Abstract

We prove the Finsler analog of the conformal Lichnerowicz-Obata conjecture showing that that a complete and essential conformal vector field on a non-Riemannian Finsler manifold is a homothetic vector field of a Minkowski metric.

MSC 2000: 53A30; 53C60

Key words: essential conformal vector field, conformal transformations, Finsler metrics, Lichnerowicz-Obata conjecture

1 Definitions and results

In this paper a Finsler metric on a smooth manifold M is a function $F : T M \to \mathbb{R}_{\geq 0}$ satisfying the following properties:

1. It is smooth on $TM \setminus TM_0$, where TM_0 denotes the zero section of TM,

2. For every $x \in M$, the restriction $F|_{T_x M}$ is a norm on $T_x M$, i.e., for every $\xi, \eta \in T_x M$ and for every nonnegative $\lambda \in \mathbb{R}$ we have

 (a) $F(\lambda \cdot \xi) = \lambda \cdot F(\xi),$

 (b) $F(\xi + \eta) \leq F(\xi) + F(\eta),$

 (c) $F(\xi) = 0 \implies \xi = 0.$

We do not require that (the restriction of) the function F is strictly convex. In this point our definition is more general than the usual definition. In addition we do not assume the metric
to be reversible, i.e., we do not assume that $F(-\xi) = F(\xi)$. Geometrically speaking a Finsler metric is characterized by a smooth family $x \in M \mapsto \{\xi \in T_x M \mid F(\xi) = 1\} \subset T_x M$ of convex hypersurfaces containing the zero section in the tangent bundle.

Recent references for Finsler geometry are [BCS, Sh, BBI, Alv]. Particular classes of Finsler metrics which occur in our results are the following:

Example 1 (Riemannian metric). For every Riemannian metric g on M the function $F(x, \xi) := \sqrt{g(x)(\xi, \xi)}$ is a Finsler metric. Geometrically the Finsler metric is a smooth family of ellipsoids.

Example 2 (Minkowski metric). Consider a norm on \mathbb{R}^n, i.e., a function $p : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ satisfying 2a, 2b, 2c. We canonically identify $T\mathbb{R}^n$ with $\mathbb{R}^n \times \mathbb{R}^n$ with coordinates $((x_1, \ldots, x_n), (\xi_1, \ldots, \xi_n))$. Then, $F(x, \xi) := p(\xi)$ is a Finsler metric. The metric is translation invariant, on the other hand every translation invariant Finsler metric is a Minkowski metric. Due to the translation invariance the Finsler metric is uniquely characterized by a convex hypersurface in a single tangent space $T_x M$.

Two Finsler metrics F and F_1 on an open subset $U \subseteq M$ are called *conformally equivalent*, if $F_1 = \lambda \cdot F$ for a function λ on U. We say that a differentiable mapping $f : (M_1, F_1) \to (M_2, F_2)$ is *conformal*, if the pullback of the metric F_2 is conformally equivalent to F_1, i.e., if for every $\xi \in T_x M$ we have $F_2(\varphi^* \xi) = \lambda(x) F_1(\xi)$. If the conformal factor λ is constant the map is called *homothetic*, for $\lambda = 1$ it is *isometric*. A vector field is called *conformal* (resp. *homothetic* or *isometric*) if its local flow acts by conformal (resp. homothetic or isometric) local diffeomorphisms. If the conformal vector field v is *complete* then the flow $\phi^t : M \to M$, $t \in \mathbb{R}$ of v is a one-parameter group of conformal diffeomorphisms of the manifold M.

Obviously, if a metric F_1 is conformally equivalent to F, then every conformal vector field for F is also a conformal vector field for F_1.

