
the attempt to define and compute everything in the invariant ring, i.e., in the
sub-algebra of R formed by polynomials that are invariant under the group action.
Since we are in characteristic 0, we have the problem of finding generators of a
non-modular invariant ring of an action of a finite group. There is software for
that purpose, but neither Singular [21] nor Magma [11] was strong enough to
compute our examples, except in the most easy cases.

This motivated us to try and find new algorithms for the computation of gene-
rators of invariant rings of non-modular finite group actions. Our algorithms rely on
a result about homogeneous Gröbner bases with degree bounds. All our algorithms
are implemented in the Singular library finvar.lib. First, we implemented an
algorithm for the computation of secondary and irreducible secondary invariants.
This is explained Chapter 7. Later, we developed an algorithm for the computation
of minimal generating sets of invariant rings. That algorithm also provides an
alternative way for the computation of irreducible secondary invariants. This is
explained in the final Chapter 8. We made extensive comparative benchmark tests
with our algorithms implemented in Singular and the algorithms of Derksen,
Kemper and Steel [22], [45], [47] implemented in Magma. For our benchmarks,
we used classical examples such as all transitive permutation groups on 7 or 8
variables, and also some of the examples motivated by our study of ideal Turaev–
Viro invariants.

It turns out that our algorithms mark a dramatic breakthrough. In quite a few
of the examples, our algorithms are more than 1000 times faster than previously
known algorithms. Although our study of invariant rings was originally motivated
by applications in topology, it became of independent interest.





CHAPTER 1

Triangulations of Compact Surfaces

1. Regular flip equivalence

Let F be a closed surface and let χ(F ) be its Euler characteristic. A singular
triangulation of F is a graph T embedded in F such that each face of F \ T is
bounded by an edge path of length three. We denote by v(T ), e(T ) and f(T ) the
number of vertices, edges and faces of T . If T is without loops and multiple edges
and has more than three faces, then T corresponds to a triangulation of F in the
classical meaning of the word; in order to avoid confusions, we use for it the term
regular triangulation in this section.

Let e be an edge of a singular triangulation T and suppose that there are
two distinct faces δ1 and δ2 adjacent to e. The faces δ1 and δ2 form a (possibly
degenerate) quadrilateral, containing e as a diagonal. A flip of T along e replaces
e by the opposite diagonal of this quadrilateral, see Figure 1. The flip is called

 e

δ δ1 2

Figure 1. A flip

regular, if both T and the result of the flip are regular triangulations. Two singular
(resp. regular) triangulations T1, T2 of a closed surface are called flip equivalent
(resp. regularly flip equivalent), if they are related by a finite sequence of flips
(resp. regular flips) and isotopy.

The following result is well known, and there are many proofs for it. There
are interesting applications to the automatic structure of mapping class groups,
see [74] or [83].

Lemma 1. Any two singular triangulations T1 and T2 of a closed surface F
with v(T1) = v(T2) are flip equivalent. �

One might ask whether any two regular triangulations of F with the same
number of vertices are regularly flip equivalent. The answer is “Yes” in special cases:
any two regular triangulations of the sphere [98], the torus [23], the projective
plane or the Klein bottle [76] with the same number of vertices are regularly flip
equivalent. But in general, the answer is “No”: it is known that there are 59
different triangulations of the closed oriented surface of genus six based on the
complete graph with 12 vertices, see [2]. Such a triangulation does not admit any
regular flip, thus the different triangulations are not regularly flip equivalent.

In [49], we obtain the following result.

Theorem 1. Let F be a closed surface and N(F ) = 9450 − 6020χ(F ). Any
two regular triangulations T1 and T2 of F with v(T1) = v(T2) ≥ N(F ) are regularly
flip equivalent.

11



12 1. TRIANGULATIONS OF COMPACT SURFACES

δ δs

Figure 2. A face subdivision

Negami [77] stated the mere existence of N(F ) without an estimate. The
estimate in Theorem 1 is far from being best possible, at least for the surfaces
up to genus one. The number N(F ) is negative if and only if F is a sphere, in
which case the statement is true since the transformation by regular flips is always
possible, by Wagner’s Theorem [98]. We assume in the following that F is not the
sphere.

2. Proof sketch

Let T ′ denote the barycentric subdivision of a singular triangulation T of a
closed 2-manifold F .

Lemma 2 (Lemma 5 in [49]). Let T1 and T2 be two singular triangulations of F
with the same number of vertices. Then T ′′

1 and T ′′
2 are regularly flip equivalent. �

Let δ be a face of a regular triangulation T . A face subdivision of T along
δ replaces δ by the cone over its boundary, see Figure 2, and the result is denoted
sδT . If δ and δ′ are two faces of T , then sδT and sδ′T are regularly flip equivalent,
which is easy to see. Hence, up to regular flip equivalence, the result of a sequence
of face face subdivisions only depends on the number of subdivisions. If T2 is
obtained from T1 by m successive face subdivisions, we write T2 = sm(T1), which
is well-defined up to regular flip equivalence.

We need a further notion, that also plays a role in some other of our results.

Definition 1. Let M be a closed PL–manifold with PL–triangulations T1 and
T2, and let e be an edge of T1 with ∂e = {a, b}. Suppose that T2 is obtained from
T1 by removing the open star of e and identifying a ∗ σ with b ∗ σ for any simplex
σ in the link of e. Then T2 is obtained from T1 by a contraction along e, and T1

is obtained from T2 by an expansion along e.

In general, there are edges of T1 along which contractions are impossible. This
is the case, e.g., if an edge e of T1 is part of an edge path of length 3 that does not
bound a 2–simplex of T1. Indeed then T2 has multiple edges and is not a simplicial
complex. We only consider manifolds of dimension 2 and 3, so any triangulation is
PL, so for simplicity, we write “triangulation” in the place of “PL–triangulation”.
After these preliminaries, we can cite a lemma of Negami [77].

Lemma 3. Let T1 and T2 be regular triangulations of F . If T2 is obtained by
contraction along some edges of T1, then T1 is regularly flip equivalent to sm(T2),
with m = v(T1) − v(T2). �

The next brick in our proof of Theorem 1 is a result of Nakamoto and Ota on
irreducible triangulations. A triangulation is called irreducible, if it has no edge
along which a contraction is possible. Nakamoto and Ota [75] found the following
bound for the number of vertices of irreducible triangulations of a closed surface is
bounded in terms of the Euler charakteristic.

Proposition 1 (see [75]). If T is an irreducible triangulation of a closed sur-
face F which is not the sphere, then v(T ) ≤ 270 − 171χ(F ). �
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The last brick in the proof of Theorem 1 is the following lemma that relates
singular with regular flips. Let T ′ denote the barycentric subdivision of a singular
triangulation T of F .

Lemma 4 (see [49]). Let T1 and T2 be two singular triangulations of F with
v(T1) = v(T2). Then T ′′

1 and T ′′
2 are regularly flip equivalent. �

Corollary 1. Let T1 and T2 be two regular triangulations of F with v(T1) =
v(T2). Then sm(T1) and sm(T2) are regularly flip equivalent, with

m = 35 (v(T1) − χ(F )) .

To obtain Corollary 1, one first verifies that m = v(T1)−v(T ′′
1 ) = v(T2)−v(T ′′

2 );
then one shows that sm(Ti) is regularly flip equivalent to T ′′

i , for i = 1, 2; by
Lemma 1 and Lemma 4, T ′′

1 and T ′′
2 are regularly flip equivalent, and thus the

corollary follows.
Now, we can finish the proof of Theorem 1. Let N(F ) = 9450− 6020χ(F ) and

let T1, T2 be two triangulations of F with v(T1) = v(T2) = N0 ≥ N(F ). By contrac-
tions along some edges, Ti (i ∈ {1, 2}) can be transformed into an irreducible trian-
gulation Si. By Lemma 3, Ti is regularly flip equivalent to sN0−v(Si)Si. By Propo-
sition 1, we have N(F ) ≥ 35(v(Si) − χ(F )). Hence by Corollary 1, sN(F )−v(S1)S1

and sN(F )−v(S2)S2 are regularly flip equivalent, and so are also sM−v(S1)S1 and
sM−v(S2)S2 after further face subdivisions. Therefore also T1 and T2 are regularly
flip equivalent. �





CHAPTER 2

Transformations of Triangulations of RP3

1. The result

Let M be a compact 3–manifold with two triangulations T1, T2. Recall the the
definition of edge expansions and contractions (Definition 1). Moise [72] has shown
in 1952 that any 3–manifold has a unique PL–structure and all its triangulations
are PL. So it a consequence of results of Pachner [78] that one can transform T1 into
T2 by a finite sequence of edge expansions and contractions. For a given number
n, there are only finitely many triangulations of M with at most n tetrahedra.
Hence, there is some number αM (n) such that any two triangulations of M with at
most n tetrahedra can be related by a sequence of less than αM (n) edge expansions
and contractions. Since for any triangulation there are only finitely many ways to
perform a single expansion or contraction, one obtains a recognition algorithm1 for
M , provided αM (n) is computable.

By [48] and [50], we obtain αS3(n) ≤ 2cn
2

for some explicitly given constant
c > 0; this was part of our doctoral thesis. In [51], we extend our methods and
obtain the following result on triangulations of the projective space RP3.

Theorem 2. Any two triangulations of RP3 with at most n tetrahedra are

related by a sequence of less than 227000n2

edge contractions and expansions.

The constant factor in the exponent is certainly not optimal. According to
the examples in [50], concerning the minimal number of edge expansions needed to
transform a triangulation of S3 into a polytopal triangulation, we believe that the
bound in Theorem 2 can not be replaced by a subexponential bound.

Based on our results in [48], Mijatović obtained results similar to Theorem 2.
He deals with Pachner moves rather than edge expansions and contractions. His
result is more general, since it concerns triangulations of a large class of manifolds,
namely fibre free Haken manifolds [71]. However, his bound for the number of
moves is much weaker, as it is expressed by the 2an–fold composition of exponential
functions, for some a ≈ 200.

2. Proof sketch of Theorem 2

All details can be found in [51]. Let T be a triangulation of RP3 with n
tetrahedra. Our aim is to transform T into one of two standard triangulations of
RP3 (to be defined below). Let C be the dual cellular decomposition of T . The
first step is the construction of a normal projective plane P ⊂ RP3 with respect to
T , with the additional property that P \ C2 is a disjoint union of disks, and for any
2-dimensional cell c of C the intersection P ∩ c is a disjoint union of arcs, each of
which connects different edges of c. We find an upper bound for ‖P‖ in terms of
n, which is mainly by Theorem 4.

The complement of P in RP3 is a ball. By the methods that we developed
in [48], we construct a sweep-out H : S2 × I → RP3 \ U(P ), i.e., an embedding in

1This means an algorithm that, for any triangulated 3-manfiold N , recognizes whether M ≈

N or not.

15
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general position with respect to C, with level surfaces Hξ = H(S2 × {ξ}) for ξ ∈ I.
Moreover, H0 = ∂U(x) for some vertex x of C, and H1 = 2P . There are only
finitely many 0 < ξ1 < ξ2 < · · · < ξN < 1 (the “critical parameters”) such that Hξi

is not transversal to C2, and N < 2cn
2

for some explicitly given constant c > 0. By
the methods described in [50], we can additionally achieve that for all non-critical
parameters ξ ∈ I the special polyhedron Hξ ∪ (C2 \ H(S2 × [0, ξ])) ⊂ RP3 is the
2-skeleton of the dual cellular decomposition of some triangulation Tξ of RP3.

It is not difficult to provide a sequence of edge expansions that changes T
into T0. We study how Tξ changes for increasing ξ. First, if ξ does not pass a
critical parameter, then the isomorphism type of Tξ as a simplicial complex does
not change. When ξ passes a critical parameter ξi, we obtain an explicit sequence
of edge expansions and contractions transforming Tξi−ε into Tξi+ε, for small ε > 0,
by looking at different types of critical parameters. In conclusion, we obtain a
sequence of edge expansions and contractions transforming T into T1, whith an
upper bound in terms of n for the number of moves. The triangulation T1 depends
on P ∩ C2, as is studied in the following paragraphs.

Let Z be a cellular decomposition of P that is dual to some triangulation; for
example, take Z with Z1 = P ∩ C2, which can be shown to be dual to some trian-
gulation T . A regular neighbourhood U(P ) ⊂ RP3 fibers over P . By lifting all cells
of Z along the fibers, adding U(P ) and 2P = ∂U(P ), we obtain a cellular decom-
position of RP3, and it turns out that its barycentric subdivision is a triangulation
T (T ) of RP3. In the case Z1 = P ∩ C2, we obtain in that way the barycentric
subdivision of T1, which is easily obtained from T1 by edge expansions.

The next step relies on results of Barnette [4] on triangulations of the projective
plane. The idea is to simplify T by edge contractions (this time, not in the 3-
dimensional, but in the 2-dimensional setting) until a further edge contraction is
impossible since it would introduce multiple edges. This yields a sequence T =
T1, T2, ..., TK of triangulations of P , where, of course, K is bounded by the number
of edges of T .

A triangulation of a surface which does not allow an edge contraction is called
irreducible. By [4], there are exactly two irreducible triangulations T̃1, T̃2 of the
projective plane (up to isomorphism of simplicial complexes). If Ti+1 is obtained
from Ti by an edge contraction (in dimension 2), then T (Ti+1) is obtained from
T (Ti) by a sequence of 18 edge contractions (in dimension 3).

In conclusion, we can transform any triangulation T of RP3 with at most n
tetrahedra into either T (T̃1) or T (T̃2), by a sequence of edge expansions and con-
tractions, whose length is bounded in terms of n. Finally, we provide a sequence of
edge contractions and expansions relating T (T̃1) with T (T̃2). Hence, we can relate
any two triangulations of RP3 by a sequence of edge expansions and contractions,
via T (T̃1) or T (T̃2). This finishes the proof of Theorem 2. �



CHAPTER 3

Continued fractions and the Unwinding Lemma

1. Exposition of the problem

We recall here the main features of the theory of normal surfaces. For details,
see [68], for instance. We denote the number of connected components of a compact
topological space X by #(X). Let T be a triangulation of a compact orientable 3-
manifold M with n tetrahedra. A normal isotopy with respect to T is an isotopy
of M that preserves any simplex of T set-wise. A normal surface F ⊂ M is
an embedded not necessarily connected surface with ∂F ⊂ ∂M that is in general
position with respect to T such that the intersection of F with any tetrahedron of
T is a disjoint union of triangles and quadrilaterals as shown in Figure 1. We refer
to them as normal pieces. Let ‖F‖ = #(F ∩ T 1). By slight abuse of notation, if
we have two normal surfaces F1, F2, we denote by #(F1 ∩F2) the minimal number
of lines of intersection of F1 with F2, up to normal isotopy of F1 and F2.

PSfrag replacements

Figure 1. Normal Triangles (left) and Normal Quadrilateral (right)

By the class of a normal piece, we mean its normal isotopy class. There are 7
classes of normal pieces in each tetrahedron: Four classes of normal triangles (one
for edge vertex of the tetrahedron) and three classes of normal quadrilaterals (one
for each pair of opposite edges of the tetrahedron). So in total, there are 7n classes
of normal pieces in T . Any normal surface F gives rise to a vector v(F ) ∈ Z7n

≥0,
whose coefficients correspond to the 7n classes of normal pieces and indicate how
many copies of each normal piece occur in F . It is not difficult to show that F is
determined by v(F ) up to normal isotopy. Actually one can characterise the vectors
that correspond to normal surfaces.

The set F of normal surfaces is equipped with a partial addition. Let F1, F2 ⊂
M be two normal surfaces, and assume that whenever t is a tetrahedron of T
such that both F1 ∩ t and F2 ∩ t comprise quadrilaterals, then the quadrilaterals of
F1 ∩ t belong to the same class than those of F2 ∩ t; this is called the compatibility
condition. Then, there is a normal surface G ⊂M with v(G) = v(F1) + v(F2), and
one denotes G = F1 + F2.

There is a geometric interpretation of the addition of normal surfaces: First, up
to normal isotopy we can assume that F1 intersects F2 in general position. Then one

17



18 3. CONTINUED FRACTIONS AND THE UNWINDING LEMMA

obtains F1+F2 from F1∪F2 by cutting along F1∩F2 and connecting the components
of (F1∪F2)\U(F1∩F2) by annuli, obtaining an embedded surfaces. A priori, there
are two ways to do so. But there is precisely one way that yields a normal surface,
provided F1 and F2 satisfy the compatibility condition; compare Figure 2. This
geometric interpretation makes it easy to see that χ(F1 +F2) = χ(F1) +χ(F2) and
‖F1 + F2‖ = ‖F1‖ + ‖F2‖.

1

2

F

F

Figure 2. The two ways to switch

The following two finiteness results are essential for the theory of normal sur-
faces.

Theorem 3 (Kneser’s Lemma, Lemma 4 in [32]). Let F ⊂ M be a normal
surface with more than 10n two-sided components. Then two connected components
of F are normally isotopic to each other. �

Theorem 4. There is a system F1, . . . , Fq of normal surfaces such that the
components of v(Fi) are bounded from above by n · 27n+2 for i = 1, . . . , q, and any
normal surface F ⊂ M can be written as a sum F =

∑q
i=1 kiFi with non-negative

integers k1, . . . , kq. �

Theorem 4 is proven in [33]. It is based on results on Integer Programming.
Weaker versions of this theorem, without explicit bounds for the components of
v(Fi), had been known long before by work of W. Haken [31]. The surfaces
F1, . . . , Fq are called fundamental surfaces.

Let F =
∑k
i=1 aiFi be a closed connected normal surface expressed as a sum of

fundamental surfaces. Assume that ‖F‖ ≤ ‖F ′‖ for all normal surfaces F ′ that are
related with F by isotopy and Dehn twists along incompressible tori. An important
problem is to find an upper bound for ‖F‖ in terms of n and χ(F ). We indicate
the importance of that problem by two applications.

1. A solution of the problem can be used as part of an algorithm for the classifi-
cation of Haken manifolds — this is indicated in Hemion’s book [35]. A thorough
exposition of Haken theory, that also fixes a flaw in the original algorithm, can be
found in [68].

2. Waldhausen’s conjecture states that any closed orientable 3-manifold only has
a finite number of Heegaard splittings of minimal genus, up to isotopy and Dehn
twists along incompressible tori. This conjecture was proved in the case of Haken
manifolds by Johannson [41]. Only recently, Tao Li [62] gave a proof of Wald-
hausen’s conjecture also for the non-Haken case. The case of non-Haken manifolds
could be dealt with based on the theory of almost normal surfaces; see [68] for a
detailed account. This approach is roughly as follows.
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(1) Any minimal genus Heegaard surface of a non-Haken manifold is strongly
irreducible, by [19].

(2) Any strongly irreducible Heegaard surface is isotopic to an almost normal
surface.

(3) Similarly to normal surfaces, almost normal surfaces can be constructed
as sums of fundamental almost normal surfaces (actually all but one sum-
mand is normal).

(4) A finiteness result for Heegaard surfaces of minimal genus is then obtained
by a solution of the above-stated problem.

One can assume that no fundamental surface occurring in the sum is of positive
Euler characteristic; see [35]. Since the Euler characteristic is additive, it follows
that |χ(F )| ≤ ai|χ(Fi)| for all i = 1, ..., k.

Hence, if χ(Fi) < 0 then there is an upper bound for ai in terms of χ(F ). Let
G′ =

∑
χ(Fi)<0 aiFi. Since there is an upper bound for ‖Fi‖ in terms of n, there is

an upper bound for ‖G′‖ in terms of χ(F ) and n. If Fi is a Klein bottle then 2Fi is
a torus, since M is orientable and thus Fi is one-sided. Let G be obtained from G′

by adding one copy of Fi whenever ci is odd. We obtain F = G+
∑N
i=1 ciTi, where

T1, ..., TN are orientable normal surfaces of vanishing Euler characteristic which are
either fundamental tori or the double of a fundamental Klein bottles. We both have
upper bounds for ‖G‖ in terms of n and the genus of F , and for ‖Ti‖ in terms of n.

In conclusion, there remains to provide an upper bound for ci in terms of n.
Hemion [35] suggests the following approach.

Statement 1 (“Unwinding Lemma”). Let G be a normal surface and T a
normal torus such that G + T is defined. If k > #(G ∩ T ) then G + kT is related
with G+ (k − #(G ∩ T ))T by isotopy and Dehn twists along T .

Hemion leaves the preceding lemma as an exercise; since we are not going
to prove it here, we classify it just as a “Statement”, but we refer to it as the
“Unwinding Lemma”. We have an upper bound for #(G ∩ Ti) in terms of n, and
Hemion claims that therefore the Unwinding Lemma allows one to find an upper
bound for ci (i = 1, ..., N). The idea is to prove that if

∑
ci is sufficiantly large

then an application of Lemma 1 is possible. This, again, is left as an exercise by
Hemion. We refer to this as the “Unwinding Technique”.

We will not discuss here whether the Unwinding Lemma is true. However,
experts are very much in doubt about the correctness of the Unwinding Tech-
nique [67], [85]. The aim of this chapter is to study Hemion’s Unwinding Technique
by means of continued fractions. Although our considerations should certainly in-
crease the doubts about the Unwinding Technique, we con not give an explicit
counterexample. In the following section we expose the necessary background on
continued fractions. In the last section of this chapter, we expose its connections
to the Unwinding Technique.

2. Approximation by continued fractions

We recall here some basic facts on continued fractions and refer to [18] for any
further details.

For a1, ..., an ∈ N \ {0}, the continued fraction with coefficients a1, ..., an is
defined by

[a1, ..., an] =
1

a1 + 1
a2+

1

...+ 1

an−1+ 1
an

Since [a1, ..., an−1, 1] = [a1, ..., an−1 + 1], we will always assume that the last coef-
ficient of a continued fraction is different from 1.
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It is well known that for any infinite sequence a1, a2, ... of positive integers,
the sequence ([a1, ..., ai])i∈N converges to some irrational number that is denoted
by [a1, a2, ...]. If a1, a2, ... is a finite sequence then [a1, a2, ...] is rational. Any real
number in the intervall ]0, 1[ can be expressed in this way. Since in the finite case
we assume that the last coefficient is different from 1, the sequence a1, a2, ... is
uniquely determined by [a1, a2, ...].

Definition 2. For x ∈ R define ‖x‖ = minp∈Z |x − p| and bxc = max{k ∈
Z : k ≤ x}. Let α ∈ ]−1, 1[ and let p, q be co-prime integers, q > 0. The fraction p

q

is called a best approximation of α if q| pq − α| = ‖qα‖ and ‖qα‖ < ‖q′α‖ for all

integers q′ with 0 < q′ < q.

For the rest of this section, let α = [a1, a2, ...] and i ∈ N. We implicitly assume
that the sequence a1, a2, ... is long enough so that all terms we consider are defined.

Lemma 5 ([18], Section I.2). Let pi, qi be the unique coprime integers with
qi > 0 and pi

qi
= [a1, ..., ai]. Then, pi

qi
is a best approximation of α, and moreover

‖qiα‖ ≤ ‖qα‖ for all integers q ∈ ]0, qi+1[ (not only for 0 < q < qi). �

Note that in our use of pi, qi there is an index shift compared with [18]. With
the definition p0 = 0, q0 = 1 and the observation p1 = 1, q1 = a1, one obtains
pi+1 = ai+1pi + pi−1 and qi+1 = ai+1qi + qi−1 for any i ∈ N.

Proposition 2 ([18], Section I.2, Equation 15). If a1, a2, ... is a sequence of
length at least i+ 2 of positive integers then

(
[ai, ai−1, ..., a1] + ai+1 + [ai+2, ai+3, ...]

)
·
∥∥qi · [a1, a2, ...]

∥∥ =
1

qi

If a1, a2, ... is of length i+ 1 then

(
[ai, ai−1, ..., a1] + ai+1

)
·
∥∥qi · [a1, a2, ...]

∥∥ =
1

qi �

3. Connections with the Unwinding Technique

We explain here the construction of a triangulated 3-manifold containing some
normal surface G and two normal tori T1, T2, such that for all co-prime p, q ∈ N,
pT1 + qT2 is a normal torus Tp,q, and G+PT1 +QT2 is a connected normal surface
for all P,Q ∈ N (not necessarily co-prime). Figure 3 shows two intersecting circles
t1, t2 on a surface Σ, where the numbering indicates how various arcs combine
to form t2. Then, T2, T2 are obtained by taking the product of t1, t2 with the
1-dimensional sphere S1. The thick dots in the figure become circles that are the
connected components of T1∩T2, and the dotted lines indicate the switches yielding
the sum T1 + T2. We do not prescribe n = #(T1 ∩ T2), but it is clear that one can
make #(T1 ∩ T2) arbitrary large.

