Mathematik für Business Administration

Übungsaufgaben

Serie 8: Matrizen und lineare Gleichungssysteme

1. Mit den Matrizen

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 3 & 1 & 2 \end{pmatrix} \quad B = \begin{pmatrix} -1 & 2 & -4 \\ 2 & 0 & -1 \end{pmatrix} \quad C = \begin{pmatrix} 3 & 0 & 5 \\ 0 & 2 & 1 \\ 0 & -1 & 1 \end{pmatrix} \quad D = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$

ist zu berechnen (wenn möglich):

a)
$$2A + 3B$$

b)
$$B - 2A$$
 c) AB^T

c)
$$AB^T$$

$$d)$$
 CA

e)
$$DB$$

$$f)$$
 CD

g)
$$DD^T$$

h)
$$B^TAC$$
.

2. Überprüfen Sie, ob die Matrix X jeweils die inverse Matrix zu A ist:

a)
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}$$
 und $X = \begin{pmatrix} -1 & 0 & 1 \\ 2 & 1 & -2 \\ 2 & 0 & -1 \end{pmatrix}$

b)
$$A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$
 und $X = \begin{pmatrix} 1 & 0 \\ -1 & -0 \end{pmatrix}$.

3. Berechnen Sie die Matrizen $A^2 = A \cdot A$, $A^3 = A \cdot A \cdot A$ und allgemein A^n , $n \in \mathbb{N}$, für:

a)
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$
 b) $A = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$.

4. Lösen Sie die folgenden linearen Gleichungssyteme:

a)
$$3x_1 - x_2 + 2x_3 = 17$$

 $2x_1 + x_2 - x_3 = 0$
 $-x_1 + 2x_2 + x_3 = -9$

b)
$$2u_1 - u_2 + u_3 + 2u_4 = 5$$

$$-2u_1 - u_2 + 2u_3 - u_4 = -9$$

$$4u_1 - 2u_2 + u_3 - 2u_4 = -7$$

$$u_1 + u_2 - 2u_3 + 3u_4 = 14$$

c)
$$x_1 - 2x_2 + 3x_3 = 4$$

 $2x_1 - 3x_2 + 4x_3 = 7$
 $3x_1 + x_2 - 5x_3 = 5$

d)
$$x_1 - 2x_2 + 3x_3 - x_4 + 2x_5 = 2$$

 $3x_1 - x_2 + 5x_3 - 3x_4 - x_5 = 6$
 $x_1 + 3x_2 - x_3 - x_4 - 5x_5 = 2$

e)
$$3x_1 - 4x_2 + x_3 = 1$$

 $-2x_1 + 3x_2 + 2x_3 = 3$
 $-x_1 + 2x_2 + 5x_3 = 5$.

5. In einem Container gibt es drei Arten von Behältern B_1 , B_2 , B_3 . In jedem Behälter sind drei Sorten von Kugeln K_1 , K_2 , K_3 in folgenden Stückzahlen enthalten:

	K_1	K_2	K_3	
B_1	200	100	100	-
B_2	100	20	20	•
$B_1 \\ B_2 \\ B_3$	100	40	20	

Desweiteren ist die Anzahl der 3 Kugelarten bekannt: 2200 Kugelm K_1 , 940 Kugeln K_2 und 740 Kugeln K_3 . Wieviele Behälter B_1 , B_2 , B_3 befinden sich in dem Container?

6. Nach einem Erdbeben soll in die betroffene Region ein Flugzeug mit Hilfsgütern entsandt werden, wobei die Kapazitäten bezüglich des Laderaumes, des Gewichtes und die zur Verfügung stehenden Geldmittel voll ausgeschöpft werden sollen.

	Volumen je	Gewicht je	Kosten je
	Container in l	Container in kg	Container in Euro
Blutkonserven	200	150	1000
Medikamente	300	100	300
Nahrungsmittel	80	60	400
Frischwasser	60	70	200
Kapazitäten	60 000	40 000	150 000

Es ist außerdem bekannt, daß Frischwasser am dringendsten benötigt wird und deshalb genau doppelt so viele Wassercontainer wie Container mit Blut und Medikamenten insgesamt verwendet werden sollen. Wieviele Container von jeder Sorte können unter diesen Umständen verschickt werden?

7. Für welchen reellen Parameter a ist das lineare Gleichungssystem

unlösbar?

8. Für welche $p, q \in \mathbb{R}$ hat das lineare Gleichungssystem Ax = b mit

$$A = \begin{pmatrix} -1 & 3 & 3 \\ -2 & 3 & 9 \\ -6 & 8 & 28 \end{pmatrix} , \qquad b = \begin{pmatrix} 4 \\ p \\ 2q \end{pmatrix} ,$$

keine, genau eine bzw. mehrere Lösungen? Geben Sie die Parameterlösung an.