Remark 1. If the Finsler metric F is strictly convex the symmetric bilinear form

$$g(Y)(w, z) = \frac{1}{2} \left. \frac{d^2}{dt ds} \right|_{t=s=0} F^2(Y + tw + sz)$$

is positive definite for any nonzero tangent vector $Y \in T_x M$. Then one can consider the following generalization of the above definition of a conformal map: Assume that for a transformation $f : M \to M$ there is a function $\lambda : TM - TM_0 \to \mathbb{R}^+$ such that $g(Y)(df_x(\xi), df_x(\eta)) = \lambda^2(Y) g(Y)(\xi, \eta)$ for all $Y, \xi \in T_x M$ and all $x \in M$. It follows that the function λ is positive homogeneous of degree 0, i.e., for all $a > 0$: $\lambda(aY) = \lambda(Y)$. But then it is shown by Knebelman [Kn] that the function λ only depends on $x \in M$ i.e., can be seen as a function on the manifold M.

Example 3. For the Finsler metric $F := \sqrt{g(\xi, \xi)}$ from Example 1, conformal vector fields for the Riemannian metric g are conformal vector fields for the Finsler metric F, and vice versa. For Euclidean space \mathbb{R}^n the description of conformal mappings for $n = 3$ is due to Liouville [Lio] and for $n \geq 3$ to Lie [Lie], for recent expositions cf. for example [BP, Thm. A.3.7] and [KR].
Example 4. For the Finsler metric $F(x, \xi) := p(\xi)$ from Example 2, the mappings $x \in \mathbb{R}^n \mapsto H_t(x) = t \cdot x \in \mathbb{R}^n$ are homotheties for all $t > 0$. Then, the vector field $v(x) = \left. \frac{d}{dt} \right|_{t=0} H_t(x) = \sum_{i=1}^n x_i \frac{\partial}{\partial x_i}$ is the corresponding homothetic vector field.

Now we can state our main result:

Theorem 1. Suppose v is a conformal and complete vector field on a connected Finsler manifold (M, F) of dimension $n \geq 2$. Then, at least one of the following statement holds.

1. There exists a Finsler metric F_1 conformally equivalent to F such that the flow of v preserves the Finsler metric F_1.

2. The manifold M is diffeomorphic to the sphere S^n and the Finsler metric is conformally equivalent to the norm of the standard Riemannian metric of the sphere, cf. Example 1.

3. The manifold M is diffeomorphic to Euclidean space \mathbb{R}^n, and the Finsler metric F is conformally equivalent to a Minkowski metric, cf. Example 2. The vector field v with respect to the Minkowski metric is homothetic.

For Riemannian metrics, the statement above is called conformal Lichnerowicz-Obata conjecture, and was proved in [Ob, Al, Yo, Fe2, Sch], see also [La, FT]. Of course, in the Riemannian case, Example 2 corresponds to the Euclidean metric on \mathbb{R}^n.

A conformal vector field satisfying the assumptions of the first case is also called inessential, otherwise it is called essential.

Theorem 1 was announced in [Ze] under the following additional assumptions: M is closed, and the Finsler metric F is strictly convex, i.e., the second derivative of $F^2|_{T_pM}$ has rank $n - 1$ at every point on $T_pM - TM_0$. The proof is sketched in [Ze]. It is long and actually is a repeating of the proof from [Fe2] (which is technically very nontrivial) in the Finsler case. Our proof of Theorem 1 is much shorter. It is based on the following observation: for every Finsler metric F we can canonically construct a Riemannian metric g such that if v is a conformal vector field for F, then it also a conformal vector field for g. Then, by the Riemannian version of Theorem 1, the following two cases are possible:

- The flow of v acts by isometries of a certain Riemannian metric g_1 conformally equivalent to the Riemannian metrics g. This case will be called “trivial case” in the proof of Theorem 1. In this case, it immediately follows, that the flow of v acts by the isometries of a particular metric F_1 conformally equivalent to F.