It is not difficult to construct some triangulated compact 3-manifold M con-
taining T1 and T2 as two-sided normal surfaces such that T1 + T2 is obtained from
switching T1∪T2 along T1∩T2 in the way that is indicated by the dotted lines close
to the thick dots. The switches are chosen so that pT1 + qT2 is a normal torus (in
particular, connected) for all co-prime p, q ∈ N.

If T1, T2 each intersect a normal surface G ⊂M in k lines such that the regular
switches are as indicated in Figure 4, one obtains that #(Ti∩(G+pT1+qT2) ≥ k−1.
Let k > 2. We can construct M so that G as above exists, und so that G\ (T1∪T2)
is connected. Since G ∩ T1 ∩ T2 = ∅ and Ti ∩ (G+ pT1 + qT2) 6= ∅, G+ pT1 + qT2

is a connected normal surface, for all P,Q ∈ N.
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Figure 3. Construction of T1 and T2
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Figure 4. A surface G intersecting Ti

For i ∈ N, let Pi, Qi be co-prime positive integers with Pi

Qi
= [1, ..., 1︸ ︷︷ ︸

i−1

, 2]. In

other words, Pi

Qi
= 1

2 ,
2
3 ,

3
5 ,

5
8 , .... Note that limi→∞

Pi

Qi
= 1

2 (
√

5 − 1), the Golden

Section.
For non-negative co-prime integers p ≤ Pi, q ≤ Qi, let k

(i)
p,q be the maximal

number of copies of Tp,q that can be build as a sum of at most Pi copies T1 and at

most Qi copies T2. In other words, k
(i)
p,q = min

(
bPi

p c, b
Qi

q c
)
.

By the following theorem, the number k
(i)
p,q of copies of Tp,q is always less than

the number of lines of intersection of pT1∪qT2 with the sum of the remaining copies
of T1, T2 with G. Hemion’s Unwinding Technique would fail, if one could modify the

above construction so that #
(
Tp,q ∩ ((Pi − pk

(i)
p,q)T1 + (Qi − qk

(i)
p,q)T2 +G)

)
is not

too much smaller than #
(
(pT1 ∪ qT2) ∩ ((Pi − pk

(i)
p,q)T1 + (Qi − qk

(i)
p,q)T2 +G)

)
, for

p < Pi, q < Qi, p, q coprime. Unfortunately, the number of lines of intersection
can be decreased by a normal isotopy after switching. See, e.g., Figure 5, illustrat-
ing the intersection of 2T1 + 3T2 (thin lines) with T1 + T2 (thick lines); by normal
isotopy, the number of lines of intersections decreases from 5 to 1. So, we can not
prove that our example is a counterexample to the Unwinding Technique, although
it indicates that a proper proof of the Unwinding Technique will certainly not be
easy to obtain.
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Figure 5. Removing intersections by normal isotopy

Theorem 5. Both Pi and Qi go to infinity for i → ∞. If #(G ∩ T1) ≥ 2,
#(G∩T2) ≥ 2 and #(T1∩T2) ≥ 5 then for all co-prime integers p, q with 0 ≤ p ≤ Pi,

0 ≤ q ≤ Qi holds k
(i)
p,q < #

(
(pT1 ∪ qT2) ∩

(
G+ (Pi − k

(i)
p,qp)T1 + (Qi − k

(i)
p,qq)T2

))

Proof. It is clear from the definition that Pi and Qi become arbitrarily large.
Since the lines of intersection of T1 ∩ G, T2 ∩ G and T1 ∩ T2 are pairwise disjoint,
we obtain

#
(
(pT1 ∪ qT2) ∩

(
G+ (Pi − k(i)

p,qp)T1 + (Qi − k(i)
p,qq)T2

))

= p · #
(
G ∩ T1) + q · #

(
G ∩ T2

)

+
(
q(Pi − k(i)

p,qp) + p(Qi − k(i)
p,qq)

)
· #(T1 ∩ T2).

We first consider the case p = 0 (or, analogously, q = 0). Then, q = 1,

(pT1 ∪ qT2) = T2 and k
(i)
p,q = Qi. It is easy to prove by induction that Qi ≤ 3Pi.

Hence

#
(
(pT1 ∪ qT2) ∩

(
G+ (Pi − k(i)

p,qp)T1 + (Qi − k(i)
p,qq)T2

))∣∣∣
q=1

= #(T2 ∩G) + Pi#(T2 ∩ T1) > Qi = k
(i)
p,1.

Secondly, we consider the case p = Pi (or, analogously, q = Qi). Then, k
(i)
p,q = 1,

and

#
(
(pT1 ∪ qT2) ∩

(
G+ (Pi − k(i)

p,qp)T1 + (Qi − k(i)
p,qq)T2

))

> min(#(T1 ∩G),#(T2 ∩G)) ≥ k − 1 ≥ 2 > k(i)
p,q.

We now consider the remaining case 0 < p < Pi, 0 < q < Qi. For 1 ≤ j < i,
let pj , qj be coprime positive integers with

pj

qj
= [1, ..., 1︸ ︷︷ ︸

j

]. Hence,
pj

qj
= 1

1 ,
1
2 ,

2
3 ,

3
5 , ....

Specifically, we have pj+1 = qj , pj+1 = pj +pj−1 ≤ 2pj and qj+1 = qj + qj−1 ≤ 2qj .
Moreover, Pi = 2pi−1 + pi−2 ≤ 3pi−1 and Qi = 2qi−1 + qi−2 ≤ 3qi−1. We choose j
maximal with qj ≤ q. It follows q < aj+1qj + qj−1 < (aj+1 + 1)qj . Define β such

that Pi

Qi
= p

q + β.

First, let us assume β ≥ 0. Hence, k
(i)
p,q = bQi

q c. By Definition of ‖ · ‖, by

Lemma 5, by Proposition 2, since the coefficients of the continued fraction corre-
sponding to Pi

Qi
are bounded by 2, and since each continued fraction contributes at
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most 1 to the first factor of the left hand side of Proposition 2, we obtain

q · | Pi
Qi

− p

q
| ≥ ‖q Pi

Qi
‖

≥ ‖qj
Pi
Qi

‖ >
1

4qj
,

hence β ≥ 1
4qqj

≥ 1
4q2 .

We substitute Pi = Qi
p
q +Qiβ and obtain

q(Pi − k(i)
p,qp) = q ·

(p
q
Qi + βQi − bQi

q
cp

)

≥ βqQi ≥ Qi
4q

≥ k
(i)
p,q

4
>

k
(i)
p,q

#(T1 ∩ T2)
,

which proves Theorem 5 in the case β ≥ 0.
There remains the case β < 0. The idea is to exchange q with p, qj with pj

and Qi with Pi, which is possible by the following arguments.
If β < 0 then we have Qi

Pi
= q

p + β′ for some β′ > 0. We can estimate β′ as

follows. By our choice of the coefficients of continued fractions, we have

Qi
Pi

=
Pi+1

Qi−1
=
Pi + Pi−1

Qi−1
= 1 +

Pi−1

Qi−1
,

hence ‖pQi

Pi
‖ = ‖p Pi−1

Qi−1
‖. Let j be maximal such that pj ≤ p. Hence, pj+1 = qj > p,

and so ‖pQi

Pi
‖ ≥ ‖qj Pi−1

Qi−1
‖. As in the case β ≥ 0, we obtain ‖qj Pi−1

Qi−1
‖ ≥ 1

4qj
and

hence β′ ≥ 1
4pqj

≥ 1
4p2 . The rest of the proof is analogous to the case β ≥ 0. �





CHAPTER 4

Phyllotaxis

1. Description of the problem

Phyllotaxis (or phyllotaxy) denotes the helical arrangement of plant leaves
around the shoot axis. The angle between two adjacent leaves is called divergence
angle. Phyllotaxis is shown by the vast majority of higher plants, approximately
250,000 species. It is a long-standing observation that in most cases the divergence
angle in most cases is p

q · 360◦, where p
q = 1

2 ,
1
3 ,

2
5 ,

3
8 , ..., which is called Schimper–

Braun series; in the limit, this yields a divergence angle of roughly 137.508◦,
which is [2, 1, 1, 1, ...] · 360◦. This angle is related to the Golden Section (we have
1 − [1, 1, 1, 1, ...] = [2, 1, 1, 1, 1, ...]) and is therefore called Golden Angle.

Jean [40] estimates that among those plants displaying helical phyllotaxis, the
Schimper–Braun series prevails for about 92%. In exceptional cases, there occur
divergence angles with p

q = 1
3 ,

1
4 ,

2
7 , ..., sometimes called Lucas series, which, in the

limit, roughly yields 99.502◦. Both Schimper–Braun and Lucas series correspond to
continued fractions, namely those of the form [2, 1, 1, 1, ...] for the Schimper–Braun
and [3, 1, 1, 1, ...] for the Lucas series.

Figures 1 and 2 illustrate helical phyllotaxis. In both figures, we have the
same 18 leaves, and one looks at the figures parallel to the shoot axis of the plant.
The leaves are numbered (starting from the bottom end of the stem), and the
angle between successive leaves is the divergence angle. In the figures, the leafs
get smaller with increasing number; this is often the case in nature, as the leaves
at the top of the shoot axis are the youngest. In Figure 1, the divergence angle is
the Golden Angle. In Figure 2, one has a divergence angle that would not occur in
nature, but is close to a divergence angle occurring as one of the first members of
the Schimper–Braun or Lucas series, namely 120◦.

Even if one accepts the fact that leaf arrangements are helical, these obser-
vations need an explanation. There are two aspects that might be particularly
worthwhile to explain:

(1) How does the plant menage to produce the observed divergence angles?
(2) Why is there a preference in nature for specific divergence angles?

2. Various approaches to explain phyllotaxis

The rules of phyllotaxis have been known already since 19th century, by pi-
oneering work of Braun [13], Schimper [86], and Bravais-Bravais [12]. So it is
no surprise that there have been numerous proposed explanations; see [40] for an
overview.

One approach is the Gierer–Meinhardt activator–inhibitor model [70]. This is
a biochemical model that explains how a growing plant can produce a helical leaf
arrangement. However, the Gierer–Meinhardt model does not explain the prefer-
ence for a specific divergence angle, since in principal any divergence angle can be
produced.

A very elegant approach tries to answer both the “How?” and the “Why?”
of phyllotaxis. It is based on the hypothesis that the arrangement of leafs is a

25



26 4. PHYLLOTAXIS
PSfrag replacements

1

2

3

4

5

6

7

8

910

11

12

13

14

15

16

17

18

Figure 1. Phyllotaxis with divergence angle ≈ 137.5◦
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Figure 2. Phyllotaxis with divergence angle 123◦

consequence of an optimal (i.e., densest) packing of the leaf buds on the growth
cone of the shoot axis. It is obvious for economic reasons why there should be a
preference for densest packings. In fact, leaf primordia can be found on the growth
cone, and their positition determines the position of the fully-grown leaves.

However, there are reasons to doubt of that explanation of regular helices.
Firstly, we consider here optimal packings of finitely many objects (leaf buds) in a
finite area (growth cone). Even if one models the packing of leaf buds on the growth
cone by a packing of circles of equal size inside a circle-shaped area, this is a very
difficult mathematical problem. Although the optimal packing of infinitely many
equally-sized circles in the plane is a regular hexagonal lattice, it can be shown [87]
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that finite densest packings have no lattice symmetry, for a large class of notions
of “density”. But how should a regular helix emerge from a non-regular densest
packing?
Secondly, it is already a considerable simplification to model the leaf buds by circles
of equal size. They do not emerge all at the same time, hence we will find leaf buds
of different size. But the optimal packings of circles of different size in a circle-
shaped area are even more irregular than those of equal size. For example, by [26]
one should expect that an optimal packing is obtained by placing young (small)
leaf buds into the gaps between older (bigger) leaf buds. But this is not the case
in nature.
Thirdly, it is questionable if the advantage of saving resources by placing the leave
buds in an optimal way is really significant. In fact, the saved resources seem
marginal compared with the resources used for the subsequent growth of the plant.

Another approach, that we study in [53], does not explain how the plant pro-
duces a particular divergence angle, but it explains why it is favourable for the
plant to have a divergence angle close to 137.5◦. The basic idea is to study the
light capture of the plant as a function of the divergence angle. If one shows that
the optimal light capture is attained for a divergence angle of 137.5◦ and if other
divergence angles lead to a significantly reduced light capture, then one has a good
reason to expect that the evolution by “survival of the fittest” led to the observed
divergence angles.

However, this just explains why light capturing plant structures show phyl-
lotaxis. But phyllotaxis also occurs in other structures, such as cones of cycads and
conifers, angiosperm flowers, capitulae (Asteraceae), or spines (Cactaceae). But all
these structures originally emerged from light-capturing leaves. So, it makes sense
to argue that phyllotaxis had evolved under the economic need of optimal light cap-
ture, and when the light-capturing leaves evolved into other structures, phyllotaxis
has simply been preserved. Note that prickles (Rosaceae) did not emerge from
leaves; they are outgrowths of epidermis, and in fact they do not show phyllotaxis.

3. The light capture of plants

The leaves of a plant cast shadow on each other. Since the main direction of
light usually is parallel to the stem, it is obvious from the above figures that with a
divergence angle of 123◦ there is much more shadow than with a divergence angle
of 137.5◦, since there is much more overlap in Figure 2 than in Figure 1.

This observation was quantified by Pearcy and Yang [79]. By experiments and
very careful simulations based on specimens on the Redwood forest understory plant
Adenocaulon bicolor, they determined the light capture and even the photosynthetic
carbon gain (which is not simply proportional to the light capture) for 17 different
divergence angles ranging roughly from 30◦ to 175◦. They found that indeed opti-
mal carbon gain is obtained for divergence angles close to the Golden Angle, and
the photosynthetic activity depends on the divergence angle by as much as 30%.
They also studied the influence of small perturbations in the leaf arrangements.

The subject of our paper [53] is an a-priori-model for the light capture of
plants. Our model only has two parameters and one scaling factor and reproduces
the experimental data almost perfectly. Moreover, a simplified version of the model
is accessible by the number theoretic methods exposed in Section 3.2. One can in
fact prove that the simplified model attains its global optimum if the divergence
angle is the Golden Angle 137.5...◦ = [2, 1, 1, 1, 1, ...] · 360◦ (Schimper-Braun) and
attains a local optimum at 99.50...◦ = [3, 1, 1, 1, 1, ...] · 360◦ (Lucas).
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Moreover, our model predicts a dependence of the size and of the total number
of leaves. According to our model, the global optimum of carbon gain for diver-
gence angles close to 137.5◦ is most pronounced if the plant has many long and
thin leaves. Hence, in the case of narrow leaves the evolutionary pressure towards
the Golden Angle should be strongest. In this context, it is interesting to note
that Lycopodiophyta, forming the oldest extant vascular plant division (about 420
million years old) are microphylls, hence, have narrow leaves.

In the rest of this section, we expose the basic ideas of our model. For details,
see [53]. The starting point is the following hypothesis, that appears to be satisfied
in nature.

Hypothesis 1.

(1) Plants grow towards the light, hence, the main direction of light is roughly
parallel to the shoot axis.

(2) Natural light is somehow diffuse.

There are cases in which Hypothesis 1.(1) does not hold. E.g., the branches
of the fir grow horizontally. Hence, in this case the main direction of light is
perpendicular to the shoot axis. In the first place, the needle leaves of the fir grow
according to the rules of phyllotaxis (which might be a heritage of evolution), but
then the leaves turn horizontally — which clearly is the best way to capture vertical
light and hence is still in accordance to the basic approach.

By symmetry we can assume that the divergence angle α is at most 180◦. Let
x ∈ [0, 1

2 ], and α = x · 360◦. Hypothesis 1.(1) implies that leaf number n casts
shadow onto leaf number m only if n > m, and the shadow decreases with the
angle between these leaves. By symmetry, it suffices to minimize the shadow onto
leaf number 0. The angle between leaf number n and leaf number 0 is wx(n) =
|xn− [xn]| · 360◦, where [xn] denotes the integer that is closest to xn.

We denote by sx(n) the shadow cast onto leaf number 0 by leaf number n. By
Hypothesis 1.(2), there will always be shadow, even if wx(n) = 180◦. Hence, at
least for sufficiently large angles, it is reasonable to assume sx(n) ∝ 1

wx(n) in our

model.
However, the singularity occurring for wx(n) = 0 means that sx(n) ∝ 1

wx(n) is

not realistic for small angles. This has two reasons: Firstly, by Hypothesis 1.(2),
there is always light coming from different directions (not only parallel to the stem),
and so leaf number 0 will catch some light even if wx(n) = 0. Secondly, leaves are
not completely opaque, and so leaf number n can not fully block all light. If wx(n)
is small, then sx(n) should mainly depend on the transparency and the size of leaf
number n, and shouldn’t much depend on the angle.

Therefore, we introduce a model parameter B, which we call effective leaf
width. With some scaling factor c, we then assume

sx(n) =
c

min (B,wx(n))

The parameter B is empirical and summarizes many aspects, such as size and
transparency of the leaves and the proportion of indirect light.

It seems natural to measure the total shadow on leaf number 0 by S(x) =∑
n sx(n) and the total light capture by 1

S(x) . If one chooses B and the leaf number

in our model in accordance with the leaf size and leaf number of Adenocaulon bicolor
then it suffices to choose the scaling constant c by least square fit, and our model
can perfectly reproduce (within the error margins) the data of Pearcy and Yang [79]
(see [53] for details).

Hence, our model, that is based on fairly general hypothesis, gives not only a
qualitative but even a quantitative description of light capture of plants. Global
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and local maxima of light capture in our model are obtained for those divergence
angles that are found in nature. Moreover, we find that for small values of the
effective leaf width the maxima of light capture are more pronounced. All this
gives evidence for the theory that the main reason for phyllotaxis is light capture.

4. A simplified light capture model and the Golden Angle

The light capture model introduced in the preceding subsection seems to be a
good description of nature, and can be easily studied numerically using computers.
But we also studied a simplified model that shows the same qualitative behaviour
as the non-simplified model, and can be investigated using continued fractions.

In our model, we chose S(x) =
∑
n sx(n), and we would like to minimize S(x).

The basic idea for our simplified model is that the sum will not be very big if
all summands are small. Therefore, for our simplified model we chose the shadow
function S′(x) = maxn sx(n), and try to find x ∈ [0, 1

2 ] such that maxn sx(n) is
minimal.

Of course, S(x) fits better to the data than S ′(x). But still, the arguments
of the maxima and minima of S(x) and S ′(x) are roughly the same (see [53]).
Minimizing S′(x) means maximizing 1

S′(x) = minn (min (B,wx(n))). As a further

simplification, we let B vanish, and let the number of leaves go to infinity. Then,
there remains to determine x ∈ [0, 1

2 ] such that

min
n∈N

wx(n) = min
n∈N

|xn− [xn]| = min
n∈N

‖xn‖

is maximal. Subsection 2 provides the means to estimate ‖xn‖. It turns out that
the maximum is attained for x = [2, 1, 1, 1, ...]; this is part of the Theorem of
Hurwitz [81]. But this means that the optimal divergence angle is the Golden
Angle.





CHAPTER 5

The Topological Representation of Oriented

Matroids

1. Introduction

Oriented matroids are encountered in many fields: Vector configurations or
central hyperplane configurations, point sets on a sphere or great hypersphere ar-
rangements, vector spaces or their duals, points on grassmannians, polytopes and
their corresponding cellular decompositions in projective space, etc. Accordingly,
there is a multitude of definitions for an oriented matroid, reflecting the variety of
objects that an oriented matroid can represent. In the research monograph on ori-
ented matroids, [5], three chapters are devoted to axiomatics concerning oriented
matroids and to the Topological Representation Theorem for oriented matroids
(TRT, for brevity), that we will state below. The TRT is a very useful connection
of topological and combinatorial approaches.

The various definitions, via circuit or cocircuit axioms ([5], p. 103), sphere
systems ([5], p. 227), Graßmann Plücker relations (chirotope axioms) ([5], p. 126,
p. 138, [30]), hull systems ([58]), to mention just a few of them, differ a lot with
respect to their motivational aspects, their algorithmic efficiency or their relation
to the actual application. Each definition in general provides an additional insight
for the motivating problem.

In [7], we treat three aspects of oriented matroid theory. First, we give a
new axiomatic related to the concept of hyperline sequences and show that it is
equivalent to the axiomatic of chirotopes. Hyperline sequences provide a rather
efficient representation of an oriented matroid. Secondly, we present a new proof
of the TRT, based on hyperline sequences. Thirdly, we show that one can read off
an oriented matroid from arrangements of embedded spheres of codimension one,
even if wild spheres are involved. This was proven by Hochstättler [38] by a much
longer argument.

The TRT due to Lawrence is central in the theory of oriented matroids. It
shows the equivalence of oriented matroids defined via sphere system axioms with
oriented matroids defined via covector axioms. This remarkable result asserts that
each oriented matroid has a topological representation as an oriented pseudosphere
arrangement, even a piecewise-linear one, cf. Edmonds and Mandel [24]. A topo-
logical representation of matroids (rather than oriented matroids) was found in [89].

Other authors ([5], [38]) have later simplified or complemented the original
proof of the TRT, but all use fundamentally the same approach: the face lattice
(tope) formalism for oriented matroids and a shelling order to carry through the
construction. Finding a reasonably direct proof in the planar case (rank 3) has
been posed as an open problem in the research monograph [5] (Exercise 6.3). In [8]
such a proof was given, based on hyperline sequences, that are particularly natural
in rank 3.

In [7] we generalise this proof to the arbitrary rank case. This generalisation
is not straight-forward. First of all, it was needed to give a precise definition of
Oriented Matroids in terms of hyperline sequences, and to show that this definition
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is equivalent to more classical definitions of Oriented Matroids. Then, the proof of
the TRT required a careful use of advanced results from topology, in particular of
the generalized Schönflies theorem.

The rest of this chapter is organised as follows. In Section 2.1, we give a
geometric motivation for the notion of Oriented Matroids yielding the notion of
a hyperline sequence. In Section 2.2 and 2.3, we provide a defintion of Oriented
Matroids based on hyperline sequences, and relate that definition to our geometric
motivation. In Section 2.4 we define pseudosphere arrangements. Our proof of
the TRT is outlined in Section 2.5. In the final Section 3, we discuss a tempting
approach towards a generalisation of Oriented Matroids.

2. Hyperline sequences

2.1. Geometric motivation. Before we give a formal definition, we formu-
late the basic idea. A hyperline sequence represents a rank 2 contractions of an
oriented matroid. To motivate the notion of hyperline sequences geometrically, we
consider a vector arrangement V = {v1, . . . , vn} ⊂ Rr of unit vectors that span
Rr, with r ≥ 2. Let B ⊂ Rr be an oriented subspace of codimension 2 spanned
by V ∩ B. We obtain a vector arrangement VB = V ∩ B in Rr−2. The orthogonal
complement C of B is a plane, that is oriented according to the orientation of B
and of Rr. The orthogonal projection of V \ VB to C is an ordered set of non-zero
vectors which give rise to an ordered set LB of oriented lines in R2. When we move
along a circle in C around the origin according to the orientation of C, we meet the
elements of VC in a circular sequence ZB , where any element of VC is met twice
(in positive and negative orientation). By an inductive definition, the hyperline
sequence of rank r associated to B is the pair (YB |ZB), where YB is the oriented
matroid of rank r − 2 associated to VB . The oriented matroid of rank r associated
to V is the set of all hyperline sequences that can be read off from V .

We chose an inductive definition since it naturally fits into the framework of
our proof of the TRT (sketched in Subsection 2.5). In fact it is not necessary
to keep complete information on the rank r − 2 oriented matroids YB . If one
choses a single positively oriented base σB for any hyperline sequence (YB |ZB) of
an oriented matroid X then X is determined by the set of pairs (σB |ZB), see [7].
Hence a direct definition of oriented matroids in terms of hyperline sequences is
possible, which might be preferable for algorithmic problems, e.g. the extension of
oriented matroids [61].

2.2. Definition. Let (E,<) be a finite totally ordered set. Let E = {e|e ∈ E}
be a copy of E. The set E of signed indices is defined as the disjoint union of
E and E. By extending the map e 7→ e to e 7→ e = e for e ∈ E, we get an
involution on E. We define e∗ = e∗ = e. For X ⊂ E, define X = {x| x ∈ X} and
X∗ = {x∗| x ∈ X}.

An oriented d–simplex in E is a (d+1)–tuple σ = [x1, . . . , xd+1] of elements
of E such that x∗1, . . . , x

∗
d+1 are pairwise distinct. Let an equivalence relation ∼ on

oriented d–simplices in E be generated by

[x1, . . . , xd+1] ∼ [x1, . . . , xi−1, xi+1, xi, xi+2, . . . , xd+1],

for i = 1, . . . , d. As usual, any oriented d–simplex is equivalent to one of the form
[e1, . . . , ed+1] or [e1, . . . , ed, ed+1], with elements e1 < e2 < · · · < ed+1 of E. Define
−[x1, . . . , xd+1] = [x1, . . . , xd, xd+1].

