TWO REMARKS ON PQ^ϵ-PROJECTIVITY OF RIEMANNIAN METRICS

VLADIMIR S. MATVEEV AND STEFAN ROSEMANN

Abstract. We show that PQ^ϵ-projectivity of two Riemannian metrics introduced in [15] implies affine equivalence of the metrics unless $\epsilon \in \{0, -1, -3, -5, -7, \ldots \}$. Moreover, we show that for $\epsilon = 0$, PQ^ϵ-projectivity implies projective equivalence.

1. Introduction

1.1. PQ^ϵ-projectivity of Riemannian metrics. Let g, \bar{g} be two Riemannian metrics on an m-dimensional manifold M. Consider $(1,1)$-tensors P, Q which satisfy

\[
g(P.,.) = -g(.,P.), \quad g(Q.,.) = -g(.,Q.)
\]

\[
\bar{g}(P.,.) = -\bar{g}(.,P.), \quad \bar{g}(Q.,.) = -\bar{g}(.,Q.)
\]

\[
PQ = \epsilon Id,
\]

where Id is the identity on TM and ϵ is a real number, $\epsilon \neq 1, m + 1$. The following definition was introduced in [15].

Definition 1. The metrics g, \bar{g} are called PQ^ϵ-projective if for a certain 1-form Φ the Levi-Civita connections ∇ and $\bar{\nabla}$ of g and \bar{g} satisfy

\[

\bar{\nabla}X Y - \nabla X Y = \Phi(X)Y + \Phi(Y)X - \Phi(PX)QY - \Phi(PY)QX
\]

for all vector fields X, Y.

Example 1. If the two metrics g and \bar{g} are affinely equivalent, i.e. $\nabla = \bar{\nabla}$, then they are PQ^ϵ-projective with P, Q, ϵ arbitrary and $\Phi \equiv 0$.

Example 2. Suppose that $\Phi(P.) = 0$ or $Q = 0$ and $\epsilon = 0$. It follows that equation (2) becomes

\[

\nabla X Y - \bar{\nabla} X Y = \Phi(X)Y + \Phi(Y)X.
\]

By Levi-Civita [4], equation (3) is equivalent to the condition that g and \bar{g} have the same geodesics considered as unparametrized curves, i.e., that g and \bar{g} are projectively equivalent. The theory of projectively equivalent metrics has a very long tradition in differential geometry, see for example [13, 10, 7, 5, 6] and the references therein.

Example 3. Suppose that $P = Q = J$ and $\epsilon = -1$. It follows that J is an almost complex structure, i.e., $J^2 = -Id$, and by (1) the metrics g and \bar{g} are required to be hermitian with respect to J. Equation (2) now reads

\[

\nabla X Y - \bar{\nabla} X Y = \Phi(X)Y + \Phi(Y)X - \Phi(JX)JY - \Phi(JY)JX.
\]

This equation defines the h-projective equivalence of the hermitian metrics g and \bar{g} and was introduced for the first time by Otsuki and Tashiro in [12, 14] for Kählerian metrics. The theory of h-projectively equivalent metrics was introduced as an analog of projective geometry in the Kählerian situation and has been studied actively over the years, see for example [11, 3, 1, 2, 8] and the references therein.

Remark 1. PQ^ϵ-projectivity of Riemannian metrics is a special case of so-called F-planar mappings introduced and investigated in [9], whose defining equation [9, (1)] clearly generalises equation (2) above.
1.2. Results. The aim of our paper is to give a proof of the following two theorems:

Theorem 1. Let Riemannian metrics g and \bar{g} be PQ^ϵ-projective. If g and \bar{g} are not affinely equivalent, the number ϵ is either zero or an odd negative integer, i.e., $\epsilon \in \{0, -1, -3, -5, -7, \ldots\}$.

Theorem 2. Let Riemannian metrics g and \bar{g} be PQ^ϵ-projective. If $\epsilon = 0$ then g and \bar{g} are projectively equivalent.