- The manifold is S^n or \mathbb{R}^n, and the metric g is conformally equivalent to the standard metric. In this case, all possible essential conformal vector fields v can be explicitly described, cf. Example 3. A direct analysis of the flow of such vector field shows, that the only Finsler metrics for which v is a conformal vector field are as in Theorem 1.
Remark 2. In conformal geometry the case of surfaces \(n = 2 \) is special due to the existence of holomorphic functions. Any holomorphic function defined on an open subset in the complex plane \(\mathbb{C} \) with everywhere non-vanishing derivative is conformal. This shows that the part of Liouville’s theorem on conformal transformations of Euclidean spaces stating that a conformal diffeomorphism between open subsets of Euclidean space is the restriction of a conformal diffeomorphism of the standard sphere only holds for dimensions \(n \geq 3 \). On the other hand the description of the conformal diffeomorphism of the \(n \)-dimensional sphere \(S^n \) as compositions of homotheties and inversions in the Euclidean space \(\mathbb{R}^n \) also holds for \(n = 2 \), cf. Example 3. It is shown by Alekseevskii [Al, Thm.8] that an essential and complete conformal vector field on a surface only exists on the 2-sphere with the standard metric or on Euclidean 2-space. Therefore for our main result the case \(n = 2 \) is not exceptional.

2 Averaged Riemannian metric

For a given smooth norm \(p \) on \(\mathbb{R}^n \) we construct canonically a positive definite symmetric bilinear form \(g : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R} \).

For a Finsler metric \(F \), the role of \(p \) will play the restriction of \(F \) to \(T_xM \). We will see that the constructed \(g \) will smoothly depend on \(x \), i.e., \(g(x) \) is a Riemannian metric.

Consider the unit sphere \(S_1 = \{ \xi \in \mathbb{R}^n \mid p(\xi) = 1 \} \) of the norm \(p \). Consider the (unique) volume form \(\Omega \) on \(\mathbb{R}^n \) such that the volume of the 1-ball \(B_1 = \{ \xi \in \mathbb{R}^n \mid p(\xi) \leq 1 \} \) equals 1.

Denote by \(\omega \) the volume form on \(S_1 \), whose values on the vectors \(\eta_1, ..., \eta_{n-1} \) tangent to \(S_1 \) at the point \(\xi \in S_1 \) are given by \(\omega(\eta_1, ..., \eta_{n-1}) := \Omega(\xi, \eta_1, \eta_2, ..., \eta_{n-1}) \).

Now, for every point \(\xi \in S_1 \), consider the symmetric bilinear form \(b_\xi : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R} \), \(b_\xi(\eta, \nu) = D^2 \xi p^2(\eta, \nu) \). In this formula, \(D^2 \xi p^2 \) is the second differential at the point \(\xi \) of the function \(p^2 \) on \(\mathbb{R}^n \). The analytic expression for \(b_\xi \) in the coordinates \((\xi_1, ..., \xi_n) \) is

\[
b_\xi(\eta, \nu) = \sum_{i,j} \frac{\partial^2 p^2(\xi)}{\partial \xi_i \partial \xi_j} \eta_i \nu_j. \tag{1}\]

Since the norm \(p \) is convex, the bilinear form (1) is nonnegative definite: for all \(\eta \) we have

\[
b_\xi(\eta, \eta) \geq 0. \tag{2}\]

Clearly, for every \(\xi \in S_1 \), we have

\[
b_\xi(\xi, \xi) > 0 \tag{3}\]

Now consider the following bilinear symmetric 2–form \(g \) on \(\mathbb{R}^n \): for \(\eta, \nu \in \mathbb{R}^n \), we put

\[
g(\eta, \nu) = \int_{S_1} b_\xi(\eta, \nu) \omega.\]
We assume that the orientation of S_1 is chosen in such a way that $\int_{S_1} \omega \geq 0$. Because of (2) and (3), g is positive definite.

Remark 3. If the norm p comes from a scalar product, i.e., if $p(\xi) = \sqrt{b_1(\xi, \xi)}$ for a certain positive definite symmetric 2-form b_1, then b is equal to b_1 multiplied by a constant only depending on the dimension.