Let (E,<) be a finite totally ordered set. Let E = {e|e ∈ E} be a copy of
E. The set E of signed indices is defined as the disjoint union of E and E. By
extending the map e 7→ e to e 7→ e = e for e ∈ E, we get an involution on E. We
define e∗ = e∗ = e. For X ⊂ E, define X = {x| x ∈ X} and X∗ = {x∗| x ∈ X}.
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An oriented d–simplex in E is a (d+1)–tuple σ = [x1, . . . , xd+1] of elements
of E such that x∗1, . . . , x

∗
d+1 are pairwise distinct. Let an equivalence relation ∼ on

oriented d–simplices in E be generated by

[x1, . . . , xd+1] ∼ [x1, . . . , xi−1, xi+1, xi, xi+2, . . . , xd+1],

for i = 1, . . . , d. As usual, any oriented d–simplex is equivalent to one of the form
[e1, . . . , ed+1] or [e1, . . . , ed, ed+1], with elements e1 < e2 < · · · < ed+1 of E. Define
−[x1, . . . , xd+1] = [x1, . . . , xd, xd+1].

In the following inductive definition of hyperline sequences and oriented ma-
troids, we denote with Cm =

(
{0, 1, . . . ,m− 1},+

)
the cyclic group of order m.

Definition 3 (Rank 1). An oriented matroid X over E(X) ⊂ E of rank 1

is a non-empty subset X ⊂ E(X) ∪ E(X) such that |X| = |X∗| and X∗ = E(X).

The oriented simplex [x] is by definition a positively oriented base of X for
any x ∈ X. We define −X = X.

Definition 4 (Rank 2). Let k ∈ N, k ≥ 2. A hyperline sequence X of rank
2 over E(X) ⊂ E is a map from C2k to oriented matroids of rank one, a 7→ Xa,

such that Xa+k = −Xa for all a ∈ C2k, and E(X) ∪ E(X) is a disjoint union of
X0, . . . , X2k−1.

An oriented matroid of rank 2 is by definition a hyperline sequence of rank 2.
We refer to X0, . . . , X2k−1 as the atoms of X and to 2k as the period length
of X. We say that e ∈ E(X) is incident to an atom Xa of X if e ∈ (Xa)∗. Let

x1, x2 ∈ E(X) ∪E(X) such that x∗1 and x∗2 are not incident to a single atom of X,
and X induces the cyclic order (x1, x2, x1, x2). Then, the oriented simplex [x1, x2] is
by definition a positively oriented base of X. We define the hyperline sequence
−X over E(−X) = E(X) of rank 2 as the map a 7→ (−X)a = X−a for a ∈ C2k.

A hyperline sequence X of rank 2 is determined by a sequence (X0, . . . , X2k−1)
of atoms. We define that two hyperline sequences X1 and X2 of rank 2 are equal,
X1 = X2, if E(X1) = E(X2), the number 2k of atoms coincides, and X1 is obtained
from X2 by a shift, i.e., there is an s ∈ C2k with Xa+s

1 = Xa
2 for all a ∈ C2k.

We prepare the axioms for oriented matroids of rank r > 2 with the following
definitions. A hyperline sequence X of rank r is a pair (Y |Z), where Y is an
oriented matroid of rank r−2 and Z is a hyperline sequence of rank 2. If X is a set
of hyperline sequences of rank r, a positively oriented base of X in (Y |Z) ∈ X is
an oriented simplex [x1, . . . , xr] in E(X), where [x1, . . . xr−2] is a positively oriented
base of Y and [xr−1, xr] is a positively oriented base of Z. Then, −[x1, . . . , xr] is
a negatively oriented base of X. We define −X = {(Y | − Z) | (Y |Z) ∈ X}. An
atom of X in a hyperline sequence (Y |Z) ∈ X is the pair (Y |Za), where Za is an
atom of Z.

Definition 5 (Rank r > 2). A set X of hyperline sequences of rank r is an
oriented matroid of rank r > 2 over E(X) ⊂ E if it satisfies the following axioms.

(H1) E(X) is a disjoint union of E(Y ) and E(Z), for all (Y |Z) ∈ X.
(H2) Let (Y1|Z1), (Y2|Z2) ∈ X and let [x1, . . . xr−2] be a positively oriented base

of Y1. If {x∗1, . . . , x∗r−2} ⊂ E(Y2) then (Y1|Z1) = (Y2|Z2) or (Y1|Z1) =
(−Y2| − Z2).

(H3) For all positively oriented bases [x1, . . . , xr] and [y1, . . . , yr] of X, there is
some j ∈ {1, . . . , r} such that [x1, . . . , xr−1, yj ] is a positively or negatively
oriented base of X.

(H4) For any positively oriented base [x1, . . . , xr] of X,

[x1, . . . , xr−3, xr−1, xr−2, xr]

is a positively oriented base of X.
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At the end of Section 2 in [7], we provide a more direct (i.e., non-inductive)
definition of oriented matroids via hyperline sequences. Storing an oriented ma-
troid by hyperline sequences seems more economical than just storing all positively
oriented bases, even in the non-uniform case. Moreover, as is clear from the proof
of Theorem 6 in [7], the cyclic order of a single hyperline sequence already captures
many instances of the Grassmann-Plücker relations. Thus when enumerating ori-
ented matroids, it seems easier to produce a set of hyperline sequences and verify
Axioms (H1)–(H4) than to produce a list of oriented simplices and verify, say, the
chirotope axioms.

2.3. Connection of definition and geometric motivation.
Let V = {v1, . . . , vn} ⊂ Rr, B ⊂ Rr, YB , LB and ZB be as in Subsection 2.1. To any
vk ∈ V \YB we get an oriented line lk ∈ LB . We move along a circle in the oriented
plane and store the letter k in the circular sequence ZB when lk is met in positive
orientation, and k if lk is met in negative orientation. Obviously k and k appear
on opposite places of the circular sequence. Hence ZB is a hyperline sequence of
rank 2. By induction and abuse of notation, the vector arrangement YB “is” an
oriented matroid YB , and (YB |ZB) is a hyperline sequence of rank r. Axiom (H1)
means that V is a disjoint union of V ∩ B and V \ B. Axiom (H2) corresponds
to the fact that B is determined by any oriented base of VB . Axiom (H3) is the
Steinitz–McLane exchange lemma, stating that one can replace any vector in a
base by some vector of any other base. Axiom (H4) ensures that the definition of
oriented bases is compatible with the equivalence relation on oriented simplices; this
is part of Theorem 6 below. Axiom (H4) is related to the “consistent abstract sign
of determinant” in [8]. It means that if r vectors span an (r−1)–simplex, then any
subset of r−2 vectors spans a hyperline, and the orientation of the (r−1)–simplex
does not depend on the hyperline on which we consider the r points. A hyperline
sequence stores information on a rank 2 contractions of an oriented matroid.

A classical way to define oriented matroids is via chirotope axioms (see [5],
p. 126,p. 138, [30]). In fact chirotopes and hyperline sequences yield equivalent
notions of oriented matroids, as in the following theorem. This connects our concept
of hyperline sequences with other ways to look at oriented matroids.

Theorem 6 (Theorem 1 in [7]). The set of positively oriented bases of an
oriented matroid of rank r over E given by hyperline sequences is the set of positively
oriented bases of a chirotope of rank r over E, and vice versa. �

The cyclic structure of a hyperline sequence captures many instances of the 3–
term Graßmann–Plücker relations at once. Certainly it is easier to deal with a few
cyclic structures than with a multitude of Graßmann–Plücker relations, specifically
in algorithmic applications. There is a price to pay for the simplification in the
representation of oriented matroids: the proof of the preceding theorem becomes
rather long and tedious if it is carried out in detail, and also it seems impossible to
give a brief resume of it. So we simply refer to [7].

2.4. Arrangements of oriented pseudospheres. A submanifoldN of codi-
mension m in a d–dimensional manifold M is tame if any x ∈ N has an open
neighborhood U(x) ⊂M such that there is a homeomorphism U(x) → Bd sending
U(x) ∩N to Bd−m ⊂ Bd.

An oriented pseudosphere S ⊂ Sd is a tame embedded (d− 1)–dimensional
sphere with a choice of an orientation. Any oriented hypersphere is an oriented
pseudosphere. The image of an oriented pseudosphere S under a homeomorphism
φ : Sd → Sd obviously is an oriented pseudosphere as well.

The generalized Schönflies theorem assures that if S is a pseudosphere in
Sd then there is a homeomorphism φ : Sd → Sd such that φ(S) = Sd−1 ⊂ Sd. It
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was proven by M. Brown [15]. Similarly, if B ⊂ Bd is a tame embedded ball of
codimension 1 in the d–dimensional unit ball Bd ⊂ R3 and ∂B ⊂ ∂Bd then there
is a homeomorphism Bd → Bd sending B to Bd−1 ⊂ Bd. It is well known that in
dimension d ≥ 3 there are embedded spheres of codimension 1 whose complement
is not formed by two balls, so-called wild spheres.

Let ψ : Sd−1 → Sd be an embedding with image S, inducing the correct orien-
tation on S. By another result of M. Brown [16], the image of ψ is tame if and
only if ψ can be extended to an orientation preserving embedding

ψ̃ : Sd−1 × [−1, 1] → Sd with ψ(·) = ψ̃(·, 0).
We call the connected component of Sd\S containing ψ̃(Sd−1×{1}) (resp. ψ̃(Sd−1×
{−1})) the positive side S+(resp. negative side S−) of S.

Arrangements of oriented pseudospheres are defined in [5], p. 227. Recall
En = {1, . . . , n}. By Theorem 3 in [7], one can equivalently define arrangements
of oriented pseudospheres as an ordered multiset A = {S1, . . . , Sn} of oriented
pseudeospheres in Sd such that any “small enough” subarrangement is equiva-
lent to an arrangement of oriented hyperspheres. Formally, for R ⊂ En, denote
AR = {Sj |j ∈ R}. We obtain that A is an arrangement of oriented pseudosphers in
the sense of [5] if and only if the following holds: Let R ⊂ En such that SR′ 6= SR
for any proper subset R′ of R (i.e., R is an independent set); then, AR is equivalent
to an arrangement of |R| oriented hyperspheres in Sd. An arrangement of oriented
pseudospheres is called of full rank if the intersection of its members is empty.

It turns out that any arrangement A of oriented pseudospheres in Sd of full
rank yields a cellular decomposition C(A) of Sd that is non-degenerate in the sense
that the closure of any open cell of C(A) in Sd is a closed cell.

Any cell c of C(A) is provided with its index I ⊂ En, which is inclusion maximal
with the property c ⊂ SI . Let C(I,A) be the union of all open cells of C(A) with
index I.

Definition 6. Two ordered multisets {S1, . . . , Sn} and {S′
1, . . . , S

′
n} of ori-

ented pseudospheres in Sd are equivalent if there is an orientation preserving
homeomorphism Sd → Sd sending S+

i to (S′
i)

+ and S−
i to (S′

i)
−, simultaneously for

all i ∈ En. We do not allow renumbering of the pseudospheres. We do distinguish
the two orientations of Sd.

2.5. The Topological Representation Theorem. Let A = {S1, . . . , Sn}
an arrangement of oriented pseudeospheres in Sd of full rank. Let R ⊂ En be
inclusion minimal with the property that SR =

⋂
i∈R Si is a circle. The orientations

of the pseudospheres and the order of En yields a circular orientation for SR. Let
R′ ⊂ En be the inclusion maximal set with SR′ = SR On SR we transversaly
intersect all pseudospheres Sj with j ∈ En \ R′, in cyclic order. In fact, each of
them is met twice: One time we pass from S−

j to S+
j , the other time the other way

around. This yields a cyclic sequence of signed indices. Moreover, one obtains an
oriented matroid on R′. When we do this for all appropriate R ⊂ En, we obtain
a set of hyperline sequences satisfying the axioms of oriented matroids provided in
Section 2.2. We denote this oriented matroid by X(A); see [7, Section 6] for details.

Both for oriented matroids X and for arrangements A of oriented pseudo-
spheres, we have two operations called deletion X \ R (resp. A \ R) of a subset
R ⊂ En and contraction X/R (resp. A/R) on a subset R ⊂ En. These are
standard notions, and we give no definition here, but refer to [7].

Theorem 7 (Topological Representation Theorem). To any oriented matroid
X of rank r over En, there is an arrangement A(X) of n oriented pseudo hyper-
spheres in Sr−1 of full rank with X = X(A(X)). The equivalence class of A(X) is
unique.
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In [7] we prove Theorem 7 by induction on the number of elements and the
rank of X. The base cases r ≤ 2 and n = r are rather easy. We outline here the
proof of the induction step. Let n > r > 2. Suppose that Theorem 7 holds for all
oriented matroids of rank r with less than n elements and for all oriented matroids
of rank less than r.

Thus, for any non-empty R ⊂ En for which the contraction X/R (resp. the
deletion X \ R) is defined, there is an essentially unique arrangement A(X/R)
(resp. A(X \R)) of oriented pseudospheres in Sr−1−|R| (resp. in Sr−1) of full rank
with X/R = X(A(X/R)) (resp. with X \R = X(A(X \R))).

There is some element of X, say, n for simplicity, such that the deletion X \{n}
is an oriented matroid of rank r. Denote {S1, . . . , Sn−1} = A(X \ {n}). Our aim is
to construct an oriented pseudosphere Sn ⊂ Sr−1 as the image of a tame embedding
ψ : Sr−2 → Sr−1, so that {S1, . . . , Sn} is an arrangement of oriented pseudospheres
with X({S1, . . . , Sn}) = X.

The construction of ψ is roughly as follows. We start with the arrangement
A(X/{n}) in Sr−2. We require that ψ maps this arrangement “consistently” to the
arrangement A(X \ {n}), in the sense that any cell in C

(
I,A(X/{n})

)
is mapped

to a cell in C
(
I,A(X \ {n})

)
in the correct orientation. It turns out that this

forces {S1, . . . , Sn} to be an arrangement of oriented pseudospheres. Moreover, we
show that if Sn intersects the cycles of A(X \ {n}) in a way consistent with the
rank 2 contractions of X (i.e., the cyclic order on its hyperline sequences), then
X({S1, . . . , Sn}) = X. Our construction of ψ is iterative. We start with defining ψ
on 0–dimensional cells of A(X/{n}) and show that if it is defined on d–dimensional
cells then it can be consistently extended to (d+ 1)–dimensional cells. It turns out
that this is possible in an essentially unique way.

A formalisation of this idea is given in [7].

3. A potential generalisation

By the Topological Representation Theorem, there is a bijection between Ori-
ented Matroids and equivalence classes of arrangements of oriented pseudospheres,
i.e., arrangements of oriented tame sub-spheres of co-dimension one embedded in
spheres. The topology admits a natural generalisation: Arrangements of oriented
tame sub-manifolds of co-dimension one in compact oriented manifolds. What
might be a good notion of arrangement in this context, and how could one try to
generalise the hyperline axioms in order to get a notion of Generalised Oriented
Matroids corresponding to sub-manifolds arrangements? In this section, we will
discuss that question, although we can not give a good definition of Generalised
Oriented Matroids.

Of course, a sub-manifold arrangement A should be a system {Fi : i ∈ En} of
tame two-sided co-dimension one sub-manifolds in a compact manifold M . As for
pseudosphere arrangements, there should be a notion of contraction onto one of the
sub-manifolds. Hence, for appropriate R ⊂ En, one should obtain a sub-manifold
arrangement A/R on FR =

⋂
i∈R Fi formed by {Fi ∩ FR : i ∈ En with Fi 6⊃ FR}.

In particular, for any two different sub-manifolds A 3 F1, F2 ⊂M , the intersection
F1∩F2 should be a tame two-sided co-dimension one sub-manifold of F1 and of F2,
and all FR are either connected or formed by exactly two points.

It might be worth-while to take non-orientable manifolds into account. In fact,
any Oriented Matroid can also be realised by an arrangement of tame co-dimension
one projective spaces. Here, if FR is of dimension 0 then it is exactly one (not two)
points, and if FR is a circle then one obtains a hyperline sequence by running twice
along it.
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On the part of Oriented Matroids, modifications of Axiom (H4) appear to be
a natural source for generalisations. Figure 1 illustrates the geometric meaning
of Axiom (H4): A set of three hyperline sequences satisfying Axioms (H1), (H2)

 j
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k

Figure 1. Geometric meaning of Axiom (H4)

and (H3) can be realised by an arrangement of circles in S2 if and only if it satisfies
Axiom (H4). Namely, the orientation of the intersection of k with i and j and
the order of these two points of intersection on k determine the orientation of the
intersection of i with j.

An appropriate weakening of Axiom (H4) would still imply that the three hyper-
line sequences can be realised by an arrangement of circles in an oriented surfaces.
By work of Bokowski and Pisanski [9], Oriented Matroids of rank 3 can indeed be
generalised so that one obtains a bijection to equivalence classes of curve arrange-
ments in surfaces. However, there seem to be obstructions to lift this approach to
arbitrary rank, as we point out in the remainder of this section.

Let A = {Fi : i ∈ En} be sub-manifold arrangement in a closed d-dimensional
manifold M , and assume FEn

= ∅ (in the setting of pseudosphere arrangements,
this would mean that A is of full rank). Without additional assumptions, M is
not uniquely determined by the combinatorics of A. Indeed, if N is any closed
d-dimensional manifold, then A could also be realised in the connected sum M#N ,
simply by replacing a ball in M \⋃

i∈En
Fi by N minus a ball. So, it seems reason-

able to additionally assume that M \ ⋃
i∈En

Fi is a disjoint union of balls —that

hypothesis would exclude to plug N 6= Sd into M \ ⋃
i∈En

Fi.
Additionally, this hypothesis would help to generalise our proof of the Topo-

logical Representation Theorem: Our proof depends on the generalised Schönflies
theorem, since this implies that for i ∈ En there is a unique way to plug in a
(d− 1)–dimensional cell of the arrangement A/{i} into a d-dimensional cell of the
arrangement A \ {i} = {Fk : k ∈ En \ {i}}. So, if we are not dealing with cells, an
application of the generalised Schönflies theorem is impossible, and a generalisation
of our proof of the Topological Representation Theorem would fail.

However, this hypothesis would make it difficult to maintain the notion of
deletion of a sub-manifold in an arrangement: It may be that M \⋃

k∈En, k 6=i
Fk is

not a disjoint union of cells, although M \⋃
k∈En

Fk is, namely if there is a d-cell c

in M \ ⋃
k∈En

Fk that touches both sides of a (d− 1)-cell ci in Fi \
⋃
k∈En, k 6=i

Fk.
For d = 2, this would mean that c ∪ ci is an annulus or a Möbius strip.

A possible solution in the case d = 2 is to replace c ∪ ci by one or two disks
along ∂(c∪ci), changing M into a different surface M̃ . So, A\{i} would be defined

in M̃ rather than in M .
Unfortunately, that solution does not apply to the case d > 3. Then, c ∪ ci

would be a solid torus or the twisted product of S1 with a disk. We can not alter
M by replacing c∪ ci with cells in a different manifold, as ∂(c∪ ci) is not a disjoint
union of spheres.

So, for d > 2, either one has to drop the hypothesis that arrangements of full
rank define a cellular decomposition (thereby loosing the uniqueness of M), or one
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has to do without the notion of “deletion of a sub-manifold”. The second alternative
would destroy our inductive proof of the Topological Representation Theorem.

The first alternative might even be worse, for a different reason: For an induc-
tive construction of a topological relatisation of a generalised Oriented Matroid X
(whatever this should be) of rank d+ 1 by an arrangement A of co-dimension one
sub-manifolds in a d-manifold M , one would first construct the realisations A/{i}
of X/{i}. These would be (d−1)-manifolds Fi with an arrangement of co-dimension
one sub-manifolds that decompose Fi into parts that are not supposed to be cells.
Some parts of F1, ..., Fn must fit together in order to form a closed (d−1)-manifold
B that is the boundary of a component of M \⋃

k∈En
Fk, and the combinatorics of

X would tell us what parts of F1, ..., Fn we need to take for forming B.
By a theorem of V.A. Rokhlin, there are closed 4-manifolds that are not null-

bordant, i.e., not homeomorphic to the boundary of any compact 5-dimensional
manifold (see, e.g. [90]). Hence, if d = 5, it may be that the combinatorics of
X forces us to combine parts of F1, ..., Fn yielding a 4-manifold B that is not the
boundary of a 5-manifold. Hence, in that situation, there would not be a 5-manifold
M containing F1, ..., Fn in a way that is compatible with X.

Hence, if one wants to have a Topological Representation Theorem for Gener-
alised Oriented Matroids X of rank r > 6, one can not simply drop Axiom (H4).
One needs to introduce other axioms excluding that the parts occuring in rank r−1
contractions of X form a manifold that is not null-bordant. Such axioms seem to
be out of reach.



CHAPTER 6

Ideal state sum invariants

1. Introduction

State sum invariants play a prominent rôle in modern 3–dimensional topology.
In particular the quantum invariants are to mention. The interest in quantum
invariants was first raised by the Jones polynomial of knots and links. It was the
first invariant that was both easy to compute and powerful enough to detect chiral
knots (i.e., knots that are inequivalent to their mirror images). Still, there remain
important unsolved questions on the Jones polynomial. E.g., it is still unknown
whether there is a non-trivial knot with trivial Jones polynomial; and there is the
famous Volume Conjecture originally formulated by Kashaev [43], stating a relation
between the Jones polynomial of a hyperbolic knot and the hyperbolic volume of
the knot complement.

Originally, the Jones polynomial was inspired by certain physical state sum
models for ferro-magnetism [42]. Later, it was discovered that the Jones polyno-
mial is related to the quantum group Uq(sl2), and is but one example of a large
class of knot invariants. The study of quantum groups also led to the construc-
tion of new homeomorphism invariants of low-dimensional manifolds, specifically
the Reshetikhin–Turaev and the Turaev–Viro invariants of closed 3–dimensional
manifolds.

The Turaev–Viro invariant of a closed oriented 3–manifold equals the product
of its Reshetikhin–Turaev invariant and the Reshetikhin–Turaev invariant of the
oppositely oriented manifold [97]; so both invariants are closely related. However,
their definitions look fairly different, at the first glance: Reshetikhin–Turaev invari-
ants are based on the Kirby calculus (i.e., the representation of closed 3–manifolds
as the boundary of 4–manifolds that are represented by “decorated” links in S3. But
the Turaev–Viro invariants were defined in terms of triangulations of 3–manifolds:
A certain polynomial (the state sum) is read off from the triangulation, the polyno-
mial is evaluated in a specific way, and the result of evaluation is a homeomorphism
invariant of the manifold, which has been proven using Pachner moves. Turaev–
Viro invariants are very powerful and interesting, both in theoretical studies and in
the practical algorithmic classification of closed orientable irreducible 3–manifolds,
which now is done for manifolds having special spines with up to 12 vertices.

The 2–skeleton of the dual cellular decomposition of a triangulated 3–manifold
(M, T ) is a special spine of M \ U(T 0). So, it makes sense to define Turaev–Viro
invariants in terms of special spines rather than of triangulations. We believe that
this point of view has several advantages. Firstly, for proving the invariance one
just needs to consider one local transformation of special spines, while one needs
two types of Pachner moves for triangulations [78]. Secondly, since the invariance
conditions are relaxed, it seems possible that the class of Turaev–Viro invariants
defined via special spines provide a proper generalisation of the class of Turaev–
Viro invariants defined via triangulations. Thirdly, one could change the focus by
extending the definition of Turaev–Viro invariants to all special 2–polyhedra, rather

39



40 6. IDEAL STATE SUM INVARIANTS

than only to those that occur as special spines of 3–manifolds. In that way, one
can try to obtain invariants for the Andrews–Curtis problem.

One formulation of the Andrews–Curtis conjecture states that any two con-
tractible special 2–polyhedra are related with each other by certain types of local
transformations (called 3–deformations). 3–deformations do not change the Euler
characteristic of a special 2–polyhedron. It is known that 3–deformations together
with stabilisation (i.e., connected sum with S2) suffice to relate any two contractible
special 2–polyhedron with each other. The Andrews–Curtis conjecture is about 40
years old, and nearly as old are potential counterexamples to the conjecture. How-
ever, so far there is no proof that they actually are counterexamples. A proof might
be found using invariants of special 2–polyhedra (e.g., generalised Turaev–Viro in-
variants). This must be an invariant under 3–deformations that is not invariant
under stabilisation.

