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Chapter 1

Box dimension

1.1 Two preliminary examples

Let W = [0, 1]d be the d-dimensional unit cube in Rd. Obviously, any notion of dimen-
sion should assign dimension d to W . If Ñδ(W ) denotes the minimal number of cubes of
sidelength δ that are needed to cover W , then we have

Ñδ(W ) ∼ δ−d as δ → 0 , (1.1.1)

where we write f ∼ g as x → 0 if there exists constants C > 0 and δ0 > 0 such that
C−1f(x) ≤ g(x) ≤ Cf(x) for all x ∈ (0, δ0). Hence, if we do not know the value of d, then
we can recover the dimension of W by

d = lim
δ→0

log Ñδ(W )

− log δ
. (1.1.2)

Remark 1.1.1. Given a function f : (0, δ0)→ R, we will frequently use limits of the form

d = lim
δ→0

log f(δ)

− log δ

to determine the polynomial growth rate of f as δ → 0. If the limit exists, then f(δ) behaves
more or less like δ−d as δ goes to zero (in an appropriate sense). In particular, this is true if
f ∼ δ−d in the above sense. Similarly, a limit of the form

a = lim
δ→0

δ log f(δ)

will give the exponential growth rate of f as δ → 0, that is, if the limit exists then f behaves
asymptotically like exp(a/δ).

Exercise 1. (a) Show that f ∼ δ−d as δ → 0 implies limδ→0− log f(δ)/ log δ = d.

(b) Give an equivalent characterisation of the fact that limδ→0− log f(δ)/ log δ = d.

(c) Replace limδ→0 log f(δ)/− log δ = d by limδ→0 δ log f(δ) and δ−d by exp(a/δ) in (a)
and (b).

(d) Show that ∼ defines an equivalence relation (on a suitable set of functions).

Exercise 2. Suppose N : R+ → R+ is such that limδ→0N(δ) =∞. Further, assume that

s = lim
δ→0

logN(δ)

− log δ
≤ lim

δ→0

logN(δ)

− log δ
= t .

Show that for every ε > 0 there exists δ0 > 0 such that

δ−(s−ε) ≤ N(δ) ≤ δ−(t+ε)

for all δ ∈ (0, δ0). Note that this means in particular that δt
′
N(δ)

δ→0−−−→ 0 for all t′ > t and

δs
′
N(δ)

δ→0−−−→∞ for all s′ < s.
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CHAPTER 1. BOX DIMENSION

Figure 1.1.1: Construction of the
Middle Third Cantor Set.

Let us now consider the above procedure for
a more complicated set, namely the Middle Third
Cantor Set C. The latter is usually obtained as
a nested intersection C =

⋂
n∈N0

Cn, where each
Cn is a finite collection of intervals and the se-
quence (Cn)n∈N0

is defined recursively as follows.
We first let C0 = [0, 1]. If Cn =

⋃nk
j=1 I

n
j is de-

fined, then Cn+1 is obtained by removing the mid-
dle third of each interval Ij belonging to Cn, and
taking the union of the remaining intervals to form
Cn+1. Note that thus every interval in Cn splits up
into two new intervals with a third of the original
length. By induction, we therefore obtain that Cn
is the union of 2n intervals of length 3−n. It there-
fore turns out that exactly 2n intervals of length
3−n are needed to cover C. At least if we restrict
to the δ-values δn = 3−n, we obtain the number

d = lim
n→∞

log Ñδn(C)

− log δn
= lim

n→∞

log 2n

− log 3−n
=

log 2

log 3
(1.1.3)

as a possible candidate for the dimension of C.

Remark 1.1.2. An alternative and more formal way of defining C would be the following.
Let Σ+ = {0, 1}N be the space of one-sided infinite 0-1-sequences. The map g : Σ+ →
[0, 1], a = (an)N 7→

∑
n∈N an2−n allows to identify each a ∈ Σ+ with a real number in the

unit interval and interpret the sequence as the binary expansion of that number. As a slight
modification, we obtain the map

h : Σ+ → [0, 1] , a = (an)N 7→
∑
n∈N

2an · 3−n ,

which maps [0, 1] to C.

Exercise 3. Show that h(Σ+) = C. (This requires to formalise the construction of C in some
way.)
Exercise 4. Show that C is a Cantor set: it is compact, totally disconnected1 and perfect2.

Exercise 5. (a) Show that
d(a, b) =

∑
n∈N

3−|an−bn|

defines a metric on Σ, which thus becomes a compact metric space.

(b) Show that with this metric structure Σ+ is a Cantor set.

(c) Show that the map h : Σ+ → C is a homeomorphism (in fact, an isometry) between
the two spaces.

(d) Show that homeomorphic images of Cantor sets are again Cantor sets. (Note that this
shows again that C is Cantor.)

1This means that all connected components are single points. For subsets of R, this is true if the set contains no
non-trivial interval.

2All points of the set are accumulation points.
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1.2. DEFINITION AND EQUIVALENT CHARACTERISATIONS OF BOX DIMENSION

1.2 Definition and equivalent characterisations of box di-
mension

Suppose (X, d) is a metric space. Given a set A ⊆ X with compact closure and δ > 0, let
Nδ(A) be the smallest number of closed δ-balls Bδ(x) that are needed to cover A. Then the
upper box dimension of A is defined as

DimB(A) = lim
δ→0

logNδ(A)

− log δ
. (1.2.1)

Similarly, the lower box dimension of A is defined as

DimB(A) = lim
δ→0

logNδ(A)

− log δ
. (1.2.2)

If both quantities coincide, then their common value

DimB(A) = DimB(A) = DimB(A) (1.2.3)

is called the box dimension of A.

Remark 1.2.1. Note that since we assume that A is relatively compact (i.e. has compact
closure), the numbersNδ(A) are all finite. In σ-compact spaces (countable unions of compact
spaces), one can extend the definition of (lower and upper) box dimension to arbitrary sets
by defining it as the supremum of the box dimensions of all relatively compact subsets.

A fact that is quite convenient when it comes to the calculation of box dimension for
particular examples is that there exist a number of equivalent definitions, and one may
always choose the one that works best in a particular situation. The following variation
explains the name box dimension.

Lemma 1.2.2. Suppose X = Rd, A ⊆ X has compact closure and Ñδ(A) denotes the minimal
number of boxes (or cubes) of sidelength δ that are needed to cover A. Then

DimB(A) = lim
δ→0

log Ñδ(A)

− log δ
and DimB(A) = lim

δ→0

log Ñδ(A)

− log δ
. (1.2.4)

Proof. Every cube of sidelength δ is contained in a ball of radius
√
dδ. Therefore, we have

N√dδ(A) ≤ Ñδ(A) and hence

DimB(A) = lim
δ→0

logN√dδ(A)

− log
√
dδ

≤ lim
δ→0

log Ñδ(A)

− log δ − log
√
d

= lim
δ→0

log Ñδ(A)

− log δ
.

Conversely, every ball of radius δ is contained in a cube of sidelength 2δ, so that Nδ(A) ≥
Ñ2δ(A) and thus

Dim(A) ≥ lim
δ→0

log Ñ2δ(A)

− log δ
= lim

δ→0

log Ñδ(A)

− log δ
.

The proof for the lower box dimension works in the same way.

Exercise 6. Let B(δ) =
{∏d

k=1[nkδ, (nk + 1)δ] | nk ∈ Z for k = 1, . . . , d
}

be the collection

of boxes from the standard grid with sidelengths δ in Rd. Show that the quantity Ñδ(A) in
(1.2.4) can also be replaced by the minimal number N̂δ(A) of boxes from B(δ) needed to
cover A.

Exercise 7. Show that Nδ(A) in (1.2.1) and (1.2.2) can also be replaced by the minimal
number N̄δ(A) of sets of diameter at most δ that are needed to cover A.

For the computation of box dimension, the following elementary lemma is often useful.
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CHAPTER 1. BOX DIMENSION

Lemma 1.2.3. Let N : R+ → [1,∞), δ 7→ Nδ be a monotonically decreasing function, and
suppose (γn)n∈N is a strictly monotonically decreasing sequence of positive real numbers such
that γ1 ≤ 1, limn→∞ γn = 0 and γn/γn+1 is uniformly bounded. Then

lim
n→∞

logNγn
− log γn

= lim
δ→0

logNδ
− log δ

,

provided that the limit on the left exist. Otherwise, the same statement holds for the limit
inferior and the limit superior.

Proof. We assume that the limit on the left exists and let L = limn→∞
logNγn
− log γn

. Let C > 0 be
such that

1 ≤ γn/γn+1 ≤ C for all n ∈ N .

Given δ ∈ (0, 1), let n(δ) be defined as the unique integer such that δ ∈ [γn(δ)+1, γn(δ)). Then
Nγn(δ)

≤ Nδ ≤ Nγn(δ)+1
and hence

logNγn(δ)

− log γn(δ)+1
≤ logNδ
− log δ

≤
logNγn(δ)+1

− log γn(δ)
.

However, we have that

lim
δ→0

logNγn(δ)

− log γn(δ)+1
= lim

n→∞

logNγn
− log γn+1

≥ lim
n→∞

logNγn
− log(γn/C)

= L .

In a similar way, we obtain that limδ→0

logNγn(δ)+1

− log γn(δ)
≤ L and thus limδ→0

logNδ
− log δ = L as

required. Finally, if the limit L does not exist, then the same arguments apply to the limit
inferior and the limit superior.

Corollary 1.2.4. Suppose (γn)n∈N satisfies the assumptions of Lemma 1.2.3. Then

DimB(A) = lim
n→∞

logNγn(A)

− log γn
and DimB(A) = lim

n→∞

logNγn(A)

− log γn
. (1.2.5)

Corollary 1.2.5. The box dimension of the Middle Third Cantor Set equals log 2/ log 3.
Given a metric space (X, d) and δ > 0, a set S ⊆ X is called δ-separated if d(x, y) ≥ δ

for all x 6= y ∈ S. For a relatively compact subset A ⊆ X, let Mδ(A) denote the maximal
cardinality of a δ-separated set S ⊆ A.

Lemma 1.2.6. We have

DimB(A) = lim
δ→0

logMδ(A)

− log δ
and DimB(A) = lim

δ→0

logMδ(A)

− log δ
.

Proof. Suppose S ⊆ A is a δ-separated set of maximal cardinality Mδ(A). Then every point
x ∈ A must lie in the δ-neighbourhood of some y ∈ S. Otherwise A ∪ {x} would be δ-
separated as well, contradicting the definition of Mδ(A). Hence, we have that

A ⊆
⋃
x∈S

Bδ(x) ,

and there for Nδ(A) ≤Mδ(A). This implies DimB(A) ≤ limδ→0
logMδ(A)
− log δ .

Conversely, if U1, . . . , UNδ(A) is a cover ofA by δ-balls Ui = Bδ(xi) and S is a 2δ-separated
set, then every Ui contains at most one point from S. This means that M2δ(A) ≤ Nδ(A) and
thus implies DimB(A) ≥ limδ→0

logMδ(A)
− log δ . Together, we obtain the required equality for the

upper box dimension, and the case of the lower box dimension can be treated exactly in the
same way.
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1.3. BASIC PROPERTIES OF BOX DIMENSION

Example 1.2.7 (The Sierpinski Carpet). In an inductive construction similar to that of the
Middle Third Cantor Set, we can obtain another well-known fractal that is called the Sier-
pinski Carpet.

Figure 1.2.1: The Sierpinski Carpet

To that end, one divides the unit square S0 =
[0, 1]2 into nine equal subsquares and removes
the middle one to obtain S1. The procedure is
then repeated recursively by always dividing the
8n squares of sidelength 3−n in Sn into smaller
squares of sidelength 3−(n+1) and removing the
middle ones in order to obtain Sn+1. Finally, we
define the Sierpinski Carpet as S = ∩n∈NSn. .
By construction, S is contained in Sn, which is
the union of 8n squares of sidelength 3−n. Hence
Ñ3−n(S) ≤ 8n, and Lemma 1.2.2 together with
Lemma 1.2.3 yield

DimB(S) ≤ log 8

log 3
.

At the same time, the lower right corners of these
squares constitute a 3−n-separated subset of S, so
that M3−n(S) ≥ 8n. By Lemma 1.2.6 we obtain

DimB(S) ≥ log 8

log 3
.

Together, this implies that the box dimension of S exists and equals log 8/ log 3.

1.3 Basic properties of box dimension

The following lemma collects a few elementary properties of box dimension.

Lemma 1.3.1. Let (X, d) be a metric space.

(i) If A ⊆ B ⊆ X, then 0 ≤ DimB(A) ≤ DimB(B).

(ii) if A,B ⊆ X, then DimB(A ∪B) = max{DimB(A),DimB(B)}.

(iii) For any A ⊆ X, we have DimB

(
A
)

= DimB(A).

(iv) If A ⊆ Rd, then DimB(A) ≤ d.

All statements apply in an analogous way to the upper and lower box dimensions.
Exercise 8. Prove Lemma 1.3.1.

Example 1.3.2. Note that due to part (iii) of the lemma, we have that DimB([0, 1]∩Q) = 1.
In particular, even countable sets can have positive box dimension, and

sup
n∈N

DimB(An) < DimB

(⋃
n∈N

An

)

is possible. One says that box dimension is not countably stable. From a theoretical per-
spective, this is actually a strong disadvantage and one of the main motivations for the
development of alternative concepts, including in particular Hausdorff dimension.

Remark 1.3.3. We will next study the box dimension of product sets A × B, where A and
B are relatively compact subsets of metric spaces (X, dX) and (Y, dY ), respectively. In order
to do so, we need to equip the product space X × Y with a metric. In this context, it needs

9



CHAPTER 1. BOX DIMENSION

to be mentioned that there is no unique canonical way in order to do this. The metric we
will use is

dX×Y ((x1, y1) , (x2, y2)) =
(
dX (x1, x2)

2
+ dY (y1, y2)

2
)1/2

.

This has the advantage that the product of two Euklidean metrics is a Euklidean metric again
(on the higher-dimensional product space). Another natural choice would be to use

d̃X×Y ((x1, y1) , (x2, y2)) = max {dX (x1, x2) , dY (y1, y2)}

as a metric on X × Y . However, fortunately these two (and all other) natural choices of
product metrics on X × Y are equivalent, in the sense that there exists a constant C > 0
such that

C−1 · dX×Y (z, z′) ≤ d̃X×Y (z, z′) ≤ C · dX×Y (z, z′)

for all z, z′ ∈ X × Y , and moreover box dimension is invariant under the change to an
equivalent metric.

Exercise 9. (a) Show that the above functions dX×Y and d̃X×Y are indeed metrics on
X × Y .

(b) Show that if d and d′ are two equivalent metrics on X and A ⊆ X is relatively
compact, then the (upper/lower) box dimension of A is the same with respect to d
and d′.

(c) Show that the metric d̄X×Y on X × Y given by

d̄X×Y ((x1, y1) , (x2, y2)) = dX (x1, x2) + dY (y1, y2)

is equivalent to the two product metrics introduced above.

Remark 1.3.4. We also remark, however, that the change to a non-equivalent metric may
well have an impact on the value of box dimension. To that end, note that if d is a metric on
X, then so is dα given by

dα(x, y) = d(x, y)α

for any α ∈ (0, 1).

Exercise 10. Show that dα is a metric on X and if D is the box dimension of A ⊆ X
computed with respect to d and D′ is the box dimension of A computed with respect to dα,
then D′ = D/α.

Proposition 1.3.5 (Product formula). Suppose (X, dX) and (Y, dY ) are metric spaces and
A ⊆ X and B ⊆ Y are relatively compact subsets. Then

DimB(A×B) ≤ DimB(A) + DimB(B) and (1.3.1)

DimB(A×B) ≥ DimB(A) + DimB(B). (1.3.2)

In particular, if both DimB(A) and DimB(B) exist, then DimB(A × B) exists and equals
DimB(A) + DimB(B).

Proof. Let δ > 0 and suppose that U1, . . . , UNδ(A) and V1, . . . , VNδ(B) are collections of δ-balls
in X and Y that cover A and B, respectively. Then each product Ui × Vj is contained in a
ball of radius

√
2δ in X × Y , and the union of all such product sets covers A×B. Therefore

N√2δ(A×B) ≤ Nδ(A) ·Nδ(B), and we obtain

DimB(A×B) = lim
δ→0

logN√2δ(A×B)

− log(
√

2δ)

≤ lim
δ→0

logNδ(A) + logNδ(B)

− log
√

2− log δ
≤ DimB(A) + DimB(B) .

10



1.3. BASIC PROPERTIES OF BOX DIMENSION

For the second inequality, suppose that S ⊆ A and S′ ⊆ B are δ-separated sets of cardinality
Mδ(A) andMδ(B), respectively. Then S×S′ ⊆ A×B is δ-separated, and henceMδ(A×B) ≥
Mδ(A) ·Mδ(B). This implies

DimB(A×B) = lim
δ→0

logMδ(A×B)

− log δ

≥ lim
δ→0

logMδ(A) + logMδ(B)

− log δ
≥ DimB(A) + DimB(B) .

Next, we consider how continuous transformation act on the dimenions of sets. Recall
that a function f : X → Y between metric spaces X and Y is called α-Hölder continuous
(with α ∈ (0, 1]) if there exists a constant C > 0 such that

d(f(x), f(y)) ≤ Cd(x, y)α

for all x, y ∈ X. In this case, C is called the Hölder constant of f .

Proposition 1.3.6. Suppose f : X → Y is α-Hölder continuous and A ⊆ X is relatively
compact. Then

DimB(f(A)) ≤ DimB(A)

α
,

provided that both dimensions exist. Otherwise, the analogous estimates apply to the upper and
lower box dimensions.

Proof. Suppose U1, . . . , UNδ(A) is a cover of A by balls of radius δ. Then by assumption each
set f(Uj) is contained in a ball of radius Cδα. Hence, we have NCδα(f(A)) ≤ Nδ(A) and
consequently

DimB(f(A)) = lim
δ→0

NCδα(f(A))

− log(Cδα)
≤ lim

δ→0

Nδ(A)

− logC − α log δ
= DimB(A)/α .

The same argument applies to the upper and lower box dimension.

A homeomorphism h : X → Y between metric spaces is called a bi-Lipschitz map/
transformation if both f and f−1 are Lipschitz continuous.