Starting with a Finsler metric F, we can use this construction for every tangent space $T_x M$ of the manifold, the role of p is played by the restriction $F|_{T_x M}$ of the Finsler metric to the tangent space $T_x M$. Since this construction depends smoothly on the point $x \in M$, we obtain a Riemannian metric $g = g(F)$ on M. We call this metric the *averaged Riemannian metric* of the Finsler metric F.

Remark 4. It is easy to check that for the metric $F_1 := \lambda(x) \cdot F$ the constructed metric g_1 is conformally equivalent to the metric g constructed for F. More precisely, $g_1 = \lambda(x)^2 \cdot g$. Then, a conformal diffeomorphism (conformal vector field, respectively) for F is also a conformal diffeomorphism (conformal vector field, respectively) for g. Moreover, if v is conformal for F and is an isometry (homothety, respectively) for g, then it is an isometry (homothety, respectively) for F as well.

3 Proof of Theorem 1

Let v be a complete conformal vector field on a connected Finsler manifold (M, F). Then, it is also a conformal vector field for the averaged Riemannian metric g. Then, by the Riemannian version of our Theorem, which, as we explained in the introduction, was proved in [Ob, Al, Yo, Fe2, Sch], we have the following possibilities:

Trivial case that v is a Killing vector field of a conformally equivalent metric $\lambda(x)^2 g$.

Interesting case For a certain function λ, the Riemannian manifold $(M^n, \lambda(x)^2 g)$ is (\mathbb{R}^n, g_0), or (S^n, g_1), where g_0 resp. g_1 is the Euclidean metric on \mathbb{R}^n resp. the standard metric of sectional curvature 1 on S^n.

In the trivial case, as we explained in Remark 4, for a certain function λ, v is a Killing vector field for the metric $F_1 := \lambda \cdot F$, which was one of the possibilities in Theorem 1.

Now we treat the **interesting case**. Without loss of generality, we can assume that (M, g) is (\mathbb{R}^n, g_0), or (S^n, g_1).
3.1 Case 1: \((M, g) = (\mathbb{R}^n, g_0)\).

Since the vector field is complete, it generates a one parameter group \(\phi^t : \mathbb{R}^n \to \mathbb{R}^n\) of conformal transformations with respect to the Finsler metric \(F\) and the averaged Riemannian metric \(g_0\). It follows from Liouville’s theorem that for any \(t\) the mapping \(\phi^t\) is a homothety of the Riemannian metric \(g_0\). In other words, in an appropriate cartesian coordinate system \((x_1, ..., x_n)\), the conformal diffeomorphism \(\phi = \phi^1\) has the form

\[
\phi(x_1, ..., x_n) = \mu \cdot (x_1, ..., x_n)A,
\]

where \(A\) is an orthogonal \((n \times n)\)-matrix. Without loss of generality we can assume that \(0 < \mu < 1\). We will show that in this case the metric \(F\) is as in Example 2.

We identify \(T_x\mathbb{R}^n\) and \(\mathbb{R}^n \times \mathbb{R}^n\) with the help of the cartesian coordinates \(x = (x_1, ..., x_n)\). We assume that the first component of the product \(\mathbb{R}^n \times \mathbb{R}^n\) corresponds to our manifold \(\mathbb{R}^n\), and that the second component of the product \(\mathbb{R}^n \times \mathbb{R}^n\) corresponds to the tangent spaces. The coordinates on the tangent spaces will be denoted by \(\xi\), so \((x_1, ..., x_n), (\xi_1, ..., \xi_n)\) is a coordinate system on \(T_x\mathbb{R}^n \cong \mathbb{R}^n \times \mathbb{R}^n\).