Modifications of Turaev–Viro invariants associated to Uq(sl2) provide such in-
variants. However, there is a problem that holds for a more general class of in-
variants, namely reductions of modular invariants. These are invariants that take
values in commutative rings and satisfy certain conditions, among them the mul-
tiplicativity under connected sums: If P1 and P2 are special 2–polyhedra, then a
modular invariant | · | satisfies |P1#P2| = |P1| |P2|. So, under stabilisation one
obtains |P#S2| = |P | |S2| for any special 2–polyhedron P . Note that the notation
|S2| is a bit sloppy: | · | is only defined for special 2–polyhedra, and so S2 stands
for some special 2–polyhedron that is a special spine of S2 × [0, 1]. Any two con-
tractible special 2–polyhedra P1 and P2 are related by Andrews–Curtis moves and
stabilisations. Hence, for some n ∈ N, we have

|P1| |S2|n = |P1#
nS2| = |P2#

nS2| = |P2| |S2|n.

Therefore, if |S2| is invertible then |P1| = |P2|, and one can not detect if P1, P2 are
counterexamples for the Andrews–Curtis conjecture. One may hope that the situa-
tion is better for those invariants for which |S2| is not invertible. But a Theorem of
I. Bobtcheva and F. Quinn [6] states that, even in this case, the value of a reduction
of a modular invariant of a special 2–polyhedron P is completely determined by
the homology of P , provided the Euler characteristic of P is at least 1.

We succeeded to generalise Turaev–Viro invariants so that we obtain non-
multiplicative invariants for Andrews–Curtis moves. So, in principle, we provide
a tool to detect counterexamples for the Andrews–Curtis conjecture; see Section 3.
However, our method had no success for several notorious conjectured counterexam-
ples. We also provide generalised Turaev–Viro invariants for compact 3–manifolds.
They are computed using computer algebra. It turns out that these so-called ideal
Turaev–Viro invariants are considerably stronger than those obtained from quan-
tum groups; see Section 2. Similarly, we tried to generalise state sum invariants for
knots and links. Unfortunately, we did not find anything stronger than the Jones
polynomial; see Section 4 for a very short account.

Ideal Turaev–Viro inariants are defined via state sum polynomials in some poly-
nomial ring. This ring is provided with the action of some symmetric group, and
the state sum polynomial actually belongs to the invariant ring. When we tried
to compute the invariant ring, we encountered problems that have been unsolvable
with existing software. This motivated us to study algorithms for the computation
of invariant rings, and we came up with a new algorithm that provides a dramatic
improvement. Our work on the computation of invariant rings is exposed in Chap-
ter 7.
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2. Ideal Turaev-Viro invariants of 3-manifolds

This section is a summary of [55] and [54].

2.1. The basic idea. LetM be compact 3-manifolds, represented by a special
spine P (see Definition 7). The Turaev–Viro invariants of M , originally formulated
for triangulations rather than special spines [96], can be read off from P : One
computes the state sum, i.e., a polynomial whose summands correspond to different
“colourings” of the P . The state sum polynomial depends not only on the set of
colours, but also on the choice of P . However, when the state sum is evaluated
at a solution of the so-called Biedenharn–Elliott equations known from quantum
physics [60], one obtains a homeomorphism invariant of M ; this result is due to the
fact that any two special spines of M are related by a finite sequence of certain local
transformations (see Theorem 8 below). We call this homeomorphism invariant a
“numerical Turaev–Viro invariant”.

It is difficult to find solutions of the Biedenharn–Elliott equations, but an im-
portant class of solutions is provided by the representation theory of Quantum
Groups [97]. The invariants obtained in that way are rather strong and are an
important tool in the census of closed orientable irreducible 3-manifolds pursued
by different research groups.

The Biedenharn–Elliott equations generate an ideal (the so-called Turaev–Viro
ideal) in some polynomial ring. The ring and the ideal only depend on the set
of colours. Our starting point is the observation that the coset of the state sum
of P with respect to the Turaev–Viro ideal is a homeomorphism invariant of M .
We call this an “ideal Turaev–Viro invariant”. Obviously any numerical Turaev–
Viro invariant is obtained by evaluation of some ideal Turaev–Viro invariant, and
one may hope for a proper generalsation of the numerical Turaev–Viro invariants.
Indeed, we show that ideal Turaev–Viro invariants are considerably stronger than
the numerical Turaev–Viro invariants associated to the quantum group Uq(sl2).

In the next subsection, we outline the definition of ideal Turaev–Viro invariants
and recall some properties of the numerical Turaev–Viro invariants associated with
Uq(sl2). Since ideal Turaev–Viro invariants are cosets with respect to ideals in a
polynomial ring, we need the possibility to compare those cosets. This is possible by
the theory of Gröbner bases, and we recall the necessary results in Subsection 2.3. In
Subsection 2.4, introduce some simplifying assumptions that help to construct the
basic data of interesting ideal Turaev–Viro invariants. We made some computation
of ideal Turaev–Viro invariants for closed orientable irreducible 3–manifolds that
possess a special spine with at most 9 vertices. Our computational results are
presented in Subsection 2.5

2.2. Definition of ideal Turaev–Viro invariants.
2.2.1. Special Spines.

Definition 7. A simple 2-polyhedron P is a compact connected hausdorff
space such that any point has an open neighbourhood of one of the following three
homeomorphism types (where the point under consideration is marked by a thick
dot):

PSfrag replacements
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The connected components of points of type (i) are the 2-strata of P , the
connected components of points of type (ii) are the true edges of P , and the
points of type (iii) are the true vertices of P . The set of 2-strata of P is denoted
by C(P ), the set of true edges of P is denoted by E(P ), and the set of true vertices
of P is denoted by V(P ). The true edges and true vertices of P form the singular
graph S(P ) of P .

A simple 2-polyhedron is special, if it has a true vertex, its singular graph is
connected, and its 2-strata are homeomorphic to open discs. Let M be a compact
3-manifold. A special 2-polyhedron P embedded in M is a special spine of M ,
if ∂M = ∅ and M \ P is homeomorphic to a 3-ball, or if ∂M 6= ∅ and M \ P ≈
(∂M) × [0, 1) (where [0, 1) denotes a half-open interval).

A general reference for the theory of special spines of compact 3-manifolds
is [68]. Any compact 3-manifold has a special spine, which can be deduced from
the fact that any compact 3-manifold admits a triangulation [73]. Moreover, the
homeomorphism type of a special spine uniquely determines the homeomorphism
type of the 3-manifold [17]. The following classical result explains how all special
spines of a compact 3-manifold are related with each other.

Theorem 8 (Matveev [64], Piergallini [80]). Let M be a compact 3-manifold
with special spines P1, P2, and assume that P1 and P2 both have at least two true
vertices. Then P1 and P2 are related by a finite sequence of a local transformation
called T move and its inverse. The T move is shown in Figure 1, where true vertices
are marked by a thick dot and true edges are drawn bold.
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Figure 1. The Matveev-Piergallini move

“Local tranformation” means that the special 2-polyhedron remains unchanged
outside of the depicted part. The assumption on the number of vertices is no
restriction, as any compact 3-manifold has a special spine with at least two vertices.
Note that originally Theorem 8 was formulated without restriction on the number of
vertices and involved an additional type of local transformation (compare Section 3).
However, if the special spines all have at least two true vertices, the additional local
transformation factorises by T and T−1, see [68].
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2.2.2. Turaev–Viro State Sums and Biedenharn–Elliott equations. Let P be a
special 2-polyhedron with a choice of orientation for each 2-stratum. Let F be a
finite set, to whose elements we will refer by 2-strata colours, and let “−” be an
involution on F . Let G be another finite set. A F ,G-colouring of P is any pair
(ϕ,ψ) of maps ϕ : C(P ) → F , ψ : E(P ) → G.

For an oriented 2-stratum of colour f ∈ F , the oppositely oriented 2-stratum
shall have the colour −f ∈ F . We denote by ΦF,G(P ) the set of all F ,G-colourings
of P . If G contains only one element then obviously an F ,G-colouring is determined
by ϕ alone, and we refer to it as a F-colouring.

For any f ∈ F , the symbol w(f) is referred to as the weight of f . At a true
vertex of P , six 2-strata and four true edges meet (counted with multiplicities). A
F ,G-colouring (ϕ,ψ) of P thus assigns to each true vertex of P a 6-tuple of 2-strata
coulours together with a 4-tuple of edge coulours. Let ϕ and ψ asssign the coulours
a, . . . , f ∈ F and A, . . . ,D ∈ G to the 2-strata and true edges in the neighbourhood
of a true vertex v, as depicted in Figure 2 (where circular orientations of the 2-
strata are indicated by arrows, the true vertex is marked by a thick dot, and the

true edges are drawn bold); then we associate to v a symbol vϕ,ψ :=
∣∣ a b c
f e d

∣∣A,B
C,D

,
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Figure 2. A true vertex v with coloured neighbourhood

called 6j4k-symbol. If essentially only the 2-strata are coloured, i.e., if G = {∗}
contains only one element, we just have a 6j-symbol vϕ :=

∣∣ a b c
f e d

∣∣ =
∣∣ a b c
f e d

∣∣∗,∗
∗,∗

, to

simplify the notation. This will be the case in most of our examples.
Due to a tetrahedral symmetry, there are 12 different ways to draw the neigh-

bourhood of a true vertex as in Figure 2. We want the 6j4k-symbol to be in-
dependent of that choice, and thus impose that for all a, b, c, d, e, f ∈ F and all
A,B,C,D ∈ G holds

∣∣ a b c
f e d

∣∣A,B
C,D

=
∣∣ b c a
−e −d f

∣∣C,A
B,D

=
∣∣∣ a −d −e
−f −c −b

∣∣∣
A,B

D,C

Similarly, we impose that w(f) = w(−f) for all f ∈ F .
Let R be the polynomial ring over some field F whose variables are the equi-

valence classes of colour weights and 6j4k-symbols. In most cases, we will simply
take F = Q. Let m = |F| and n = |G|. The following polynomial only depends on
the homeomorphism type of P :

TVm,n(P ) :=
∑

(ϕ,ψ)∈ΦF,G(P )


 ∏

C∈C(P )

w(ϕ(C))


 ·


 ∏

v∈V(P )

vϕ,ψ


 ∈ R

This polynomial is the Turaev–Viro state sum of P of type (m,n).
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Of course, if P is a special spine of a 3–manifold M , the state sum does not only
depend on the homeomorphism type ofM but also on the choice of P . The following
ideal captures the effect of choosing P . The Turaev–Viro ideal Im,n ⊂ R of type
(m,n) as the ideal in R that is generated by

∑

A∈G

∣∣∣ j1 j2 j3j9 j8 j7

∣∣∣
k1,k2

k3,A
·
∣∣∣ j4 j5 j6
−j9 −j8 −j7

∣∣∣
k4,k5

k6,A
−(1)

∑

A1,A2,A3∈G

∑

j∈F

w(j) ·
∣∣∣ j j1 j2
j7 −j5 −j4

∣∣∣
A1,A2

k1,k4
·
∣∣∣ j j2 j3
j9 −j6 −j5

∣∣∣
A2,A3

k3,k6
·
∣∣∣ j j3 j1
−j8 −j4 −j6

∣∣∣
A3,A1

k2,k5
,(2)

for all j1, . . . , j9 ∈ F and all k1, . . . , k6 ∈ G. Note that these generators are known
from quantum mechanics and are called “Biedenharn–Elliott equations” [60]. Let
tvm,n(P ) be the coset of the Turaev–Viro state sum with respect to the Turaev–Viro
ideal, i.e.

tvm,n(P ) = TVm,n(P ) + Im,n ∈ R/Im,n.

Theorem 9 (and Definition (see [55]). If P is any special spine of a compact 3-
manifold M with at least two true vertices, then the coset tvm,n(P ) only depends on
the homeomorphism type of M . We call tvm,n(M) = tvm,n(P ) an ideal Turaev–

Viro invariant of M of type (m,n). �

Let N be the number of variables of R, let F̂ be the algebraic closure of F,
and let v(Im,n) ⊂ F̂N be the (affine) variety associated to Im,n. Any numerical
Turaev–Viro invariant associated to tvm,n is obtained by evaluation of TVm,n(·) at
some parameter x ∈ v(Im,n).

Recall that the radical
√
I of an ideal I ⊂ R is the ideal formed by all poly-

nomials p ∈ R with pn ∈ I for some n ∈ N. An ideal is called radical if it coincides
with its radical.

Definition 8. Let M be a compact 3-manifold with a special spine P . Let
tvm,n(·) be the ideal Turaev-Viro invariant obtained from the Turaev-Viro ideal
Im,n. The coset

t̂vm,n(M) = TVm,n(P ) +
√
Im,n ∈ R/

√
Im,n

is called the universal numerical Turaev–Viro invariant of M associated to
tvm,n.

The name “universal numerical Turaev–Viro invariant” is justified by the fol-
lowing theorem.

Theorem 10 (see [55]). Let tvm,n(·) be an ideal Turaev–Viro invariant. Then

for all compact 3-manifolds M1, M2 holds t̂vm,n(M1) = t̂vm,n(M2) if and only if
all numerical Turaev–Viro invariants associated to tvm,n(·) coincide on M1 and
M2. �

Since
√
Im,n ⊃ Im,n, the computation of t̂vm,n(·) does not yield an improve-

ment of tvm,n(·). However, since numerical Turaev–Viro invariants came first and
are well studied, it seems interesting to compare the strength of an ideal Turaev–
Viro invariant tvm,n(·) with the strength of its numerical descendants — and

t̂vm,n(·) is the right tool to do this in full generality.
2.2.3. Numerical Turaev–Viro invariants associated to Uq(sl2). It is well known

that interesting numerical Turaev–Viro invariants exist for arbitrarily large colour
sets. First examples have been presented by V. Turaev and O. Viro [96]. The
representation theory of quantum groups yields a very successful machinery for
constructing numerical Turaev–Viro invariants [97].
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For the numerical Turaev–Viro invariants associated to Uq(sl2) for q = e
πi

k+1 ,
one has F = { i2 | i = 0, . . . , k − 1}, trivial involution and trivial edge colours.

The 6j-symbol
∣∣ a b c
f e d

∣∣ vanishes unless each of the four triples (a, b, d), (a, c, e),
(b, c, f) and (d, e, f) satisfies the triangle inequalities and has integer sum; moreover,
w(0) = | 0 0 0

0 0 0 | = 1. For details, see [96] or [97].
Note that the colouring rules for the 6j-symbols of Uq(sl2) are related to the

theory of normal surfaces (compare 3). The notion of normal surfaces is not only
defined for triangulations but also for special spines [68]; in fact, a special spine of
a closed 3–manifold is dual to a one-vertex triangulation of that manifold.

If the 2–strata of a special spine P of a closed 3–manifold M is coloured such
that the Uq(sl2) 6j–symbols associated to the true vertices of P do not vanish,
then there is a so-called pre-normal surface F ⊂M (pre-normal is the terminology
in [48]; it is k-normal in the terminology of [68]), such that the number of copies
of c in F is twice the colour of c, for each 2–stratum c of P .

Any normal surface is pre-normal. There is an addition on the set of pre-normal
surfaces, yielding the structure of a finitely generated semi-group [48]. The gener-
ators are called fundamental surfaces, in analogy to the corresponding property of
normal surfaces (compare Chapter 3.

If the parameter q in Uq(sl2) is not a root of unity, then we obtain 6j-symbols
over an infinite set of colours. So, the notion of a state sum comprises an infinite
number of summands and is thus not defined. However, it was shown by Frohman
and Kania-Bartoszynska [28] that the state sum of P is absolutely convergent for
q ∈]0, 1[, if there is only one normal sphere (namely the boundary of a regular
neighbourhood of P in M) and no normal torus.

2.3. How to compute ideal Turaev–Viro invariants. How can one dis-
tinguish manifolds using ideal Turaev–Viro invariants? The first task is to present
a special 2-polyhedron in a form that is accessible for computers. Matveev [68,
Sec. 7.1] introduced a way of encoding special 2-polyhedra by lists of cyclic se-
quences of integers. From the Matveev representation of P , it is not difficult to
deduce the incidences of oriented 2-strata and true edges of P at the true vertices.
Hence, one can easily implement the computation of the Turaev–Viro state sum.

Let P1 and P2 be special spines of compact 3-manifoldsM1 andM2. We are now
able to compute TVm,n(P1) and TVm,n(P2). But how can we determine whether
tvm,n(M1) = tvm,n(M2) or not? In other words, we need to compare cosets with
respect to ideals in a polynomial ring over a field. This is algorithmically possible
by the theory of Gröbner bases. For an introduction to that subject, we refer the
reader to [27] or [59], among many other possible sources.

Firstly, we need to choose an admissible monomial ordering < on R; this
is a total order on the set of monomials (i.e., products of variables) of R such that
1 < m for any monomial m ∈ R and such that m1 < m2 implies mm1 < mm2 for all
monomials m,m1,m2 ∈ R. For a polynomial f ∈ R, the leading monomial of f
with respect to > is denoted by lm(f).

A Gröbner basis with respect to > of an ideal I ⊂ R is a finite set B ⊂ I
such that

〈{lm(f) : f ∈ B}〉 = 〈{lm(f) : f ∈ I}〉 ,
where 〈X〉 denotes the ideal generated by a set X ⊂ R. It turns out that any
Gröbner basis of I is a generating subset of I, and that any ideal in R has a Gröbner
basis (specifically, any ideal is finitely generated). If B satisfies some additional
hypothesis (see [27, Sec. 3.7] for details), it is called reduced Gröbner basis, and
turns out to be unique, hence depends only on I and >. The reduced Gröbner basis
can be algorithmically constructed, given an arbitrary finite generating subset of I.
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If an admissible ordering on R is given then one can generalise the usual division
algorithm of univariate polynomials to multivariate polynomials and can define the
remainder rem(f ; g) ∈ R of a polynomial f ∈ R with respect to a polynomial g ∈ R.
In general the remainder will depend on the chosen ordering.

Let I = 〈g1, . . . , gk〉 ⊂ R. If one wants to test whether some polynomial f ∈ R
belongs to I (this is the “ideal membership problem”), it is a reasonable idea to
iteratively compute the remainder rem(f ; g1, . . . , gk) of f with respect to g1, . . . , gk,
i.e., rem (. . . rem (rem(f ; g1); g2) . . . ; gk). Certainly if rem(f ; g1, . . . , gk) = 0 then
f ∈ I. In general the converse is not true. However, for Gröbner bases, it is, by
the following theorem, that solves the ideal membership problem. For a proof, we
refer to [27] or [59].

Theorem 11. Let G be a Gröbner basis for 〈G〉 ⊂ R, and let p ∈ R. Then,
rem(p;G) does not depend on the order of polynomials in G, and we have rem(p;G) =
0 if and only if p ∈ 〈G〉. �

Our computations involve the following three steps.

(1) Produce the list of variables of R and the list of generators of Im,n defined
in the previous section.

(2) Compute a Gröbner basis of Im,n for the chosen admissible monomial
ordering >.

(3) For any special 2-polyhedron P , compute TVm,n(P ), and
(4) compute the normal form of TVm,n(P ) + Im,n using the Gröbner basis

obtained in step 2.

For step 1 and 3, we wrote mapleTM programs [63]. For step 2 and 4, we used
Singular [29]. For the computation of Gröbner bases of Turaev–Viro ideals, the
algorithm slimgb, implemented in Singular by M. Brickenstein [14], turned out
to be particularly well-performing. If we want to compute the universal numerical
Turaev–Viro invariant associated to tvm,n, we simply replace Im,n by

√
Im,n, which

is possible since one can compute a finite set of generators of
√
Im,n for any finite

set of generators of Im,n (we used the primdec.lib library of Singular [21] for
that purpose).

2.4. Simplifying assumptions for Turaev–Viro invariants. The number
of variables of R and the number of generators of Im,n grow rapidly with increasing
m and n. Moreover, the complexity of a Gröbner basis computation grows rapidly
with the number of variables. So obviously the computation of ideal Turaev–Viro
invariants is a difficult task. One way to overcome these complexity problems is
to introduce simplifying assumptions, that reduce the number of variables. For
instance, we can restrict the set of colourings by sending some equivalence classes
of 6j4k-symbols to some element of F, e.g., to zero.

At the end of Subsection 2.2.2, we stated some properties of the numerical
Turaev–Viro invariants associated with Uq(sl2). These properties show that one
obtains a non-trivial ideal Turaev–Viro invariant by defining F = { i2 | i = 0, . . . , k−
1} (for some k ∈ N) with trivial involution on F , G = {∗}, and assuming that the
6j-symbol

∣∣ a b c
f e d

∣∣ vanishes unless each of the four triples (a, b, d), (a, c, e), (b, c, f)
and (d, e, f) satisfies the triangle inequalities and has integer sum; moreover, one
may also define w(0) = | 0 0 0

0 0 0 | = 1.
In our computations, we even weakened this condition: Instead of the triangle

inequalities for (a, b, d) (and analogously for (a, c, e), (b, c, f) and (d, e, f)) we require
a ≤ b+ d+ 1, b ≤ a+ d+ 1 and d ≤ a+ b+ 1, and a+ b+ d ∈ Z. We will refer to
this as the admissibility condition, and we denote the ideal Turaev–Viro invariant
thus obtained by tvk and the Turaev–Viro ideal by Ik.
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It is not difficult to see that one obtains tvk−1 from tvk by a partial evaluation.
Hence, tvk is at least as strong as tvk−1, and we get a hierarchy of increasingly strong
invariants. After matching our notations and conventions on the order of indices
of 6j-symbols with those of [96] or [97, Sec. XII.8.5], the formulas provided there

allow to express the Uq(sl2) invariant with q = e
πi

k+1 as a numerical Turaev–Viro
invariant associated to tvk.

We have another example t̃v2,1, that is constructed according to Matveev’s ε-
invariant [66], [68], so that the ε-invariant is a numerical Turaev–Viro invariant

associated to t̃v2,1. We provide the basic data for t̃v2,1 in [55], and will not repeat
them here, for the sake of brevity. In [55], we also describe simplifying assumptions
that are useful for the construction of ideal Turaev–Viro invariants with non-trivial
edge colours.

2.5. Results. Let c̃(M) be the minimal number of true vertices of a special
spine of a compact 3-manifold M . This is related to Matveev’s notion of com-
plexity of manifolds, c(M): If M is a closed irreducible 3-manifold different from
the 3-sphere, the projective space and the lens space L(3, 1) then c(M) = c̃(M), by
Theorem 2.2.4 in [68].

Let p ∈ R be a polynomial. Let degw(p) be the total degree of p in the
colour weights, and let deg6j(p) be the total degree of p in the 6j4k-symbols.
For any subset A ⊂ R, let degw(A) = min{degw(p) : p ∈ A} and deg6j(A) =
min{deg6j(p) : p ∈ A}. For any special spine P of a compact 3-manifold M ,
deg6j(TVm,n(P )) is the number of true vertices of P . Hence, c(M) is an upper
bound for deg6j(tvm,n(M)), and similarly one can estimate degw(tvm,n(M)). One
obtains the following result.

Lemma 6 (see [55]). Let tvm,n(·) be an ideal Turaev–Viro invariant. For any
closed 3-manifold M with c̃(M) > 1, we have

c̃(M) ≥ max
{
degw (tvm,n(M)) − 1,deg6j (tvm,n(M))

}
�

We tested the following ideal Turaev–Viro invariants (for more details, see [55]):

(1) t̃v2,1, an invariant of type (2, 1) that generalises Matveev’s ε-invariant [66],
[68]. After a simplifying assumption, there remain 4 6j–symbols and 1
colour weight. Here one has 12 generators for the Turaev–Viro ideal, and
we obtain a Gröbner basis of 22 polynomials.

(2) tvk for k < 5. The case k = 1 is trivial. For k = 2, only two equivalence
classes of 6j-symbols remain, and I2 is generated by four polynomials; a
Gröbner basis with 6 polynomials is easily obtained. For k = 3, we have
17 classes of 6j-symbols and two colour weights; the Turaev–Viro ideal I3

is generated by 130 polynomials, and there is a Gröbner basis with respect
to some degree reverse lexicographic order, formed by 496 polynomials;
this computation is non-trivial, and different algorithms differ widely in
their performance. For k = 4, we have 49 classes of 6j-symbols and 3
colour weights, 892 generators of I4 and a Gröbner basis formed by 13642
polynomials. For k = 5, we have 136 classes of 6j-symbols, 4 colour
weights, and 4830 generators of I5; a Gröbner basis is not known, up to
now.