Corollary 1.3.7. Bi-Lipschitz transformations preserve the box dimension of sets.
The construction in Remark 1.3.4 actually shows that the estimate in Proposition 1.3.6 is

sharp, in the sense that an α-Hölder continuous function can actually increase the dimension
of a set by a factor of 1/α. In order to see this, it suffices to note that the identity on X as a
mapping IdX : (X, d) → (X, dα) is α-Hölder continuous. The following exercise provides a
more explicit example using symbolic spaces.

Exercise 11. Let Σ = {0, 1}N be the space of 0-1-sequences as in Remark 1.1.2.

• Show that for any β > 1 the map

dβ : Σ× Σ→ R+ , (a, b) 7→ β−min{n∈N|an 6=bn}

defines a metric on Σ.

• Show that for any δ ∈ (β−(n+1), β−n] the δ-ball Bδ(a) in (Σ, dβ) equals the cylinder set

[a1 . . . an] = {b ∈ Σ | bj = aj∀j = 1, . . . , n} .

• Compute the box dimension of (Σ, dβ). (Hint: Show that Nβ−n(Σ) = 2b.)

• Show that IdΣ : (X, dβ)→ (X, dγ) is log γ
log β -Hölder continuous.

11



CHAPTER 1. BOX DIMENSION

Hint: One may either show the above statements directly or interpret them as a special case of
the construction in Remark 1.3.4 (or ideally do both).
Exercise 12. Suppose A,B ⊆ Rd are relatively compact sets and let

A+B = {x+ y | x ∈ A, y ∈ B} .

Prove that
DimB(A+B) ≤ DimB(A) + DimB(B) .

Hint: Use Proposition 1.3.5 to bound DimB(A×B) and the fact that the mapping

Rd × Rd → Rd , (x, y) 7→ x+ y

is Lipschitz-continuous.

1.4 Minkowski characterisation of box dimension

By LebRd , we denote the Lebesgue measure on Rd. Moreover, given A ⊆ Rd and δ > 0,
we let Bδ(A) = {x ∈ Rd | Bδ(x) ∩ A 6= ∅}. Then we have the following further equivalent
characterisation of box dimension.

Theorem 1.4.1. Given a relatively compact set A ⊆ Rd, we have

DimB(A) = d− lim
δ→0

log LebRd(Bδ(A))

log δ
. (1.4.1)

DimB(A) = d− lim
δ→0

log LebRd(Bδ(A))

log δ
(1.4.2)

Proof. If Bδ(x1), . . . , Bδ(xNδ(A)) is a cover of A by δ-balls, we have that

Bδ(A) ⊆
Nδ(A)⋃
j=1

B2δ(xj) ,

so that
LebRd(Bδ(A)) ≤ N2δ(A) · 2d · Cd · δd ,

where Cd is the volume of the unit ball B1(0) in Rd. As a consequence, we obtain that

DimB(A) = lim
δ→0

logN2δ(A)

− log 2δ

≥ lim
δ→0

log
(

LebdR(Bδ(A)) · 2−d · C−1
d · δ−d

)
− log δ − log 2

= lim
δ→0

(
−d log δ − logCd − d log 2

− log δ
+

log LebRd(Bδ(A)

− log δ

)
= d − lim

δ→0

log LebRd(Bδ(A))

log δ
.

This proves (1.4.1). Conversely, suppose that y1, . . . , yMδ(A) are pairwise δ-separated points
in A. Then we have that

⋃Mδ(A)
j=1 Bδ(yj) ⊆ Bδ(A), and hence

Mδ(A) · Cd · δd ≤ LebRd(Bδ(A)) .

This allows to prove (1.4.2) in an analogous way.
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1.5. FURTHER EXAMPLES

1.5 Further examples

Example 1.5.1 (Modified Sierpinski Carpets). Suppose the unit square Ŝ=[0, 1]2 is divided
into k2 smaller squares of equal size, m ∈ {1, . . . , k2 − m} of these squares are retained
(and the other k2 − m omitted) in order to obtain a union Ŝ1 of m smaller squares and
this construction is then repeated recursively to obtain a sequence Ŝn. Then the resulting
intersection Ŝ =

⋂
n∈N Ŝn has box dimension

DimB

(
Ŝ
)

=
logm

log k
.

A symbolic coding for such fractals can be obtained as follows. Let A ∈ Mk×k({0, 1} be
the matrix defined by mij = 1 if the square in the i-th line and j-th column is retained in
the construction and mij = 0 otherwise. Consider the alphabet A = {0, . . . , k − 1}2 with
corresponding shift space Ω = AN and the subset

Ω0 = {(in, jn)n∈N ∈ Ω | min,jn = 1 for all n ∈ N} .

Then

Ŝ =


(∑
n∈N

ink
−n,

∑
n∈N

jnk
−n

)
n∈N

∣∣∣∣∣∣ (in, jn) ∈ Ω0

 .

Figure 1.5.1: Some modified Sierpinski carpets.

Exercise 13. Compute the dimensions of the modified Sierpinski carpets shown in Fig-
ure 1.5.1.

Example 1.5.2 (Koch Snowflake). The Koch Snowflake is obtained in the following way:
First, on starts with K0 = [0, 1] × {0} ⊆ R2. This interval is then divided into three parts
of equal length, and the interior segment is replaced by the two complementing sides of
a equal-sided triangle. This yields a piecewise linear curve K1 consisting of four segments
of length 1/3. The same procedure is then repeated recursively on increasingly smaller
scales with all the segments at each level of the recursive construction (see Figure 1.5.2
on the left). This yields a sequence Kn of piecewise linear curves, and the sixth part Koch
Snowflake is then defined as the Hausdorff limit K = limn→∞Kn (we refer to Appendix B
for background on the Hausdorff metric). Joining six suitably rotated copies of this set K
then yields the complete snowflake, shown on the right in Figure 1.5.2.

In each step of the construction, points move by a distance of at most 3−n when going
from Kn−1 to Kn. In particular dH(Kn−1,Kn) ≤ 3−n, which implies that the Kn form
a Cauchy sequence and thus guarantees the existence of the limit K. Moreover, we have
that dH(Kn,K) ≤ 1

2·3n . As Kn is the union of 4n segments of length 3−n, this means that
K is contained in the union of 4n balls of radius 3−n, so that N3−n(K) ≤ 4n. Hence, we
obtain DimB(K) ≤ log 4/ log 3. Conversely, the endpoints of all segments in Kn form a
3−n-separated set of cardinality 4n + 1 inside K (note here that the endpoints remain in Kj

for all j ≥ n). Thus, we also have DimB(K) ≥ log 4/ log 3. Altogether, this gives that

DimB(K) =
log 4

log 3
.

13



CHAPTER 1. BOX DIMENSION

K

K

K

0

1

2

Figure 1.5.2: Construction of (a sixth part of) the Koch Snowflake on the left and the com-
plete snowflake on the right.

Variations of these and similar constructions are abundant. Two further famous examples
are the Sierpinski Gasket (or Triangle) or the Sierpinski Cube (or Sponge).

Figure 1.5.3: Sierpinski Gasket and Sierpinski Cube.

Exercise 14. Compute the box dimension of the Sierpinski Gasket and the Sierpinski Cube.

Example 1.5.3 (Countable sets). Let α ∈ (0, 1) and xn = Cα ·
∑∞
k=n k

−1/α, where Cα =(∑∞
k=1 k

−1/α
)−1

. Then Pα = {xn | n ∈ N} ⊆ [0, 1], and we claim that

DimB(Pα) = α .

In order to see this, let β = −1/α. Then d(xn, xn+1) = Cαn
β , so that MCαnβ (Pα) ≥ n + 1

(note that d(xk, xk+1) is decreasing in k) and hence

DimB(Pα) ≥ lim
n→∞

log(n+ 1)

− logCαnβ
= −1/β = α .

Conversely, we have

xn+1 = Cα ·
∞∑

k=n+1

kβ ≤ Cα ·
∫ ∞
n

ξβdξ = Cαβ
−1nβ+1 .

14



1.6. SUMMARY

Since Cαβ
−1nβ+1

Cαnβ
= n

β , the set Pα can be covered by at most n+ 1 + n
β + 1 intervals of length

Cαn
β . Therefore, we obtain NCαnβ (Pα) ≤ (1 + β)n+ 2 and thus

DimB(Pα) ≤ α .

This proves our claim.

Exercise 15. Determine the box dimension of the sets Sα = {n−α | n ∈ N} for α > 0.

Exercise 16. Show that for every γ ∈ [0, d] there exists a countable set Aγ ⊆ Rd with
DimB(Aγ) = γ.

1.6 Summary

The notion of box dimension allows to quantify the fractal structure of sets. From the
mathematical viewpoint, it has the following advantages and disadvantages:

⊕ Relatively easy and direct definition.

⊕ Good behaviour with respect to products and unions.

⊕ Various equivalent definitions are available.

⊕ Relatively easy to compute for a broad scope of examples.

⊕ Accesible to numerical computations.

	 No countable stability.

	 Gives positive dimension to certain countable sets.

	 Does not allow to compare the ‘size’ of two different sets of the same dimension.

Box dimension therefore plays an important role in fractal geometry, but needs to be com-
plemented by alternative notions.
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Chapter 2

Hausdorff dimension

2.1 Some basics on measure theory

2.1.1 A non-measurable set

Given a set X, we denote by P(X) = {A ⊆ X} the power set of X. The first aim of measure
is to define positive real-valued functions, on suitable subsets of P(X), whose value for a
given set A is interpreted as the ‘size’ of A. As an example, one may define µ([a, b]) = b− a
for all intervals [a, b] ⊆ R - the ‘size’ of an interval is simply its length. Another possibility
would be to consider an integrable function f : R→ R+ and define µ([a, b]) =

∫ b
a
f(x) dx.

The first natural question from the mathematical viewpoint is how far such definitions
can be extended to larger families of sets, or even all of P(X). In order to demonstrate the
problems which may arise in this context, we consider the following situation.

We let T1 = R/Z = ‘R modulo 1’ denote the circle. Alternatively, we may obtain T1

by identifying the endpoints of the unit interval [0, 1] via the equivalence relation given by
x ∼ y if x = y or {x, y} = {0, 1}. Then T1 = [0, 1]/ ∼. Denote by Rα : x 7→ x+ α mod 1 the
rotation with angle α ∈ T1.

We now want to define a function µ : P(X) → R such that for any interval I ⊆ T1 the
value of µ(I) is simply its length.

µ(I) = length of I (2.1.1)

This includes I = T1, which has length 1. Since the length of an interval is not changed by
a rotation, it is further plausible that the same should be true for any other set. Hence, our
function µ should further satisfy

µ(Rα(A)) = µ(A) for all A ⊆ P(X) . (2.1.2)

Finally, for a union of two disjoint sets, the sizes should simply add up: µ(A ] B) =
µ(A) + µ(B). For mathematical reasons, it is important that such a property also extends to
countable unions.

µ

(⊎
n∈N

An

)
=
∑
n∈N

µ(An) . (2.1.3)

In order to see whether a function with these three properties (2.1.1)–(2.1.3) can be defined
on all of P(T1), we introduce another equivalence relation on T1 by saying x ∼Q y if and
only if y = Rα(x) for some α ∈ Q. We then choose a set E ⊆ T1 which contains exactly one
representative from each equivalence class of ∼Q.1 Then the sets Rq(E) with q ∈ [0, 1) ∩ Q

1Note that this requires the axiom of choice.
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2.1. SOME BASICS ON MEASURE THEORY

form a countable family of pairwise disjoint sets whose union is all of T1. Hence, we should
have that

1 = µ(T1) = µ

 ⊎
q∈[0,1)∩Q

µ(Eq)

 (2.1.3)
=

∑
q∈[0,1)∩Q

µ(Eq)
(2.1.2)

=
∑

q∈[0,1)∩Q

µ(E) .

This is obviously a contradiction, since the sum on the left can only take the values 0 (if
µ(E) = 0) or ∞ (if µ(E) > 0). Hence, we conclude that a function which combines all
the three properties (2.1.1)–(2.1.3) cannot be defined on all of P(X). This is the starting
point of measure theory, which first aims to identify suitable set families that are as large as
possible and still allow a consistent defintion of functions with analogous properties as the
ones above.

2.1.2 σ-algebras and measures

Given a space X, a family of subsets A ⊆ P(X) is called a σ-algebra if it satisfies

(A1) X ∈ A

(A2) A ∈ A ⇒ X \A ∈ A

(A3) An ∈ A ∀n ∈ N ⇒
⋃
n∈NAn ∈ A

The pair (X,A) is then called a measurable space. Further, given C ⊆ P(X), the family

σ(C) =
⋂

C⊆A⊆P(X)
A is a σ-algebra

is called the σ-algebra generated by C, and C is called its generator (which is not unique).

Exercise 17. Show that the intersection of an arbitrary family of σ-algebras on a space X is
again a σ-algebra. Use this to show that σ(C) is the smallest σ-algebra on X that contains C.

If X is a topological space, then the σ-algebra generated by the family of open subsets
of X is called the Borel σ-algebra on X. A function µ : A → [0,∞] is called a measure on
(X,A) if it satisfies

µ

(⊎
n∈N

An

)
=
∑
n∈N

µ(An)

for any countable family of pairwise disjoint sets An ∈ A. A family S ⊆ P(X) is called a
semiring, if

(S1) ∅ ∈ S

(S2) A,B ∈ S ⇒ A ∩B ∈ S

(S3) A,B ∈ S ⇒ ∃A1, . . . , An ∈ S : B \A =
⊎n
k=1An

Examples 2.1.1. (a) The family of half-open ‘intervals’ in Rd,

S =

{
d∏
i=1

(ai, bi]

∣∣∣∣∣ ai < bi ∈ R for i = 1, . . . , d

}
forms a semiring.

(b) The same is true for the family of cylinder sets in Σ+: Given a ∈ Σ+, set

[a]n = {b ∈ Σ+ | bk = ak for all k = 1, . . . , n} .

Then
Z = {[a]n | a ∈ Σ+, n ∈ N}

is a semiring.
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CHAPTER 2. HAUSDORFF DIMENSION

Given a family of subsets S ⊆ P(X), a function ν : S → R+ is called (finitely) additive
if for any collection A1, . . . , An ∈ S of pairwise disjoint sets with A =

⊎n
i=1Ai ∈ S we

have ν(A) =
∑n
i=1 ν(Ai). Further, ν is σ-subadditive if for any sequence An ∈ S and any

A ⊆
⋃
An with A ∈ S we have ν(A) ≤ ν

(⋃
n∈NAn

)
. The function ν is called σ-finite if

there exists an increasing sequence An ∈ S with
⋃
n∈NAn = X and ν(An) < ∞ for all

n ∈ N.

Theorem 2.1.2 (Generalised Caratheodory Extension Theorem). Suppose S ⊆ P(X) is a
semiring and ν : S → R+ is an additive and σ-subadditive function on S. Then there exists
a measure µ on (X,σ(S)) such that µ|S = ν. Moreover, if ν is σ-finite, then µ is uniquely
determined.
Examples 2.1.3. (a) If S is the semiring of half-open intervals from Example 2.1.1(a),

then the function ν : S → R+ given by

ν

(
n∏
i=1

(ai, bi]

)
=

n∏
i=1

(bi − ai)

extends uniquely to the so-called Lebesgue measure LebRn on Rn.

(b) Given p0, p1 ∈ [0, 1] with p0 +p1 = 1, we can also use Theorem 2.1.2 in order to define
the corresponding Bernoulli measure on Σ+. To that end, let Z be the semiring of
cylinder sets from Example 2.1.1 and

ν([a]n) =

n∏
i=1

pai .

Then ν extends in a unique way to the Bernoulli measure with probabilities p0 and p1

on (Σ+, σ(Z)).

(c) In a similar way as in (b), one may define Bernoulli measures on shift spaces Σ+
k =

{0, . . . , k − 1}N or Σk = {0, . . . , k − 1}Z with probability vectors p = (p1, . . . , pk).

Note that in all cases some work is required in order to show that the functions ν satisfy
the requirements of Theorem 2.1.2. Further, note that the generated σ-algebras are just the
Borel σ-algebras on the respective spaces.

Exercise 18. Show that any measure µ on some measurable space (X,A) is monotone (A ⊆
B implies µ(A) ≤ µ(B)), (finitely) additive and σ-subadditive and satisfies µ(∅) = 0.

Exercise 19. Show that the collections S and Z from Examples 2.1.1 form semirings and
the functions ν defined in Examples 2.1.3 are additive and σ-subadditive as claimed.

Exercise 20. Given two measurable spaces (X,A) and (Y,B), a map f : X → Y is called
measurable if f−1(B) ∈ A for all B ∈ B. Show that in this case, if ν is a measure on (X,A),
then

µ(B) = ν(f−1(B))

defines a measure on (Y,B). This measure µ is also called the pushforward (measure) of
ν under f and denoted by µ = f∗ν = ν ◦ f−1.

2.1.3 Outer measures

An outer measure on some space X is a σ-subadditive function µ̂ which is defined on all of
P(X) and satisfies µ(∅) = 0.

Lemma 2.1.4. Suppose C ⊆ P(X) is an arbitrary family of subsets of X, ∅ ∈ C and ν : C →
R+ satisfies ν(∅) = 0. Then

µ̂(A) = inf

{∑
n∈N

ν(Cn)

∣∣∣∣∣ Cn ∈ C for all n ∈ N and A ⊆
⋃
n∈N

Cn

}
defines an outer measure on X.
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2.1. SOME BASICS ON MEASURE THEORY

Proof. Since ∅ ∈ C and ν(∅) = 0, we directly obtain µ̂(∅) = 0 as well. In order to show the
σ-subadditivity of µ̂, let (An)n∈N be an arbitrary sequence in P(X) which covers A, that is,
A ⊆

⋃
n∈NAn. Fix ε > 0 and choose, for each n ∈ N, a countable cover (Cnj )j∈N of An with∑

j∈N
ν(Cnj ) ≤ µ̂(An) +

ε

2n
.

Then (Cnj )j∈N
n∈N

is a cover of A, and we obtain that

µ̂(A) ≤
∑
n∈N

∑
j∈N

ν(Cnj ) ≤
∑
n∈N

(
µ̂(An) +

ε

2n

)
≤
∑
n∈N

µ̂(An) + ε .

As ε > 0 was arbitrary, this proves the σ-subadditivity of µ̂.

Exercise 21. Show that if µ is σ-subadditive on C, then the outer measure µ̂ defined in
Lemma 2.1.4 satisfies µ̂(C) = µ(C) for all C ∈ C.

Given an outer measure µ̂ on X, a set A ⊆ X is called µ̂-measurable if

µ̂(E ∩A) + µ̂(E ∩Ac) = µ̂(E) for all E ∈ P(X) .