Clearly, the differential of the mapping \(\phi\) given by (4) is given by

\[
d\phi_x(\xi) = (\mu \cdot (x_1, ..., x_n)A, \mu \cdot (\xi_1, ..., \xi_n)A) .
\]

Then, for every \(\xi, \eta \in T_x\mathbb{R}^n\), we have \(g_{\phi(x)}(d\phi_x(\xi), d\phi_x(\eta)) = \mu^2 \cdot g_\phi(\xi, \eta)\). Hence, by Remark 4, \(F(\phi(x), d\phi_x(\xi)) = \mu \cdot F(x, \xi)\). Consider the mapping

\[
h : T\mathbb{R}^n \cong \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n \times \mathbb{R}^n, \quad h(x_1, ..., x_n, \xi_1, ..., \xi_n) = (\mu \cdot (x_1, ..., x_n)A, (\xi_1, ..., \xi_n)A).
\]

By construction, this mapping satisfies \(F(h(x, \xi)) = F(x, \xi)\). Since the orthogonal group \(O(n)\) is compact, we can choose a sequence \(m_j \to \infty\) such that \(A^{m_j} \to 1 \in O(n)\) for \(j \to \infty\). Then, \((0, \xi) = \lim_{j \to \infty} h^{m_j}(x, \xi)\). Hence,

\[
F(0, \xi) = F \left(\lim_{j \to \infty} h^{m_j}(x, \xi) \right) = \lim_{j \to \infty} F(h^{m_j}(x, \xi)) = F(x, \xi).
\]

Thus, \(F\) is translation invariant and therefore a Minkowski metric, cf. Example 2. Hence in this case, up to conformal equivalence, the Finsler metric is a Minkowski metric, and the conformal vector field is homothetic.

3.2 Case 2: \((M, g) = (S^n, g_1)\)

Then, by [La, Thm. 12] any essential conformal vector field \(v\) vanishes at exactly one (Case 2a) or exactly two (Case 2b) points. We denote by \(v^{-1}(0) = \{x \in M \mid v(x) = 0\}\) the set of zeroes. If we assume \(v(x) = 0\) we use the stereographic projection \(s_x : S^n - \{x\} \to \mathbb{R}^n\) and obtain with the push forward of the vector field \(v\) a complete and conformal vector field on \(\mathbb{R}^n\).
3.2.1 Case 2a: Suppose $v^{-1}(0) = \{x, y\}, x \neq y$

Suppose the conformal vector field v vanishes precisely at two points x and y of the sphere. We will show that the metric F is as in Example 1.

Denote by $s_+ : (S^n - \{x\}, g_1) \to (\mathbb{R}^n, g_0)$ the stereographic projection from x which is conformal with respect to the standard Riemannian metrics g_0, g_1 with conformal factor σ_+. Here, \mathbb{R}^n should be identified with the hyperplane through the origin parallel to the tangent spaces $T_x S^n$. Then we define a Finsler metric F_+ by $s_+^* F_+ = \sigma_+ F$. Then the averaged Riemannian metric of F_+ coincides with the Euclidean metric g_0. The push forward vector field $v_+ := s_+^* v$ is a conformal and complete vector on \mathbb{R}^n with respect to the Finsler metric F_+ as well with respect to the standard metric g_1. This vector field has exactly one zero on \mathbb{R}^n. Therefore, by section 3.1, the Finsler metric F_+ is a Minkowski metric, i.e., translation invariant. In particular we can assume w.l.o.g. that the zero point of v_+ is the origin of \mathbb{R}^n. Hence we can assume that the zero points of v on S^n are antipodal points, i.e., $v^{-1}(0) = \{\pm x\}$.

The stereographic projection $s_- : (S^n - \{x\}, g_1) \to (\mathbb{R}^n, g_0); s_-(q) = s_+(-q)$ from $-x$ is a conformal mapping with conformal factor σ_- with $\sigma_-(q) = \sigma_-(q)$, $q \in S^n$ i.e., $s_+^* g_0 = \sigma_+^2 g_1$. Then we define also the Finsler metric F_- on \mathbb{R}^n by $s_-^* F_- = \sigma_- F$. The averaged Riemannian metrics of F_- equals the Euclidean metric g_0. The push-forward $v_- := (s_-)_*v$ of the vector field v is a conformal vector field on \mathbb{R}^n with respect to the Finsler metric F_- and, hence, with respect to the standard metric g_0. Both vector fields v_\pm are evidently complete and have precisely one zero at the origin. Therefore, by section 3.1, the Finsler metrics F_\pm are Minkowski metrics, i.e., translation invariant.