(3) tv+
3,1(·), an invariant of type (3, 1), with F = {−1, 0, 1}, the usual involu-

tion −(−1) = 1, −0 = 0, and trivial edge colours. After a mild simplifying
assumption, we have 41 equivalence classes of 6j-symbols and one remain-
ing colour weight. We obtain 1661 generators for the Turaev–Viro ideal,
and Singular [29] succeeds with finding a Gröbner basis with respect to
some degree reverse lexicographic order formed by 1297 polynomials.
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(4) Another invariant of type 3, 1, t̃v
+

3,1(·), has the same colours sets and

the same involution as tv+
3,1(·), but is subject to a stronger simplifying

assumption. There remain 21 equivalence classes of 6j-symbols. The
Turaev–Viro ideal is generated by 474 polynomials, and Singular [29]
easily finds a Gröbner basis of 337 polynomials.

(5) Our biggest example is of type (5, 1) with non-trivial involution. Here, we
have F = {−2, . . . , 2}, and a simplifying assumption very similar to the
admissibility condition. We have 72 classes of 6j-symbols, 5667 generators
of the Turaev–Viro ideal, and a Gröbner basis formed by 4403 polynomials.

We denote the resulting invariant by t̃v
+

5,1(·).
(6) We considered one invariant of type (2, 2). We made simplifying assump-

tions that reduced the number of 6j–symbols to 22, and the number of
generators of the Turaev–Viro ideal to 353. But this was still too diffi-
cult for the computer. Therefore we added 22 additional generators to
the Turaev–Viro ideal. These are gotten from modifying a Gröbner basis
for our invariant of type (2, 1). The additional generators simplify the
computations, and Singular [29] finds a Gröbner basis formed by 449

polynomials. We denote the resulting invariant by t̃v2,2(·).

We computed t̃v2,1, tv3, t̃v
+

3,1, tv
+
3,1 and t̃v

+

5,1 for closed orientable irreducible

manifolds up to complexity 9, tv4 up to complexity 8, and t̃v2,2 up to complexity 6.
It is known that there are precisely 1900 closed orientable irreducible 3-manifolds
of complexity at most 9, up to homeomorphism. A list containing exactly one
special spine for each of these manifolds was provided to us by Sergei Matveev. A
tabulation of all closed orientable irreducible 3-manifolds of complexity at most 11
can be found in [69].

The following statements result from our computations.

Proposition 3 (see [55]).

(1) The Turaev–Viro ideals involved in the construction of t̃v2,1(·), t̃v
+

3,1(·)
and tv+

3,1(·) are not radical.

(2) We measure the strength of an invariant by the number of different values
that it assumes on the 1900 closed irreducible orientable 3-manifolds of
complexity ≤ 9. We obtained the following.

• The ε-invariant assumes 35 values; its generalisation t̃v2,1 assumes
134 different values, hence it is stronger roughly by a factor 3.8.

• The Uq(sl2) invariant with q = eπi/4 assumes 29 different values; its
generalisation tv3 assumes 250 different values, hence it is stronger
roughly by a factor 8.6.

• t̃v
+

3,1 assumes 242 and t̃v
+

5,1 assumes 387 different values.
• Homology assumes 272 different values.

(3) Using the combination of homology with t̃v2,1, t̃v
+

3,1, tv3 or t̃v
+

5,1, one
can distinguish respectively 764, 764, 879 or 879 homeomorphism types
of closed irreducible orientable 3-manifolds of complexity ≤ 9. A com-
bination of different ideal Turaev–Viro invariants did not yield a further
improvement.

(4) On closed irreducible orientable 3-manifolds of complexity at most 9, t̃v
+

3,1

and tv+
3,1 are equivalent invariants. On closed irreducible orientable 3-

manifolds of complexity ≤ 8, tv3 and tv4 are equivalent. On closed ir-
reducible orientable 3-manifolds of complexity ≤ 6, t̃v2,1 and t̃v2,2 are
equivalent.
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(5) On the closed irreducible orientable 3-manifolds that we considered, the

ideal Turaev–Viro invariants t̃v2,1(·), t̃v
+

3,1(·) and tv+
3,1(·) are equivalent

to their associated universal numerical Turaev–Viro invariant, although
their associated Turaev–Viro ideals are not radical, by Statement (1).

(6) The lower bound for the complexity stated in Lemma 6 is trivial in all
examples that we computed.

(7) Ideal Turaev–Viro invariants are, in general, not multiplicative under con-
nected sum of compact 3-manifolds. �

The first statement of Proposition 3 says, in combination with Theorem 10,
that one should expect that ideal Turaev–Viro invariants are, in general, stronger
than a combination of all associated numerical Turaev–Viro invariants.

The second and third statement of Proposition 3 shows that t̃v2,1(·) sees prop-
erties of manifolds that are invisible for homology, and vice versa.

Statement (4) is surprising, because one would expect that one obtains a
stronger invariant if one avoids to impose simplifying assumptions. Statement (5)
is even more surprising, because by statement (1) the Turaev–Viro ideals are not
radical — hence there are elements of R so that the cosets with respect to

√
Im,n

coincide, but the cosets with respect to Im,n are different. Are there compact 3-
manifolds M1, M2 that can be distinguished by some ideal Turaev–Viro invariant
tv(·) but can not be distinguished by all associated numerical Turaev–Viro invari-

ants, i.e., can not be distinguished by t̂v(·)? Note that t̃v2,1 is stronger than the
ε-invariant; but the ε-invariant is not the only numerical Turaev-Viro invariant
associated to t̃v2,1 (see [68, Sec. 8.1]).

2.6. Multiplicative invariants. The last statement of Proposition 3 is a bad
news if one wants to construct a Topological Quantum Field Theory. But it is a good
news if one aims to construct invariants that potentially detect counterexamples of
the Andrews–Curtis conjecture, as we will explain in Section 3.

B’
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However, it is not difficult to construct ideal Turaev–Viro invariants that are
multiplicative under connected sums. If P1, P2 are special spines of closed 3–
manifolds M1, M2, then one obtains a special spine P1#P2 of the connected sum
M1#M2 by the local process depicted in Figure 3. In the figure, 2–strata are
labeled by lower case letters and true edges by upper case letters. The 2–strata
a, b, c, d, e, f on the left hand side are circularly oriented as indicated by the arrows,
and correspond to six 2–strata on the right hand side in the obvious way. The true
edges A,A′ (resp. B,B′) on the right hand side correspond to only one true edge
on the left hand side. Hence, there must be no contribution unless A = A′ and
B = B′, hence, using Kronecker symbols, δA,A′ = δB,B′ = 1.

The 2–strata p, q, r, s on the right hand side have counterclockwise orienta-
tion. These four 2–strata an the eight intrinsic edges C,D,E, F,G,H, I,K are
completely contained inside the local picture, hence, give rise to a summation (we
abbreviate this in the following formula). An inspection of the figure shows that
tvm,n(M1#M2) = tvm,n(M1) · tvm,n(M2) if we add the following generators to the
Turaev–Viro ideal, for a, b, c, d, e, f ∈ F and A,A′, B,B′ ∈ G:

δA,A′δB,B′ −
∑

p,q,r,s∈F

∑

C,...,K∈G

(
w(p)w(q)w(r)w(s)

∣∣∣ a b q
−f s c

∣∣∣
A′,E

H,I
| a p be c r |

C,A

G,K

∣∣∣ b p q
d −f −e

∣∣∣
G,H

F,B
| c s r
−d −e −f |I,KD,B′

∣∣ a q p
−d r s

∣∣E,C
F,D

)

The rest of the machinery (computation of Gröbner bases etc.) is as usual, and
yields an invariant that is multiplicative under connected sum. We made no exten-
sive computations in this context.

3. State sum invariants for the Andrews–Curtis problem

3.1. Introduction. Let P = 〈g1, ...gm | r1, ...rn〉 a finite presentation of a
group G; hence, the ri (“relators”) are reduced words in the free group F (g1, ..., gm)
and generate a normal subgroup 〈r1, ..., rn〉 of F (g1, ..., gm), and G is isomorphic to
F (g1, ...gm)/〈r1, ...rn〉. The deficiency of P is m−n, and if the deficiency vanishes,
then P is called a balanced presentation. Sometimes, for convenience, a relator
is given in the form w1 = w2 for words w1, w2 ∈ F (g1, ..., gm); this stands for the
relator w1w

−1
2 .

It is well known [39] that any two finite presentations of G are related by finite
sequences of the following transformations and their inverses.

(1) Renumbering of generators or relators,
(2) Free reduction of relators,
(3) Replacement of gi by g−1

i in all relators (i = 1, ...,m),
(4) Replacement of gi by gigj in all relators (i, j = 1, ...,m, j 6= i),
(5) Replacement of gi by gjgi in all relators (i, j = 1, ...,m, j 6= i),
(6) Addition of a new generator gm+1 and a new relator rn+1 = gm+1,
(7) Replacement of ri by r−1

i (i = 1, ..., n),
(8) Replacement of ri by rirj (i, j = 1, ..., n, j 6= i),
(9) Replacement of ri by wriw

−1 (i = 1, ..., n, w ∈ F (g1, ..., gm)),
(10) Addition of a trivial relator rn+1 = 1.

The last type of transformations obviously plays a special rôle: It is the only
one that changes the deficiency of a presentation. So it is a natural question if
this transformation can be avoided if one considers two presentations of the same
deficiency. According to the Andrews–Curtis conjecture, this is indeed possible, at
least for balanced presentation of the trivial group.
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Conjecture 1 (Andrews–Curtis, [3]). Any balanced presentation of the trivial
group can be transformed into the trivial presentation 〈g1|g1〉 by a finite sequence
of transformations of type (1)–(9).

The equivalence relation generated by transformations (1)–(9) is called And-
rews–Curtis equivalence or Q∗∗ equivalence in [39]. A balanced presentation
of the trivial group that is Andrews–Curtis equivalent to the trivial presentation is
called Andrews–Curtis trivial. The Andrews–Curtis conjecture is 40 years old,
and nearly as old are infinite classes of potential counterexamples. The following
presentations are balanced presentations of the trivial group, but for all of them it
is unknown whether they are Andrews–Curtis trivial.

(1) 〈a, b, c | c−1bc = b2, a−1ca = c2, b−1ab = a2〉, see [82]
(2) 〈a, b | aba = bab, ak = bk+1〉, for k ∈ N, k ≥ 3. See [39], generalising [1].
(3) 〈a, b | abm = bm+1a, ban = an+1b〉, for m,n ∈ N, m,n ≥ 3. See [39],

generalising [20].

Example (2) with k = 3 is, to the current knowledge, the smallest potential
counterexample [10], [34], namely with relators of total length 13.

It is known [39] that the Andrews–Curtis conjecture is equivalent to a statement
on transformations of special 2–polyhedra. Let P be a special 2–polyhedron. We
do not assume that it is a special spine of some compact 3–manifold. Let c be a
2–stratum of P . Since P is special, c is a disc. Let D2 be the closed disc, and
let φ : D2 → P such that its restriction to the interior is a homeomorphism onto
c. Walking along φ(∂D2), one obtains a not necessarily simple closed path in the
singular graph S(P ). For x ∈ ∂D2 with φ(x) 6∈ V (P ), a small neighbourhood of
φ(x) in P is formed by the φ–image of a small neighbourhood of x in D2 together
with a small stripe in P . When walking accross a true vertex, these stripes fit
together in a natural way. Hence, along ∂c, the stripes close up either to a locally
embedded annulus or to a locally embedded Möbius strip in P . In the first case, we
call c a straight 2–stratum, in the second case, we call c a twisted 2–stratum. It is
known [68] that a special 2–polyhedron is special spine of some compact 3–manifold
if and only if it has no twisted 2–stratum.
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Figure 4. The move N

Consider the following transformations.

(1) The move T , depicted in Figure 1 on Page 42
(2) The move N , depicted in Figure 4
(3) The move L, depicted in Figure 5; here, α is some arc embedded in a 2–

stratum c, ∂α ⊂ ∂c, and the move takes place in a regular neighbourhood
of α
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(4) The move B, depicted in Figure 6.

The local picture of the right side of move N is not embeddable in R3 (this
is what the letter N stands for). As one can see in the figure, the new 2–stratum
x introduced by N is twisted, while the 2–strata a, ..., f change from twisted to
straight and vice-versa. The move L is also known as loon move. Note that an
application of the inverse of move L to a special 2–polyhderon might result in a
simple 2–polyhedron that is not special — namely when it creates a 2–stratum that
is not a disc. In that situation, we do not allow to perform the move. With that
restriction, the moves T , N , L and their inverses generate an equivalence relation
on special 2–polyhedra that we call equivalence by 3–deformations. Note that
the same equivalence relation sometimes is called equivalence by 2–deformations in
the literature; we follow here the terminology in [39]. It can be shown that the
Andrews–Curtis conjecture for group presentations is equivalent to the following
statement about special 2–polyhedra.

Theorem 12 (see [39]). The Andrews–Curtis conjecture holds if and only if
any two contractible1 special 2–polyhedra are equivalent by 3–deformations. �

1A contractible 2–complex has trivial fundamental group and Euler characteristic 1.
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The move B adds a “bubble” (this is what the letter B stands for), and in
contrast to T , N and L it changes the Euler characteristic. It is known that any
two contractible special 2–polyhedra P1 and P2 become equivalent by 3–deformation
after finitely many applications of the move B to both P1 and P2.

Any counterexample to the Andrews–Curtis conjecture gives rise to a pair of
contractible special 2–polyhedra that are not equivalent by 3–deformation, and vice
versa. A reasonable approach for disproving the Andrews–Curtis conjecture is to
construct a 3–deformation invariant for special 2–polyhedra, i.e., to associate
to any special 2–polyhedron some algebraic object that does not change under the
moves T , N , L and their inverses. Such invariant could detect two contractible
special 2–polyhedra that are not equivalent by 3–deformations. However, by the
result of Bobtcheva and Quinn [6] mentioned in Section 1, this approach fails for
a large class of invariants called reductions of modular invariants. We will not
provide a proper definition of modular invariants here. Note, however, that modular
invariants are multiplicative under connected sum of special 2–complexes (depicted
in Figure 3).

Starting with numerical Turaev–Viro invariants associated to quantum groups,
it is possible to construct 3–deformation invariants. However, these are reduc-
tions of modular invariants, hence, are unable to detect a counterexample to the
Andrews–Curtis conjecture. By Statement (7) of Theorem 3, ideal Turaev–Viro
invariants are, in general, not multiplicative under connected sums. Hence, there is
some hope to obtain an invariant that goes beyond the restrictions provided by the
result of Bobtcheva and Quinn [6]. In the next subsection, we will prove that one
can replace the move L by another move that seems better suited for the construc-
tion of invariants. Then we modify the definition of ideal Turaev–Viro invariants
and obtain 3–deformation invariants. By direct computations, we can show that
our invariants are not multiplicative under connected sums; hence, they do not sat-
isfy the formulas provided by Bobtcheva and Quinn [6]. Nevertheless, we have not
been able to distinguish any two special 2–polyhedra that have the same homology
groups.

3.2. 3–deformation invariants. Let P1 be a special 2–polyhedron. Let c be
a 2–stratum of P2, and let α ⊂ c be an embedded arc with ∂α = {x, y} ⊂ ∂c.
Let P2 be the result of P1 under a move L along α (compare Figure 5). We study
the effect of a different choice of α. Let α′ ⊂ c be another embedded arc, with
∂α′ = {x, z} ⊂ ∂c, and let P ′

2 be the result of P1 under a move L along α′. Since
P1 is special, c is a disc. Therefore, if y and z belong to the same true edge of
P1 then α and α′ are related by an isotopy that fixes any stratum of P1 set-wise.
Hence, in that case, P2 and P ′

2 are homeomorphic. If there is a segment β ⊂ ∂c
with ∂β = {y, z} that is disjoint from x and contains exactly one true vertex of P1

then P2 can be transformed into P ′
2 by a move of type T and the inverse of a move

of type T .
Since P1 is special, there is some true vertex of P1 in ∂c. So, up to a sequence

of moves of type T and their inverses, we can choose α so that there is a segment
γ ⊂ ∂c with ∂γ = {x, y} that contains precisely one true vertex, v, of P1. Let D ⊂ c
be the sub-disc of c bounded by α ∪ γ. After move L, D becomes a 2–stratum g
of P2. Either g is straight or it is twisted. If it is straight, we have the situation
of Figure 7. It is known that this move factorises by the move T and its inverse,
provided that P1 has at least two true vertices — see [68]. If s is twisted, we obtain

the situation in Figur 8. We denote this special case of move L by L̃.
The move L̃ is local, in contrast to the move L that depends on the choice of an

arc α and whose inverse is not always defined. So, the move L̃ is better suited for
definition of 3–deformation invariants than the move L. The preceding paragraphs
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Figure 8. A “twisted” move L near a vertex — the move L̃

immediately imply that two special 2–polyhedra with at least two true vertices are
3–deformation equivalent if and only if they can be related by a finite sequence of
moves T , N , L̃ and their inverses.

How to construct 3–deformation invariants for special 2–complexes? Our basic
construction, namely a state sum of Turaev–Viro type, remains as before. So, we
have a finite set F with an involution, providing colourings ΦF (P) of 2–strata of
special spines. For simplicity, we use no edge colours. The six coloured wings around
each true vertex give rise to 6j–symbols, and each coloured 2–stratum has a weight,
and equivalence classes of the 6j–symbols and colour weights are variables of some
polynomial ring R over a field. However, in the context of special 2–polyhedra that
are not special spines of 3–manifolds, we have an additional property of 2–strata
that we may use in our construction: A 2–stratum can be either twisted or straight.
Therefore, we add variables t(f) to R, for all f ∈ F , and t(f) = t(−f) for all f ∈ F .
For any 2–stratum c of a special 2–polyhedron P, let ε(c) = 0 if c is straight and
ε(c) = 1 if c is twisted. Now, we form a modified state sum TVF (P) as follows:

TVF (P) =
∑

ϕ∈ΦF (P)


 ∏

C∈C(P)

t(ϕ(C))ε(C)w(ϕ(C))


 ·


 ∏

v∈V(P)

vϕ,ψ


 ∈ R

Note that a very similar construction was used by Turaev for his theory of shadows
of 4–manifolds [97].

According to Figures 4 and 8, the moves N and L̃ change some 2–strata from
straight to twisted and vice versa. Changing a 2–stratum of colour f from straight
to twisted evidently changes the corresponding summand in the state sum by the
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factor t(f), and a change from twisted to straight changes the summand state sum
by a factor t(f)−1. Hence, if we use the relation t(f)2 = 1 for all f ∈ F , both
the change from straight to twisted and vice versa contribute a factor t(f) to the
summands of the state sum.

Let IACF ⊂ R be the ideal generated by the Biedenharn–Elliott equations (see
Eqn. 1), by t(f)2 − 1 for all f ∈ F , by

(3)
∣∣ a b c
f e d

∣∣ =
∑

x∈F

w(x)t(a)t(b)t(c)t(d)t(e)t(f)t(x)
∣∣∣ f c −x
−d a b

∣∣∣
∣∣ f −a e
c d x

∣∣

and by

(4)
∣∣ a b c
f e d

∣∣ =
∑

g,h∈F

w(g)w(h)t(g)t(c)
∣∣∣ a b gf e d

∣∣∣
∣∣∣ b e ga f h

∣∣∣
∣∣ b c e
−a h f

∣∣

for all a, b, c, d, e, f ∈ F .

Theorem 13. For special 2–polyhedra with at least two true vertices, the coset

tvF (P) = TVF (P) + IACF ∈ R/IACF

only depends on the 3–deformation type of P.

Proof. For special 2–polyhedra with at least two true vertices, 3–deformation
equivalence is generated by the moves T , N and L̃. Invariance under the move T is
provided by the Biedenharn–Elliott equations. Invariance under the move N (resp.

L̃) is provided by t(f)2 − 1 together with the generators 3 (resp. 4), which can be
seen by an inspection of Figure 4 (resp. Figure 8). �

Modifications of Turaev-Viro invariants look like tools to detect counterex-
amples of the Andrews-Curtis conjecture. However, it follows from a result of
Bobtcheva and Quinn [6] that classical Turaev-Viro invariants will fail. In fact,
Bobtcheva and Quinn show that a large class of invariants for the Andrews-Curtis
problem is determined by homology, by some explicit formula. This is mainly since
these invariants are multiplicative under connected sums.

However, by Theorem 3, ideal Turaev–Viro invariants are not multiplicative
under connected sums, in contrast to the classical numerical Turaev–Viro invariants
that arise from representation theory of Quantum Groups. Hence, there is some
hope ideal 3-deformation invariants are not just determined by homology.

We succeeded to compute Gröbner bases of IACF in various cases, partially
involving simplifying assumptions similar to those studied in Section 2.4. We
computed our invariants for various notorious potential counterexamples of the
Andrews–Curtis conjecture, but we were not able to disprove the conjecture. How-
ever, ideal Turaev–Viro invariants remain a possible way towards a disprove of the
Andrews–Curtis conjecture.

4. Ideal link invariants

In previous sections, we constructed homeomorphism invariants of 3-manifolds
or 3-deformation invariants of special 2-polyhedra taking values in quotients of
polynomial rings. In this section, we briefly discuss an approach towards the con-
struction of new invariants of knots and links in S3.

The basic strategy is as follows. Let a link L ⊂ S3 be represented by a link
diagram D in S2. Read off a state sum |D| ∈ R, where R is some polynomial
ring. Any two diagrams of L are related by sequences of Reidemeister moves. The
Reidemeister moves give rise to generators of some ideal Ω ⊂ R, such that the state
sums of two diagrams of L only differ by an element of Ω. Hence, |D| + Ω ∈ R/Ω
only depends on the ambient isotopy type of L.
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A diagram D ⊂ S2 of a link L is formed by bridges (i.e., arcs in the projection
of L that start and end at undercrossings but may pass several overcrossings) and
decomposes S2 into 2-cells, to which we refer as regions of D. Let F and G be
finite sets. An (F ,G)-colouring of D assigns an element of F to any bridge and an
element of G to any region of D.

Hence, at any crossing of a diagram with an (F ,G)-colouring, three elements of
F (corresponding to the overcrossing bridge and the two bridges starting at the un-
dercrossing) and four elements of G occur. To each triple x, y, z ∈ F and quadruple
A,B,C,D ∈ G, a crossing as in Figure 9 gives rise to a variableX(x, y, z;A,B,C,D)
of some polynomial ring R over Q. The variables of R shall respect the symmetry
of a crossing. Hence, we identify X(x, y, z;A,B,C,D) with X(x, z, y;C,D,A,B).
In addition, we have a variable |A| of R for any A ∈ G.
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Now, for any colouring φ of D, we let Dφ ∈ R be the product of all variables
X(...; ...) and | · | corresponding to the coloured crossings and regions of D. By the
symmetry of X(...; ...), Dφ is well-defined. Let the state sum |D| ∈ R of D| be the
sum of Dφ over all (F ,G)-colourings of D.
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Let the ideal Ω ∈ R be generated by the following polynomials, for all t, ..., z ∈
F , A, ..., G ∈ G, where δx,y denotes the Kronecker symbol.

δx,y −
∑

C∈G

|C|X(y, x, x;A,B,C,B)

δx,zδB,E −
∑

D∈G

∑

y∈F

|D|X(w, x, y;B,C,D,A)X(w, y, z;A,D,C,E)

∑

G∈G

∑

w∈F

|G|X(t, u, w;B,C,G,A)X(t, v, x;C,D,E,G)X(x,w, y;A,G,E, F )

−
∑

G∈G

∑

w∈F

|G|X(v, u, w;B,C,D,G)X(t, v, x;B,G, F,A)X(t, w, y;G,D,E, F )

The three types of generators correspond to the three Reidemeister moves, as
indicated in Figure 10. One obtains

Theorem 14 (and Definition). For any link L ⊂ S3 with a diagram D, the
coset |L| = |D| + Ω ∈ R/Ω is independent of the choice of D.

Now, the following steps are as in the case of ideal Turaev–Viro invariants:

(1) Compute a Gröbner basis G of Ω.
(2) Compute the state sum |D| of any link diagram D of a link L.
(3) Compute rem(D;G), which is a unique representative of |L|.

Unfortunately, the computation of Gröbner bases seems to be much more difficult
for Ω than for the Turaev–Viro ideals studied in the previous sections. So, there is
urgent need for simplifying assumptions. We tested various simplifying assumptions
motivated by the Jones polynomial [44]. However, we did not succeed to find a
proper generalisation of the Jones polynomial. In spite of that negative outcome,
we believe that with better simplifying assumptions one should obtain new strong
link invariants.





CHAPTER 7

Fast Computation of Secondary Invariants

1. Motivation

Ideal Turaev–Viro invariants (see Section 2 in Chapter 6) have many symme-
tries. For simplicity, let us assume that the edge colours are trivial. Let F be the
set of 2–strata colours. Let a group G act on F by permutation of colours. If there
are no simplifying assumptions then this action induces an action on the set of
6j-symbols and colour weights, hence, an action on the variables of the polynomial
ring R that we introduced in the definition of ideal Turaev–Viro invariants. Let
RG = {p ∈ R : g.r = r, ∀g ∈ G} be the invariant ring of that action. Obviously,
RG is a sub-algebra of R.