1.3. Motivation and open questions. As it was shown in [15], PQ^ϵ-projectivity of the metrics g, \bar{g} allows us to construct a family of commuting integrals for the geodesic flow of g (see Fact 2 and equation (9) below). The existence of these integrals is an interesting phenomenon on its own. Besides, it appeared to be a powerful tool in the study of projectively equivalent and h-projectively equivalent metrics (Examples 2, 3), see [3, 7, 5, 6, 8]. Moreover, in [15] it was shown that given one pair of PQ^ϵ-projective metrics, one can construct an infinite family of PQ^ϵ-projective metrics. Under some non-degeneracy condition, this gives rise to an infinite family of integrable flows.

From the other side, the theories of projectively equivalent and h-projectively equivalent metrics appeared to be very useful mathematical theories of deep interest.

The results in our paper suggest to look for other examples in the case when $\epsilon = -1, -3, -5, \ldots$ If $\epsilon = -1$ but $P^2 \neq -Id$, a lot of examples can be constructed using the "hierarchy construction" from [15]. It is interesting to ask whether every pair of PQ^{-1}-projective metrics is in the hierarchy of some h-projectively equivalent metrics.

Another attractive problem is to find interesting examples for $\epsilon = -3, -5, \ldots$. Besides the relation to integrable systems provided by [15], one could find other branches of differential geometry of similar interest as projective or h-projective geometry.

1.4. PDE for PQ^ϵ-projectivity. Given a pair of Riemannian metrics g, \bar{g} and tensors P, Q satisfying (1), we introduce the $(1,1)$-tensor $A = A(g, \bar{g})$ defined by

$$A = \left(\frac{\det \bar{g}}{\det g}\right)^{\frac{1}{\epsilon+1}} \bar{g}^{-1} g. \tag{5}$$

Here we view the metrics as vector bundle isomorphisms $g : TM \to T^* M$ and $\bar{g}^{-1} : T^* M \to TM$.

We see that A is non-degenerate and self-adjoint with respect to g and \bar{g}. Moreover A commutes with P and Q.

Fact 1 (Lemma 2 in [15], see also Theorems 5,6 in [9]). Two metrics g and \bar{g} are PQ^ϵ-projective if for a certain vector field A, the $(1,1)$-tensor A defined in (5) is a solution of

$$\left(\nabla_X A\right) Y = g(Y, X)A + g(Y, A)X + g(Y, QX)PA + g(Y, PA)QX \text{ for all } X, Y \in TM. \tag{6}$$

Conversely, if A is a g-self-adjoint positive solution of (6) which commutes with P and Q, the Riemannian metric

$$\bar{g} = (\det A)^{-\frac{1}{\epsilon+1}} gA^{-1}$$

is PQ^ϵ-projective to g.

Remark 2. Taking the trace of the $(1,1)$-tensors in equation (6) acting on the vector field Y, we obtain

$$\Lambda = \frac{1}{2(1-\epsilon)} \text{grad trace } A, \tag{7}$$

hence, (6) is a linear first order PDE on the $(1,1)$-tensor A.

Remark 3. From Fact 1 it follows that the metrics g, \bar{g} are affinely equivalent if and only if $\Lambda \equiv 0$ on the whole M.

Remark 4. The relation between the 1-form Φ in (2) and the vector field A in (6) is given by $\Lambda = -Ag^{-1}\Phi$ (again $g^{-1} : T^* M \to TM$ is considered as a bundle isomorphism), see [15]. Recall from Example 2 that projective equivalence is a special case of PQ^ϵ-projectivity with $\Phi(P) = 0$ or $Q = 0$ and $\epsilon = 0$. In view of Fact 1, we now have that g and \bar{g} are projectively equivalent if and only if $A = A(g, \bar{g})$ given by (5) (with $\epsilon = 0$), satisfies (6) with $P\Lambda = 0$ or $Q = 0$, i.e.,

$$\left(\nabla_X A\right) Y = g(Y, X)A + g(Y, A)X \text{ for all } X, Y \in TM. \tag{8}$$
2. Proof of the results

2.1. Topalov’s integrals. We first recall

\textbf{Fact 2} (Proposition 3 in [15]). Let g and \tilde{g} be $PQ^*\text{-projective metrics}$ and let A be defined by (5). We identify TM with T^*M by g, and consider the canonical symplectic structure on $TM \cong T^*M$. Then the functions $F_t : TM \to \mathbb{R}$,

$$F_t(X) = |\det (A - tId)|^{\frac{1}{2}}g((A - tId)^{-1}X, X), \quad X \in TM$$

are commuting quadratic integrals for the geodesic flow of g.