It is well known that the composition $s_- \circ s_+^{-1} : \mathbb{R}^n - \{0\} \to \mathbb{R}^n$ equals the inversion $I(q) = q/g_0(q, q)$ at the unit sphere. Therefore, the inversion defines a conformal transformation $I : (\mathbb{R}^n - \{0\}, F_+) \to (\mathbb{R}^n - \{0\}, F_-)$ between two Minkowski metrics. The differential dI_q of the inversion at a point $q \in S^{n-1} := \{u \in \mathbb{R}^n | g_0(u, u) = 1\}$ equals the reflection R_q at the hyperplane normal to q. This implies that $dI_q^* F_+ = R_q^* F_+ = F_-$ for any $q \in S^{n-1}$. Since the reflections generate the orthogonal group and since the Finsler metrics F_\pm are translation invariant, it follows that the norms $F_\pm | T_0 M$ at the origin are invariant under the full orthogonal group and hence Euclidean.

3.2.2 Case 2b: $v^{-1}(0) = \{x\}$

We assume that the vector field v on S^n vanishes precisely at one point $x \in S^n$. We will show that the metric F is again as in Example 1.

We again consider the stereographic projections $s_\pm : S^n - \{\pm x\} \to \mathbb{R}^n$ from the points $x, -x$ as introduced in Section 3.2.1, and denote by $F_\pm := (s_\pm)_* F$ the induced Finsler metrics on \mathbb{R}^n. The push-forward v_+ of v with respect to s_+ vanishes nowhere on \mathbb{R}^n and is complete, let
\(\psi^t\) be its flow on \(\mathbb{R}^n\). Then Liouville’s theorem implies that for an arbitrary \(t\) the conformal diffeomorphism \(f = \psi^t\) has the form \(f(x) = \mu Ax + b\) with an orthogonal matrix \(A\) and \(\mu > 0, b \in \mathbb{R}^n\). Since the mapping \(f\) has no fixed point it follows that \(b \neq 0\); \(\mu = 1\) and \(Ab = b\).

We introduce the following notation: \(f_{A,b}(q) = Aq + b\) for an orthogonal matrix \(A\) and \(b \in \mathbb{R}^n\) with \(Ab = b\).

If we use the stereographic projection \(s_+\), then the push-forward of \(v\) has a zero in the origin 0 and the mapping \(f\) transforms to \(f_A, b = I \circ f_{A,b} \circ I\) where \(I = \sigma_+ \circ \sigma_{-1}\) is the inversion at the unit sphere. Hence \(f_{A,b}(q) = \frac{4q + b||q||^2}{1 + 2(Aq, b) + ||b||^2||q||^2}\) where \(<.,.> = g_0(.,.)\) with related norm \(\|\cdot\|\).

The conformal factor is given by \(\psi(q) = \frac{1}{1 + 2(Aq, b) + ||b||^2||q||^2}\). In particular the conformal mapping \(f_{A,b}(q) = Aq + b\) induces at the fixed point 0 the map
\[\xi \in T_0\mathbb{R}^n \mapsto d(f_{A,b})_0(\xi) = A\xi \in T_0\mathbb{R}^n\] (5)
which is an isometry also with respect to the restriction of the Finsler metric \(F_-\) to 0 since \(\psi(0) = 1\).