Let P be any special 2-polyhedron. We obtain an action of G on the set of
all F–colourings of P . The state sum TVm,1(P ) is a sum over all F–colourings
of P . Hence, TVm,1(P ) ∈ RG. Let Im,1 ⊂ R be the Turaev–Viro ideal, and let
IGm,1 = Im,1 ∩RG be the invariant ideal. We readily obtain the following estimate.

Lemma 7. For any closed 3-manifold M with c̃(M) > 1 and a special spine P
of M , we have

c̃(M) ≥ max
{
degw

(
TVm,1(P ) + IGm,1

)
− 1,deg6j

(
TVm,1(P ) + IGm,1

)}
.

�

Since IGm,1 ⊂ Im,1, we have TVm,1(P ) + IGm,1 ⊂ tvm,1(M), hence,

degw(TVm,1(P ) + IGm,1) ≥ degw(tvm,1(M)) and

deg6j(TVm,1(P ) + IGm,1) ≥ deg6j(tvm,1(M)).

So, Lemma 6 is an improvement of Lemma 6.
Using Singular [29], we succeeded to compute RG and IGm,1 ⊂ RG, in some ba-

sic cases. This did not provide non-trivial bounds for the complexity of 3–manifolds.
However, this attempt was the motivation to develop and implement a new algo-
rithm for the computation of invariant rings. We recall classical results on invariant
rings in the next section.

Our algorithm is based on three new ideas, as described in Section 3 or in our
preprint [56]. The benchmark tests that we expose in Section 4 show that the imple-
mentation of our algorithm in the Singular library finvar.lib marks a dramatic
improvement in the manageable problem size, compared with previous algorithms
in Singular or in Magma [11]. After the first version of our manuscript [56] was
posted, there was a new release of Magma with a new algorithm due to Kemper,
that seems to be competitive with our algorithm, but was not described yet. A
bit later, we came up with a second new algorithm that in some cases provides a
further drastic improvement; this is described in Chapter 8.

2. Non-modular invariant rings

Let G be a finite group, linearly acting on a polynomial ring R with n variables
over some field K. We denote the action of g ∈ G on r ∈ R by g.r ∈ R.

59
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Let RG = {r ∈ R : g.r = r, ∀g ∈ G} be the . Obviously, it is a sub-algebra
of R, and one would like to compute generators for RG. We study here the non-
modular case, i.e., the characteristic of K does not divide the order of G. Note
that according to [45], algorithms for the non-modular case are useful also in the
modular case.

For any subset S ⊂ R, we denote by 〈〈S〉〉 ⊂ R the sub-algebra generated by
S, and by 〈S〉 ⊂ R the ideal generated by S. It is well known [25] that there
are n (the number of variables) algebraically independent homogeneous invariant
polynomials P = {p1, ..., pn} ⊂ RG such that RG is a finitely generated free 〈〈P 〉〉–
module (this is not always true in the modular case!). The elements of P are called
primary invariants. Of course, they are not uniquely determined. There are
various algorithms to compute primary invariants [45]. Since the primary invariants
are algebraically independent, the sub-algebra 〈〈P 〉〉 is isomorphic to a polynomial
ring with n variables. It is called (homogeneous) Noetherian normalization
of RG.

Let S ⊂ RG be a minimal set of homogeneous 〈〈P 〉〉–module generators of RG.
The elements of S are called secondary invariants. The number of secondary in-
variants increases with the product of the degrees of the primary invariants. Hence,
it is advisable to minimize the degrees of the primary invariants. Irreducible
secondary invariants are those non-constant secondary invariants that can not be
written as a polynomial expression in the primary invariants and the other sec-
ondary invariants. The set of secondary invariants is not unique, even if one fixes
the primary invariants. It is easy to see that one can choose secondary invariants
so that all of them are power products of irreducible secondary invariants.

Our aim is to present a new algorithm for the computation of (irreducible)
homogeneous secondary invariants, if homogeneous primary invariants P are given.
The key theorem for our algorithm concerns Gröbner bases and holds in arbitrary
characteristic; however, the algorithm assumes that we are in the non-modular case.

Since we are in the non-modular case, we can use the Reynolds operator
Rey : R→ RG, which is defined by

Rey(r) =
1

|G|
∑

g∈G

g.r

for r ∈ R. By construction, the restriction of the Reynolds operator to RG is the
identity. The Reynolds operator does not commute with the ring multiplication.
However, it does commute, if one of the factors is invariant, as in the following
lemma. In other words, the Reynolds operator is a module homomorphism, where
R and RG are considered as RG–modules.

Lemma 8. Let p ∈ R and q ∈ RG. Then, Rey(pq) = Rey(p)q.

Proof. For any g ∈ G, we have g.(pq) = (g.p)(g.q). But q ∈ RG, and thus
g.(pq) = (g.p)q. It follows

Rey(pq) =
1

|G|
∑

g∈G

g.(pq)

=
1

|G|
∑

g∈G

(g.p)q = Rey(p)q

�

Let Bd ⊂ RG be the images under the Reynolds operator of all monomials of R
of degree d that do not occur as leading monomials in 〈P 〉. Using a Gröbner basis
of 〈P 〉, Bd is easy to compute. It is well known that one can find a system of homo-
geneous secondary invariants of degree d in Bd (see Lemma 3.5.1 and Remark 3.5.3
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in [22]). But how can one determine what elements of Bd are eligible as secondary
invariants? The solution is provided by the following lemma. For completeness, we
give a proof, although it is well known [88].

Lemma 9. Let d > 0, let S0, S1, S2, ..., Sd−1 ⊂ RG be the homogeneous sec-
ondary invariants of degree 0, 1, 2, ..., d − 1, let s1, ..., sm ∈ RG be some homoge-
neous secondary invariants of degree d, and let b ∈ Bd. We can choose b as a new
homogeneous secondary invariant of RG, if and only if b is not contained in the
ideal 〈P ∪ {s1, ..., sm}〉 ⊂ R.

Proof. By definition, we can choose b as a new homogeneous secondary in-
variant of RG, if and only if b is not contained in the 〈〈P 〉〉–module generated by
S0 ∪ S1 ∪ · · · ∪ Sd−1 ∪ {s1, ..., sm}. Since b is homogeneous of degree d, if b belongs
to the 〈〈P 〉〉–module generated by S0 ∪ S1 ∪ · · · ∪ Sd−1 ∪ {s1, ..., sm} then it is an
element of 〈P ∪ {s1, ..., sm}〉 ⊂ R.

Conversely, let b ∈ 〈P ∪ {s1, ..., sm}〉 ⊂ R be a homogeneous invariant poly-
nomial of degree d. As an element of the ideal, we may write it as a finite sum
b =

∑
i piqi, with homogeneous polynomials pi ∈ R and qi ∈ P ∪{s1, ..., sm} ⊂ RG.

Since b is invariant, since the Reynolds operator is additive and by Lemma 8, we
obtain b = Rey(b) =

∑
i Rey(piqi) =

∑
i Rey(pi)qi. If qi ∈ P then Rey(pi) is a

non-constant homogeneous invariant polynomial of degree at most d−1. Hence, by
hypothesis, Rey(pi) belongs to the 〈〈P 〉〉–module generated by S0 ∪S1 ∪ · · · ∪Sd−1.
If qi ∈ {s1, ..., sm} then pi = Rey(pi) is a constant. Hence, in both cases, Rey(pi)qi
belongs to the 〈〈P 〉〉–module generated by S0 ∪ S1 ∪ · · · ∪ Sd−1 ∪ {s1, ..., sm}; and
so does b. �

By Theorem 11, to test ideal membership, it suffices to know a Gröbner basis
for the ideal and to compute the remainder with respect to this Gröbner basis. We
thus obtain the following very basic algorithm for finding homogeneous secondary
invariants of degree d.
Basic Algorithm

(1) Let Sd = ∅. Let G be a Gröbner basis of 〈P 〉.
(2) For all b ∈ Bd:

If b 6∈ 〈P ∪ Sd〉 (which is tested by reduction modulo G) then replace Sd
by Sd ∪ {b}; compute a Gröbner basis of 〈P ∪ Sd〉 and replace G with it.

(3) Return Sd.

There are several ways to improve this algorithm. One way is an application
of Molien’s Theorem [88], [45], [37]. We will not go into details here. Molien’s
Theorem allows to compute the number md of secondary invariants of degree d.
In other words, if in the above algorithm we got md secondary invariants, we can
immediately break the loop in Step (2).

We also would like to see which of the secondary invariants in Sd are irreducible,
since these, together with P , generate RG as a sub-algebra of R. Let ISi ⊂ Si be the
irreducible secondary invariants, for i = 1, ..., d− 1. For computing the irreducibles
in degree d, usually one first forms all power products of degree d of elements of
IS1 ∪ IS2 ∪ · · · ∪ ISd−1 and chooses from them as many secondary invariants as
possible (see [45], [47] or [22]). If there are further secondary invariants (which we
know from computation of md), then one proceeds as above with Bd, and obtains
all irreducible secondary invariants ISd of degree d. So, the algorithm is as follows.
Refined Algorithm

(1) Compute md. Let Sd = ISd = ∅ and let G be a Gröbner basis of 〈P 〉.
(2) For all power products b of degree d of elements of IS1∪IS2∪· · ·∪ISd−1:

(a) If b 6∈ 〈P ∪Sd〉 (which is tested using G) then replace Sd by Sd ∪{b};
compute a Gröbner basis of 〈P ∪ Sd〉 and replace G with it.
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(b) If |Sd| = md then break and return (Sd, ISd).
(3) For all b ∈ Bd:

(a) If b 6∈ 〈P ∪Sd〉 (which is tested using G) then replace Sd by Sd ∪{b},
and ISd by ISd ∪ {b}; compute a Gröbner basis of 〈P ∪ Sd〉 and
replace G with it.

(b) If |Sd| = md then break and return (Sd, ISd).

Eventually, Sd contains homogeneous secondary invariants of degree d, and ISd
contains the irreducible ones. In this form, the algorithm has been implemented
in 1998 by A. Heydtmann [37] as the procedure secondary char0 of the library
finvar of Singular. In Step (2), the ideal membership is tested by computing
the remainder modulo some Gröbner basis of the ideal. This ideal changes once a
new secondary invariant has been found. So, the algorithm involves many Gröbner
basis computations. This is its main disadvantage and limits the applicability of
the Basic and the Refined Algorithm.

An alternative algorithm, but with essentially the same structure, was proposed
by Kemper and Steel (see [45], [47] or [22]) and implemented in Magma [11]. Here,
new secondary invariants are detected not by a general solution of the ideal mem-
bership problem but by testing linear independency of normal forms with respect
to a Gröbner basis of 〈P 〉, hence, by Linear Algebra. This algorithm only involves
one Gröbner basis computation, namely for the ideal 〈P 〉. But for computing some
of the invariant rings that arise in our study of ideal Turaev–Viro invariants, this
does not suffice either.

3. The New Algorithm

The main feature of our new algorithm is that, after computing some (homo-
geneous) Gröbner basis of 〈P 〉, we can directly write down a homogeneous Gröbner
basis up to degree d of 〈P ∪Sd〉, once a new secondary invariant of degree d has been
found. We can do so whithout any lengthy computations (in contrast to [37]), and
we also avoid to deal with huge systems of linear equations (in contrast to [47], [45],
[22]). This allows to solve the ideal membership problem in a very quick way. We
recall the notion of “homogeneous Gröbner bases up to degree d” in the following
paragraphs. At the end of the section, we provide our key theorem and formulate
our new algorithm.

For p ∈ R, let lm(p) the leading monomial of p, let lc(p) be the coefficient
of lm(p) in p, and let lt(p) = lc(p)lm(p) be the leading term of p. The least
common multiple is denoted by LCM(·, ·). Now we can recall the definition of the
S–polynomial of p, q ∈ R:

S(p, q) =
LCM(lm(p), lm(q))

lt(p)
p− LCM(lm(p), lm(q))

lt(q)
q

Obviously, the S–polynomial of p and q belongs to the ideal 〈p, q〉 ⊂ R. The
leading terms of p and q are canceling one another, so, the leading monomial of
S(p, q) corresponds to monomials of p or q that are not leading. The following
result can be found, e.g., in [27] or [59].

Theorem 15 (Buchberger’s Criterion). A set g1, ..., gk ∈ R of polynomials is a
Gröbner basis of the ideal 〈g1, ..., gk〉 ⊂ R if and only if rem (S(gi, gj); g1, ..., gk) = 0
for all i, j = 1, ..., k. �

Buchberger’s Criterion directly leads to Buchberger’s algorithm for the con-
struction of a Gröbner basis of an ideal: One starts with any generating set of the
ideal. If the remainder modulo the generators of the S–polynomial of some pair of
generators does not vanish, then the remainder is added as a new generator. This
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will be repeated until all S–polynomials reduce to 0; it can be shown that this will
eventually be the case, after finitely many steps.

Here, we are in a special situation: We work with homogeneous polynomi-
als. It is easy to see that if p and q are homogeneous then so is S(p, q), and its
degree is higher than the maximum of the degrees of p and q, unless the lead-
ing monomials of p and q are divisible by each other. If p, g1, g2, ..., gk ∈ R are
homogeneous then so is rem(p; g1, ..., gk). Moreover, either rem(p; g1, ..., gk) = 0
or deg (rem(p; g1, ..., gk)) = deg(p). For computing rem(p; g1, ..., gk), only those gi
play a role with deg(gi) ≤ deg(p), for i = 1, ..., k. It follows: If an ideal I ⊂ R
is homogeneos (i.e., it can be generated by homogeneous polynomials) then it has
a Gröbner basis of homogeneous polynomials. Such a Gröbner basis can be con-
structed degree-wise.

Definition 9. A finite set {g1, ..., gk} ⊂ R of homogeneous polynomials is a
homogeneous Gröbner basis up to degree d of the ideal 〈g1, ..., gk〉, if

rem (S(gi, gj); g1, ..., gk) = 0

or deg (S(gi, gj)) > d, for all i, j = 1, ..., k.

Lemma 10. Let {g1, ..., gk} ⊂ R be a homogeneous Gröbner basis up to degree
d, and let p ∈ R be a homogeneous polynomial of degree at most d. Then, p ∈
〈g1, ..., gk〉 if and only if rem (p; g1, ..., gk) = 0.

Proof. The paragraph preceding the definition implies that {g1, ..., gk} can be
extended to a Gröbner basis G of 〈g1, ..., gk〉 by adding homogeneous polynomials
whose degrees exceed d. Since deg(p) ≤ d, we have rem(p;G) = rem(p; g1, ..., gk).
Since p ∈ 〈G〉 if and only if rem(p;G) = 0 by Theorem 11, the result follows. �

We see that in order to do Step (2) in the Basic Algorithm (or the cor-
responding steps in the Refined Algorithm) it suffices to know a homogeneous
Gröbner basis up to degree d of 〈P ∪Sd〉. Our key theorem states that this Gröbner
basis can be constructed iteratively, as follows.

Theorem 16. Let G ⊂ R be a homogeneous Gröbner basis up to degree d of
〈G〉. Let p ∈ R be a homogeneous polynomial of degree d, and p 6∈ 〈G〉. Then
G ∪ {rem(p;G)} is a homogeneous Gröbner basis up to degree d of 〈G ∪ {p}〉.

Proof. Let r = rem(p;G). Since p 6∈ 〈G〉 and all polynomials are homoge-
neous, we have r 6= 0, deg(r) = d, and 〈G ∪ {p}〉 = 〈G ∪ {r}〉.

By hypothesis, the S–polynomials of pairs of elements of G are of degree > d or
reduce to 0 modulo G. We now consider the S–polynomials of r and elements of G.
Let g ∈ G. By definition of the remainder, lm(r) does not divide lm(g). Therefore
the S–polynomial of r and g is of degree > d = deg(r). Thus the claim follows. �

We obtain the
New Algorithm

(1) Compute md and a homogeneous Gröbner basis G of 〈P 〉.
Let Sd = ISd = ∅.

(2) For all power products b of degree d of elements of IS1∪IS2∪· · ·∪ISd−1:
(a) If rem(b;G) <> 0 then replace Sd by Sd∪{b}, and G by G∪{rem(b;G)}.
(b) If |Sd| = md then break and return (Sd, ISd).

(3) For all b ∈ Bd:
(a) If rem(b;G) <> 0 then replace Sd by Sd ∪{b}, ISd by ISd ∪{b}, and

G by G ∪ {rem(b;G)}.
(b) If |Sd| = md then break and return (Sd, ISd).
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Although the New Algorithm is a dramatic improvement of the Refined

Algorithm, one should take more care in Step (2) of the New Algorithm. It
simply says “For all power products b of degree d of elements of IS1 ∪ IS2 ∪ · · · ∪
ISd−1”. Two questions arise:

(1) How shall one generate the power products?
(2) Is it necessary to generate all possible power products, or can one restrict

the search?

In very complex computations, the number of power products is gigantic. But
usually only a small proportion of them will be eligible as secondary invariant. So,
for saving computer’s memory, it is advisable to generate the power products one
after the other (or in small packages), rather than generating all power products at
once; this answers Question (1).

Apparently Question (2) was never addressed in the literature. However, it
turns out that a careful choice of power products provides another dramatic im-
provement of the performance of the algorithm. Our choice is based on the following
lemma. It seems to be well-known to the experts. However, we did not find it in
the literature, and it was not used in the finvar library of Singular up to version
3-0-1.

Lemma 11. Assume that secondary invariants of degree < d are computed such
that all of them are power products of irreducible secondary invariants. In the quest
for reducible homogeneous secondary invariants of degree d, it suffices to consider
power products of the form i · s, where i is a homogeneous irreducible secondary
invariant of degree < d, and s is some secondary invariant of degree d− deg(i).

Proof. Let p ∈ R be a power product of degree d of irreducible secondary
invariants. Hence, it can be written as p = iq, with an irreducible homogeneous
secondary invariant i of degree < d and some homogeneous G–invariant polynomial
q of degree d− deg(i) (we do not use here that q is a power product itself).

Recall that the secondary invariants generate the invariant ring as a 〈〈P 〉〉–
module. Hence one can rewrite q = q0 + k1s1 + · · · + ktst, where q0 ∈ 〈P 〉 ∩ RG
(i.e., q0 belongs to the 〈〈P 〉〉–module generated by secondary invariants of lower
degree), k1, ..., kt ∈ K, and s1, ...st are homogeneous secondary invariants of degree
deg(q). We obtain p = iq0 + k1(is1)+ · · ·+ kt(ist). Hence, rather than chosing p as
a 〈〈P 〉〉–module generator of RG, we may choose is1, ..., ist, which, by induction,
are power products of irreducible secondary invariants. �

Improved New Algorithm

(1) Compute md. Let G be a Gröbner basis of 〈P 〉. Let Sd = ISd = ∅.
(2) For all products b = i · s with i ∈ IS1 ∪ · · · ISd−1 and s ∈ Sd−deg(i):

(a) If rem(b;G) 6= 0 then replace Sd by Sd∪{b}, and G by G∪{rem(b;G)}.
(b) If |Sd| = md then break and return (Sd, ISd).

(3) For all b ∈ Bd:
(a) If rem(b;G) 6= 0 then replace Sd by Sd ∪ {b}, ISd by ISd ∪ {b}, and

G by G ∪ {rem(b;G)}.
(b) If |Sd| = md then break and return (Sd, ISd).

This is the algorithm that is implemented as secondary char0 in the library
finvar of Singular 3-0-2 [29], released in Juli 2006. In Step (2), the secondary
invariant s may be a non-trivial powerproduct itself, hence, can be expressed as
s = iss

′, where is is an irreducible secondary invariant and s′ is (by induction)
some other secondary invariant. Of course one should consider only one of the two
products is(is

′) and i(iss
′) in the enumeration.

Often one is only interested in the irreducible secondary invariants, which,
together with the primary invariants, generate the invariant ring as a sub-algebra.
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Therefore we implemented yet another version of the Improved New Algorithm

in Singular 3-0-2, namely irred secondary char0. This algorithm computes
irreducible secondary invariants, but does not explicitely compute the reducible
secondary invariants. That works as follows.

Let GP be a Gröbner basis of 〈P 〉. In Step (2)(a) of the Improved New Algo-

rithm, one replaces Sd by Sd∪{rem(b;GP )}, rather than by Sd∪{b}. In Step (3)(a)
one replaces Sd by Sd∪{rem(b;GP )} and ISd by ISd∪{b}. In the end, Sd does not
contain secondary invariants, but normal forms of secondary invariants with re-
spect to GP . Since rem (rem(p1;GP ) · rem(p2;GP );GP ) = rem(p1 · p2;GP ) and since
a reduction modulo G in Steps (2)(a) and (3)(a) also comprises a reduction mod-
ulo GP , this maintains all informations that one needs for determining how many
secondary invariants are reducible in Step (2) and for finding the irreducible sec-
ondary invariants in Step (3). So in the end, ISd contains the irreducible secondary
invariants in degree d.

This third new idea for our algorithm very often saves much memory and
computation time, as can be seen in Table 1 in Examples (1) and (6)–(9). In
Example (8), we can compute the irreducible secondary invariants although the
computation of all 31104 secondary invariants exceeds the resources.

An example of Kemper (example (9) in the next Section) motivated us to
further refine the implementation of the Improved New Algorithm. It concerns
the generation of Bd: If there are irreducible secondary invariants in rather high
degrees d (in Kemper’s example, there are two irreducible secondary invariants of
degree 9), it is advisable to generate not all of Bd at once, but in small portions.
This will be part of release 3-0-3 of Singular.

4. Benchmark Tests for the Computation of Secondary Invariants

4.1. The Test Examples. We already mentioned that the study of ideal
Turaev–Viro invariants is a source of test examples for the computation of invariant
rings. Let F = {1, ...,m}, and let G = Sm be the symmetric group of F , and let R
be the ring whose variables are colour weights and 6j–symbols, as in Section 6.2,
without simplifying assumptions. We obtain an action on the set of colour weights
by g.w(a) = w(g.a), and an action on the set of 6j–symbols by

g.
∣∣ a b c
f e d

∣∣ =
∣∣∣ g.a g.b g.cg.f g.e g.d

∣∣∣ ,

for a, ..., f ∈ F and g ∈ G. For computing primary invariants, it helps to use
the fact that the set of variables of R is decomposed into several G–orbits. Of
course, this also works in the case of a simplifying assumption for which g.w(a)
(resp. g.

∣∣ a b c
f e d

∣∣) is a variable of R if and only if w(a) (resp.
∣∣ a b c
f e d

∣∣) is a variable of
R, for all g ∈ G. It is not difficult to invent appropriate simplifying assumptions.
Examples (1), (7) and (8) come from that source. We will not go into details here,
but just provide the matrices and primary invariants of our nine test examples.
They are roughly ordered by increasing computation time. The ring variables are
called x1, x2, .... Let ei be the column vector with 1 in position i and 0 otherwise.

(1) A 13–dimensional representation of the symmetric group S2 is given by
the matrix

M = (e2e1e13e12e11e8e10e6e9e7e5e4e3)

Our primary invariants are

x9, x7 + x10, x6 + x8, x5 + x11, x4 + x12, x3 + x13,

x1 + x2, x3x13, x4x12, x5x11, x7x10, x6x8, x1x2
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There are 32 secondary invariants of maximal degree 6, among which are
15 irreducible secondary invariants up to degree 2.

(2) A 6–dimensional representation of S4 is given by the matrices

M1 = (e1e4e5e2e3e6)

M2 = (e4e1e5e2e6e3)

Our primary invariants are

x3 + x5 + x6, x1 + x2 + x4, x3x5 + x3x6 + x5x6,

x3x4 + x2x5 + x1x6, x1x2x4, x3
1x

3
2 + x3

1x
3
4 + x3

2x
3
4 + x2

3x
2
5x

2
6

There are 12 secondary invariants of maximal degree 9, among which are
4 irreducible secondary invariants of maximal degree 3.

(3) A 6–dimensional representation of the alternating group A4 is given by
the matrices

M1 = (e4e1e5e2e6e3)

M2 = (e2e3e1e6e4e5)

Our primary invariants are

x1+x2 + x3 + x4 + x5 + x6, x3x4 + x2x5 + x1x6,

x1x2 + x1x3 + x2x3 + x1x4 + x2x4 + x1x5 + x3x5

+ x4x5 + x2x6 + x3x6 + x4x6 + x5x6,

x2
3x4 + x3x

2
4 + x2

2x5 + x2x
2
5 + x2

1x6 + x1x
2
6,

x1x2x4 + x1x3x5 + x2x3x6 + x4x5x6,

x2
1x

4
2 + x4

1x
2
3 + x2

2x
4
3 + x4

1x
2
4 + x2

2x
4
4

+ x4
3x

2
5 + x4

4x
2
5 + x2

1x
4
5 + x4

2x
2
6 + x4

5x
2
6 + x2

3x
4
6 + x2

4x
4
6

There are 18 secondary invariants of maximal degree 11, among which are
8 irreducible secondary invariants of maximal degree 5.

