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Abstract. In this introduction to the special issue “40 years of FDE”, we offer an overview

of the field and put the papers included in the special issue into perspective. More specifi-

cally, we first present various semantics and proof systems for FDE, and then survey some

expansions of FDE by adding various operators starting with constants. We then turn

to unary and binary connectives, which are classified in a systematic manner (affirma-

tive/negative, extensional/intensional). First-order FDE is also briefly revisited, and we

conclude by listing some open problems for future research.
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1. Introduction

1.1. A Brief History

Logicians explore various logical consequence relations for a wide range of
formal languages, not only the one known as classical logic, but also other
consequence relations referred to as nonclassical logics.1 There is a contin-
uum of nonclassical logics, but some systems have emerged as particularly
interesting and useful. Among these distinguished nonclassical logics is a
system of propositional logic that has become well-known as Belnap and
Dunn’s useful four-valued logic or first-degree entailment logic, FDE. In its
now standard presentation as an extensional four-valued logic, FDE first
appeared in print around 1977, i.e., approximately 40 years ago, in three
seminal papers by Nuel D. Belnap and J. Michael Dunn [6,7,10]. In a now
less-standard presentation, however, FDE was already introduced in the late
1950s in Belnap’s unpublished doctoral dissertation and in [1] as a fragment
of the system E of entailment, namely as a set of certain first-degree entail-
ments, i.e., implications A→B, where A and B are formulas containing at
most conjunction, disjunction, and negation. A first-degree entailment A→B

1We highly recommend [34] for an excellent overview as well as an introduction to
nonclassical logics.
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is in normal form if A is in disjunctive and B is in conjunctive normal form.
Moreover, A→B is a tautological entailment iff it can be put into a provably
equivalent normal form A1 ∨ . . . ∨ Am→B1 ∧ . . . ∧ Bm and for all Aj→Bk,
the conjunction Aj and the disjunction Bk share a propositional variable
(so that Aj→Bk is tautologically valid in this sense). In [1] it is shown
that a first-degree entailment A→B is provable in system E iff A→B is a
tautological entailment.

In this introduction, we offer an overview of FDE and various extensions
(in the same vocabulary) and expansions of it. Moreover, we point to the
main contributions of the papers included in this special issue and collect
some open problems that will hopefully be a helpful guide to continuing
research in this field.

1.2. Preliminaries

Our propositional language consists of a finite set C of propositional connec-
tives and a countable set Prop of propositional variables which we refer to as
LC. Furthermore, we denote by FormC the set of formulas defined as usual in
LC. In this paper, we always assume that {∼, ∧, ∨} ⊆ C and just include the
propositional connective(s) not from {∼, ∧, ∨} in the subscript of LC. For
example, we write L{◦} and Form{◦} to mean L{∼,∧,∨,◦} and Form{∼,∧,∨,◦}
respectively. Moreover, we denote a formula of LC by A, B, C, etc. and a
set of formulas of LC by Γ, Δ, Σ, etc.

2. FDE: Some Basics

2.1. Semantics for FDE

We first present four representative semantics for FDE.

Four-valued semantics Although it is not the only way to present the sys-
tem, FDE is probably best known as a system of four-valued logic charac-
terized through the following truth tables due to Timothy Smiley (cf. [7,
p. 16]):2

x ∼ x

t f
b b
n n
f t

x ∧ y t b n f
t t b n f
b b b f f
n n f n f
f f f f f

x ∨ y t b n f
t t t t t
b t b t b
n t t n n
f t b n f

2The logic FDE is also characterized by a certain eight-valued matrix, M0, from [1], see
[3, p. 205, Theorem 3].
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The truth values are written as t, b, n and f, taken from true only, both true
and false, neither true nor false and false only respectively. We fix the set
of designated values D to be {t,b} in this introduction unless stated oth-
erwise.3 We refer to the algebra 〈{t,b,n, f}, {∼, ∧, ∨}〉, the algebraic coun-
terpart of FDE, as BD. The formal definition of the four-valued semantic
consequence relation will be given as follows.

Definition 1. A four-valued valuation for Form is a homomorphism from
the free algebra of formulas in L to BD.

Definition 2. A formula A is a four-valued semantic consequence of Γ
(Γ |=4 A) iff for all four-valued valuations v, if v(B) ∈ D for all B ∈ Γ then
v(A) ∈ D.