Theorem 2.1.5. Given an outer measure µ̂ on X, the family

M(µ̂) = {A ∈ P(X) | A is µ̂-measurable}

forms a σ-algebra, and µ = µ̂|M(µ̂) is a measure on (X,M(µ̂)).

Lemma 2.1.6. If S ⊆ P(X) is a semiring and ν : S → R+ is (finitely) additive and σ-
subadditive and µ̂ is the outer measure defined in Lemma 2.1.4, then S ⊆M(µ̂).

Note that this implies σ(S) ⊆M(µ̂).

Remark 2.1.7. The general version of the Caratheodory Extension Theorem provided by
Theorem 2.1.2 follows directly from the two preceeding statements.

First, the function ν : S → R+ from Theorem 2.1.2 defines an outer measure µ̂ : P(X)→
R+. Due to Lemma 2.1.6, we have that σ(S) ⊆ M(µ̂), so that by Theorem 2.1.5 we obtain
that µ is a measure on (X,σ(S)). Finally, it is then relatively easy to show that µ = ν on S.

However, in order to introduce Hausdorff measures of fractal dimension, we will need
one further concept. An outer measure µ̂ : P(X) → R+ on some metric space X is called
metric, if for any pair of disjoint sets A,B ⊆ X with d(A,B) > 0 we have that µ̂(A ∪ B) =
µ̂(A) + µ̂(B).2

Theorem 2.1.8. If X is a metric space and µ̂ : P(X) → R+ is a metric outer measure, then
B(X) ⊆M(µ̂). In particular, µ̂|B(X) is a measure on (X,B(X)).

The proof relies on the following

Lemma 2.1.9. Suppose that X is a metric space and µ̂ is a metric outer measure on X. Given
an open set U ⊆ X and n ∈ N, let Un = {x ∈ X | d(x, U c) ≤ 1/n}. Then for any subset
E ⊆ X we have

µ̂(E ∩ Un)↗ µ̂(E ∩ U) as n→∞ .

Proof. The inequality limn→∞ µ̂(E ∩ Un) ≤ µ(E ∩ U) follows by subadditivity of µ̂. Further,
the sets (E ∩Un+2) \Un and E ∩Un, respectively (E ∩Un) \Un−2 have positive distance to
each other (≥ 1/n− 1/(n+ 2)) for every n ∈ N. Therefore, we have that for all m, k ∈ N

µ̂(E ∩ Um) +

k∑
j=1

µ̂((E ∩ Um+2j) \ Um+2j−2)

= µ̂

(E ∩ Um) ∪
k⋃
j=1

(E ∩ Um+2j) \ Um+2j−2

 ≤ µ(E ∩ U) .

2Note that here d is not the Hausdorff distance, which we always denote by dH, but d(A,B) = inf{d(x, y) |
x ∈ A, y ∈ B}.
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Applied tom = 1 andm = 2, we obtain the convergence of the sum
∑∞
j=1 µ̂((E∩Uj+1)\Uj).

This means that in particular

lim
n→∞

∞∑
j=n

µ̂((E ∩ Uj+1) \ Uj) = 0 .

Due to the σ-subadditivity of µ̂ again, we have that for every n ∈ N

µ̂(E ∩ U) ≤ µ̂(E ∩ Un) +

∞∑
j=n

µ̂((E ∩ Uj+1) \ Uj) .

Hence, we obtain µ̂(E ∩ U) ≤ limn→∞ µ̂(E ∩ Un).

Proof of Theorem 2.1.8. The aim is to show that every Borel measurable set is contained
in M(µ̂). As M(µ̂) is a σ-algebra by Theorem 2.1.5, it suffices to show that all open sets
are contained inM(µ̂), since these form a generator of B(X). Hence, suppose that U ⊆ X
is open and E is an arbitrary subset of E. Then µ̂(E) ≤ µ̂(E ∩ U) + µ̂(E ∩ U c) follows by
subadditivity of µ̂. In order to see the converse inequality, let the sets Un be defined as in the
proof of Lemma 2.1.9. Then for all n ∈ N the sets E ∩U c and E ∩Un have positive distance
(≥ 1/n). Hence, we obtain

µ̂(E ∩ U c) + µ̂(E ∩ Un) = µ̂(E ∩ (U c ∪ Un)) ≤ µ(E)

and therefore, using Lemma 2.1.9 above,

µ̂(E ∩ U) + µ̂(E ∩ U c) = lim
n→∞

µ̂(E ∩ Un) + µ̂(E ∩ U c) ≤ µ̂(E) .

2.2 Hausdorff measures and dimension

Given a metric space X and U ⊆ X, we denote the diameter of U by

diam(U) = sup
x,y∈U

d(x, y) .

If A ⊆ X and δ > 0, then a collection U ⊆ P(X) is called a δ-cover of A if U is countable,
A ⊆

⋃
U∈U U and diam(U) ≤ δ for all U ∈ U . Further, given s > 0 and δ > 0, we let

Hsδ(A) = inf

{∑
U∈U

diam(U)s

∣∣∣∣∣ U is a δ-cover of A

}

and
Hs(A) = lim

δ→0
Hsδ(A) = sup

δ>0
Hsδ(A) .

For the last equality, note that Hsδ(A) is decreasing in δ since the infimum is taken over a
larger set when δ is increased.

Exercise 22. (a) Show that ifW is the d-dimensional limit cube, then 0 < Hs(W ) <∞
if and only if s = d.

(b) Show that H0(A) = #A.

Hs is called the s-dimensional Hausdorff measure. These measures are used to define
the notion of Hausdorff dimension and to quantify the size of s-dimensional sets. This is
accomplished through the following statements.
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Theorem 2.2.1. Hs is an outer measure, and its restriction Hs|B(X) to B(X) is a measure.

Proof. Applying Lemma 2.1.4 with S = P(X) and ν(U) = diam(U)s allows to see that each
of the functions Hsδ is an outer measure. Since therefore Hsδ(∅) = 0 for all δ > 0, we also
have Hs(∅) = 0. In order to show the σ-subadditivity of Hs, suppose that U is an arbitrary
countable cover of A ⊆ X. Then the σ-subadditivity of the outer measures Hsδ implies

Hsδ(A) ≤
∑
U∈U
Hsδ(U) ≤

∑
U∈U
Hs(U) ,

and hence Hs(A) ≤
∑
U∈U Hs(U).

In order to prove that the restriction of Hs to B(X) is indeed a measure, it suffices to
show that Hs is metric as an outer measure by Theorem 2.1.8. To that end, let A,B ⊆ X
with d(A,B) > 0. Then Hs(A ∪ B) ≤ Hs(A) ∪ Hs(B) follows by σ-subadditivity, so that
it suffices to show the converse inequality. Suppose that 0 < δ < d(A,B) and let ε > 0.
Further, note that by definition of Hs there exists a δ-cover U of A ∪B with∑

U
diam(U)s ≤ Hs(A ∪B) + ε .

Due to the choice of δ, the two collections

UA = {U ∈ U | U ∪A 6= ∅} and UB = {U ∈ U | U ∪B 6= ∅}

are disjoint and provide δ-covers of A and B, respectively. We thus obtain

Hsδ(A) +Hsδ(B) ≤
∑
U∈UA

diam(U)s +
∑
U∈UB

diam(U)s

≤
∑
U∈U

diam(U)s ≤ Hs(A ∪B) + ε

For ε, δ → 0, this implies Hs(A) + Hs(B) ≤ Hs(A ∪ B) as required. Thus, together with
the converse inequality from above, we obtain that Hs(A ∪B) = Hs(A) ∪Hs(B) whenever
d(A,B) > 0, so that Hs is indeed metric.

Lemma 2.2.2. Let X be a metric space, A ⊆ X and s ≥ 0.

(a) If Hs(A) <∞, then Ht(A) = 0 for all t > s.
(b) If Hs(A) > 0, then Ht(A) =∞ for all t < s.

Proof. (a) Suppose Hs(A) = C < ∞. Given δ > 0, choose a δ-cover of A with∑
U∈U diam(U)s < 2C. Then for t > s we have that

Htδ(A) ≤
∑
U∈U

diam(U)t ≤ δt−s
∑
U∈U

diam(U)s ≤ 2δt−sC
δ→0−−−→ 0 ,

and hence Ht(A) = 0.

(b) Now suppose that Hs(A) > 0 and t < s. Then Ht(A) <∞ would imply Hs(A) = 0
by (a), a contradiction. Hence, we have that Ht(A) =∞.

Exercise 23. Show that the measure Hd on Rd is equal to a multiple of the Lebesgue mea-
sure, Hd = C · LebRd , where C = Hd([0, 1]d).

Hint: Use the fact that by construction Hd is invariant under translations and scales like
Lebegue measure under multiplications to show thatHd and C×LebRd coincide on the semiring
of half-open rectangles (and hence on the whole Borel σ-algebra by uniqueness of the extension).

Based on the previous lemma, we can now introduce the notion of the Hausdorff di-
mension of a set A ⊆ X as

DimH(A) = inf{s > 0 | Hs(A) = 0} ∪ {∞} = sup{s > 0 | Hs(A) =∞} ∪ {0} .
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Remark 2.2.3. In order to compare the definition of Hausdorff dimension with that of box
dimension and to better understand the similarities and differences between the two, we
make the following considerations.

Given s, δ > 0, define outer measures Gsδ on X by

Gsδ (A) = inf

{∑
U∈U

νs,δ(U)

∣∣∣∣∣ U is a δ-cover of A by δ-balls U = Bδ(x)

}
,

where νs,δ(U) = δs. Note that this simply means Gsδ (A) = δs ·Nδ(A). Moreover, if Nδ(A) =
C · δ−s, then Gsδ(A) = C.

The decisive difference to the definition of Hausdorff dimension is that the limit of Gsδ (A)
as δ → 0 does not necessarily exist, since the sequence Gsδ(A) is not monotone in δ. Non-
withstanding, one may still define Gs(A) = limδ→0 Gsδ (A) and show, in a similar way as
above, that

DimB(A) = inf{s > 0 | Gs(A) = 0} ∪ {∞} = sup{s > 0 | Gs(A) <∞} ∪ {0} .

However, as the monotonicity of Hsδ(A) in δ was crucial in the proof of Theorem 2.2.1,
the argument does not carry over and Gs is usually not a measure. This explains many
differences in the structural properties of box and Hausdorff dimension, such as the lack of
countable stability of the former.

Exercise 24. Show that

DimB(A) = inf{s > 0 | Gs(A) = 0} = sup{s > 0 | Gs(A) <∞} ∪ {0} .

2.3 Elementary properties of Hausdorff dimension

Lemma 2.3.1 (Monotonicity). If X is a metric space and A ⊆ B ⊆ X, then Hs(A) ≤ Hs(B)
for all s ≥ 0 and DimH(A) ≤ DimH(B).

Proof. The first statement is a direct consequence the fact that Hs is an outer measure (and
hence monotone), and the second then follows from the definition of Hausdorff dimension.

Lemma 2.3.2 (Countable stability). Suppose X is a metric space, An ⊆ X for n ∈ N and
A =

⋃
n∈NAn. Then

DimH(A) = sup
n∈N

DimH(An) .

Proof. On the one hand, we have that DimH(An) ≤ DimH(A) for all n ∈ N by inclusion, so
that supn∈N DimH(An) ≤ DimH(A). Conversely, the σ-subadditivity of the Hs implies that

Hs(A) ≤
∑
n∈N
Hs(An)

for all s ≥ 0. If s > supn∈N DimH(An), then Hs(An) = 0 for all n ∈ N and there-
fore also Hs(A) = 0. This implies s ≥ DimH(A). Hence, we have that DimH(A) ≤
supn∈N DimH(An).

Lemma 2.3.3. If X and Y are metric spaces and f : X → Y is α-Hölder continuous with
Hölder constant C > 0, then

Hs/α(f(A)) ≤ Cs/αHs(A) . (2.3.1)

In particular, DimH(f(A)) ≤ DimH(A)/α.
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Proof. If U is a δ-cover of A, then f(U) is a Cδα-cover of f(A). Hence, we have that

Hs/αCδα(f(A)) ≤
∑
U∈U

diam(f(U))s/α ≤
∑
U∈U

(Cdiam(U)α)s/α = Cs/α
∑
U∈U

diam(U)s .

Taking the infimum over all δ-covers U of A, we obtain Hs/αCδα(f(A)) ≤ Cs/αHsδ(A). Taking
the limit δ → 0 yields (2.3.1), and the statement on the Hausdorff dimensions is a direct
consequence.

Corollary 2.3.4. If f : X → Y is Lipschitz continuous, then DimH(f(A)) ≤ DimH(A). In
particular, the Hausdorff dimension is invariant under bi-Lipschitz transformations.

A mapping S : X → X is called a similarity with scaling factor λ > 0 if d(S(x), S(y)) =
λd(x, y) for all x, y ∈ X.

Corollary 2.3.5. If S : X → X is a similarity with scaling factor λ > 0, then for every s ≥ 0
and A ⊆ X we have that Hs(S(A)) = λsHs(A). In particular, we have that DimH(S(A)) =
DimH(A).

Proof. As any similarity must be injective, we can view S as a bi-Lipschitz homeomorphism
between A and S(A), where S has Lipschitz constant λ and S−1 has Lipschitz constant λ−1.
Applying Lemma 2.3.3 with f = S, α = 1 and C = λ yields Hs(S(A)) ≤ λsHs(A). Another
application with f = S−1, α = 1 and C = λ−1 yields the converse inequality.

Exercise 25. Suppose that X is metric, A ⊆ X and S1, . . . , Sn are similarities on X with
scaling factors λ1, . . . , λn ∈ (0, 1). Further, assume that S1(A), . . . , Sn(A) are disjoint and
A =

⋃n
k=1 Sk(A). (Sets with this property are often called self-similar.)

Show that if A has positive and finite s-dimensional Hausdorff measure Hs(A), then s is
uniquely determined by the equality

n∑
k=1

λsk = 1 .

Lemma 2.3.6. Suppose X is a metric space and A ⊆ X.

(a) If A is countable, then DimH(A) = 0.
(b) If X = Rd and A has non-empty interior, then DimH(A) = d.
(c) If DimH(A) < 1, then A is totally disconnected.

Proof. (a) This follows directly from the fact that singletons have zero Hausdorff di-
mension together with the countable stability of Hausdorff dimension. Alternatively,
suppose A = {xn | n ∈ N} and s > 0. Given δ > 0, let Un = Bδ2−n/s−1(xn). Then
U = (Un)n∈N is a δ-cover of A and

Hsδ(A) ≤
∑
n∈N

(δ2−n/s)s = δs
∑
n∈N

2−n = δs .

In the limit δ → 0, this implies Hs(A) = 0, and hence DimH(A) ≤ s.
(b) First, consider W = [0, 1]d. For any countable cover U of W , we have

1 = LebRd(W ) ≤
∑
U∈U

Cd · diam(U)d ≤ Cd
∑
U∈U

diam(U)d ,

where Cd is the volume of the d-dimensional unit ball. Taking the infimum over all
δ-covers of A, we obtain Hdδ(W ) ≥ 1/Cd for all δ > 0. This implies Hd(W ) ≥ 1/Cd
and thus DimH(A) ≥ d.
Conversely, W is covered by 2nd d-dimensional cubes of sidelength 2−n and diameter
2−n
√
d. For s > d, we therefore have

Hs
2−n
√
d
(W ) ≤ 2nd · 2−sn · ds/2 = ds/2 · 2−(s−d)n n→∞−−−−→ 0 ,
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so that Hs(W ) = 0. This implies DimH(W ) ≤ d.
Now, suppose that A ⊆ Rd is an arbitrary set with non-empty interior. Then A con-
tains the image S(W ) under some similarity, and hence DimH(A) ≥ DimH(S(W )) =
DimH(W ) = d. Conversely, we have that Rd =

⋃
n∈N Sn(W ), where Sn denotes the

similarity given by Sn(x) = nx. Countable stability therefore implies DimH(A) ≤
DimH(Rd) ≤ supn∈N DimH(Sn(W )) = d.

(c) Suppose DimH(A) < 1 and assume for a contradiction that A has a connected com-
ponent C ⊆ A with #C > 2. Fix x ∈ C and define f : X → R by f(y) = d(x, y). Then
f is obviously Lipschitz-continuous. Moreover, as continuous images of connected sets
are connected, f(C) is a non-trivial interval I that contains [0, d(x, y)). However, as
Lipschitz continuous transformations cannot increase the Hausdorff dimension of a
set, we obtain that DimH(C) ≥ DimH(I) = 1, a contradiction.

2.4 Computing Hausdorff dimension

First of all, box dimension always provides an upper bound on the Hausdorff dimension.

Theorem 2.4.1. Suppose that X is a metric space and A ⊆ X is relatively compact. Then

DimH(A) ≤ DimB(A) .

Proof. Recall that we have DimB(A) = limδ→0
logNδ(A)
− log δ . Fix s < DimH(A), so that Hs(A) =

∞. As we have that
Hsδ(A) ≤ Nδ/2(A)δs

by definition, we obtain that

lim
δ→0

Nδ/2(A)δs ≥ lim
δ→0
Hsδ(A) = Hs(A) = ∞ ,

and consequently
lim
δ→0

logNδ/2(A) + s log δ = ∞ .

If δ > 0 is sufficiently small, we therefore have logNδ(A) + s log δ ≥ 0, and hence

logNδ/2(A)

− log δ
≥ s .

In the limit δ → 0, we obtain DimB(A) ≥ s for all s < DimH(A), which yields the statement.

Obtaining a lower bound on the Hausdorff dimension is often a more difficult problem
and requires more sophisticated methods. Here, we concentrate on a tool from measure
theory.

Theorem 2.4.2 (Mass distribution principle). Suppose X is a metric space, A ⊆ X and µ̂ is
an outer measure on A. Further, assume that there exist constants c, s, ε > 0 such that

diam(U) < ε ⇒ µ̂(U) ≤ c · diam(U)s for all U ⊆ A .

Then Hs(A) ≥ µ̂(A)/c and DimH(A) ≥ s.

Proof. Given δ ∈ (0, ε), let Û be a δ-cover of A and set U = {Û ∩ A | Û ∈ Û}. Then U is a
δ-cover of A by subsets, and the σ-subadditivity of µ̂ implies

µ̂(A) ≤
∑
U∈U

µ̂(U) ≤
∑
U∈U

c · diam(U)s ≤ c ·
∑
Û∈Û

diam(Û)s .