Remark 5. Note that the function F_t in equation (9) is not defined in the points $x \in M$ such that $t \in \text{spec} A_x$. From the proof of Theorem 1 it will be clear that in the non-trivial case one can extend the functions F_t to these points as well.

2.2 Proof of Theorem 1. Suppose that g and \tilde{g} are $PQ^*\text{-projective Riemannian metrics}$ and let $A = A(g, \tilde{g})$ be the corresponding solution of (6) defined by (5). Since A is self-adjoint with respect to the positively-definite metric g, the eigenvalues of A in every point $x \in M$ are real numbers. We denote them by $\mu_1(x) \leq ... \leq \mu_m(x)$; depending on the multiplicity, some of the eigenvalues might coincide. The functions μ_i are continuous on M. Denote by $M^0 \subseteq M$ the set of points where the number of different eigenvalues of A is maximal on M. Since the functions μ_i are continuous, M^0 is open in M. Moreover, it was shown in [15] that M^0 is dense in M as well. The implicit function theorem now implies that μ_i are differentiable functions on M^0.

From Remark 3 and equation (7) we immediately obtain that g and \tilde{g} are affine equivalent, if and only if all eigenvalues of A are constant. Suppose that g and \tilde{g} are not affine equivalent, that is, there is a non-constant eigenvalue ρ of A with multiplicity $k \geq 1$. Let us choose a point $x_0 \in M^0$ such that $d\rho_{x_0}(0) \neq 0$, define $c := \rho(x_0)$ and consider the hypersurface $H = \{x \in U : \rho(x) = c\}$, where $U \subseteq M^0$ is a geodesically convex neighborhood of x_0. We think that U is sufficiently small such that $\mu(x) \neq c$ for all eigenvalues μ of A different from ρ and all $x \in U$.

\textbf{Lemma 1.} There is a smooth nowhere vanishing $(0, 2)$-tensor T on U such that on $U \setminus H$, T coincides with

$$sgn(\rho - c) |\det (A - cId)|^{\frac{1}{2}}g((A - cId)^{-1}..).$$

\textbf{Proof.} Let us denote by $\rho = \rho_1, \rho_2, ..., \rho_r$ the different eigenvalues of A on M^0 with multiplicities $k = k_1, k_2, ..., k_r$ respectively. Since the eigenspace distributions of A are differentiable on M^0, we can choose a local frame $\{U_1, ..., U_m\}$ on U, such that g and A are given by the matrices

$$g = \text{diag}(1, ..., 1) \quad \text{and} \quad A = \text{diag}(\rho_1, ..., \rho_r),$$

with respect to this frame. The tensor (10) can now be written as

$$sgn(\rho - c) |\det (A - cId)|^{\frac{1}{2}}g(A - cId)^{-1} =$$

$$= (\rho - c) \prod_{i=2}^{r} |\rho_i - c|^\frac{k_i}{2} \text{diag}\left(\frac{1}{\rho - c}, ..., \frac{1}{\rho - c}, ..., \frac{1}{\rho_r - c}, ..., \frac{1}{\rho_r - c}\right) =$$

$$= \prod_{i=2}^{r} |\rho_i - c|^\frac{k_i}{2} \text{diag}\left(\frac{1}{\rho - c}, ..., \frac{\rho - c}{\rho_r - c}, ..., \frac{\rho - c}{\rho_r - c}\right).$$

Since $\rho_i \neq c$ on $U \subseteq M^0$ for $i = 2, ..., r$, we see that (11) is a smooth nowhere vanishing $(0, 2)$-tensor on U. \square

\textbf{Lemma 2.} The multiplicity of the non-constant eigenvalues of A is equal to $1 - c$.