For an orthogonal mapping \(A\) we introduce the map \(h_A : z \in \mathbb{R}^n \rightarrow Az \in \mathbb{R}^n\) with induced mapping \((z, \xi) \in T_z\mathbb{R}^n = \mathbb{R}^n \times \mathbb{R}^n \mapsto dh_A(z, \xi) = (Az, A\xi) \in T_z\mathbb{R}^n\). We want to show that the map \(h_A\) is an isometry for the Finsler metric \(F_-\). Let \(v_1\) be the vector field on \(S^n\) which corresponds to the parallel vector field \(b\) on \(\mathbb{R}^n\) with respect to the stereographic projection \(s_+\), i.e., \(ds_+(v_1)(q) = b\) for all \(q \in S^n\). The vector field \(v_1\) is a conformal vector field with respect to the standard Riemannian metric \(g_1\) with exactly one zero in \(x\). The flow lines of \(v_1\) consist of the circles passing through \(x\) with a common tangent vector, see the picture. Hence we obtain the following properties of the flow \(\phi^t : S^n \rightarrow S^n\) of the conformal vector field \(v_1\) on \(S^n\):
(a) For any point \(q \in S^n : x = \lim_{i \to \pm \infty} \phi^i(q) \).

(b) For any tangent vector \(\xi \in T_x S^n, F(x, \xi) = 1 \) there is a sequence \(q_i \in S^n - \{ x \} \) with \(\lim_{i \to \infty} q_i = x \) and \(\xi = \lim_{i \to \infty} \frac{v_{1(q_i)}}{F(q_i, v(q_i))} \).

Now we show that the mapping \(h_A \) is an isometry also for the Finsler metric \(F_- \). We can choose a sequence \(m_i \to \infty \) with \(A^{m_i} \to 1 \). In particular for a given \((z, \xi) \in T_x \mathbb{R}^n, z \neq 0 \) there is a unique \((0, \xi_0) \in T_0 \mathbb{R}^n; F((0, \xi_1)) = 1 \) such that

\[
(0, \xi_1) = \lim_{i \to \infty} \frac{d \overline{T}_{A,b}(z, \xi)}{F_-(d \overline{T}_{A,b}(z, \xi))}.
\]

Since the mapping \(\overline{T}_{A,b} \) is conformal for \(F_- \) and since \(h_A \) and \(f_{A,b} \) commute it follows that

\[
\lim_{i \to \infty} \frac{F_- (dh_A(z, \xi))}{F_-(d \overline{T}_{A,b}(z, \xi))} = \lim_{i \to \infty} \frac{F_- (d \overline{T}_{A,b} dh_A (z, \xi))}{F_- (d \overline{T}_{A,b}(z, \xi))} = \frac{F_- (d h_A (0, \xi_0))}{F_-(0, \xi_0)} = 1
\]

as shown above, cf. Equation 5. Therefore the mapping \(h_A \) is an isometry of the Finsler metric \(F_- \). This implies that also the flow generated by \(\overline{T}_{1,b} = \overline{T}_{A,b} \circ h_A^{-1} \) is conformal for the Finsler metric \(F_- \). Therefore the vector field \(v_1 \) on \(S^n \) is also a conformal vector field for the Finsler metric \(F \) on \(S^n \).

Let us now consider the following functions \(m, M : S^n \to \mathbb{R}_{\geq 0} \):

\[
m(q) := \frac{F^2(q, v_1(q))}{g(q)(v_1(q), v_1(q))}, \quad M(q) := \max_{\eta \in T_q S^n, \eta \neq 0} \frac{F^2(q, \eta)}{g(q)(\eta, \eta)} - \min_{\eta \in T_q S^n, \eta \neq 0} \frac{F^2(q, \eta)}{g(q)(\eta, \eta)}.
\]

Both functions are continuous functions invariant with respect to the flow \(\phi^i \) of \(v_1 \). It follows from Remark 5(a) that the function \(m \) is a constant, i.e., there exists \(\mu > 0 \) such that \(F^2(q, v_1(q)) = \mu g(q)(v_1(q), v_1(q)) \). Part (b) of Remark 5 implies that for every \(0 \neq \eta \in T_x S^n \) we have \(\frac{F^2(q, \eta)}{g(q)(\eta, \eta)} = \mu \). Hence,

\[
M(x) = \max_{\eta \in T_q S^n, \eta \neq 0} \frac{F^2(q, \eta)}{g(q)(\eta, \eta)} - \min_{\eta \in T_q S^n, \eta \neq 0} \frac{F^2(q, \eta)}{g(q)(\eta, \eta)} = \mu - \mu = 0.
\]

But since \(M \) is also flow invariant by Remark 5(a), we have \(M(q) = 0 \) for all \(q \in S^n \), i.e., \(F \) is up to a constant the norm of the standard metric \(g \). Theorem 1 is proved.