By taking the infimum over all δ-covers Û of A, we obtain Hsδ(A) ≥ µ̂(A)/c. Taking the limit
δ → 0 then yields the statement.
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Remark 2.4.3. Recall that

Hsδ(A) = inf

{∑
U∈U

diam(U)s

∣∣∣∣∣ U is a δ-cover of A

}
.

Since the diameter of a set and its closure is the same, one may also restrict to δ-covers
by closed sets in this definition. This means that we can also restrict to working with such
covers by closed sets in the proof of Theorem 2.4.2. In this case, it suffices to have µ̂ defined
for all closed subsets of X. This means, in particular, that instead of an outer measure µ̂ we
may consider a Borel measure µ on X in the Mass Distribution Principle.

Corollary 2.4.4 (Mass Distribution Principle, version for Borel measures). Suppose X is a
metric space, A ⊆ X and µ is a Borel measure on A. Further, assume that there exist constants
c, s, ε > 0 such that

diam(U) < ε ⇒ µ(U) ≤ c · diam(U)s for all U ∈ B(X) .

Then Hs(A) ≥ µ(A)/c and DimH(A) ≥ s.
Exercise 26. (a) Show that

Hsδ(A) = inf

{∑
U∈U

diam(U)s

∣∣∣∣∣ U is a δ-cover of A by closed sets.

}
.

(b) Give a direct proof of Corollary 2.4.4.

Example 2.4.5. We consider the Middle Third Cantor SetC =
{∑

n∈N 2an3−n | a ∈ {0, 1}N
}

.
Since we already know that DimB(C) = s where s = log 2/ log 3, Theorem 2.4.1 implies that
DimH(X) ≤ s.

In order to show that s also presents a lower bound (and hence the precise value) for the
Hausdorff dimension of C, we want to apply the Mass Distribution Principle. To that end,
we will use the following general fact from Exercise 20: if (X,A) and (Y,B) are measurable
spaces, f : X → Y is a measurable map3 and ν is a measure on X, then a measure f∗ν =
ν ◦ f−1 on (Y,B) is defined by

f∗ν(A) = ν(f−1(A)) for all A ∈ B .

(See Exercise 20). Now, consider the standard Bernoulli measure ν with probabilities
1/2, 1/2 on X = {0, 1}N. Let h : X → C, a 7→

∑
n∈N 2an3−n. Then µ = h∗ν defines a

Borel measure on C. Moreover, if U ⊆ C has diameter diam(U) ∈ [3−n, 3−(n−1)), then U is
contained in the image of a cylinder set Z = [a]n−1 for some a ∈ X. Hence,

µ(U) ≤ µ(h(Z)) = ν(Z) = 2n−1 = 2 ·
(
3−n

)s ≤ 2diam(U)s .

Therefore Theorem 2.4.2 applies and yields that Hs(C) ≥ 1/2 and DimH(C) ≥ s.
Exercise 27. Suppose that C is a modified Sierpinski Carpet that is constructed by dividing
the d-dimensional unit cube [0, 1]d into kd identical smaller cubes and retaining n of them
in each step of the construction. Show that DimH(C) = log n/ log k.

Exercise 28. Suppose Σ+ = {0, 1}N is equipped with the metric dβ from Exercise 11. Show
that the Hausdorff dimension of (Σ+, dβ) is equal to log 2/ log β.

2.5 Summary

The notion of Hausdorff dimension provides an alternative and complementary approach to
measure the size of fractals and overcomes some of the shortcomings of box dimension. The
prize to pay for this is a more technical machinery that is required.

3That is, f−1(B) ∈ A for all B ∈ B.
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⊕ The definition of Hausdorff dimension is based on a very conceptual approach that
roots in measure theory and leads to mathematically very consistent results.

⊕ In particular, Hausdorff dimension is countably stable.

⊕ As a byproduct, the s-dimensional Hausdorff measures allow to compare the size of
s-dimensional fractals, thus providing additional and refined information.

⊕ The mass distribution principle provides an efficient tool for the computation of Haus-
dorff dimension.

	 The definition of Hausdorff dimension is less intuitive and harder to digest than that
of box dimension (despite the analogies between the two pointed out in Remark 2.2.3.

	 The computation of Hausdorff dimension is often more complicated than that of box
dimension and requires more sophisticated tools.

	 Hausdorff dimension is not very well accessible to numerical computations.
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Chapter 3

Iterated Function Systems

3.1 Attractors of iterated function systems

Suppose X is a metric space and D ⊆ X a closed set. An iterated function system (IFS)
on D is a finite family {S1, . . . , Sm} of contractions1 on D (with m ≥ 2). Let K(D) = {K ⊆
D | K is compact} and equip K(D) with the Hausdorff metric dH (see Appendix B), so that
(K(D), dH) is a complete metric space. Then any IFS S on D can be interpreted as a map
acting on K(D) by

S : K(D)→ K(D) , K 7→
m⋃
k=1

Sk(K) .

Theorem 3.1.1 (Existence and uniqueness of an IFS attractor). Suppose X is a metric space
and S = {S1, . . . , Sm} is an IFS on D ⊆ X. Then the mapping S : K(D) → K(D) is a
contraction with contraction constant c = supmk=1 ck, where the ck are the contraction constants
of the maps Sk. Further, S has a unique fixed point, that is, there exists a unique setAS ∈ K(D)
such that

AS =

m⋃
k=1

Sk(AS) .

Moreover, given any A ∈ K(D), we have that limn→∞ Sn(A) = AS and dH(Sn(A),AS) ≤
cn · dH(A,AS). The set AS is called the attractor of the IFS S.

Proof. Let A,B ∈ K(D), t = dH(A,B) and ε > 0. Then A ⊆ Bt+ε(B) = {x ∈ X | ∃y ∈
B : d(x, y) < t + ε} and B ⊆ Bt+ε(A). Consequently, we have Sk(A) ⊆ Sk(Bt+ε(B)) ⊆
Bck(t+ε)(Sk(B)) and Sk(B) ⊆ Bck(t+ε). Therefore dH(Sk(A), Sk(B)) ≤ ck(t+ ε), and in the
limit ε→ 0 we obtain dH(Sk(A), Sk(B)) ≤ ck · dH(A,B). This further entails

dH(S(A),S(B)) ≤ m
max
k=1

dH(Sk(A), Sk(B)) ≤ m
max
k=1

ck · dH(A,B) .

Hence, S is a contraction with contraction constant c, and the remaining statements follow
directly from the Banach Fixed Point Theorem.

Exercise 29. (a) Show that if A is compact and S(A) ⊆ A (that is, Sk(A) ⊆ A for
all k = 1, . . . ,m), then (Sn(A))n∈N is a decreasing sequence and AS =

⋂
n∈N Sn(A).

(Hint: It suffices to show that S
(⋂

n∈N Sn(A)
)

=
⋂
n∈N Sn(A). Why?)

(b) Show that for every IFS S on D, there exists R > 0 and x ∈ D such that A =
BR(x) ∩D satisfies S(A) ⊆ A.

1Recall that a map S : D → D is called a contraction on D if there exists a contraction constant c ∈ [0, 1) such
that d(S(x), S(y)) ≤ cd(x, y) for all x, y ∈ D.
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Example 3.1.2. Suppose that W = [0, 1]d and C is a generalised Sierpinski carpet which is
obtained by subdividing W into ld equal-sized smaller cubes, retaining n of these cubes and
repeating this process recursively in the retained cubes. Let xk denote the smallest vertex of
the k-th of the retained cubes (where smallest refers to the lexicographic ordering) and let
Sk(y) = y/l + xk. Then C = AS , where S is the IFS {S1, . . . , Sn}.
Exercise 30. Provide a precise and short proof that the Middle Third Cantor Set C is the
unique attractor of the IFS {S1(x) = x/3, S2(x) = (x+ 2)/3} on R.

3.2 IFS and coding sequences

If S = {S1, . . . , Sm} is an IFS on D and a1, . . . , an ∈ {1, . . . ,m}, then we let Sa1...an =
Sa1 ◦ . . . ◦San . Note that each Sa1...an is a contraction with contraction constant ca1 · . . . can .

Lemma 3.2.1. Given x0 ∈ D and any sequence a ∈ {1, . . . ,m}N, the limit

ξx0
(a) = lim

n→∞
Sa1...an(x0)

exists and does not depend on x0. Moreover, we have ξx0
(a) ∈ AS for all a ∈ {1, . . . ,m}N.

Proof. Let xn = Sa1...an(x0). Then for any n ∈ N, we have

d(xn+1, xn) = d(Sa1...an(San+1
(x0)), Sa1...an(x0)) ≤ cn ·K ,

where c = maxmk=1 ck is the maximum over the contractions constants ck of the Sk and
K = maxmk=1 d(x0, Sk(x0)). This shows that the xn form a Cauchy-sequence and therefore
converge to a limit ξx0(a).

In order to see that this limit does not depend on x0, choose a second starting point y0

and let yn = Sa1...an(y0). Then

d(xn, yn) = d(Sa1...an(x0), Sa1...an(y0)) ≤ cn · d(x0, y0) ,

and hence ξx0(a) = ξy0(a). The fact that ξx0(a) is contained in the attractor AS follows by
choosing x0 ∈ AS . Then, by invariance of the attractor, we have Sa1...an(x0) ∈ AS for all
n ∈ N, and as AS is compact the same applies to the limit.

This allows to define a mapping

ξ : Σ+
m = {1, . . . ,m}N → AS , a 7→ ξx0

(a) , (3.2.1)

where the starting point x0 ∈ D is arbitrary.

Lemma 3.2.2. The map ξ : Σ+
m → AS is continuous and onto.

Proof. Suppose without loss of generality that x0 ∈ AS and let D = diam(As) and ε > 0.
Note that due to the invariance ofAS under S, we have that Sa1...an(x0) ∈ AS for all a ∈ Σ+

m

and n ∈ N. Choose N ∈ N such that cN · D < ε and suppose that b ∈ [a]n. Then we have
that

d(ξ(a), ξ(b)) = d
(

lim
n→∞

Sa1...an(x0), lim
n→∞

Sb1...bn(x0)
)

= d
(
Sa1...aN

(
lim
n→∞

SaN+1...aN (x0)
)
, (Sa1...aN

(
lim
n→∞

SbN+1...bN (x0)
))

≤ cN ·D < ε .

Hence ξ([a]n) ⊆ Bε(ξ(a)), and as [a]n is an open neighbourhood of a, this proves the conti-
nuity of ξ.

In order to see that ξ is onto, let x ∈ AS . Then x ∈ Sn(AS) for all n ∈ N, and we can
choose a sequence a ∈ Σ+

m such that x ∈ Sa1...an(AS) for all n ∈ N. (Note that f a1, . . . , an
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have been chosen such that x ∈ Sa1...an(AS) = Sa1...an(S(AS)), there always has to be
some an+1 ∈ {1, . . . ,m} such that x ∈ Sa1...an(San+1

(AS)).) Since diam(Sa1...an(AS)) ≤
cndiam(AS), we obtain that

d(x, Sa1...an(x0)) ≤ cn · diam(AS) ,

where we assume again that x0 ∈ AS . This shows x = limn→∞ Sa1...an(x0) = ξ(a).

Remark 3.2.3. Suppose that x0 ∈ AS and w = a1, . . . , an ∈ {1, . . . ,m}n. Then Sw(x0) ∈
Sw(AS). Moreover, for any sequence a ∈ [w] and k ≥ n we have that Sa1,...,ak(x0) =
Sw(San+1,...,ak(x0)) ∈ Sw(AS), as San+1,...,ak(x0) ∈ AS as well. Since Sw(AS) is closed, this
implies that ξ(a) = limk→∞ Sa1,...,ak(x0) ∈ AS . Hence, we obtain that ξ([w]) ⊆ Sw(AS).

Conversely, suppose that x ∈ Sw(AS). Then x = Sw(y) for some y ∈ AS . If y = ξ(a),
then it follows by continuity of Sw that x = Sw(y) = ξ(wa), where wa denotes the sequence
given by

(wa)k =

{
wk 1 ≤ k ≤ |w|
ak−|w|/k < |w|

.

Thus, we have Sw(AS) ⊆ ξ([w]), and altogether we obtain

Sw(AS) = ξ([w]) .

Exercise 31. Show that ξ is injective (and hence a homeomorphism) if and only if the
images Sk(AS) with k = 1, . . . ,m are pairwise disjoint. (Here, we assume that all the
similarities Sk are invertible, that is, ck > 0 for all k = 1, . . . ,m.)

Exercise 32. Show that the coding map obtained from the IFS in Exercise 30 coincides with
the map h from Remark 1.1.2 when Σ+ and Σ+

2 are identified by relabelling the symbols (0
becomes 1 and 1 becomes 2).

3.3 Dimension formulas and the open set condition

In order to determine the dimensions of IFS attractors, we first consider box dimension.

Theorem 3.3.1. Suppose S = {S1, . . . , Sm} is an IFS on D ⊆ X with contraction constants
c1, . . . , cm ∈ (0,m). Then DimB(AS) ≤ s, where s is uniquely determined by the equation

m∑
k=1

csk = 1 . (3.3.1)

Remark 3.3.2. (a) Note that since ck ∈ (0, 1) for all k = 1, . . . ,m, the right side of
(3.3.1) is strictly decreasing in s, so that the equation has a unique solution.

(b) For any n ∈ N ,we have that AS =
⋃
a∈{1,...,m}n Sa1...an(AS). If c = maxmk=1 ck,

then all these images of AS satisfy diam (Sa1...an(AS)) ≤ cn · diam(AS). This easily
allows to conclude that DimB(A) ≤ logm/ log c. However, this value is strictly larger
than s, unless all the ck are equal. Hence, the difficulty in the proof will be to improve
on this rough estimate by taking into account that some of the images Sa1...an(AS)
shrink considerably faster than with rate c.

Proof of Theorem 3.3.1. Let c0 = minmk=1 ck. Further, given δ > 0 and a ∈ Σ+
m, let

k(a) = min{k ∈ N | ca1 · . . . · cak ≤ δ} . (3.3.2)

Note that we always have ca1 ·. . .·cak(a) ≥ c0δ. We further defineQ = {a1 . . . ak(a) | a ∈ Σ+
M}

and denote the length of a word w ∈ Q by |w|. Given a finite word w over the alphabet
{1, . . . ,m}, denote by [w] the corresponding cylinder set in Σ+

m (that is, [w] = [a]|w|, where
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a ∈ Σ+
m can be any sequence that starts with w). Then

⋃
w∈Q[w] = Σ+

m, since every a ∈ Σ+
m

is contained in [a1 . . . ak(a)]. Hence, if Sw = Sw1
◦ . . . ◦ Sw|a| , we have that

AS =
⋃
w∈Q

Sw(AS) .

(Note here that AS = ξ(Σ+
m) and Sw(AS) = ξ([w]).) Therefore, we obtain a cover U =

{Sw(AS) | w ∈ Q} of AS . Moreover, as

diam(Sa(AS)) ≤ ca1 · . . . · ca|a| · diam(AS) ≤ δ · diam(AS),

for all a ∈ Q, we have that U is a (δ · diam(AS))-cover of AS . In order to estimate the
cardinality of Q, we let Qn = {a1 . . . amin{k(a),n} | a ∈ Σ+

m}. As |w| ≤ log δ/ log c0 + 1 for all
w ∈ Q, we obtain that Qn = Q if n ≥ log r/ log c0 + 1. We now claim that∑

w∈Qn
(cw1

· . . . · cw|w|)
s = 1 for all n ∈ N . (3.3.3)

If this holds, then as (cw1
· . . . ·cw|w|)s ≥ (c0δ)

s for all w ∈ Qn, we obtain that #Qn ≤ (c0δ)
−s

for all n ∈ N, and thus #Q ≤ (c0δ)
−s as well. This immediately implies that

DimB(AS) ≤ lim
δ→0

log(c0δ)
−s

− log(c0δ)
= s .

It remains to prove (3.3.3). However, this equality follows immediately from the facts that
the cylinders [w] with w ∈ Qn form a partition of Σ+

m and csw1
· . . . · csw|w| = ν([w]), where ν

denotes the Bernoulli measure on Σ+
m with probabilities cs1, . . . , c

s
m.

This proves the claim and thus completes the proof of the theorem.

In order to obtain a lower bound for the Hausdorff dimension of an IFS attractor, we
first consider a simplified case and assume that the images Si(AS) of the attractor under the
different mappings of the IFS are pairwise disjoint.

Theorem 3.3.3. Suppose S = {S1, . . . , Sm} is an IFS on D ⊆ X and there exist constants
b1, . . . , bm ∈ (0, 1) such that

d(Sk(x), Sk(y)) ≥ bk · d(x, y) for all x, y ∈ D .

Further, let AS be the attractor of the IFS S and assume that the sets Sk(AS) are pairwise
disjoint. Then DimH(AS) ≥ s, where s ≥ 0 is uniquely determined by the equation

m∑
k=1

bk = 1 .

Proof. Let ν be the Bernoulli measure with probabilities bs1, . . . , b
s
m on Σ+

k and µ = ξ∗ν,
where ξ : Σ+

k → AS is the coding map associated to the IFS S. Let

d = min
1≤i<j≤m

d(Si(AS), Sj(AS)) .

Our aim is to show that every Borel measurable U ⊆ AS satisfies µ(U) ≤ d−s ·diam(U)s. The
statement then follows from the Mass Distribution Principle. In order to prove this estimate,
let U ⊆ AS and x = ξ(a) ∈ U . Choose k ∈ N with

ba1 · . . . bak · d ≤ diam(U) ≤ ba1 · . . . bak−1
· d .

Given (ã1, . . . , ãk) 6= (a1, . . . , ak), let l = min{j = 1, . . . , k | ãj 6= aj}. Then

d(Sal...ak(AS), Sãl...ãk(AS)) ≥ d(Sal(AS), Sãl(AS)) ≥ d
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and therefore

d(d(Sa1...ak(AS), Sã1...ãk(AS))

≥ d(Sa1...al−1
(Sal(AS)), Sa1...al−1

(Sãl(AS)))

≥ b1 · . . . · bl−1 · d ≥ diam(U) .

Hence, we obtain that U ⊆ Sa1...ak(AS) and U ∩ Sb1,...,ãk(AS) = ∅ for all (ã1, . . . , ãk) 6=
(a1, . . . , ak). The latter implies ξ−1(U) ⊆ [a1, . . . , ak] and thus

µ(U) ≤ µ(ξ[a1 . . . ak]) = ν([a1 . . . ak]) = (ba1 · . . . bak)s ≤ d−s · diam(U)s ,

as required.