Our goal is to show that \(\Lambda \) is proven.

Using the tensor \(T \) from Lemma 1, we can write

\[
F_c(X) = \text{sgn}(\rho - c) |\det (A - cI)|^{\frac{1}{1-c} - \frac{1}{\kappa}} T(X, X), \quad X \in TM.
\]

Let us consider the integral \(F_c : TM \to \mathbb{R} \) defined in equation (9). Using the tensor \(T \) from Lemma 1, we can write \(F_c \) as

\[
F_c(X) = \text{sgn}(\rho - c) |\det (A - cI)|^{\frac{1}{1-c} - \frac{1}{\kappa}} T(X, X), \quad X \in TM.
\]

Our goal is to show that \(\frac{1}{1-c} - \frac{1}{\kappa} = 0 \).

First suppose that \(\frac{1}{1-c} - \frac{1}{\kappa} > 0 \) and let be \(y \in U \setminus H \). We choose a geodesic \(\gamma : [0,1] \to U \) such that \(y = \gamma(0) \) and \(\gamma(1) \in H \), see figure 1. Since \(\rho(\gamma(t)) \overset{t \to 1}{\to} c \), we see from equation (12) that \(f_c(\gamma(t)) \overset{t \to 1}{\to} 0 \). It follows that \(F_c(\gamma(t)) \overset{t \to 1}{\to} 0 \). On the other hand, since \(F_c \) is an integral for the geodesic flow of \(g \), \(F_c(\gamma(t)) \) is independent of \(t \) and, hence, \(F_c(\gamma(0)) = 0 \).

We have shown that \(F_c(\gamma(0)) = 0 \) for all initial velocities \(\gamma(0) \in T_yM \) of geodesics connecting \(y \) with points of \(H \). Since \(H \) is a hypersurface, it follows that the quadric \(\{ X \in T_yM : F_c(X) = 0 \} \) contains an open subset which implies that \(F_c \equiv 0 \) on \(T_yM \). This is a contradiction to Lemma 1, since \(T \) is non-vanishing in \(y \). We obtain that \(\frac{1}{1-c} - \frac{1}{\kappa} \leq 0 \).

Let us now treat the case when \(\frac{1}{1-c} - \frac{1}{\kappa} < 0 \). We choose a vector \(X \in T_{x_0}M \) which is not tangent to \(H \) and satisfies \(T(X, X) \neq 0 \). Such a vector exists, since \(T_{x_0}M \setminus T_{x_0}H \) is open in \(T_{x_0}M \) and \(H \) is not identically zero on \(T_{x_0}M \) by Lemma 1. Let us consider the geodesic \(\gamma \) with \(\gamma(0) = x_0 \) and \(\gamma(1) = X \), see figure 2. Since \(X \notin T_{x_0}H \), the geodesic \(\gamma \) has to leave \(H \) for \(t > 0 \). In a point \(\gamma(t) \in U \setminus H \) the value \(F_c(\gamma(t)) \) will be finite. On the other hand, since \(f_c(\gamma(t)) \overset{t \to 0}{\to} \infty \) and \(T(\gamma(0), \gamma(0)) \neq 0 \), we have \(F_c(\gamma(t)) \overset{t \to 0}{\to} \infty \). Again this contradicts the fact that the value of \(F_c \) must remain constant along \(\gamma \) by Fact 2. We have shown that \(\frac{1}{1-c} - \frac{1}{\kappa} = 0 \) and finally, Lemma 2 is proven. \(\square \)

As a consequence of Lemma 2, if the metrics \(g, \bar{g} \) are not affinely equivalent (i.e., at least one eigenvalue of \(A \) is non-constant), \(\epsilon \) is an integer less or equal to zero. If \(\epsilon \neq 0 \), the condition \(PQ = \epsilon I \mathrm{Id} \) in (1) implies that \(P \) is non-degenerate and by the first condition in (1), \(g(P, \cdot) \) is a non-degenerate 2-form on each eigenspace of \(A \) (note that \(A \) and \(P \) commute). This implies that

\[
\frac{1}{1-c} - \frac{1}{\kappa} = 0.
\]
for $\epsilon \neq 0$ the eigenspaces of A have even dimension, in particular, $1 - \epsilon \in \{2, 4, 6, 8, \ldots\}$. Theorem 1 is proven.