(4) A 6–dimensional representation of the dihedral group D6 is given by the
matrices

M1 = (e6e5e4e3e2e1)

M2 = (e3e1e2e6e4e5)

Our primary invariants are the elementary symmetric polynomials. There
are 120 secondary invariants of maximal degree 10, among which are 14
irreducible secondary invariants of maximal degree 4.

(5) A 8–dimensional representation of D8 is given by the matrices

M1 = (e8e7e6e5e4e3e2e1)

M2 = (e4e1e2e3e8e5e6e7)

Our primary invariants are

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8,

x4x5 + x1x6 + x2x7 + x3x8, x3x5 + x4x6 + x1x7 + x2x8,

x2x5 + x3x6 + x4x7 + x1x8, x1x5 + x2x6 + x3x7 + x4x8,

x1x3 + x2x4 + x5x7 + x6x8, x1x2x3x4 + x5x6x7x8,

x1x
3
2 + x2x

3
3 + x3

1x4 + x3x
3
4 + x3

5x6 + x3
6x7 + x3

7x8 + x5x
3
8

There are 64 secondary invariants of maximal degree 11, among which are
24 irreducible secondary invariants of maximal degree 5.
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(6) A 7–dimensional representation of D14 is given by the matrices

M1 = (e2e3e4e5e6e7e1)

M2 = (e1e7e6e5e4e3e2)

Our primary invariants are the elementary symmetric polynomials. There
are 360 secondary invariants of maximal degree 18, among which are 19
irreducible secondary invariants of maximal degree 7.

(7) A 15–dimensional representation of S3 is given by the matrices

M1 = (e2e1e3e4e7e14e5e8e11e13e9e15e10e6e12)

M2 = (e1e3e2e4e5e9e8e7e6e13e12e11e10e15e14)

Our primary invariants are

x1 + x2 + x3, x1x2 + x1x3 + x2x3, x1x2x3,

x10 + x13, x10x13, x6 + x9 + x11 + x12 + x14 + x15,

x11x12 + x6x14 + x9x15, x9x11 + x6x12 + x14x15,

x6x11 + x9x12 + x9x14 + x12x14 + x6x15 + x11x15,

x6x9x14 + x6x11x14 + x11x12x14 + x6x9x15 + x9x12x15 + x11x12x15,

x6
6 + x6

9 + x6
11 + x6

12 + x6
14 + x6

15, x4, x5 + x7 + x8,

x5x7 + x5x8 + x7x8, x5x7x8

There are 1728 secondary invariants of maximal degree 17, among which
are 76 irreducible secondary invariants of maximal degree 4.

(8) A 18–dimensional representation of S3 is given by the matrices

M1 = (e2e1e3e4e12e10e7e11e14e6e8e5e15e9e13e17e16e18)

M2 = (e1e3e2e14e8e7e6e5e9e10e15e13e12e4e11e16e18e17)

Our primary invariants are

x1 + x2 + x3, x1x2 + x1x3 + x2x3, x1x2x3,

x4 + x9 + x14, x4x9 + x4x14 + x9x14, x4x9x14,

x16 + x17 + x18, x16x17 + x16x18 + x17x18, x16x17x18,

x6 + x7 + x10, x6x7 + x6x10 + x7x10,

x6x7x10, x5 + x8 + x11 + x12 + x13 + x15,

x5x12 + x8x13 + x11x15, x8x11 + x12x13 + x5x15,

x5x11 + x8x12 + x5x13 + x11x13 + x8x15 + x12x15,

x5x8x12 + x5x11x12 + x5x8x13 + x11x12x15 + x8x13x15 + x11x13x15,

x6
5 + x6

8 + x6
11 + x6

12 + x6
13 + x6

15

There are 31104 secondary invariants of maximal degree 22, among which
are 137 irreducible secondary invariants of maximal degree 4.
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(9) A 10–dimensional representation of S5 is given by the matrices

M1 =




1 0 0 0 0 0 0 0 0 0
0 1 1

3
1
3

1
3

0 0 0 0 0

0 0 1
3

− 2
3

− 2
3

0 0 0 0 0

0 0 − 2
3

1
3

− 2
3

0 0 0 0 0

0 0 − 2
3

− 2
3

1
3

0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0




M2 =




1 0 0 0 0 0 0 0 0 0
0 0 1

3
− 2

3
− 2

3
0 0 0 0 0

0 0 − 2
3

1
3

− 2
3

0 0 0 0 0

0 0 − 2
3

− 2
3

1
3

0 0 0 0 0

0 1 1
3

1
3

1
3

0 0 0 0 0
0 0 0 0 0 −1 −1 1 1 0
0 0 0 0 0 −1 0 0 0 1
0 0 0 0 0 −1 0 1 0 0
0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 −1 1 0 0




We are not listing the primary invariants here, as they are too big polyno-
mials. There are 720 secondary invariants of maximal degree 22, among
which are 46 irreducible secondary invariants of maximal degree 9.

Examples (2), (3) and (9) belong to a very interesting class of examples that
was shown to us by G. Kemper [46]. For n ∈ N, Let Mn be the set of two-element
subsets of {1, ..., n}. Then, one studies the obvious Sn action on Mn (or similarly,
the obvious An action), and one can try to compute the invariant ring Q[Mn]

Sn

(resp. Q[Mn]
An).

The 10–dimensional representation of S5 in Example (9) is a surprisingly chal-
lenging problem. To simplify the computations, Kemper provided a decomposition
of the representation into a direct sum of a 1–, a 4– and a 5–dimensional represen-
tation. Without ad-hoc methods, the computation of secondary invariants for that
problem has been beyond reach. The procedure (Irreducible)SecondaryInvari-
ants of Magma V2.13-8 breaks immediately, since it requests 55.62 GB memory,
while the memory limit of our computer is 16 GB. Our algorithm irred seconda-

ry char0 in Singular version 3-0-2 exceeds the limit of 16 GB while computing
secondary invariants in degree 8.

The total number of secondary invariants in Example (9) is not particularly
large. The difficulties in Example (9) come from the fact that there are irreducible
secondary invariants of rather high degrees. A slightly refined implementation
of secondary char0, that will be part of Singular version 3-0-3, can compute
Example (9). Here, when finding irreducible secondary invariants of high degree d,
we do not generate all of Bd at once, but we decompose it into handy blocks, in
order to save memory.

4.2. Comparison. We describe here how different algorithms perform on Ex-
amples (1) up to (9). All computations had been done on a Linux x86 64 platform
with two AMD Opteron 248 processors (2,2 GHz) and a memory limit of 16 GB.
The computation of primary invariants is not part of our tests. Hence, in each
example we use the same primary invariants for all algorithms. We compare the
following implementations:

(1) secondary char0 as in Singular release 2-0-6. In Table 1, we refer to
it as “Singular (1998)”.

(2) secondary char0 as in Singular release 3-0-2, whith a slight refinement.
In Table 1, we refer to it as “Singular (all sec.)”.

(3) irred secondary char0, as in Singular release 3-0-2, with a slight re-
finement. In Table 1, we refer to it as “Singular (irr. sec.)”.

(4) SecondaryInvariants in Magma V2.13-8.
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Implementation (1) is due to A. Heydtmann [37] (1998) and has been part of
Singular up to release 3-0-1.

Implementations (2) and (3) are our implementations of the Improved New

Algorithm explained in Section 3. They are part of Singular 3-0-2, released in
Juli, 2006. They do not belong to the Singular kernel but are interpreted code.
Here, we test a slightly improved version, that will be part of the next Singular

release and saves memory when generating irreducible secondary invariants in high
degrees. However, this only affects example (9); the performance in the other eight
examples remains essentially the same, as the degrees of their irreducible secondary
invariants are not high enough. Singular 3-0-3 will contain another algorithm,
that we describe in Chapter 8. The timings include the computation of Reynolds
operator and Molien series, which belong to the input of the Singular procedures.

Implementation (4) is due to A. Steel, based on [47], [45] or [22]. We con-
sider here the Magma-version V2.13-8, released in October, 2006. There is also
a function IrreducibleSecondaryInvariants in Magma, but computation time
and memory consumption are essentially the same, in our examples. So, for the
sake of simplicity, we do not provide separate timings for that function.

Note that, after posting the first version of our paper [56], there was a new
release of Magma containing an algorithm that G. Kemper developed in 2006. It
provides a major improvement in the performance of Magma and seems to be
competitive with our algorithm. However, Kemper’s new algorithm apparently is
not described in the literature yet. We provide comparative benchmarks for the
new versions of Singular and Magma in the last section of Chapter 8.

Note that, in contrast to the corresponding Magma functions, irred secon-

dary char0 often works much faster and needs much less memory than seconda-

ry char0; see Examples (1) and (6)–(9). However, this is not always the case, as
can be seen in Examples (4) and (5).

In Table 1, “—” means that the computation fails since the process exceeds the
memory limit; in examples (8) and (9), Magma requests the amount of memory
that we indicate in round brackets. In some cases, we stopped the computation
when it was clear that it takes too much time; this is indicated in the table by
“> ...”.

In conclusion, our benchmarks provide some evidence that the Improved New

Algorithm has great advantages in the computation of invariant rings with many
secondary invariants. Here, it marks a dramatic improvement compared with pre-
vious algorithms in Singular or algorithms in Magma. In 3 of our 9 examples,
it is the only algorithm that terminates in reasonable time with a memory limit of
16 GB. A particular benefit or our algorithm is that the computation of irreducible
secondary invariants does not involve the explicit computation of reducible sec-
ondary invariants, which may save resources. After writing [56], we found another
algorithm for the computation of algebra generators of RG. It also provides an
improvement for the computation of irreducible secondary invariants, as we explain
in Chapter 8.
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Table 1. Comparative benchmark for the computation of sec-
ondary invariants

(1) (2) (3) (4)
Singular Singular Singular Magma

(1998) (all sec.) (irr. sec.)
Expl. (1) 0.55 s 0.05 s 0.03 s 0.05 s

8.62 MB 1.49 MB 1.0 MB 10.3 MB
Expl. (2) 0.05 s 0.04 s 0.04 s 0.01 s

0.99 MB 0.96 MB 0.97 MB 7.05 MB
Expl. (3) 0.48 s 0.33 s 0.3 s 0.19 s

2.97 MB 1.95 MB 1.96 MB 8.96 MB
Expl. (4) 6.55 s 0.63 s 0.32 s 0.48 s

12.29 MB 2.47 MB 2.97 MB 9.09 MB
Expl. (5) 18.15 s 10.53s 9.69 s 6.66 s

45.79 MB 10.61 MB 17.0 MB 31.82 MB
Expl. (6) > 984 m 100.4 s 16.55 s 118.51 s

> 167 MB 110.0 MB 39.0 MB 54.0 MB
Expl. (7) — 268.9s 20.94 s > 7 h

— 872.7 MB 35.1 MB > 15 GB
Expl. (8) — > 10 h 50.7 m —

— > 10 GB 3.36 GB (259.5 GB)
Expl. (9) — 6.42 h 99.2 m —

— 10.74 GB 7.35 GB (55.62 GB)



CHAPTER 8

Minimal generating sets of non-modular invariant

rings

In the previous chapter, we provided an algorithm to compute module genera-
tors of the invariant ring RG of a non-modular finite group action. In this chapter,
we provide an algorithm to compute a minimal set of homogeneous invariant poly-
nomials that generate RG as a sub-algebra of R. Such generators are also known
as fundamental invariants.

In principal, this can be solved as explained in the previous chapter: First,
one computes primary invariants of RG and then irreducible secondary invariants.
Primary and irreducible secondary invariants together generate RG as an algebra,
and (potentially after removing some primary invariants) they form an inclusion
minimal generating set [45]. Thiéry [93] suggests another algorithm for the com-
putation of a minimal generating set in the special case of permutation groups, i.e.,
of groups acting on R as subgroup of the permutation group of the variables of
R. Thiéry’s algorithm is not based on the computation of primary invariants, but
uses the incremental construction of so-called SAGBI-Gröbner bases. His algorithm
is implemented in the library PerMuVAR of MuPAD [91]. There is extensive
benchmark on Magma and MuPAD, using the transitive permutation groups on
up to nine variables [92].

Our algorithm comes in one version for permutation groups and one version
for finite matrix groups. We present comparative benchmarks based on transitive
permutation groups on 7 or 8 variables. We implemented our algorithm in a library
(i.e., as interpreted code) in Singular [29]. In most of the examples, our algo-
rithm is at least 50 times faster than the algorithm implemented in a pre-compiled
Magma [11] library, often more than 1000 times. We also computed minimal gener-
ating sets for some transitive permutations groups on 9 and 10 variables. Moreover,
we compute minimal generating sets for the natural action of the cyclic groups of
order up to 12 in characteristic zero and for the cyclic groups of order up to 15 in
prime characteristic (but, of course, still in the non-modular case).

The key ingredient of our algorithm is Theorem 16 in Chapter 7. Our algorithm
does not involve solving linear algebra problems that may become rather huge, in
contrast to the algorithm exposed in [22]. Instead, we use Gröbner bases. Of course,
the computation of a Gröbner basis can be, in general, a very difficult business.
The main feature of our algorithm is that it involves at most one computation of a
Gröbner basis in each degree. It turns out that this yields a very well-performant
algorithm.

Another peculiarity of our algorithm is the fact that it does not rely on a-priori
bounds for the maximal degree β(RG) of elements of a minimal generating set of
RG. For other algorithms, like the one presented in [93], the performance crucially
depends on good estimates for β(RG). Unfortunately, well known a-priori bounds
like Noether’s β(RG) ≤ |G| are, in general, far from being optimal. In contrast, we
rely on more realistic a-posteriori bounds: While incrementally constructing the
set of generators, we obtain informations allowing to estimate β(RG).

71
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We outline our algorithm. In the case of finite matrix groups, candidates for
generators are found by applying the Reynolds operator to some monomials. In the
case of permutation groups, candidates are found among the orbit sums. For testing
whether a candidate is already contained in the algebra generated by previously
found generators, an ideal membership problem needs to be solved. The solution
is provided by computing the normal form with respect to a homogeneous Gröbner
basis up to degree d of the ideal spanned by the previously found generators. When
starting in a new degree, the Gröbner basis is computed by standard procedures
(e.g., Buchberger’s algorithm), and when a new generator of RG of degree d has
been found, we can directly write down a new Gröbner basis up to degree d, as
in Chapter 7. While incrementally constructing the set of generators, one obtains
informations allowing to estimate the maximal degree β(RG) of elements of a min-
imal generating set of RG. Hence, after finishing in that degree, one can stop the
quest for more generators.

A modification of our algorithm can be used to compute irreducible secondary
invariants. According to our comparative benchmarks, this algorithm is even faster
than our algorithm presented in Chapter 7 and the algorithm recently implemented
in Magma V2.13-9 that appears to be not described in a paper yet.

The rest of this chapter is organized as follows. In the next section, we explain
our algorithm in more detail. In Subsection 2.1, we do some benchmark tests, com-
paring the implementation of our algorithm in Singular [29] with the function
FundamentalInvariants of Magma [11]. In Subsection 2.2, we expose some ad-
ditional examples that seem to be out of reach for other known algorithms. In the
final section, we modify our algorithm in order to compute irreducible secondary
invariants, and do some benchmarks with that algorithm.

1. The Algorithm

Let G be a finite group, linearly acting on a polynomial ring R with n variables
over some field K. We denote the action of g ∈ G on r ∈ R by g.r ∈ R. For
d > 0, let RGd be the set of homogeneous G–invariant polynomials of degree d.
For an ideal I ⊂ R, let lm(I) be the set of leading monomials occurring in I. As
before, let Rey : R → RG be the Reynolds operator. For S ⊂ R, let mond(S) ⊂
R be the set of monomials of degree d that are not contained in lm(〈S〉). Let
Bd(S) = Rey(mond(S)), which is easy to compute if S is a Gröbner basis at least
up to degree d. By Lemma 3.5.1 and Remark 3.5.3 in [22], if 〈〈S〉〉 6⊃ RGd then
〈〈S〉〉 6⊃ Bd(S); hence, we may restrict the quest for new generators to the finite set
Bd(S).

So, in increasing degree d starting with d = 1 and S = ∅, we may loop through
all b ∈ Bd(S), and add b to the set S of previously found generators if b 6∈ 〈〈S〉〉.
In that way, one incrementally constructs a generating set of RG, consisting of
homogeneous invariant polynomials. In fact, it is a minimal generating set [93].
We can test whether b ∈ 〈〈S〉〉 according to the following lemma. Although the
lemma is well known, we include a proof for completeness.

Lemma 12. Let S ⊂ RG be a set of homogeneous invariant non-constant poly-
nomials. Assume that RGd′ ⊂ 〈〈S〉〉 for all d′ < d, and assume that we are in the
non-modular case. Let b ∈ RGd . We have b ∈ 〈〈S〉〉 if and only if b ∈ 〈S〉.

Proof. If b ∈ 〈〈S〉〉 then b ∈ 〈S〉. If b ∈ 〈S〉 then we can write b as a finite
sum,

b =
∑

i

piqi
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with homogeneous polynomials pi ∈ R and qi ∈ S. As in the proof of Lemma 9, it
follows by Lemma 8 that b = Rey(b) =

∑
i Rey(pi)qi. Since the elements of S are

non-constant, the pi are of degree at most d − 1. Hence, Rey(pi) ∈ RGd′ for some
d′ < d. Thus Rey(pi) ∈ 〈〈S〉〉 by hypothesis. Therefore, b ∈ 〈〈S〉〉. �

As in Chapter 7, we test whether b ∈ 〈S〉 by reduction of b with respect to
a homogeneous Gröbner basis G up to degree d. Moreover, after adding b to the
set of generators, we easily obtain a homogeneous Gröbner basis up to degree d of
〈S ∪ {b}〉, by Theorem 16 in Chapter 7.

There is a problem, though. We can incrementally construct a minimal gen-
erating set of RG, in increasing degrees — but in what degree shall we stop the
construction? By definition, we can stop after having found the generators in de-
gree β(RG). So, we could adopt a general estimate for β(RG) like Noether’s bound
β(RG) ≤ |G|. However, such general a–priori estimates are very often far from
being optimal.

Therefore, we prefer to derive an estimate for β(RG) from the previously con-
structed generators. If S is a generating set of RG, then it follows that 〈S〉 is
zero-dimensional, as in the proof of Proposition 3.3.1 in [22]. Hence, there are
only finitely many monomials outside lm(〈S〉), of maximal degree dmax. Since we
can restrict the quest for generators of RG of degree d to the Reynolds images of
monomials of degree d outside lm(〈S〉), it follows β(RG) ≤ dmax.

Our strategy was to work with a homogeneous Gröbner basis up to degree d of
〈S〉. However, for testing whether 〈S〉 is of dimension 0, one needs a Gröbner basis
of 〈S〉 — without degree restriction. To avoid needless computations, we use the
following trick.

By definition, in degree β(RG) we will find a homogeneous generator of RG,
but in degree β(RG) + 1 we don’t. Hence, only if our incremental construction of
S arrives at some degree d, such that there is an element of S in degree d− 2 but
none in d − 1, it makes sense to compute a Gröbner basis of 〈S〉 without degree
restriction (although certainly we can not exclude that there are generators above
degree d). If dim(〈S〉) = 0, which is tested using the Gröbner basis, then we obtain
an estimate for β(RG) that tells us in what degree we can stop the incremental
search. We thus obtain the following algorithm for the computation of a minimal
generating set of RG, where G is a finite matrix group.

Algorithm Invariant Algebra

(1) Construct the Reynolds operator Rey : R→ RG.
Let S = G = ∅. Let dmax = 0.

(2) For increasing degree d, starting with d = 1:
(a) If S contains elements of degree d−2 but no elements of degree d−1:

(i) Replace G by a (complete) Gröbner basis of 〈S〉.
(ii) If dim(〈S〉) = 0 (which is tested using G), then replace dmax

by the maximal degree of polynomials outside lm(〈S〉), and if,
moreover, d exceeds the new dmax then break and return S.

If S contains elements of degree d − 1, replace G by a homogeneous
Gröbner basis G of 〈S〉 up to degree d.

(b) Compute Bd(S) using G and Rey.
(c) For all b ∈ Bd(S):

If rem(b;G) 6= 0 then replace S by S ∪ {b} and G by G ∪ {rem(b;G)}.
(d) If d = dmax then break and return S.

By Theorem 16, in all steps, G is a homogeneous Gröbner basis of 〈S〉 up to degree
d. Note that the algorithm used in Magma [11] (see [22]) involves the computa-
tion of primary and irreducible secondary invariants. Our approach is more straight
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forward: Why should one construct primary invariants if one is not primarily in-
terested in them? Moreover, our algorithm uses much more elementary methods
than the alternative algorithm described in [22] based on linear algebra. No huge
systems of linear equations occur, only few explicit Gröbner basis computations are
needed (one per degree), and apart from that the most time consuming operation
is the computation of normal forms. So it is not surprising that usually our im-
plementation of Invariant Algebra in Singular [29] is much faster than the
algorithm implemented in Magma [11].

In most of our examples, the computation of homogeneous Gröbner bases up
to degree d is not a big deal (there are exceptions, though). However, for large
group orders, the computation of the Reynolds operator exceeds the ressources.
So, the use of the Reynolds operator can be a problem. In the case of permutation
groups, it helps to replace it by so-called orbit sums, which is also used in [93].
The orbit of a monomial m ∈ R is G.m = {g.m : g ∈ G}. The orbit sum of m is
m◦ =

∑
m′∈G.mm

′. Of course, m◦ ∈ RG.
In contrast to the Reynolds operator, the orbit sums are defined even in the

modular case, i.e., if the characteristic of R divides |G|. In the non-modular case,
m◦ is just a scalar multiple of Rey(m). In conclusion, if G is a permutation group,
we can also define Bd(S) to be the orbit sums of the monomials in mond(S). Note,
however, that even when using orbit sums, the algorithm Invariant Algebra

only works for the non-modular case, since it relies on Lemma 12.

2. Benchmark Tests for the Computation of Minimal Generating Sets

A classical test bed for the computation of minimal generating sets of invariant
rings of finite groups is provided by transitive permuation groups [93], [92].
These are groups acting on a polynomial ring R over a field K by permuting vari-
ables, such that any two variables are related by the group action. The Magma

function TransitveGroups(i) provides a list of all classes of transitive permutation
groups on i variables.

In our comparative benchmark (Subsection 2.1), we consider transitive permu-
tation groups on 7 and 8 variables in characteristic 0. In Subsection 2.2, we present
some more examples of transitive permutation groups, with up to 12 variables in
characteristic 0 and up to 15 variables in prime characteristic. Our benchmarks
are based on a Linux x86 64 platform with two AMD Opteron 248 processors (2,2
GHz) and a memory limit of 16 GB.

2.1. Comparative Benchmark: Transitive Permutation Groups. We
study here minimal generating sets of invariant rings of transitive permutation
groups on 7 and 8 variables, in characteristic 0. We compare the following algo-
rithms.

(1) Our implementation of Invariant Algebra using orbit sums. This is
part of the finvar.lib library of Singular-3-0-3 (to be released soon)
and is called invariant algebra perm. We tested a β–version of Sin-

gular-3-0-3.
(2) The function FundamentalInvariants of Magma V2.13-9 (released Jan-

uary 2007), which, to the best of the author’s knowledge, is either based
on the algorithms described in [22] or unpublished.

Note that our implementation in Singular is interpreted code, without any
pre-compilation. As far as known to the author, FundamentalInvariants in Mag-

ma is pre-compiled.
Usually (but not thoroughly) we stopped the computations of an example after

two hours CPU time. Moreover, we stopped the computation by one algorithm if it
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took more than about 1000 times longer than by the other algorithm. The results
are provided in Table 1 for the 7 transitive permutation groups on 7 variables, and
in Table 2 for 45 transitive permutation groups on 8 variables. In the first column
of the tables, the group is defined by its generators in disjoint cycle presentation.
The rounded CPU times for Singular or Magma in seconds are provided in the
next two columns. The last column of the tables indicates the number of generators
of a minimal generating set of RG, sorted degree-wise.