Exercise 33. Show that if the sets Sk(AS) are pairwise disjoint for k = 1, . . . ,m, then the
attractor AS of the IFS S = {S1, . . . , Sm} is totally disconnected.

Remark 3.3.4. If the images of the contractions Sk overlap too much, then it will not be
possible to provide a lower bound on the Hausdorff dimension. Note that if S1 = . . . = Sm,
then AS consists of a single point (the unique fixed point of S1) and its dimension is zero,
independent of the contraction constants ck.

However, at the same time the disjointness of the sets Sk(AS) is quite restrictive, since
this implies that the attractor AS of the IFS is totally disconnected. Hence, this excludes to
describe fractals like the Koch curve and snowflake, which are connected sets. The same is
true for some of the modified Sierpinski Carpets discussed in previous sections.

However, in all these cases, intersections between the images of AS under the Sk only
occur at the boundaries. The following condition allows to treat this situation in Euklidean
spaces.

We say an IFS S = {S1, . . . , Sm} on D ⊆ X satisfies the open set condition (OSC), if
there exists an open set U ⊆ D such that diam(U) <∞, the images Sk(U) with k = 1, . . . ,m
are pairwise disjoint and

m⊎
k=1

Sk(U) ⊆ U .

Theorem 3.3.5. Suppose X = Rd, D ⊆ X and S = {S1, . . . , Sm} is an IFS with similarities
S1, . . . , Sm and corresponding scaling factors c1, . . . , cm. Further, assume that S satisfies the
open set conditions. Then DimH(AS) = DimB(AS) = s, where s ≥ 0 is uniquely determined
by the equation

m∑
k=1

csk = 1 .

Before we turn to the proof, we will need the following technical lemma.

Lemma 3.3.6. Let (Vi)i∈I be a collection of open sets in Rd such that each Vi contains a ball
of radius α1r and is contained in a ball of radius a2r. Then any ball of radius r intersects at
most (1 + 2α2)d · α−d1 of the closures Vi.

Proof. Suppose the closures of the sets V1 . . . VN intersect Br(x). Then each of these sets is
contained in B(1+2α2)r(x). Hence, the latter set contains N disjoint balls of radius α1r. This
is only possible if N · (α1r)

d ≤ (1 + 2α2)drd.

Proof of Theorem 3.3.5. The upper bound DimB(AS) ≤ s follows immediately from Theo-
rem 3.3.1. In order to provide a lower bound, we proceed in a similar way as in the proof
of Theorem 3.3.3.

We denote by ν the Bernoulli measure on Σ+
m with probabilities cs1, . . . , c

s
m and let µ =

ξ∗ν. In order to apply the Mass Distribution Principle, suppose that V ⊆ AS is a set of
diameter δ > 0. As

⋃m
k=1 Sk(U) ⊆ U , the decreasing sequence of image sets (Sn())n∈N
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converges to AS . Given a finite word w over the alphabet {1, . . . ,m}, we write Uw =
Sw1,...,w|w|(U). Using the same notation as in the proof of Theorem 3.3.1, we obtain that

AS ⊆
⋃
w∈Q

Uw .

Choose α1 > 0 such that U contains a ball of diameter α1 > 0 and is contained in a ball
of diameter α2 > 0. Due to the definition of k(a) in (3.3.2) and of Q, the scaling constant
of the similarity Sw lies between c0δ and δ for any w ∈ Q. Hence, any of the sets Uw with
w ∈ Q contains a ball of diameter c0α1δ and is contained in a ball of diameter α2δ. By
Lemma 3.3.6, this implies that V intersects at most (1 + 2α2)d · (c0α1)−d of the sets Uw with
w ∈ Q. Let QV = {w ∈ Q | Uw ∩ V 6= ∅} and note that

ν([w]) = csw1
· . . . · csw|w| ≤ δs

for all w ∈ Q. Hence, we obtain

µ(V ) = ν(ξ−1(V )) ≤ ν

( ⋃
w∈QV

[w]

)
≤ (1 + 2α2)d · (c0α1)−d · δs .

The Mass Distribution Principle now yields DimH(AS) ≥ s.

Example 3.3.7. As an example, we consider the IFS S = {S1, . . . , S4} on R2 given by

S1(x, y) = (x, y)/3 , S2(x, y) = Rπ/3 ◦ S1(x, y) + (1/3, 0)

S3(x, y) = R−π/3 ◦ S1(x, y) + (1/2, 1/(2
√

3)) , S4(x, y) = S1(x, y) + (2/3, 0) .

The attractor of this IFS can be seen to be the Koch curve. Moreover, the open set condition
holds, with U the open triangle spanned by the points (0, 0), (1, 0) and (1/2,

√
3/2). Applying

Theorem 3.3.5 yields DimH(AS) = log 4/ log 3.

3.4 Approximation of IFS attractors by random trajectories

The following statements provides a procedure that often allows to efficiently approximate
attractors of IFS numerically.

Theorem 3.4.1. Suppose S = {S1, . . . , Sm} is an IFS on D ⊆ X and ν is a Bernoulli measure
on Σ+

m with probabilities p1, . . . , pm > 0. Then for ν-a.e. a ∈ Σ+
m and any x0 ∈ AS , we have

AS = limHn→∞{Sak...a1(x0) | 1 ≤ k ≤ n} .

Remark 3.4.2. (a) Note that compared to the statements about the symbolic coding of
points in the IFS attractor, the maps Saj are now composed in reverse order.

(b) In practice, one may choose x0 to be a fixed point of one of the maps Sk in order
to ensure x0 ∈ AS .

Proof of Theorem 3.4.1. If we think of ν as a probability measure, then the probability that
a given word w = w1, . . . , wq with q ∈ N and wj ∈ {1, . . . ,m} for j = 1, . . . , q appears as the
l-th block of length p (that is, alp+j = wj for j = 1, . . . , q) equals pw1

· . . . · pwq . In particular,
this probability is strictly positive. Hence, due to the independence of the different blocks,
the word w appears infinitely often in a for ν-a.e. sequence a ∈ Σ+

m. Moreover, since the set
of all finite words over the alphabet {1, . . . ,m} is countable, every word appears infinitely
often with probability one.

We may therefore assume that a is a sequence that contains every finite word infinitely
often. In this case, fix x ∈ AS and ε > 0. Choose n ∈ N such that cn < ε/diam(AS),
where c = maxmk=1 ck. Further, suppose that x = ξ(b) for b ∈ Σ+

m. Then x ∈ Sb1,...,bn(AS).
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However, if w = bn, . . . , b1 appears in the sequence a after position l, then we have that
Sal+n...a1(x0) = Sb1,...,bn(Sal...a1(x0)) ∈ Sb1,...,bn(AS) as well. Since diam(Sb1,...,bn(AS)) ≤
diam(AS) · cn < ε and ε > 0 was arbitrary, we obtain that

x ∈ limHn→∞{Sak...a1(x0) | 1 ≤ k ≤ n}

As x ∈ AS was arbitrary as well, this yields

AS ⊆ limHn→∞{Sak...a1(x0) | 1 ≤ k ≤ n} .

Since the converse inclusion is obvious from Sak...a1(x0) ∈ AS for all k ∈ N, this completes
the proof.

3.5 Examples

All examples in this section are given by affine IFS in the plane R2, that is, the mappings Sk
are of the form

Sk : R2 → R2 , Sk

(
x
y

)
= R(αk) ·Ak ·

(
x
y

)
+ vk

where

Rαk =

(
cos(2παk) − sin(2παk)
sin(2παk) cos(2παk)

)
is the rotation matrix with angle αk,

Ak =

(
λk,1 0

0 λk,2

)
is a diagonal matrix with eigenfactors λk,1, λk,2 ∈ [0, 1) and v ∈ R2 is a translation vector.

Example 3.5.1. We first take a look at IFS attractors that can be produced by just two maps.
More precisely, we set

A1 = A2 =

(
0.95 0

0 0.55

)
and α1 = 1/4, α2 = −1/4. Then the left picture in Figure 3.5.1 shows the corresponding
IFS attractor for v1 = (0,−0.3) and v2 = (0.3, 0), whereas that on the right is obtained for
v1 = (−0.3, 0) and v2 = (0.3, 0).

The contraction constant of both maps is 0.95. Hence, Theorem 3.3.1 yields an upper
bound of log(1/2)/ log(0.95) for the box and Hausdorff dimension. However, the maps are
no similarities and there is a stronger contraction in the y-direction. Moreover, the images
of the attractor under S1 and S2 seem to have considerable overlap. For these reasons,
we expect that the precise value of the box dimension is smaller than this upper bound,
but we lack the tools to improve this estimate. Moreover, due to the apparent overlap of
the attractor images, neither disjointness nor the open set condition can be used to obtain
a lower bound for the Hausdorff dimension. In general, there exist no results that would
allow a precise computation of the attrators of such non-conformal IFS with overlaps.

Example 3.5.2 (Barnsley Fern). A famous example is the so-called Barnsley Fern. For this
IFS attractor, the IFS consists of four mappings S1, . . . , S4, where the products Bk = Rαk ·Ak
are given by

B1 =

(
0 0
0 0.16

)
, B2 =

(
0.85 0.04
−0.04 0.85

)
B3 =

(
0.2 −0.26
0.23 0.22

)
, B4 =

(
−0.15 0.28
0.26 0.24

)
.
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Figure 3.5.1: Attractors of two different iterated function pairs.

The translation vectors are

v1 =

(
0

1.6

)
, v2 =

(
0
0

)
, v3 =

(
0

1.6

)
, v4 =

(
0

0.44

)
.

Roughly spoken, S1 is responsible for the main part of the fern, S2 for the stem, S3 for the

Figure 3.5.2: The Barnsley Fern

first left branch and S4 for the first branch on the right (which starts at the point (0, 1.6)).
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Since the contraction rates of the resulting affine maps are quite different (note in par-
ticular that S2 is non-invertible), it is most efficient to plot (an approximation of the) attrac-
tor by using random iterations, with a suitably chosen Bernoulli measure. For the picture
below, 106 random iterates were produced with probabilities p1 = 0.84, p2 = 0.02 and
p3 = p4 = 0.07.
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Chapter 4

Further notions of dimension and
related aspects

4.1 Modified box dimension

In order to refine the notion of box dimension, one may introduce the concepts of modified
(upper and lower) box dimensions. Given a subset A of some metrix space X, we denote
by G(A) the family of all countable covers (Gn)n∈N of A by relatively compact setsGn. Then,
we let

DimMB(A) = inf{sup
n∈N

DimB(Gn) | (Gn)n∈N ∈ G(A)}

DimMB(A) = inf{sup
n∈N

DimB(Gn) | (Gn)n∈N ∈ G(A)}

We have that
DimH(A) ≤ DimMB(A) ≤ DimMB(A) ≤ DimB(A) ,

where the first inequality uses the countable stability of Haudorff dimension. Moreover, it
is a direct consequence of the definition that countable sets have modified box dimension
zero.

In general, modified box dimensions are difficult to compute explicitly, due to the addi-
tional step in the definition. However, there is a simple criterion that ensures equality of
modifed box dimension and box dimension.

Proposition 4.1.1. Let X be a complete metric space and suppose that A ⊆ X is a compact
set with the property that DimB(A) = DimB(A ∩ U) for all open sets U ⊆ X that intersect A.
The same statement holds for the lower (modified) box dimension.

Proof. Let ε > 0 and suppose (Gn)n∈N is a cover of A. Without loss of generality, we may
assume that all the Gn are closed. Hence, the sets Gn∩A form a collection of closed subsets
of the complete metric spaceA (equipped with the metric onX) which cover all ofA. Baire’s
Theorem states that there exists some n ∈ N such that Gn contains an open subset, which
means that A ∩ U ⊆ Gn for some open set U ⊆ X. By assumption, this implies that

DimB(Gn) ≥ DimB(A ∩ U) ≥ = DimB(A) .

Hence, we obtain DimMB(A) ≥ DimB(A), and the converse equality is obvious. The same
argument also works for the case of lower (modified) box dimension.

Exercise 34. Show that every generalised Sierpinski Carpet has the homogeneity property
stated in Proposition 4.1.1.
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4.2 Packing measures and packing dimension

Box dimension can be defined either via box coverings or via separated sets. The definition of
Hausdorff dimension is then based on a refined version of the coverings. It seems therefore
natural to consider a possible refinement of separated sets as well, and this leads to the
notions of packing measures and packing dimension.

Thereby, we follow the same pattern as for Hausdorff measures and dimension. Given a
metric space X, a subset A ⊆ X and s ≥ 0, δ > 0, we let

Psδ (A) = sup

{∑
B∈B

diam(U)s

∣∣∣∣∣ B is a collection of disjoint δ-balls with centres in A

}
.

Further, as Psδ (A) is decreasing in δ, we can define the limit

Ps0(A) = lim
δ→0
Psδ (A) .

However, Ps0 is not yet a measure. This can be seen, for instance, by considering countable
sets.

Exercise 35. Let A = [0, 1] ∩Q and s ∈ [0, 1]. Show that Ps0(A) > 0.

The underlying reason is that the value of Ps0 of a set A coincides with that for the closure
A.

Exercise 36. Show that Ps0(A) = Ps0(A).

For this reason, an additional step is needed, and we define the s-dimensional packing
measure Ps by

Ps(A) = inf

{∑
U∈U
Ps0(U)

∣∣∣∣∣ U is a countable cover of A

}
.

As in the case of Hausdorff measures, one can show that Ps is a metric outer measure, and
therefore its restriction to the Borel σ-algebra is a measure.

Exercise 37. Show that Ps is a metric outer measure on X.

Exercise 38. Show that for each A ⊆ Rd there exists a unique s ≥ 0 such that Pt(A) = ∞
for all t < s and Pt(A) = 0 for all t > s.

The definition of packing dimension is then again analogous to that of Hausdorff di-
mension. We let

DimP(A) = sup{s ≥ 0 | Ps(A) =∞} ∪ {0} = inf{s ≥ 0 | Ps(A) = 0} .

It follows immediately from the measure structure that packing dimension is monotone
(DimP(A) ≤ DimP(B) if A ⊆ B) and countably stable. In particular, countable sets have
packing dimension zero.

Exercise 39. (a) Show that if U ⊆ Rd is open and 0 ≤ s < d, then Ps0(U) =∞.

(b) Show that DimP(Rd) = d. (Hint: Use Baire’s Theorem to conclude that if U is a
countable cover of Rd by closed sets, then one of the sets in U must have non-empty
interior.)

It is important to note that, unlike for the case of box dimension, the two alternative
approaches lead to substantially different results. In order to see this, recall that a subset
R ⊆ X of some metric space is residual if it is a countable intersection R =

⋂
n∈N Un of

dense open sets Un. Baire’s Theorem states that a residual subset of a complete metric space
is dense. In some sense, residual sets play the same role in topology as sets of full measure
do in measure theory.

Exercise 40. Suppose that X is a complete metric space.
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(a) Show that the intersection of two residual subsets is again residual. Show that the
same is true for coubtable intersections.

(b) M ⊆ X is called meager if X \M is residual. Show that if (Mn)n∈N is a sequence
of meager sets, then

⋃
n∈NMn 6= X.

(c) Show that if (An)n∈N is a countable family of closed subsets ofX such that
⋃
n∈NAn =

X, then there exists n ∈ N such that An has non-empty interior.

Proposition 4.2.1. Suppose that R ⊆ Rd is residual. Then

DimP(R) = DimP(X) .

Proof. Suppose for a contradiction that DimP(R) < DimP(X) = d. Then there exists some
s < DimP(X) such that Ps(R) < ∞. Hence, we can choose a countable cover U of R such
that

∑
U∈U Ps0(U) <∞. Since Ps0 is the same for a set and its closure, we may assume that

the set in U are all closed. However, the countable union of meager sets cannot contain
a residual set (which needs to intersect the residual complement of the union). For this
reason, one of the sets U ∈ U must have non-empty interior. As this implies Ps0 = ∞, we
obtain the required contradiction.

Exercise 41. Suppose (xn)n∈N is a sequence that consists of all rational numbers in [0, 1].
Let εn = 2−n and Un =

⋃
k≥nBεk(xk). Let R =

⋂
n∈N Un.

Show that the Hausdorff dimension of R is zero, whereas the packing dimension equals
one.

Thus, on the one hand, the previous exercise shows that packing and Hausdorff dimen-
sion are different for a large collection of sets. On the other hand, however, it surprisingly
turns out that at least in Euklidean space, packing dimension coincides with the modified
upper box dimension introduced above. We split the proof into the following two lemmas.

Lemma 4.2.2. Suppose X is a metric space and A ⊆ X. Then DimP(A) ≤ DimB(A).

Proof. If DimP(A) = 0 the statement is trivial, so we assume DimP(A) > 0. Hence, we can
choose 0 < t < s < DimP(A). Then Ps(A) =∞, and consequently Ps0(A) =∞. This means
that for any sufficiently small δ > 0 there exist a collection of disjoint balls (Bi)i∈N with
radius ≤ δ and centres in A such

∑
i∈N diam(Bi)

s > 1.
Suppose that the number of Bi with radius in (2−(k+1), 2−k] is nk. Then∑

k∈N
nk2−ks > 1 , (4.2.1)

and therefore there must be some k ∈ N such that nk ≥ 2kt · (1−2t−s). (Note that otherwise
the geometric sum in (4.2.1) is smaller than one.)

We thus obtain that
M2−(k+1)(A) ≥ 2kt · (1− 2t−s) .

Since there must be infinitely many k with this property (note that δ > 0 above can be
chosen arbitrarily small), this implies that

DimB(A) ≥ lim
k→∞

log 2kt

− log 2−(k+1)
= t .

As the argument works with any t < DimP(A), this proves the statement.

Lemma 4.2.3. Suppose that X is a metric space and A ⊆ X. Then DimP(A) = DimMB(A) .

Proof. If (Gn)n∈N is a countable cover of A by relatively compact sets, then the countable
stability of packing dimension implies that

DimP(A) ≤ sup
n∈N

DimP(Gn) ≤ sup
n∈N

DimB(Gn) .
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By definition, this further yields DimP(A) ≤ DimMB(A).
Conversely, if s > DimP(A), then Ps(A) = 0 and hence A ⊆

⋃
n∈NGn for a collection

(Gn)n∈N of sets with Ps0(Gn) < ∞ for all n ∈ N. This implies that Mδ(Gn) · δs ≤ Psδ (Gn)
remains bounded as δ → 0, and hence DimB(Gn) ≤ s. Hence, we obtain that

DimMB(A) ≤ sup
n∈N

DimB(Gn) ≤ s .