As a consequence of the Proof of Theorem 1 the inversion of the averaged Riemannian metric is not a conformal map for a non-Euclidean Minkowski metric, cf. Section 3.2.1. Therefore one obtains from Liouville’s theorem on the conformal transformations of an Euclidean vector space the following description of the conformal transformations of a Minkowski space:
Remark 6. Let V be an n-dimensional vector space with a Minkowski norm F which is not Euclidean. Denote by g the corresponding averaged Euclidean metric. If $f : (U, F) \rightarrow (V, F)$ is a conformal mapping from an open subset U and $n \geq 3$ then f is a homothety with respect to the Minkowski metric F and with respect to the Euclidean metric g. Hence it is of the form $x \in V \mapsto \mu Ax + b \in V$ for some $\mu > 0; b \in V$ and an orthogonal mapping A of (V, g).

4 Conclusion

Theorem 1 describes complete conformal vector fields of Finsler metrics; it appears that no new phenomena (with respect to the Riemannian case) appear. Our proof is based on the description of conformal vector fields for Riemannian metrics due to [Lie, Lio, Ob, Al, Yo, La, FT, Fe2, Sch].

Let us explain that, though the class of Finsler metrics is much larger than the class of Riemannian metrics, this result was somehow expected (even without taking in account the averaging construction from Section 2).

Indeed, as we know from linear algebra, every two positive definite quadratic forms are the same up to a linear transformation. In a certain sense, one can think that every two Riemannian metric are conformally equivalent at a point.

The situation becomes much more difficult, if we replace quadratic forms by norms. In this case, the existence of a linear transformation sending one norm to another is a very strong restriction (on the second norm). In particular, if there exists a conformal vector field such that, for a certain point p_0, the closure of every trajectory contains this point, then for every two point p_1 and p_2 there exists a linear mapping $f : T_{p_1}M \rightarrow T_{p_2}M$ that preserves the Finsler norm.

Such Finsler metrics are called Berwald metrics in [Ze, 2.2] they are much more simple than the generic Finsler metrics. Originally Berwald metrics are defined to be Finsler metrics for which the Berwald connection is a linear connection. In particular the parallel transport induces a linear map between tangent spaces preserving the Finsler metric. Under the additional assumption that the manifold is closed and that the norm is strictly convex, one can mimic the Riemannian proof in this situation. This was actually the (simplified version of the) initial proof of the last author.

Let us also note that the existence of a conformal vector field such that, for a certain point p_0, the closure of every trajectory contains this point is not artificial: as we know now, in view of Theorem 1, it is always the case, if the conformal transformations are essential. For a closed manifold, one also can show it directly by repeating the Riemannian proof of [Al].

As an interesting and much more involved problem in Finsler geometry related to transforma-
tion groups we would like to suggest to generalize the projective Lichnerowicz-Obata conjecture for Finsler metrics, see [Ma1, Ma2] for the proof of the Riemannian version.

Acknowledgement: This work began when the authors met at the 80ème rencontre entre physiciens théoriciens et mathémathiciens: Géométrie de Finsler at Strasbourg University in September 2007. We are grateful in particular to Athanase Papadopoulos for the invitation to this conference. We also thank Z. Schen and R. Schneider for useful discussions. The first author thanks Deutsche Forschungsgemeinschaft (Priority Program 1154 — Global Differential Geometry) for partial financial support.

References

Vladimir S. Matveev Hans–Bert Rademacher
Mathematisches Institut Mathematisches Institut
Friedrich-Schiller Universität Jena Universität Leipzig
07737 Jena 04081 Leipzig
Germany Germany
matveev@minet.uni-jena.de rademacher@math.uni-leipzig.de

12