Table 1. Transitive permutation groups on 7 variables (charac-
teristic 0)

Singular Magma

Group time [s] time [s] # generators (sorted by degree)
(1,2,3,4,5,6,7) 0.52 25.3 1,3,8,12,12,6,6

(1,2,3,4,5,6,7),
(1,6)(2,5)(3,4) 0.67 11 1,3,4,6,6,3,3

(1,2,3,4,5,6,7),
(1,2,4)(3,6,5) 6.6 239 1,1,4,5,8,8,6

(1,2,3,4,5,6,7),
(1,2)(3,6) 16.9 107 1,1,2,2,2,2,2

(1,2,3,4,5,6,7),
(1,3,2,6,4,5) 81.5 600 1,1,2,3,4,7,7,5,1

(3,4,5,6,7),
(1,2,3) 117 474 1,1,1,1,1,1,1,0,0,0,

0,0,0,0,0,0,0,0,0,0,1
(1,2,3,4,5,6,7),

(1,2) 198 0.04 1,1,1,1,1,1,1

Table 2: Transitive permutation groups on 8 variables (character-
istic 0)

Singular Magma

Group time [s] time [s] # generators (sorted by degree)
(1,8)(2,3)(4,5)(6,7),
(1,3)(2,8)(4,6)(5,7),
(1,5)(2,6)(3,7)(4,8)

0.14 0.07 1,7,7,7

(1,2,3,8)(4,5,6,7),
(1,6)(2,5)(3,4)(7,8)

0.24 11.6 1,6,8,12,5

(1,2,3,8)(4,5,6,7),
(1,5)(2,6)(3,7)(4,8) 0.35 15 1,5,9,16,8

(1,8)(2,3)(4,5)(6,7),
(1,3)(2,8)(4,6)(5,7),
(1,5)(2,6)(3,7)(4,8),

(4,5)(6,7)

0.35 10.8 1,5,5,8,4

(1,8)(2,3)(4,5)(6,7),
(1,3)(2,8)(4,6)(5,7),
(1,5)(2,6)(3,7)(4,8),

(4,5)(6,7),
(4,6)(5,7)

0.55 34.6 1,4,4,7,3

(1,2,3,8)(4,5,6,7),
(1,7,3,5)(2,6,8,4)

0.65 137 1,4,10,19,15,7

(1,8)(2,3)(4,5)(6,7),
(1,3)(2,8)(4,6)(5,7),
(1,5)(2,6)(3,7)(4,8),

(2,3)(4,5),
(2,3)(6,7)

0.65 52.2 1,4,4,7,3,1

(1,5)(3,7),
(1,2,3,8)(4,5,6,7)

0.77 73.9 1,4,6,11,7,2

(1,5)(3,7),
(1,3,5,7)(2,4,6,8),
(1,4,5,8)(2,3,6,7)

0.8 167 1,4,6,11,7,3

(1,5)(3,7),
(1,4,5,8)(2,3)(6,7),
(1,3)(2,8)(4,6)(5,7)

1.2 60.3 1,4,4,6,4,3,2,1

(4,8),
(1,8)(2,3)(4,5)(6,7),
(1,3)(2,8)(4,6)(5,7)

1.4 7.38 1,4,4,6,3,1

Continued on the next page
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Group Singular Magma # generators (sorted by degree)
(1,8)(2,3)(4,5)(6,7),
(1,3)(2,8)(4,6)(5,7),
(1,5)(2,6)(3,7)(4,8),

(1,3)(4,5,6,7),
(1,3)(5,7)

1.9 318 1,3,3,6,3,2,1

(1,2,3,4,5,6,7,8) 2.2 2608 1,4,10,18,16,8,4,4

(2,6)(3,7),
(1,2,3,4,5,6,7,8)

2.3 > 2200 1,3,5,8,7,7,4,4

(2,6)(3,7),
(1,2,3,8)(4,5,6,7)

2.3 385 1,3,5,9,6,4,2,1

(1,8)(2,3)(4,5)(6,7),
(1,3)(2,8)(4,6)(5,7),
(1,5)(2,6)(3,7)(4,8),

(1,3)(4,5,6,7)

2.4 649 1,3,3,7,6,7,5,1

(1,2,3,4,5,6,7,8),
(1,5)(3,7)

2.8 > 2800 1,3,7,12,13,9,4,4

(1,2,3,4,5,6,7,8),
(1,6)(2,5)(3,4)(7,8)

3 1040 1,4,5,9,8,4,2,2

(1,2,3,4,5,6,7,8),
(1,3)(2,6)(5,7)

3.3 > 3300 1,3,6,11,12,7,2,2

(4,8),
(1,2,3,8)(4,5,6,7)

3.7 580 1,3,5,8,6,4,2,2

(2,6)(3,7),
(1,3)(5,7),

(1,2,3,4,5,6,7,8)
3.7 > 3600 1,3,3,5,4,4,2,2

(1,2,3,8),
(1,5)(2,6)(3,7)(4,8)

4 > 4000 1,3,4,7,6,4,2,2

(1,2,3,4,5,6,7,8),
(1,5)(3,7),

(1,6)(2,5)(3,4)(7,8)
4.3 5440 1,3,4,7,6,4,2,2

(1,8)(2,3)(4,5)(6,7),
(1,3)(2,8)(4,6)(5,7),
(1,5)(2,6)(3,7)(4,8),

(1,2,3)(4,6,5)

4.9 703 1,3,3,7,8,11,7

(1,2,3,4,5,6,7,8),
(1,5)(4,8),
(1,7)(3,4,8)

5 4780.6 1,3,3,5,3,3,2,3,1

(4,8),
(1,3)(5,7),

(1,2,3,8)(4,5,6,7)
5.4 444 1,3,3,5,3,2,1,1

(1,8)(2,3)(4,5)(6,7),
(1,3)(2,8)(4,6)(5,7),
(1,5)(2,6)(3,7)(4,8),

(1,2,3)(4,6,5),
(2,3)(4,5)

6.5 1995 1,3,3,6,4,3,1

(2,6)(3,7),
(1,3)(4,8)(5,7),

(1,2,3,8)(4,5,6,7)
7.5 > 10800 1,3,3,5,3,2,3,4,3,2,1,1

(1,3)(2,8)(4,6)(5,7),
(1,2,3)(5,6,7),

(1,4)(2,6)(3,7)(5,8)
8.3 2410 1,3,3,8,7,9,6,1,1

(1,8)(2,3),
(1,2,3)(5,6,7),

(1,5)(2,7)(3,6)(4,8)
17.5 > 7200 1,2,2,5,2,5,4,3,3

(1,3)(2,8),
(1,2,3),

(1,5)(2,6)(3,7)(4,8)
31 > 7200 1,2,2,3,2,3,2,2,1,1

(1,8)(2,3)(4,5)(6,7),
(1,3)(2,8)(4,6)(5,7),
(1,5)(2,6)(3,7)(4,8),

(1,2,3)(4,6,5),
(2,5)(3,4)

36.5 > 7200 1,2,2,4,3,5,4,2,2,1,1,1

(1,8)(2,3)(4,5)(6,7),
(1,3)(2,8)(4,6)(5,7),
(1,5)(2,6)(3,7)(4,8),

(1,2,3)(4,6,5),
(1,6)(2,3,5,4)

37 3454 1,2,2,4,2,2,1

(1,8)(2,3)(4,5)(6,7),
(1,3)(2,8)(4,6)(5,7),
(1,5)(2,6)(3,7)(4,8),

(1,2,3)(4,6,5),
(1,3)(4,5,6,7)

37 > 7200 1,2,2,4,2,3,2,2,1

(1,3,5,7)(2,4,6,8),
(1,3,8)(4,5,7)

39 > 7200 1,2,4,8,11,12,7

Continued on the next page
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Group Singular Magma # generators (sorted by degree)
(4,8),

(1,8)(4,5),
(1,2,3,8)(4,5,6,7)

39 > 7200 1,2,2,3,2,2,1,1

(1,8)(2,3)(4,5)(6,7),
(1,3)(2,8)(4,6)(5,7),
(1,5)(2,6)(3,7)(4,8),

(1,2,3)(4,6,5),
(4,6)(5,7)

44 > 7200 1,2,2,4,3,6,5,5,3

(1,3)(2,8),
(1,2,3),

(1,8)(4,5),
(1,5)(2,6)(3,7)(4,8)

47 > 7200 1,2,2,3,2,2,1,1,0,0,0,1

(1,3)(2,8),
(1,2,3),

(1,8)(4,5),
(1,5)(2,7,3,6)(4,8)

50 > 7200 1,2,2,3,2,2,1,1,0,0,0,0,1,1,1,1

(4,8),
(1,8)(2,3)(4,5)(6,7),

(1,2,3)(5,6,7)
51 > 7200 1,2,2,3,3,5,4,3,2,1,1,1

(1,2,3,8),
(2,3),

(1,5)(2,6)(3,7)(4,8)
51 73 1,2,2,3,2,2,1,1

(1,5)(4,8),
(1,8)(2,3)(4,5)(6,7),

(1,2,3)(5,6,7),
(2,3)(4,8)(6,7)

56 > 7200 1,2,2,3,2,2,1,1,1,3,3,2,2,1,1,1

(1,2,3,4,5,6,7,8),
(1,3,8)(4,5,7)

161.5 > 7200 1,2,3,5,6,6,5,2

(1,2)(3,4,5,6,7,8),
(1,2,3)

17410 > 20000 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,1

(1,2,3,4,5,6,7,8),
(1,2)

24629 0.18 1,1,1,1,1,1,1,1

In total, there are 50 classes of transitive permutation groups on 8 variables, but
for five of them, neither Singular nor Magma succeeded with the computation in
the realm of our time and memory limits. Note that, according to [93], MuPAD

can manage one of these five exceptions with the library PerMuVAR; with a
memory limit of 500 MB and a time limit of 2 days, it can compute 17 of the 50
examples.

In the majority of the examples, Singular-3-0-3 is at least 50 times faster
than Magma V2.13-9, in some cases even more than 1000 times faster. There
appears to be only one class of exceptions: The symmetric group on n variables
(the last example on Tables 1 or 2, respectively). This is a special case with a well
known theoretical solution. Since Magma knows that TransitiveGroup(7,7) and
TransitiveGroup(8,50) are symmetric groups, it seems very likely to the author
that FundamentalInvariants simply returns the well known solution in this case,
without computation.

An extensive comparative benchmark of MuPAD and Magma on transitive
permutation groups is provided by [92]. There, a different machine is used, the
memory limit is more restrictive (500 MB), and the time limit is more generous (2
days).

Note that in the case of small group orders, it sometimes turned out to be faster
to use images of the reynolds operator (the function invariant algebra reynolds

in Singular-3-0-3) rather than orbit sums. However, for groups of order greater
than 1000, Singular is hardly able to compute the reynolds operator in reasonable
time. Of course, a pre-compilation would yield a considerable speed-up of our
implementation.

2.2. Further computational results. In this subsection, we consider some
more examples of transitive permutation groups, acting on up to 15 variables. Given
the results exposed in the preceding subsection, it seems very unlikely to us that
Magma V2.13-9 is able to compute these examples in reasonable time. Hence, we
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Table 3. Some transitive permutation groups on 9 variables
(characteristic 0)

Group time [s] # generators (sorted by degree)
(1,2,9)(3,4,5)(6,7,8),
(1,4,7)(2,5,8)(3,6,9)

6.24 1,4,16,24,24

(1,2,3,4,5,6,7,8,9) 38.19 1,4,14,26,32,18,12,6,6
(1,2,9)(3,4,5)(6,7,8),
(1,4,7)(2,5,8)(3,6,9),
(1,2)(3,6)(4,8)(5,7)

45.5 1,4,8,12,12,10

(1,2,9)(3,4,5)(6,7,8),
(1,2)(4,5)(7,8),

(1,4,7)(2,5,8)(3,6,9)
55.3 1,3,10,14,19,9,2

(1,2,9)(3,4,5)(6,7,8),
(1,4,7)(2,5,8)(3,6,9),

(3,4,5)(6,8,7)
84.3 1,2,8,9,16,18,14,4,2

(1,2,3,4,5,6,7,8,9),
(1,8)(2,7)(3,6)(4,5)

141.6 1,4,7,13,16,12,6,3,3
(1,2,9)(3,4,5)(6,7,8),

(1,2)(4,5)(7,8),
(1,4,7)(2,5,8)(3,6,9),

(3,6)(4,7)(5,8)

280.7 1,3,6,8,9,8,2

(3,4,5)(6,8,7),
(1,4,7)(2,5,8)(3,6,9),

(3,6)(4,7)(5,8)
290.5 1,2,6,6,9,8,4

(1,4,7)(2,8,5),
(1,2,3,4,5,6,7,8,9)

455.1 1,2,6,11,20,25,26,10,8

Table 4. Some transitive permutation groups on 10 variables
(characteristic 0)

Group time [s] # generators (sorted by degree)
(1,3,5,7,9)(2,4,6,8,10),

(1,4)(2,3)(5,10)(6,9)(7,8) 12.3 1,7,14,29,28,12

(1,2,3,4,5,6,7,8,9,10) 306 1,5,16,36,48,32,12,8,4,4
(2,7)(5,10),

(1,3,5,7,9)(2,4,6,8,10) 478 1,3,8,14,21,16,12,8,4,3
(1,3,5,7,9)(2,4,6,8,10),
(1,2,9,8)(3,6,7,4)(5,10) 1294 1,4,9,20,31,23,8

(1,2,3,4,5,6,7,8,9,10),
(1,8)(2,7)(3,6)(4,5)(9,10) 1425 1,5,8,18,24,17,6,4,2,2

only tried with our implementation of Invariant Algebra in Singular. Table 3
and Table 4 provide the results for some transitive permutation groups on 9 and 10
variables, in characteristic 0; here, we used orbit sums. According to [93], MuPAD

can manage 5 of the transitive permutation groups on 9 variables (in total, there
are 34 of them) using the library PerMuVAR, with a memory limit of 500 Mb
and a time limit of 2 days.

Table 5. Natural action of Cn on n variables (characteristic 0)

n time [s] mem. [Mb] # generators (sorted by degree)
6 0.05 0.746 1,3,6,6,2,2
7 0.17 1.25 1,3,8,12,12,6,6
8 1.54 2.25 1,4,10,18,16,8,4,4
9 35.6 11.92 1,4,14,26,32,18,12,6,6
10 298.3 54.16 1,5,16,36,48,32,12,8,4,4
11 1187 116 1,5,20,50,82,70,50,30,20,10,10
12(*) 2010 min 2160 1,6,24,64,104,84,36,20,12,8,4,4

A rather harmlessly looking class of transitive permutation groups is the natural
action of the cyclic group Cn of order n on n variables. The maximal degree
occuring in a minimal generating set is, by Noether’s bound, of course at most



2. BENCHMARK TESTS FOR THE COMPUTATION OF MINIMAL GENERATING SETS 79

Table 6. Natural action of Cn on n variables (characteristic p > 0)

n p time [s] mem. [Mb] # generators (sorted by degree)
6 5 0.03 0.746 1,3,6,6,2,2
7 2 0.09 0.746 1,3,8,12,12,6,6
8 3 0.34 1.25 1,4,10,18,16,8,4,4
9 2 1.65 1.86 1,4,14,26,32,18,12,6,6
10 3 12.7 4.48 1,5,16,36,48,32,12,8,4,4
11 2 73.5 9.33 1,5,20,50,82,70,50,30,20,10,10
12 5 693 33.2 1,6,24,64,104,84,36,20,12,8,4,4
13 2 4079 81.1 1,6,28,84,168,180,132,84,60,36,24,12,12
14 3 25280 304.3 1,7,32,104,216,242,162,96,42,30,18,12,6,6
15 2 99873 780.4 1,7,38,130,306,388,264,120,88,56,40,24,16,8,8

|Cn| = n, hence, quite small. However, the minimal number of generators of RCn is
surprisingly large. According to [92], the invariant ring of C10 in characteristic 0 was
out of reach. Still in release Magma V2.13-10, the function FundamentalInvariant

needs at least 2.6 Gb and more than 10 hours for computing the invariant ring of C9

both in characteristic 0 and in charakteristic 2. In contrast, our algorithm computes
a minimal generating set in less then 36 respectively less than 2 seconds. It needs
less than 30 minutes and less than 150 Mb even for the invariant ring of C11 — this
is a major progress.

Since in this class of examples the group orders are very small, we use the
Reynolds operator rather than orbit sums for the generation of invariants. For
n ≤ 5 the computation is finished in almost no time, so we omit them in our tables.
Table 5 provides the result for n = 6, ..., 12 in characteristic 0. It turns out that
for n = 12 the computation of the Gröbner basis needed in degree 5 is very hard
to compute for Singular 3-0-3 β, so we used Singular 3-0-2 instead. Recall that
for the timings in Tables 1–4 we used orbit sums and not the Reynolds operator —
this explains the different computation times in the case of cyclic groups.

Table 6 provides the results for n = 6, ..., 15 in small prime characteristic p > 0,
of course such that p does not divide n (non-modular case). Apparently this is much
easier than characteristic 0. The reason is that in characteristic 0 the coefficients
occuring in the Gröbner bases become very huge. By consequence, it takes too long
to compute normal forms.

Note that the in all examples, the number of generators in each degree is the
same in characteristic 0 and in non-modular prime characteristic. It is in fact
conjectured that this is always the case [94].

To work in prime characteristic is not the only way to simplify the computa-
tions. As a last example, we study here the action of S5 on pairs, which yields
a 10–dimensional representation of S5. One can decompose it into a 1-, a 4- and
a 5–dimensional irreducible representation, and in this form, the representation is
given by the matrices of Example (9) in Section 7.4 on page 68.

We could describe that representation of S5 by a transitive permutation group
on 10 variables. However, in that formulation of the problem, our algorithm would
take a very long time to find a minimal generating set. But after the decomposition,
our algorithm Invariant Algebra executed in Singular 3-0-2 finds a minimal
generating set after 47.8 minutes using 4.4 Gb in characteristic 0 respectively after
only 84.2 seconds using 81.7 Mb in characteristic 7. In both cases, there is a minimal
number of 1, 2, 4, 7, 10, 13, 13, 4, 2 generators sorted by degree.
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Even using the decomposition, the Magma V2.13-9 function FundamentalIn-

variants is unable to find a minimal generating set in less than 4 hours, both in
characteristic 0 and in characteristic 7.

3. Application to irreducible secondary invariants

In Chapter 7 (our paper [56]), we presented an algorithm for the computation
of secondary invariants and a specialised version for the computation of irreducible
secondary invariants. Shortly after the first version of [56] was posted, there was a
new release of Magma containing a new algorithm of G. Kemper for the computa-
tion of secondary invariants. Unfortunately, to the best of the author’s knowledge,
Kemper did not describe his new algorithm in a manuscript, yet. So it is not clear
how that algorithm differs from the one described in [45], [47] and [22] or the one
described in Chapter 7 (see [56]).

Our algorithm for the computation of minimal generating sets can be easily
modified to yield yet another algorithm for the computation of irreducible sec-
ondary invariants. For this, let P be a system of primary invariants. In Step (1)
of algorithm Invariant Algebra, let S = P and let G be a Gröbner basis of P .
The rest of the algorithm remains unchanged. In the end, it returns the union of
P with a system of irreducible secondary invariants. Note that this algorithm does
not involve an application of Molien’s Theorem. So, it applies also to cases when
the Molien series is difficult to compute.

In the new version of irred secondary char0 in Singular-3-0-3, we combine
both algorithms, i.e., we use the Molien series and power products as described
in [56] in low degrees, and the algorithm Invariant Algebra in higher degrees.

In Table 7, we compare a β–version of Singular-3-0-3 with Magma V2.13-9
(released in January, 2007). As in the examples presented in Chapter 7, the ring
variables are called x1, x2, .... Let ei be the column vector with 1 in position i and
0 otherwise. For our benchmark, we use Expl. (4)–(9) from Chapter 7 and one
additional example (again in characteristic 0), that was originally motivated by our
study of ideal Turaev–Viro invariants (compare Section 2 in Chapter 6).

(10) A 20–dimensional representation of S3 is given by the matrices

M1 = (e2e1e3e19e9e13e17e11e5e15e8e16e6e14e10e12e7e20e4e18)

M2 = (e1e3e2e4e6e5e10e9e8e7e13e16e11e19e20e12e18e17e14e15)

We use the following sub-optimal primary invariants:

x1 + x2 + x3, x1x2 + x1x3 + x2x3, x1x2x3, x4 + x14 + x19,

x4x14 + x4x19 + x14x19, x4x14x19, x5 + x6 + x8 + x9 + x11 + x13,

x8x9 + x5x11 + x6x13, x6x8 + x5x9 + x11x13,

x5x8 + x6x9 + x6x11 + x9x11 + x5x13 + x8x13,

x5x6x11 + x5x8x11 + x8x9x11 + x5x6x13 + x6x9x13 + x8x9x13,

x6
5 + x6

6 + x6
8 + x6

9 + x6
11 + x6

13, x12 + x16, x12x16,

x7 + x10 + x15 + x17 + x18 + x20, x7x17 + x10x18 + x15x20,

x10x15 + x17x18 + x7x20, x7x15 + x10x17 + x7x18 + x15x18 + x10x20 + x17x20,

x7x10x17 + x7x15x17 + x7x10x18 + x15x17x20 + x10x18x20 + x15x18x20,

x6
7 + x6

10 + x6
15 + x6

17 + x6
18 + x6

20

In this example, there are 248832 secondary invariants of maximal degree 26,
among wich are 283 irreducible secondary invariants of maximal degree 4. The sheer
number of secondary invariants (which can be computed by Molien’s Theorem)
makes the computations hardly manageable for any algorithm that is based on
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the generation of power products, as the one described in [45], [47] and [22], or
the one described in Chapter 7. It is in fact too much for Magma V2.13-9 and
for Singular-3-0-2. However, our new algorithm implemented in Singular-3-0-3
just needs few seconds to find the irreducible secondary invariants.

In Table 7, we compare a β–version of Singular-3-0-3 (function irred secon-

dary char0) with Magma V2.13-9 (function IrreducibleSecondaryInvariants,
released in January, 2007). The only exception is Example (9), that we compute
with our new algorithm, but based on Singular-3-0-2. For convenience, we repeat
in Table 7 the timings for Singular-3-0-2 and Magma V2.13-8 from Table 1 in
Section 7.4.

Table 7. Comparative benchmark for the computation of irre-
ducible secondary invariants

Singular Magma Magma Singular

3-0-3 V2.13-9 V2.13-8 3-0-2
Expl. (4) 0.07 s 0.09 0.48 s 0.32 s

1.48 MB 7.35 MB 9.09 MB 2.97 MB
Expl. (5) 5.71 s 0.49 s 6.66 s 9.69 s

12.0 MB 9.06 MB 31.82 MB 17.0 MB
Expl. (6) 1.32 s 2.49 s 118.51 s 16.55 s

7.49 MB 19.8 MB 54.0 MB 39.0 MB
Expl. (7) 0.34 s 36.57 s > 7 h 20.94 s

3.74 MB 30.1 MB > 15 GB 35.1 MB
Expl. (8) 1.06 s > 72 min — 50.7 min

9.37 MB > 2.5 GB (259.5 GB) 3.36 GB
Expl. (9) 17.2 min 29.9 min — 99.2 min

4.67 GB 399.5 MB (55.62 GB) 7.35 GB
Expl. (10) 6.54 s > 280 min —

34.3 MB > 9.9 GB —

The outcome of these benchmarks is less clear than of our benchmarks on
minimal generating sets. In 3 of the 7 examples, our algorithm and the one used in
Magma V2.13-9 show more or less the same performance, in one example Magma

is faster by a factor of about 10, and in 3 examples our algorithm is faster by factors
between 100 and at least 4000.

Note that in Expl. (9), the critical part is the computation of a Gröbner basis
of primary and irreducible secondary invariants. The rest of the computations just
takes about 5 minutes. The beta version of Singular-3-0-3 spends much more
than 30 minutes with the computation of a Gröbner basis. Here, the old version
Singular-3-0-2 happens to be quicker.





Bibliography

[1] S. Akbulut and R. Kirby: A potential smooth counterexample in dimension 4 to the Poincaré
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[57] Kneser, H.: Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten. Jahresber. Deut.

Math. Ver. 38, 248–260 (1929).

[58] D. E. Knuth: Axioms and Hulls. Springer Verlag, New York, 1992.

[59] M. Kreuzer and L. Robbiano: Computational commutative algebra 1. Springer-Verlag, 2000.

[60] L. D. Landau and E. M. Lifshitz: Course of Theoretical Physics, Vol. 3, Quantum mechanics:

non-relativistic theory. Translated from the Russian by J. B. Sykes and J. S. Bell Addison-Wesley

Publishing Co. (1958).

[61] M. Las Vergnas: Extensions ponctuelles d’une géométrie combinatoire orientée. Problèmes
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