This shows DimMB(A) ≤ DimP(A) and thus completes the proof.

4.3 Local dimensions and densities of sets and measures

For δ > 0 we have that LebRd(Bδ(x)) = Cd · δd, where Cd = LebRd(B1(0)). The dimension d
appears in this expression as the exponent of δ. Similarly, given an arbitrary Borel measure
µ on some metric space X, we define the upper and lower local dimension of µ in x ∈ X
as

Dim
loc

µ (x) = lim
δ→0

logµ(Bδ(x))

log δ
and Dimloc

µ (x) = lim
δ→0

logµ(Bδ(x))

log δ
.

If both quantities coincide, we denote the common value by Dimloc
µ (x) and call it the local

dimension of µ in x ∈ X.

Exercise 42. Suppose that γ : [0, 1]→ Rd is differentiable and µ = γ∗Leb[0,1]. Show that in
this case Dimloc

µ (x) = 1 for all x ∈ γ([0, 1]) and Dimµ(x) =∞ otherwise.

Given s ≥ 0, we further let

D
s
(µ, x) = lim

δ→0

µ(Bδ(x))

(2δ)s
and Ds(µ, x) = lim

δ→0

µ(Bδ(x))

(2δ)s
.

Again, if both values coincide we simply write Ds(µ, x), which can then be interpreted as
density of µ with respect to the s-dimensional Hausdorff measure Hs.

Exercise 43. Show that if Dimloc
µ (x) > s, then Ds(µ, x) = 0 and if Dim

loc

µ (x) < s, then
Ds(µ, x) =∞.

A classical result from analysis is the

Theorem 4.3.1 (Lebesgue Density Theorem). If f ∈ L1(Rd), f ≥ 0 and µ = f · LebRd , then
Dd(µ, x) = f(x) µ-almost surely.

In particular, this implies that Dimloc
µ (x) = d for LebRd -almost all x ∈ Rd with f(x) 6= 0.

For zeros of f , the local dimension of µ depends on the scaling properties of f close to x.

Exercise 44. Let f : R→ R, f(x) = |x|q with q > 0. Show that Dimloc
µ (0) = q + 1.

It turns out that the quantities D
s
(µ, x) provide a further tool to estimate the Hausdorff

measure of a set.

Theorem 4.3.2. Suppose that µ is a Borel measure on Rd, A ⊆ B(Rd) and 0 < c <∞.

(a) If D
s
(µ, x) < c for all x ∈ A, then Hs(A) ≥ µ(A)

c·2s .

(b) If D
s
(µ, x) > c for all x ∈ A, then Hs(A) ≤ 4s·µ(A)

c .

Proof. (a) Let Aδ = {x ∈ A | µ(Br(x)) < c · (2r)s for all 0 < r ≤ δ}. Then
⋃
δ>0Aδ = A

and consequently limδ→0 µ(Aδ) = µ(A). We claim that µ(Aδ) ≤ c ·Hs(A) for all δ > 0.
In order to see this, suppose U is a δ-cover of A. If U ∈ U intersects Aδ and x ∈ U ∩Aδ,
then µ(U) ≤ µ(Bdiam(U)(x)) ≤ c · (2diam(U))s. This implies that

µ(Aδ) ≤
∑
U∈U

U∩Aδ 6=∅

≤
∑
U∈U

c · diam(U)s · 2s .
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As U was an arbitrary δ-cover of A, taking the over all such covers yields

µ(Aδ) ≤ 2sc · Hsδ(A) ≤ 2sc · Hs(A) .

This proves part (a).

(b) First, note that since Hs(A) = limR→∞Hs(A ∩ BR(0)), it suffices to consider the
case that A is bounded. As Borel measures are regular, given ε > 0 we may choose
some open set V ⊇ A such that µ(V ) < µ(A) + ε. Let

C = {Br(x) | x ∈ A, 0 < r ≤ δ, Br(x) ⊆ V and µ(Br(x)) > c · (2r)s} .

Then by assumption we have that A ⊆
⋃
B∈C B. Due to Lemma 4.3.3 below, we

can choose a countable family (Bn)n∈N of pairwise disjoint balls in C such that if
B̃n denotes the ball concentric with Bn, but four times larger in diameter, then A ⊆⋃
n∈N B̃n. Hence, (B̃n)n∈N is a countable 8δ-cover of A, and we obtain

Hs8δ(A) ≤
∑
n∈N

diam(B̃n)s ≤ 4s
∑
n∈N

diam(Bn)s

≤ 4sc−1
∑
n∈N

µ(Bn) ≤ 4sc−1µ(V ) ≤ 4sc−1(µ(A) + ε) .

Taking the limit ε→ 0 yields the statement.

Lemma 4.3.3. Suppose that C is a family of balls in Rd such that C =
⋃
B∈C B is bounded.

Then there exists a countable family (Bn)n∈N of pairwise disjoint ballsBn = Bδn(xn) ∈ C∪{∅}1

such that we have
C ⊆

⋃
n∈N

B4δn(xn) .

Proof. We recursively define the sequence (Bn)n∈N as follows. Given κ ∈ (0, 1), we let
r1 = κ · supB∈C diam(B) and choose some B1 ∈ C such that diam(B1) > r1. Then, once
B1, . . . , Bn have been chosen, let rn+1 = κ·sup{diam(B) | B ∈ C is disjoint from B1, . . . , Bn}
and choose Bn+1 ∈ C such that diam(Bn+1) > rn+1 and Bn+1 is disjoint from B1, . . . , Bn.
If there is no such ball in C, we set Bk = ∅ for all k > n.

Now, let B̃n the balls concentric to the Bn with 1 + 2/κ times the same radius. Suppose
for a contradiction that C *

⋃
n∈N B̃n. Choose some B ∈ C and x ∈ B with x /∈

⋃
n∈N B̃n.

As C is bounded and the Bn are pairwise disjoint, we must have limn→∞ diam(Bn) = 0. Let
m = min{n ∈ N | diam(Bn) < κ · diam(B)}. Then B needs to intersect one of the balls
B1, . . . , Bm−1, since otherwise Bm could not have been selected in the m-th place (as rm
would be at least κ · diam(B) > diam(Bn) and therefore B would have had to be chosen
first in this case). However, if B ∩ Bn 6= ∅ for some n < m, then diam(B) ≤ diam(Bn)/κ
implies that B ⊆ B̃n. This yields the desired contradiction and shows that C ⊆

⋃
n∈N B̃n.

Choosing κ = 2/3 completes the proof.

Given A ⊆ Rd and x ∈ R, let

Ds(A, x) = lim
δ→0

Hs(A ∩Bδ(x)

(2δ)s
and D

s
(A, x) = lim

δ→0

Hs(A ∩Bδ(x)

(2δ)s
.

Note that thus Ds(A, x) = Ds(Hs|A, x) and D
s
(A, x) = D

s
(Hs|A, x). Moreover, we have that

Ds(A ]B, x) = Ds(A, x) +Ds(B, x), and the same holds for D
s
.

Theorem 4.3.4. Let B ∈ B(Rd) and 0 < Hs(B) <∞. Then

(a) Ds(B, x) = D
s
(B, x) = 0 for Hs-a.e. x ∈ Rd \B.

(b) 2−s ≤ Ds
(B, x) ≤ 4s for Hs-a.e. x ∈ B.

1We use the convention that B0(x) = ∅.
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Proof. (a) We omit the proof, which is similar to that of the Lebesgue density theorem.

(b) Let µ = Hs|B , that is, µ(S) = Hs(B ∩ S). Further, fix c > 0 and let

B1 = {x ∈ B | Ds
(B, x) < 2−sc} .

Then Theorem 4.3.2(a) with µ = Hs|B and A = B1 implies Hs(B1) ≥ µ(B1)/c =

Hs(B1)/c. If c < 1, this is only possible when Hs(B1) = 0. Hence, we obtain
D
s
(B, x) ≥ 2−s for Hs-a.e. x ∈ B.

Now, let
B2 = {x ∈ B | Ds

(B, x) > 4sc} .

Then Theorem 4.3.2(b), with µ = Hs|B as before and A = B2, implies that Hs(B2) ≤
µ(B2)/c = Hs(B2)/c. If c > 1, this is only possible if Hs(B2) = 0. Therefore

D
s
(B, x) ≤ 4s

for Hs-a.e. x ∈ B.

4.4 Product formulas

Before we turn to product formulas for dimensions, we first want to consider a counterex-
ample to a straightforward product formula for the Hausdorff dimension. At the same time,
this provide an example for a set with lower box dimension strictly smaller than the upper
box dimension.

Example 4.4.1. Let (mk)k∈N be an increasing sequence of integers such that limk→∞
kmk
mk+1

=

0. Given x ∈ [0, 1), let an(x){0, 1} be the n-th symbol of its binary expansion, that is,
x =

∑
n∈N an(x)2−n. Let

A = {x ∈ [0, 1) | an(x) = 0 for all n ∈ [mk + 1,mk+1] with k even} ,
B = {x ∈ [0, 1) | an(x) = 0 for all n ∈ [mk + 1,mk+1] with k odd} .

Further, when k is even, we let jk = (m2 −m1) + (m4 −m3) + . . .+ (mk −mk−1). Then A
is covered by 2jk intervals of length 2−mk+1 , since there are exactly jk ‘free’ positions in the
binary expansion of numbers in A up to position mk+1. As jk ≤ kmk, we obtain

DimH(A) ≤ DimB(A) ≤ lim
k→∞

log 2jk

− log 2−mk+1
= lim

k→∞

jk
mk+1

= 0 .

In an analogue way, it can be shown that DimH(B) = 0. At the same time, we obviously
have that

A+B = {x+ y | x ∈ A, y ∈ B} = [0, 1) .

Hence, if we let f : R × R → R, (x, y) 7→ x + y, then we have f(A × B) = [0, 1), an in
particular DimH(f(A × B)) = 1. Moreover, f is obviously Lipschitz continuous, so that it
cannot increase the Hausdorff dimension. Therefore, we must have DimH(A×B) ≥ 1.

We also note that if k is odd, then 2mk+1−mk intervals of length 2−mk+1 are needed to
cover A, which implies that DimB(A) = 1 (using limk→∞mk/mk+1 = 0), and similarly
DimB(B) = 1.

In order to estimate the Hausdorff dimension of product sets from below, the following
statement is crucial.

Lemma 4.4.2. Given A,B ∈ B(Rd) with Hs(A),Ht(B) <∞, we have that

Hs+t(A×B) ≥ 8−(s+t)Hs(A)Ht(B) .
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Proof. Without loss of generality, suppose that Hs(A),Ht(B) > 0. Then D
s
(A, x) ≤ 4s for

Hs-a.e. x ∈ A, so that there exists a set A0 ⊆ A withHs(A0) = Hs(A) and D
s
(A, x) ≤ 4s for

all x ∈ A0. Similarly, there exists a set B0 ⊆ B such thatHt(B0) = Ht(B) and D
s
(B, y) ≤ 4s

for all y ∈ B. If µ = Hs|A ×H
t
|B , then Bδ(x, y) ⊆ Bδ(x)×Bδ(y), we have

µ(Bδ(x, y)) ≤ µ(Bδ(x)×Bδ(y)) = Hs(A ∩Bδ(x)) · Ht(B ∩Bδ(y)) .

Therefore, all (x, y) ∈ A0 ×B0 satisfy

D
s+t

(µ, (x, y)) = lim
δ→0

µ(Bδ(x, y))

(2δ)s+t
≤ lim

δ→0

Hs|A(Bδ(x))

(2δ)s
·
Ht|B(Bδ(y))

(2δ)t

≤ D
s
(A, x) ·Dt

(B, y) ≤ 4s+t .

Theorem 4.3.2(a) now yields

Hs+t(A×B) ≥ Hs+t(A0 ×B0) ≥ 2−s · µ(A0 ×B0)

4s+t
= 8−(s+t) · Hs(A) · Hs(B) .

Corollary 4.4.3. Given A,B ∈ B(Rd), we have

DimH(A×B) ≥ DimH(a) + DimH(b) .

Proof. If s < DimH(A) and t < DimH(B), then Hs(A) = Ht(B) =∞. Due to the regularity
of Hausdorff measures, we can choose A0 ⊆ A and B0 ⊆ B such that 0 < Hs(A0),Ht(B) <
∞. We obtain that

0 < 8−(s+t) · Hs(A0) · Ht(B0) ≤ Hs+t(A×B) ,

and consequently DimH(A×B) ≥ s+ t.

Theorem 4.4.4. Given A,B ⊆ Rd, we have

DimH(A×B) ≤ DimH(A) + DimB(B) .

Proof. Let s > DimH(A) and t > DimB(B). Choose δ0 > 0 with Nδ(B) < δ−t for all δ < δ0
and a δ-cover U = (Un)n∈N of A with

∑
n∈N diam(Un)s < 1. Further, for every n ∈ N we

let δn = diam(Un)/2 and choose a 2δn-cover Un = (Unj )j∈N of B by B by Nδn(B) balls of
radius δn. Then Un ×B is covered by the Nδn(B) product sets Un × Unj , j = 1, . . . , Nδn(B),
each of which has radius ≤

√
5 · δn. Hence, we obtain that

A×B ⊆
⋃
n∈N

Nδn (B)⋃
j=1

Un × Unj

and

Hs+t√
5δ

(A×B) ≤
∑
n∈N

Nδn (B)∑
j=1

diam(Un × Unj )s+t ≤
∑
n∈N

Nδn(B) · (
√

5 · diam(Un))s+t

≤
∑
n∈N

δ−tn · δs+tn · 5(s+t)/2 ≤ 5(s+t)/2 .

As δ → 0 we obtain that Hs+t(A×B) ≤ 5(s+t)/2 and therefore DimH(A×B) ≤ s+ t.

Corollary 4.4.5. If A,B ∈ B(Rd) and DimH(B) = DimB(B), then

DimH(A×B) = DimH(A) + DimH(B) .
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Chapter 5

Fractal geometry and dynamical
systems

If X is a metric (or topological space) and T : X → X a continuous mapping, we call
the pair (X,T ) a (topological) dynamical system with discrete time. Dynamical systems the-
ory focuses on the long-term behaviour of orbits x, T (x), T 2(x), . . . that are generated by the
iterations of T . Thereby, different dynamical systems show a broad scope of possible dynam-
ics, ranging from very ordered and predictable behaviour, as in the case of rotations on the
circle or higher-dimensional tori, to unpredictable and chaotic behaviour or the appearence
of strange attractors.

Another type of dynamical systems is given by flows, which are usually induced by or-
dinary differential equations. Here a flow on a metric space X is a mapping ϕ : R × X →
X, (t, x) 7→ ϕt(x) that satisfies the flow properties

ϕs+t(x) = ϕs(ϕt(x))

ϕ0(x) = x

for all x ∈ X and s, t ∈ R. The pair (X,ϕ) is called a continuous-time dynamical system. For
any given t ≥ 0, one may also consider the discrete-time dynamical system (X,ϕt), and it
turns out that in order to understand the long-term behaviour of (X,ϕ) it often suffices to
understand that of (X,ϕt). More generally, it is also possible to replace R by an arbitrary
group G. In this case, the resulting mapping ϕ : G × X → X, which is assumed to satisfy
the analogous equations, is called a group action or, more specifically, a G-action.

5.1 Entropy and box dimension

One of the most important notions in dynamical systems theory is that of entropy, a con-
cept that is used to quantify the complexity (or chaoticity) of a dynamical system. Given a
discrete-time dynamical system (X,T ) with compact phase space X, the n-th Bowen metric
is defined as

dn(x, y) =
n

max
i=0

dn(T ix, T iy) .

It is straightforward to show that these are metrics in the originial sense and induce the
same topology as d = d0. A set S ⊆ X is called (δ, n)-separated, if dn(x, y) ≥ δ for all
x, y ∈ X. By S(T, δ, n) we denote the maximal cardinality of a (δ, n)-separated set S ⊆ X.
As a consequence of compactness, we always have S(T, n, δ) <∞. We let

hδ(T ) = lim sup
n→∞

1

n
logS(T, δ, n)
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and define the topological entropy of T as

htop(T ) = lim
δ↘0

hδ(T ) = sup
δ>0

hδ(T ) .

Note that the quantities S(T, δ, n) and therefore also the hδ(T ) are decreasing in δ, which
justifies to replace the limit by the supremum in this definition. Depending on the context,
we also write htop(X,T ) instead of htop(T ).

We want to have a look at this concept in the context of shift dynamics. Consider the
sequence space Σ+ = {0, 1}N and the shift map

σ : Σ+ → Σ+ , σ(a)n = an+1 .

Further, we consider the metric

d(a, b) = exp (−min{n ∈ N | an 6= bn})

on Σ+. Given δ ∈ [exp−k, exp−k + 1), a pair of points a, b ∈ Σ+ is (n, δ)-separated if there
exists a mismatch between a and b in the first n+ k positions. This implies that we have

S(σ, n, δ) = 2n+k

and hence
hδ(σ) = log(2) .

Thus, we obtain htop(σ) = log(2). At the same time, note that we have Nexp(−n)(σ
+) = 2n

and therefore DimB(Σ+) = log(2) as well.

In order to see whether this is merely a coincidence, we now consider compact subsets
X ⊆ Σ+ which are shift-invariant, that is, which satisfy σ(X) = X. Then σ acts on X, and
the pair (X,σ) is called a (symbolic) subshift. Given k ∈ N, we have that

Nexp(−k)(X) = ]{w ∈ {0, 1}k | [w] ∩X 6= ∅} .

However, at the same time we have that

S(X,σ, δ, n) = ]{w ∈ {0, 1}n+k | [w] ∩X 6= ∅} = Nexp(−(n+k)

and thus obtain htop(X,σ) = hδ(X,σ) = DimB(X) for all δ ∈ [0, 1/2]. Hence, we have
proved

Theorem 5.1.1. If Σ+ is equipped with the above metric and (X,σ) is a symbolic subshift,
then

htop(X,σ) = DimB(X) .

5.2 Fractal attractors and repellers of dynamical systems

Fractals often appear as attractors and repellers, or more generally as invariant sets, of
dynamical systems. Given T : X → X, we call A ⊆ X T -invariant if T (A) = A. The
following example shows how the Middle Third Cantor Set C can appear as an invariant set
of a dynamical system.