Two-valued Dunn semantics We now turn to the two-valued relational
semantics due to Dunn (cf. [10]). This semantics justifies the intuitive read-
ing of the four truth values in the four-valued semantics.

Definition 3. A Dunn-interpretation is a relation, r, between propositional
variables and the values 1 and 0, namely r ⊆ Prop × {1, 0}. Given an inter-
pretation, r, this is extended to a relation between all formulas and truth
values by the following clauses:

• ∼ Ar1 iff Ar0,

• ∼ Ar0 iff Ar1,

• A ∧ Br1 iff Ar1 and Br1,

• A ∧ Br0 iff Ar0 or Br0,

• A ∨ Br1 iff Ar1 or Br1,

• A ∨ Br0 iff Ar0 and Br0.

Definition 4. A formula A is a two-valued semantic consequence of Γ (Γ |=2

A) iff for all Dunn-interpretations r, if Br1 for all B ∈ Γ then Ar1.

Remark 5. As one can easily observe, there is a close connection between
the four-valued semantics and two-valued Dunn semantics. More specifically,
there is a mechanical procedure to turn truth tables into pairs of truth and
falsity conditions and vice versa. For the details, see [30].

3For a variant of FDE with t being the only designated value, see [20,31,51], and for a
variant of FDE with f being the only non-designated value, see [20].
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Star semantics Yet another semantics was devised by Richard Routley
(later Sylvan) and Val Routley (later Plumwood).

Definition 6. A Routley interpretation is a structure 〈W, ∗, v〉 where

• W is a set of worlds,

• ∗ : W −→ W is a function with w∗∗ = w,

• v : W × Prop −→ {0, 1}.

The function v is extended to an assignment I of truth values for all pairs
of worlds and formulas by the conditions:

• I(w, p) = v(w, p),

• I(w,∼A) = 1 iff I(w∗, A) �= 1,

• I(w, A ∧ B) = 1 iff I(w, A) = 1 and I(w, B) = 1,

• I(w, A ∨ B) = 1 iff I(w, A) = 1 or I(w, B) = 1.

Definition 7. A formula A is a star semantic consequence of Γ (Γ |=∗ A)
iff for all Routley interpretations 〈W, ∗, v〉 and for all w ∈ W , if I(w, B) = 1
for all B ∈ Γ then I(w, A) = 1.

Remark 8. As is well-known, there are two approaches to the semantics of
negation in relevance logics. The one with star semantics is known as the
Australian plan, and the other with four-valued (or equivalently two-valued
à la Dunn) semantics is known as the American plan. One of the notable
differences lies in the validity or non-validity of contraposition, once a strict
or intensional conditional has been added to the language, see [34, Chapter
9] and §5.1. Indeed, in that case, A |=∗ B implies ∼ B |=∗ ∼ A, but A |=4 B
does not imply ∼ B |=4 ∼ A.

Algebraic semantics Finally, there is also an algebraic semantics, defined
in the following manner.

Definition 9. A De Morgan lattice is an algebra A = 〈A, ∩, ∪, −〉 of type
(2,2,1) such that

• The reduct 〈A, ∩, ∪〉 is a distributive lattice; we denote its order by ≤.

• The unary operation satisfies the following equations:

� x ≈ −−x,
� −(x ∪ y) ≈ (−x ∩ −y),
� −(x ∩ y) ≈ (−x ∪ −y).
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Definition 10. Let Fm = 〈Form, ∧, ∨, ∼〉 be the absolutely free algebra of
similarity type (2,2,1) generated by a denumerable set Prop, and DM the
variety of De Morgan lattices. Then, A is an algebraic semantic consequence
of Γ = {B1, . . . , Bn} (Γ |=a A) iff for all homomorphisms h : Fm −→ A,
h(B1) ∩ · · · ∩ h(Bn) ≤ h(A) holds for all A ∈ DM.

2.2 Proof Systems for FDE

In this section we present, by way of example, four proof systems for FDE.4

Hilbert-style system The first proof system we introduce is a Hilbert-style
system, due to Josep Maria Font [12]. Since FDE has no theorems, the
calculus has no axioms.

Definition 11. Let HFDE be the Hilbert-style system with the following
rules.