2.3. Proof of Theorem 2. Let g, \bar{g} be two PQ'-projective metrics and let A be the corresponding solution of equation (6) defined by (5). As it was already stated in the proof of Theorem 1, the eigenspace distributions of A are differentiable in a neighborhood of almost every point of M.

First let us prove

Lemma 3. Let X be an eigenvector of A corresponding to the eigenvalue ρ. If μ is another eigenvalue of A and $\rho \neq \mu$, then $X(\mu) = 0$. In particular, $\text{grad} \mu$ is an eigenvector of A corresponding to the eigenvalue μ.

Remark 6. Lemma 3 is known for projectively equivalent (Example 2) and h-projectively equivalent (Example 3) metrics. For projectively equivalent metrics it is a classical result which was already known to Levi-Civita [4]. For h-projectively equivalent metrics, it follows from [1, 8].

Proof. Let Y be an eigenvector field of A corresponding to the eigenvalue μ. For arbitrary $X \in TM$, we obtain $\nabla_X (AY) = \nabla_X (\mu Y) = X(\mu)Y + \mu \nabla_X Y$ and $\nabla_X (AY) = (\nabla_X A)Y + A \nabla_X Y$.

Combining these equations and replacing the expression $(\nabla_X A)Y$ by (6) we obtain

\begin{equation}
(A - \mu \text{Id}) \nabla_X Y = X(\mu)Y - g(Y, X)A - g(Y, A)X - g(Y, QX)PA - g(Y, PA)QX.
\end{equation}

Now let X be an eigenvector of A corresponding to the eigenvalue ρ and suppose that $\rho \neq \mu$. Since A is g-self-adjoint, the eigenspaces of A corresponding to different eigenvalues are orthogonal to each other. Moreover, since A and Q commute, Q leaves the eigenspaces of A invariant. Using (13) we obtain

\begin{equation}
(A - \mu \text{Id}) \nabla_X Y + g(Y, A)X + g(Y, PA)QX = X(\mu)Y.
\end{equation}

Since the left-hand side is orthogonal to the μ-eigenspace of A, we necessarily have $X(\mu) = 0$.

We have shown that $g(\text{grad} \mu, X) = X(\mu) = 0$ for any eigenvalue μ and any eigenvector field X corresponding to an eigenvalue different form μ. This forces $\text{grad} \mu$ to be contained in the eigenspace of A corresponding to μ. \hfill \square

Now suppose that $\epsilon = 0$. Let us denote the non-constant eigenvalues of A by ρ_1, \ldots, ρ_l. Using Lemma 2, the corresponding eigenspaces are 1-dimensional and Lemma 3 implies that they are spanned by the gradients $\text{grad} \rho_1, \ldots, \text{grad} \rho_l$ respectively. Since P and A commute, P leaves the eigenspaces of A invariant, hence, $P \text{grad} \rho_i = p_i \text{grad} \rho_i$ for some real number p_i. Now P is skew with respect to g and we obtain $0 = g(\text{grad} \rho_i, P \text{grad} \rho_i) = p_i g(\text{grad} \rho_i, \text{grad} \rho_i)$ which implies that

\[P \text{grad} \rho_i = 0. \]

On the other hand, by equation (7)

\[\Lambda = \frac{1}{2} \text{grad} \text{trace } A = \frac{1}{2} (\text{grad} \rho_1 + \ldots + \text{grad} \rho_l). \]

Combining the last two equations, we obtain $PA = 0$. It follows from Remark 4 that g and \bar{g} are projectively equivalent and, hence, Theorem 2 is proven.

Acknowledgements. We thank Peter Topalov for useful discussions and Deutsche Forschungsgemeinschaft (Research training group 1523 – Quantum and Gravitational Fields) and FSU Jena for partial financial support.

References