Example 5.2.1. Let

T : R→ R , x 7→

{
T1(x) = 3x x ≤ 1/2

T2(x) = 3− 3x x > 1/2
.
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If x < 0, then Tn(x) = 3nx
n→∞−→ −∞. Likewise, if x > 1, then T (x) < 0 and hence

Tn(x) = 3n−1T (x)
n→∞−→ −∞. Hence, all points outside of the set

A =
⋃
n∈N

T−n([0, 1]) = {x ∈ R | Tn(x) ∈ [0, 1] ∀n ∈ N}

converge to −∞ under iteration by the map T . Hence, the set A is the maximal invariant set
in [0, 1], and also the maximal compact invariant set of the system. As all other points move
away from A, we say A is a repeller. We claim that A is exactly the Middle Third Cantor Set.

In order to prove A = C, recall that C is the unique attractor of the IFS S = {S1, S2} on
R, with

S1(x) = x/3 , S2(x) = x/3 + 2/3 .

On the other hand, for any set B ⊆ [0, 1] we have that T−1(B) = T−1
1 (B) ∪ T−1

2 (B). As
A satisfies T−1(A) = A, this means that A is the unique attractor of the IFS S̃ = {S̃1, S̃2},
where

S̃1(x) = S1(x) , S̃2(x) = 1− x/3 .
Moreover, if we let H(x) = 1 − x, then it is easy to check that S2 ◦ H = S̃2 and, using
H−1 = H, S2 = S̃2 ◦H. Similarly, we have

H ◦ S1 ◦H = S2 , H ◦ S2 ◦H = S1 .

The later implies that

S(H(C)) = S1 ◦H(C) ∪ S2 ◦H(C)

= H ◦ S2 ◦H ◦H︸ ︷︷ ︸
=IdR

(C) ∪H ◦ S1 ◦H ◦H︸ ︷︷ ︸
=IdR

(C)

= H ◦ S2(C) ∪H ◦ S1(C) = H(C) .

As C is the unique attractor of S, this implies H(C) = C. However, this further yields

S̃(C) = S̃1(C) ∪ S̃2(C) = S1(C) ∪ S2 ◦H(C) = S1(C) ∪ S2(C) = C .

As A is the unique attractor of S̃, this implies A = C.

Exercise 45. Suppose that S = {S1, . . . , Sm} and S̃{S̃1, . . . , S̃m} are two IFS on X and X ′,
respectively. Further, assume that H : X → X ′ is a homeomorphism such that {H ◦ Sj ◦
H−1} = S̃. Show that in this case AS̃ = H(AS).

Example 5.2.2. A similar example is given by the map

T : R→ R , x 7→

{
3x x ≤ 1/2

3x− 2 x > 1/2
.

We let h : Σ+ → R, a 7→ 2 ·
∑
n∈N an · 3−n, so that h(Σ+) = C. Given a ∈ Σ+, we have that

g ◦ h(a) =

{
2 ·
∑∞
n=2 3−n+1an h(a) ∈ [0, 1/3]

3 · 2
3 + 2 ·

∑∞
n=2 3−n+1an − 2 h(a) ∈ [2/3, 1]

}
= h ◦ σ(a) .

Hence, we obtain g ◦ h = h ◦ σ. In this situation, the maps g and σ are called conjugate and
the homeomorphism h is called a conjugation. As g = h ◦ σ ◦ h−1, the map h can be seen as
a coordinate change which transforms the one system into the other.

As a consequence, we immediately obtain

g(C) = g(h(Σ+)) = h(σ(Σ+)) = h(Σ+) = C ,

so that again C is an invariant set of the system. Note that we could have obtained the same
result by a similar argument as in the previous example.

Remark 5.2.3. Similar, but two-dimensional example, is given by so-called horseshoe maps.
These are diffeomorphism H of the plane which leave invariant a product C × C of two
one-dimensional Cantor sets. Moreover, HC×C is conjugate to the two-sided shift (the shift
on the space of two-sided sequences).
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5.3 Fractal attractors

Given a topological dynamical system (X,T ), a compact set A ⊆ X is called a topological
attractor if there exists a neighbourhood U of A such that T (U) ⊆ U and

⋂
n∈N T

n(U) = A.
If X carries a natural measure (like the Lebesgue measure if X ⊆ Rd is a set of positive
Lebesgue measure), then A is called an attractor in the sense of Milnor, or Milnor attractor,
if

(i) the set R(A) = {x ∈ X | limn→∞ d(Tn(x), A) = 0} has positive measure;

(ii) there exists no compact strict subset A′ ( A of A such that R(A′) = R(A).

Examples of fractal attractors – in either sense – are more difficult to produce than examples
of fractal invariant sets as in the last section. However, the appearence of fractal attractors
(often called strange attractors) is one of the intriguing phenomena in dynamical systems,
and there are various famous examples. One of the best-known is the Hénon attractor, which
appears as an attractor of the Hénon map

Ha,b(x, y) = (1− ax2 + y, bx)

For the classical parameters a = 1.4 and b = 0.3, numerical estimate for the the box and
Hausdorff dimensions range from 1.23 to 1.29. For other parameters (a large, b small), the
Hénon map becomes a perturbed version of a standard Horseshoe map with an invariant
Cantor set (but no fractal attractor).

Figure 5.3.1: Attractor of the Hénon map with parameters a = 1.4 and b = 0.3. (Source:
Wikipedia, https://commons.wikimedia.org/wiki/File:HenonMap.svg, Creative Com-
mons Attribution-Share Alike 4.0 International license, author Shiyu Ji.)

The Hénon map itself was introduced by Michel Hénon as a simplified model of the
Lorenz flow, which is generated by the three-dimensional ODE

x′ = σ(y − x)

y′ = x(ρ− z)− y
z′ = xy − βz

with real parameters σ, ρ and β.
Both the Hénon and the Lorenz attractor are strange chaotic attractors, where the term

‘chaotic’ refers to the fact that the system has positive topological entropy. Strange non-
chaotic attractors have been discovered in skew product systems like

fα,β : T1 × R→ T1 × R , (x, y) = (x+ α, tanh(βy) · sin(πx)) .
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Figure 5.3.2: Attractor of the Lorenz flow with parameters σ = 10, ρ = 28 and β = 8/3.
(Source: Wikipedia, author Wikimol
https://commons.wikimedia.org/wiki/File:Lorenz system r28 s10 b2-6666.png.)

In this case, the term strange is not motivated by a non-integer dimension, but by the fact
that the Hausdorff dimension equals 1, whereas the box dimension is 2 (Gröger et al, 2013).

Figure 5.3.3: Attractor of the quasiperiodially forced map fα,β with α the golden mean and
β = 3.

5.4 Dimensions of Weierstrass graphs

The Weierstrass function is given by the trigonometric series

ϕλ,b(ξ) =

∞∑
n=1

λn · cos(2πbnξ)

with parameters λ ∈ (0, 1) and b ∈ N, b > 1/λ. It was introduced by Weierstrass in 1872 in
order to provide an example of a continuous function that is nowhere differentiable. Note
that ϕλ,b is defined on the real line, but at the same time it is 2π-periodic, so that we will
view it as a function ϕλ,b : [0, 2π]→ R.
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Figure 5.4.1: Graph of the Weierstrass function with parameters λ = 1/2 and β = 3.

Proposition 5.4.1. The Weierstrass function ϕλ,b is α-Hölder continuous with Hölder exponent
α = − log λ/ log b.

Theorem 5.4.2. Suppose that Ξ is a metric space and ϕ : Ξ→ R is α-Hölder continuous. Then

DimB(ϕ) ≤ DimB(Ξ) + 1− α (5.4.1)

DimB(ϕ) ≤ DimB(Ξ) + 1− α (5.4.2)

Exercise 46. Show that in the situation of Theorem 5.4.2 we also have

DimB(ϕ) ≤ DimB(Ξ)/α

DimB(ϕ) ≤ DimB(Ξ)/α

Why does this estimate only become relevant if DimB(Ξ) < 1 (respectively DimB(Ξ) < 1?

Corollary 5.4.3. We have DimB(ϕλ,b ≤ 2 + log λ/ log b.

Proposition 5.4.4. If λ ∈ (0, 1/4) and b ≥ 8, then we have

Dimb(ϕλ,b) = 2 + log λ/ log b .

Remark 5.4.5. In fact, both the box dimension and also the Hausdorff dimension of the
Weierstrass graph ϕλ,b equal 2+log λ/ log b, for all admissible parameter pairs λ, b. However,
the proofs of these facts have been given by using dynamical methods, for the box dimen-
sion by Bedford (Nonlinearity 1989), for the Hausdorff dimension by Barański, Bárány and
Romanowska in (Advances in Mathematics, 2014).

The basic observation allowing the application of dynamical methods to this problem is
the fact that the Weierstrass graph is an invariant repeller of the skew product system

T : T1 × R→ T1 × R , (ξ, x) 7→
(
bξ mod 1,

x− cos(2πξ)

λ

)
.

If we let Tξ(x) = x−cos(2πξ)
λ , then an easy computation yields Tξ(ϕλ,b(ξ)) = ϕλ,b(bξ) and

hence T (ϕλ,b) = ϕλ,b (where ϕλ,b is interpreted as a subset of X × R).
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5.5 Fractal graphs in fibrewise contracting skew product
systems

Let Ξ and X be metric spaces and τ : Ξ → Ξ a homeomorphism. A skew product map T
with base τ is of the form

T : Ξ×X , (ξ, x) 7→ (τ(ξ), Tξ(y))

The map T is said to be (uniformly) contracting in the fibres if there exists a constant
λ ∈ [0, 1) such that

d(Tξ(x), Tξ(y)) ≤ λd(x, y)

for all ξ ∈ Ξ and x, y ∈ X. The graph transform associated to the skew product T is given
by

T∗ : F(ξ,X)→ F(ξ,X) , ϕ 7→ T∗ϕ(ξ) = Tτ−1(ξ)(ϕ(τ−1(ξ))) .

If both ϕ and T∗ϕ are interpreted as subsets of the product space Ξ×X, then T (ϕ) = T∗ϕ.

Theorem 5.5.1. If T : Ξ × X → Ξ × X is a skew product map that is contracting in the
fibres, then the graph transform T∗ is a contraction on the Banach space (F(Ξ, X), ‖.‖∞) and
therefore has a unique fixed point ϕT . Moreover, we have that

d(Tnξ (x), ϕT (τn(ξ))) ≤ λn · d(x, ϕ(ξ))

for all (ξ, x) ∈ Ξ×X and n ∈ N
Proposition 5.5.2. Suppose that τ−1 is Lipschitz-continuous on Ξ with Lipschitz constant γ >
0 and T is a fibrewise contracting skew product map on Ξ×X with uniform contraction constant
λ ∈ (0, 1). Then ϕT is α-Hölder continuous for any Hölder exponent α < min{1, log λ/ log γ}.
Corollary 5.5.3. In the situation of 5.5.2, if γ < λ, we have

DimB(ϕT ) ≤ DimB(Ξ) + 1− log λ/ log γ .

Remark 5.5.4. In certain situations where the assumptions of Proposition 5.5.2 hold, but
additionally the maps τ and T satisfy a number of further conditions (which are referred
to as partial hyperbolicity of the map T ), it is possible show the equality DimB(ϕT ) =
DimB(Ξ) + 1 − log λ/ log γ. This relies again on dynamical methods (thermodynamic for-
malism).
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Appendix A

Measure Theory

A.1 Systems of sets

Let X be an arbitrary set and P(X) = {A | A ⊆ X} be its power set. Then a family of
subsets S ⊆ P(X) is called a semiring, if it satisfied

(S1) ∅ ∈ S;

(S2) A,B ∈ S ⇒ A ∩B ∈ S (∩-stability);

(S3) if A,B ∈ S, then there exists a finite number of pairwise disjoint sets A1, . . . , Ak ∈
S such that B \A =

⊎k
i=1Ai

A family A ⊆ P(X) is called a σ-algebra, if it satisfies

(A1) X ∈ A;

(A2) A ∈ A ⇒ Ac ∈ A;

(A3) if (An)n∈N is a sequence of sets in A, then
⋃
n∈NAn ∈ A.

The sets A ∈ A are called measurable (with respect to A) in this case. The pair (Ω,A)
is called a measurable space. If (A3) is only satisfied for finite unions, then A is called an
algebra.d A family D ⊆ P(X) is called Dynkin system, if it satisfies

(D1) X ∈ D;

(D2) A ∈ D ⇒ Ac ∈ DI

(D3) if (An)n∈N is a sequence of paarweise disjoint sets in D, then
⊎
n∈NAn ∈ D.

Remark A.1.1. For our purposes, semirings, σ-algebras and Dynkin systems will be the
most important types of set systems. However, there exist further closely related notions
of sets systems which often play a role in measure theory. For instance, if (S2) is replaced
by closedness under (finite) unions and (S3) is replaced by the stronger condition that
A,B ∈ S implies A \ B ∈ S, then S is called a ring. A ring is intersection stable, since
A ∩B = A \ (A \B).

Further, a ring which is closed under countable unions is called a σ-ring. The latter will
be needed in the context of Borel measures on topological spaces in Section ??. The only
difference between a σ-ring and a σ-algebra is the fact that a σ-algebra needs to contain X.
Hence, a σ-ring which contains X is a σ-algebra.
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Lemma A.1.2. Let S ⊆ P(X) be a semiring and suppose that (An)n∈N is a sequence of sets in
S. Then there exists a sequence (Bk)k∈N of pairwise disjoint sets in S such that⋃

n∈N
An =

⊎
k∈N

Bk . (A.1.1)

Moreover, the sequence (Bk)k∈N can be chosen such that there exists a sequence of integers
(Kn)n∈N with the property that

n⋃
i=1

Ai =

Kn⊎
k=1

Bk n ∈ N (A.1.2)

holds for all n ∈ N.
We will obtain this statement of the consequence of the following, slightly more technical

lemma.

Lemma A.1.3. Suppose C1, . . . , Cn and D1, . . . , Dm are two finite sequences of pairwise dis-
joints sets in S. Then there exist k ∈ N and pairwise disjoint sets R1, . . . , Rk in S such that

n⊎
i=1

Ci \
m⊎
j=1

Dj =

t⊎
l=1

Rl .

Proof. We proceed by induction on m. Let m = 1. According to (S3), for any i = 1, . . . , n
we can choose qi ∈ N and pairwise disjoint sets M i

1, . . . ,M
i
qi ∈ S such that Ci \ D1 =⊎qi

s=1M
i
s. Hence, we obtain

n⊎
i=1

Ci \D1 =

n⊎
i=1

li⊎
s=1

M i
s =

t⊎
l=1

Rl ,

where t =
∑n
i=1 li and the sets R1, . . . , Rt are obtained by relabelling the sets M i

s. Now,
suppose that m > 1 and the statement holds for m− 1. Then there exist sets R̃1, . . . , R̃t̃ ∈ S
such that

n⊎
i=1

Ci \
m−1⊎
j=1

Dj =

t̃⊎
l=1

R̃l .

We obtain

n⊎
i=1

Ci \
m⊎
j=1

Dj =

 n⊎
i=1

Ci \
m−1⊎
j=1

Dj

 \Dm =

t̃⊎
l=1

R̃l \Dm .

Using the case m = 1, for each l = 1, . . . , t̃ we can choose sets Ql1, . . . , Q
l
pl

such that R̃l \
Dm =

⊎pl
s=1Q

l
s. Relabelling the Qls then yields the statement.

Proof of Lemma A.1.2. We prove the statement in its stronger form (A.1.2) induction on
n. More precisely, we recursively construct the integers Kn and the sets BKn+1, . . . , BKn+1

for all n ∈ N. If n = 1, we let K1 = 1 and B1 = A1. If K1, . . . ,Kn−1 and B1, . . . , BKn−1 are
given, then Lemma A.1.3 yields the existence of sets R1, . . . , Rt such that

An+1 \
n⋃
i=1

Ai = An+1 \
Kn⊎
k=1

Bk =

t⊎
i=1

Ri ,

We then define Kn+1 = Kn + t und BKn+s = Rs für s = 1, . . . , l.

We say a family C ⊆ P(X) is intersection stable, if A,B ∈ C implies A ∩B ∈ C.
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Lemma A.1.4. An intersection stable Dynkin system is a σ-algebra.

Proof. Properties (D1) and (D2) are identical to (A1) and (A2), so that it only remains to
prove (A3). Suppose that An ∈ D for all n ∈ N. Then we have

⋃
n∈N

An =
⊎
n∈N

(
An \

n−1⋃
i=1

Ai

)
=
⊎
n∈N

(
An ∩

n−1⋂
i=1

Aci

)
︸ ︷︷ ︸

∈D

,

As a countable union of pairwise disjoint sets in D, this is again contained in D.

The following remark is easy to verify.

Remark A.1.5. The intersection of an arbitrary family of σ-algebras is again a σ-algebra and
the intersection of an arbitrary family of Dynkin systems is a Dynkin system.

Let C ⊆ P(X) be an arbitrary family of subsets of X. Then

σ(C) =
⋂

A σ−algebra

C⊇A

A

is called the σ-algebra induced by C and C is called a generator of σ(C). Likewise,

D(C) =
⋂

D Dynkin system

C⊇D

D

is called the Dynkin system induced by C. Again, C is referred to as the generator of D(C).
Note that generators not uniquly determined. Moreover, every σ-algebra/Dynkin system is
a generator of itself.

Theorem A.1.6. If C ⊆ P(X) is intersection stable, then D(C) = σ(C).

Proof. Since a σ-algebra is always a Dynkin system, σ(C) is a Dynkin system which con-
tains C, so that D(C) ⊆ σ(C). In order to obtain the converse inclusion, we show that D(C)
is intersection stable, so that by Lemma A.1.4 it is a σ-algebra that obviously contains C. In
order to see this, given C ∈ D(C) we let

DC := {A ∈ D(C) | A ∩ C ∈ D(C)} .

We claim that DC is a Dynkin system:

(D1) X ∩ C = C ∈ D(C), so that X ∈ DC ;

(D2) Let A ∈ DC . Then Ac ∩ C = (Cc ] (A ∩ C))c ∈ D(C), so Ac ∈ DC .

(D3) If (An)n∈N is a sequence of pairwise disjoint sets in DC , then
(⊎

n∈NAn
)
∩ C =⊎

n∈N(An ∩ C) ∈ D(C). Thus,
⊎
n∈NAn ∈ DC .

By intersection stability of the generator C, this means that for any C ∈ C the family DC is a
Dynkin system that contains C, and hence D(C). This, in turn, yields that for any B ∈ D(C)
the generator C is contained in DB and therefore D(C) ⊆ DB . However, this implies that
D(C) is intersection stable and therefore equals σ(C).
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A.2 Set functions

Let C ⊆ P(X). A mapping µ : C → [0,+∞] is called a set function. The function µ is called
σ-subadditive on C, if

⋃
n∈N

An ∈ C ⇒ µ

(⋃
n∈N

An

)
≤
∑
n∈N

µ(An)

holds for any sequence (An)n∈N of sets in C. If the same holds only for finite unions, then µ
is called (finitely) subadditive. We say µ is σ-additive on C, if

⊎
n∈N

An ∈ C ⇒ µ

(⊎
n∈N

An

)
=
∑
n∈N

µ(An)

holds for any sequence (An)n∈N of pairwise additive sets in (An)n∈N. Again, if the same
holds only for finite unions, then µ is called (finitely) additive. Further, µ is called mono-
tone on C if A,B ∈ C and A ⊆ B implies µ(A) ≤ µ(B).

Remark A.2.1. Note that any subadditive set function on cC is monotone. Further, if ∅ ∈ C,
then any σ-subadditive set function on C with µ(∅) = 0 is also subadditive.

A σ-additive set function µ on a σ-algebra A is called a measure. The triple (Ω,A, µ) is
then called a measure space. When µ(X) = 1, it is called a probability space. If X ∈ C,
µ is monoton and µ(X) < ∞, then µ is called finite. If there exist an increasing sequence
C1 ⊆ C2 ⊆ . . . of sets in C with Cn ↗ X (that is,

⋃
n∈N Cn = X) and µ(Cn) < ∞ for all

n ∈ N, then µ is called σ-finite.

Lemma A.2.2. An additive set function µ on a semiring S is always monotone and subadditive.

Proof. Let A,B ∈ S, A ⊆ B. Then B \A =
⊎n
i=1 Si with S1, . . . , Sn ∈ S by (S3), and thus

B = A ]
⊎n
i=1 Si. The additivity of µ then yields

µ(B) = µ(A) +

n∑
i=1

µ(Si) ≥ µ(A)

This shows that µ is monotone.
In order to see that it is also subadditive, suppose that A1, . . . , An ∈ S. By Lemma A.1.2,

there exist pairwise disjoint setsB1, . . . , Bk ∈ S und integers 1 = K1 < K2 < . . . < Kn = K,
such that B1 = A1 and

Ai+1 \Ai =

Ki+1⊎
j=Ki+1

Bj

for all i = 1, . . . , n− 1, so that

Ai+1 =

Ki+1⊎
Ki+1

Bj ]
Ki⊎
j=1

(Bj ∩Ai+1) .

Due to the intersection stability, all these sets are contained in S. Consequently, we obtain

n∑
i=1

µ(Ai) = µ(B1) +

n−1∑
i=1

 Ki+1∑
j=Ki+1

µ(Bj) +

Ki∑
j=1

µ(Bj ∩Ai+1)

 ≥ k∑
j=1

µ(Bj) = µ

(
n⋃
i=1

Ai

)

If(An)n∈N is a sequence of sets, then we write An ↗ A if (An)n∈N is increasing (that is,
A1 ⊆ A2 ⊆ . . .) and A =

⋃
n∈NAn. Likewise, we write An ↘ A if (An)n∈N is decreasing

(A1 ⊇ A2 ⊇ . . .) and A =
⋂
n∈NAn.
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Theorem A.2.3. Suppose (X,A, µ) is a measure space and (An)n∈N is a sequence in A. Then
the following hold.

(i) If An ↗ A, then µ(An)↗ µ(A);

(ii) if An ↘ A and µ(A1) <∞, then µ(An)↘ µ(A);

(iii) if A ⊆
⋃
n∈NAn, then µ(A) ≤

∑
n∈N µ(An); in other words, µ is subadditive.

Beweis.

(i) Let A0 = ∅. Due to the monotonicity of µ (Lemma A.2.2, note that σ-algebras
are always semirings) we have µ(A1) ≤ µ(A2) ≤ . . . . Moreover, we have An =⊎n
i=1Ai \Ai−1 und A =

⋃
n∈NAn =

⊎
n∈NAn \An−1. Using σ-additivity, we obtain

µ(A) =
∑
n∈N

µ(An \An−1) = sup
N∈N

N∑
n=1

µ(An \An−1) = sup
N∈N

µ(AN ) .

(ii) The fact that An ↘ A implies A1 \An ↗ A1 \A. Using µ(A1) <∞, (i) yields

µ(A1)− µ(An) = µ(A1 \An) ↗ µ(A1 \A) = µ(A1)− µ(A)

and hence µ(An)↘ µ(A).

(iii) Let Bn = A ∩
⋃n
k=1Ak. Then Bn ↗ A. Due to (i) and Lemma A.2.2, we obtain

µ(A) = sup
n∈N

µ(Bn) ≤ sup
n∈N

n∑
k=1

µ(Ak) =
∑
n∈N

µ(An) .

A.3 Extension of measures – existence and uniqueness

The aim of this section is to prove the following extension theorem, which allows to define
measures on a σ-algebra by determining their values only for sets of a generating semiring.

Theorem A.3.1 (Carathéodory Extension Theorem). Let S ⊆ P(X) be a semiring and µ̂ an
additive and σ-subadditive set function on S. Then there exists a measure µ on σ(S) such that
µ|S = µ̂. Moreover, if µ̂ is σ-finite, then µ is uniquely determined.

Example A.3.2. Let X = Rd and

S =

{
d⊗
i=1

(ai, bi]

∣∣∣∣∣ ai, bi ∈ R, ai < bi for all i = 1, . . . , d

}
.

Further, define µ̂ on S by

µ̂

(
d⊗
i=1

(ai, bi]

)
=

d∏
i=1

(bi − ai) .

Then it is possible to verify that the assumptions of Theorem A.3.1 are met and therefore
µ̂ extents to a unique measure on σ(S), which is called the Lebesgue measure on Rd and
denoted by LebRd .

We split the proof of Theorem A.3.1 into a number of intermediate statements, starting
with one ensuring uniqueness of the extenstion.

Lemma A.3.3. Suppose C ⊆ P(Ω) is intersection stable and µ, ν are measures on σ(C). If µ
and ν are σ-finite and coincide on C, then µ = ν.
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Proof. Given C ∈ C with µ(C) = ν(C) <∞, we let

DC = {A ∈ σ(C) | µ(A ∩ C) = ν(A ∩ C)} .

We claim that DC is a Dynkin system. The fact that Ω ∈ DC is obvious, so (D1) holds. If
A ∈ DC , then

µ(Ac ∩ C) = µ(C)− µ(A ∩ C) = ν(C)− ν(A ∩ C) = ν(Ac ∩ C) ,

which shows that Ac ∈ DC as well. Hence, (D2) holds. Finally, if (An)n∈N is a sequence of
pairwise disjoint sets in DC , then

µ

(⊎
n∈N

An ∩ C

)
=
∑
n∈N

µ(An ∩ C) =
∑
n∈N

ν(An ∩ C) = ν

(⊎
n∈N

An ∩ C

)
,

so that
⊎
n∈NAn ∩ C ∈ DC . Thus, (D3) is satisfied as well and DC is a Dynkin system.

However, as C ⊆ DC and C is intersection stable, we have that σ(C) = D(C) = DC .
Now, A ∈ σ(C) and suppose (Cn)n∈N be a sequence in C with Cn ↗ X and µ(CN ) =

ν(Cn) <∞. Then, by Theorem A.2.3(i), we have that

µ(A) = lim
n→∞

µ(A ∩ Cn) = lim
n→∞

ν(A ∩ Cn) = ν(A) .

This proves µ = ν.

An outer measure on a space X is a set function µ∗ : P(X) → [0,+∞] which is σ-
subadditive and satisfies µ∗(∅) = 0. The following result provides a general construction of
outer measures.

Proposition A.3.4. Let C ⊆ P(X) be such that ∅ ∈ C and suppose that µ̂ : C → [0,+∞] is a
set function with µ(∅) = 0. Then µ∗ : P(X)→ [0,+∞] defined by

µ∗(A) = inf

{∑
n∈N

µ(Cn)

∣∣∣∣∣ A ⊆ ⋃
n∈N

Cn, Cn ∈ C for all n ∈ N

}

defines an outer measure on X.

Proof. For the empty set, µ̂(∅) = 0 implies µ∗(∅) = 0. In order to prove the σ-subadditivity,
suppose that A ⊆

⋃
n∈NAn. If µ̂(An) = +∞ for some n ∈ N, then there is nothing to show.

Otherwise, we fix ε > 0 and choose sets Cnk for k, n ∈ N such that

µ∗(An) ≤

(∑
k∈N

µ̂(Cnk )

)
− 2−nε .

Then A ⊆
⋃
k,n∈N C

n
k , so that by definition of µ∗ we obtain the estimate

µ∗(A) ≤
∑
n∈N

∑
k∈N

µ̂(Cnk ) ≤
∑
n∈N

(µ∗(An) + 2−nε) =
∑
n∈N

µ∗(An) + ε .

As ε > 0 was arbitrary, this yields µ∗(A) ≤
∑
n∈N µ

∗(An) and hence the σ-subadditivity of
µ∗.

If µ∗ is an outer measure on X, we say A ⊆ X is µ∗-measurable if

µ∗(A ∩ E) + µ∗(Ac ∩ E) = µ(E)

holds for all E ⊆ X.
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Theorem A.3.5. If µ∗ is an outer measure on X, then

M(µ∗) = {A ⊆ X | A is µ∗-measurable}

is a σ-algebra and µ∗ is a measure on (X,M(µ∗)).

Proof. Properties (A1) and (A2) are obvious. Hence, we have to prove that M(µ∗) is
closed under taking countable unions and µ∗ is σ-additive onM(µ∗).

We first show that M(µ∗) is closed under taking finite unions. To that end, let A,B ∈
M(µ∗). Due to the σ-subadditivity of µ∗, we have that

µ∗((A ∪B) ∩ E) + µ∗((A ∪B)c ∩ E) ≤ µ(E) .

The reverse inclusion follows from

µ∗((A ∪B) ∩ E) + µ∗((A ∪B)c ∩ E)

≤ µ∗(A ∩B ∩ E) + µ∗(Ac ∩B ∩ E) + µ∗(A ∩Bc ∩ E) + µ∗(Ac ∩Bc ∩ E)

= µ∗(B ∩ E) + µ∗(Bc ∩ E) = µ∗(B) ,

where we used the µ∗-measurability of A in the step from the second to the third line and
that of B in the last step.

Next, we show the σ-additivity of µ∗. Note that ifA,B are disjoint, then µ∗-measurability
of A implies

µ∗(A ]B) = µ∗(A ∩ (A ]B)) + µ∗(Ac ∩ (A ]B)) = µ∗(A) + µ∗(B) .

Hence µ∗ is finitely additive. Further, if (An)n∈N is a sequence of pairwise disjoint sets in
M(µ∗) and A =

⊎
n∈NAn, then

∑
n∈N

µ∗(An) = sup
n∈N

n∑
k=1

µ∗(Ak) = sup
n∈N

µ∗

(
n⊎
k=1

Ak

)
≤ µ∗(A) .

Since the reverse inequality follows from σ-subadditivity, this shows the σ-additivity of µ∗.
Note that we did not have to assume that A ∈M(µ∗).

Finally, we need to show the fact that M(µ∗) is a σ-algebra. Since it is stable under
taking unions and complements, it is also intersection stable. Therefore, by Lemma A.1.4,
it suffices to show thatM(µ∗) is a Dynkin system. (D1) and (D2) are again easy to see. In
order to prove (D3), suppose again that (An)n∈N is a sequence of pairwise disjoint sets in
M(µ∗) and let A =

⊎
n∈NAn. We need to show that A is µ∗-measurable, that is,

µ∗(A ∩ E) + µ∗(Ac ∩ E) = µ(E)

holds for all E ⊆ X. We start by showing that

µ∗

(
E ∩

n⊎
k=1

Ak

)
=

n∑
k=1

µ∗(E ∩Ak) (A.3.1)

for all n ∈ N. If n = 1, there is nothing to show. If (A.3.1) holds for some n ≥ 1, then

µ∗

(
E ∩

n+1⊎
k=1

Ak

)
= µ∗

(
An+1 ∩ E ∩

n+1⊎
k=1

Ak

)
+ µ∗

(
Acn+1 ∩ E ∩

n+1⊎
k=1

Ak

)

= µ∗(An+1 ∩ E) + µ∗

(
E ∩

n⊎
k=1

Ak

)
=

n+1∑
k=1

µ∗(E ∩Ak) ,
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where we used the induction assumption in the last step. This proves that (A.3.1) holds,
and by using the monotonicity of µ∗ we further obtain

µ∗(E) = µ∗

(
E ∩

n⊎
k=1

Ak

)
µ∗

(
E ∩

(
n⊎
k=1

Ak

)c)
≥

n∑
k=1

µ∗(E ∩Ak) + µ∗(E ∩Ac) .

As n→∞, this yields

µ∗(E) ≥
∑
k∈N

µ∗(E ∩Ak) + µ∗(E ∩Ac) ≥ µ∗(E ∩A) + µ∗(E ∩Ac)

and thus completes the proof.

The following statement now provides the last step in the proof of the Carathéodory
Extension Theorem A.3, since it entails that M(µ∗) contains the induced σ-algebra σ(S).
We can thus obtain the extension measure µ on σ(S) as the restriction of the measure µ∗

that is defined on the larger σ-algebra σ(S).

Lemma A.3.6. Let S ⊆ P(X) be a semiring and suppose µ̂ is an additive and σ-subadditive
set function on S. Denote by µ∗ the outer measure on P(X) induced by µ̂. Then S ⊆M(µ∗),

Proof. Note that additivity of µ̂ implies µ̂(∅) = 0, so that Proposition A.3.4 applies and
µ∗ is an outer measure. Let A ∈ S. We have to show that A is µ∗-measurable. To that
end, suppose E ⊆ X and assume without loss of generality that µ∗(E) ≤ ∞. Given ε >
0, choose sets En ∈ S, n ∈ N, such that E ⊆

⋃
n∈NEn and

∑
n∈N µ̂(En) ≤ µ∗(E) + ε.

Due to Lemma A.1.2, we may assume that the En are pairwise disjoint. Moreover, due
to the intersection stability of the semiring S we have A ∩ En ∈ S for all n ∈ N, so that
(A ∩ En)n∈N is a covering of A ∩ E by sets from S. Further, by (S3), for every n ∈ N there
exist Cn1 , . . . , C

n
kn
∈ S such that

En ∩Ac = En \A =

kn⊎
j=1

Cnk .

We thus obtain

µ∗(A ∩ E) + µ∗(Ac ∩ E) ≤
∑
n∈N

µ̂(En ∩A) +
∑
n∈N

kn∑
j=1

µ̂(Cnk )

additivity of µ
=

∑
n∈N

µ̂(En) ≤ µ∗(E) + ε .

As ε > 0 was arbitrary, we obtain µ∗(A∩E) + µ∗(Ac ∩E) ≤ µ∗(E). The opposite inequality
follows from the subadditivity of µ∗. Together, this shows that A is µ∗-measurable.
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The Hausdorff metric

Suppose (X, d) is a metric space and A,B ⊆ X. Then the Hausdorff distance between A
and B is defined as

dH(A,B) = inf{ε > 0 | A ⊆ Bε(B) and B ⊆ Bε(A)} ,

where Bε(A) =
⋃
x∈ABε(x). Let K(X) = {K ⊆ X | K is compact}.

Theorem B.1. Suppose that X is a compact metric space. Then the Hausdorff distance dH
defines a metric on K(X) and the resulting Hausdorff space (K(X), dH) is complete. Given a
Cauchy-sequence (An)n∈N in K(X), the Hausdorff limit of (An)n∈N is given by

A =
⋂
n∈N

⋃
m≥n

Am . (B.0.1)

For an arbitrary sequence (An)n∈N, the set defined in (B.0.1) is called the upper Haus-
dorff limit. We will denote ε-balls in (K(X), dH) by BHε (·) and Hausdorff limits by limHn→∞.

Proof. The fact that dH defines a metric is easy to see: positive definiteness and symme-
try are immediate (using that d(x,A) > 0 for all compact sets A and x /∈ A for positive
definiteness), and the triangle inequality follows from the fact that Bε(Bδ(A)) ⊆ Bε+δ(A).

In order to see that (K(X), dH) is complete, suppose (An)n∈N is a Cauchy-sequence in
K(X). Fix ε > 0 and let Bn =

⋃
m≥nAm, so that A =

⋂
n∈NBn. Then {Bε(A)}∪{Bcn | n ∈ N

is an open cover of X and therefore contains a finite subcover. However, as the Bn are
decreasing, this means that Bε(A) ∪ Bcn = X for some n ∈ N, and hence Bm ⊆ Bε(A) for
all m ≥ n. Conversely, fix M ∈ N such that dH(An, Am) ≤ ε/2 for all n,m ≥ M . Then
A ⊆ Bn ⊆ Bε(An) for all n ≥M .

Together, this yields dH(A,An) < ε for all n ≥ max{N,M}. As ε > 0 was arbitrary, this
proves A = limHn→∞An.

Corollary B.2. The metric space (K(Rd), dH) is complete.

Proof. The fact that dH defines a metric is independent of compactness. Given a Cauchy-
sequence (An)n∈N in Rd, we may assume due to the Cauchy-property that all the An are
contained in a compact ball BR(0) for some sufficiently large R > 0. Then (An)n∈N con-
verges in (K(BR(0)), dH) by Theorem B.1, and hence also in (K(Rd), dH).

Theorem B.3. Suppose X is a compact metric space. Then (K(X), dH) is compact as well.

Proof. A metric space is compact if and only if it is complete and precompact (Heine-Borel).
As completeness was already proven in Theorem B.1 above, it remains to prove precompact-
ness.
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In order to do so, fix δ > 0. Then by compactness there exists a finite δ-dense subset
S ⊆ X (where we call as set S δ-dense in X if

⋃
x∈S Bδ(x) = X). Given K ∈ K(X), let

AK = {x ∈ S | d(x,K) < δ} .

Then by construction we have that dH(AK ,K) < δ. Therefore, we have that

K(X) ⊆
⋃
A⊆S

BHδ (A) .

This proves precompactness.
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