A ∧ B

A
(R1)

A ∧ B

B
(R2)

A B

A ∧ B
(R3)

A

A ∨ B
(R4)

A ∨ B

B ∨ A
(R5)

A ∨ A

A
(R6)

A ∨ (B ∨ C)
(A ∨ B) ∨ C

(R7)

A ∨ (B ∧ C)
(A ∨ B) ∧ (A ∨ C)

(R8)

(A ∨ B) ∧ (A ∨ C)
A ∨ (B ∧ C)

(R9)

A ∨ C

∼ ∼A ∨ C
(R10)

∼ ∼ A ∨ C

A ∨ C
(R11)

∼(A ∨ B) ∨ C

(∼A ∧ ∼B) ∨ C
(R12)

(∼A ∧ ∼B) ∨ C

∼(A ∨ B) ∨ C
(R13)

∼(A ∧ B) ∨ C

(∼A ∨ ∼B) ∨ C
(R14)

(∼A ∨ ∼B) ∨ C

∼(A ∧ B) ∨ C
(R15)

We write Γ �h A iff there is a sequence of formulas B1, . . . , Bn, A (n ≥ 0)
such that every formula in the sequence either (i) belongs to Γ or (ii) is
obtained by one of the rules from formulas preceding it in the sequence.

Theorem 1. (Font). For any Γ ∪ {A} ⊆ Form, Γ �h A iff Γ |=4 A.

Gentzen-style system The second system, also due to Font, is a Gentzen-
style sequent calculus.

Definition 12. Let GFDE be the Gentzen-style system with the axiom
A → A and the following rules.

4David Nelson’s four-valued constructive propositional logic with strong negation N4
is a conservative expansion of FDE by intuitionistic implication, and the survey of proof
systems for N4 in [18] contains various other proof-theoretic characterizations of FDE.
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Γ → A

Γ, B → A
(W)

Γ, A, B → C

Γ, A ∧ B → C
(∧→)

Γ, A → C Γ, B → C

Γ, A ∨ B → C
(∨→)

Γ → A Γ, A → B

Γ → B
(Cut)

Γ → A Γ → B

Γ → A ∧ B
(→∧)

Γ → A

Γ → A ∨ B

Γ → B

Γ → A ∨ B
(→∨)

Γ, A → C

Γ, ∼ ∼A → C
(∼∼→)

A → B

∼ B → ∼ A
(∼)

Γ, ∼ ∼A → C

Γ, A → C
(→∼∼)

We write Γ �g A iff there is a sequence of formulas B1, . . . , Bn ∈ Γ (n ≥ 0)
such that the sequent B1, . . . , Bn → A is derivable.

Theorem 2. (Font). For any Γ ∪ {A} ⊆ Form, Γ �g A iff Γ |=4 A.

Remark 13. Note that a cut-free sequent calculus for FDE can be found
in [38].

Natural deduction system The third system is a natural deduction calculus
in the style of Gentzen and Prawitz. The following system is due to Priest
and can be found in [33, p. 309].

Definition 14. Let NFDE be the natural deduction system with the fol-
lowing rules.

A B
A ∧ B

(∧I) A ∧ B
A

(∧E) A ∧ B
B

(∧E)

A
A ∨ B

(∨I) B
A ∨ B

(∨I) A ∨ B

[A]....
C

[B]....
C

C
(∨E)

∼ ∼A
A

(∼∼)
∼(A ∧ B)
∼ A ∨ ∼B

(∼∧)
∼(A ∨ B)
∼ A ∧ ∼B

(∼ ∨)

Note here that the double underlining indicates a two-way rule of inference.
Finally, Γ �n A iff for some finite Γ′ ⊆ Γ, there is a derivation of A from

Γ′ with the above rules.

Theorem 3. (Priest). For any Γ ∪ {A} ⊆ Form, Γ �n A iff Γ |=2 A.
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A note on the papers in the special issue. The joint contribution by
Yaroslav Shramko, Dmitry Zaitsev and Alexander Belikov focuses on var-
ious less studied semantic consequence relations that are closely related
to |=2 and introduces proof systems that combine elements of natural
deduction and of Hilbert-style proof systems.

Tableaux system Finally, we present a tableau system, again due to Priest.
The details can be found in [34, Chap. 8]

Definition 15. Let T FDE be the tableau system consisting of the following
rules.

A ∧ B,+ A ∧ B,− A ∨ B,+ A ∨ B,−
↓ ↙ ↘ ↙ ↘ ↓

A, + A, − B,− A, + B,+ A, −
B,+ B,−

∼(A∧B), + ∼(A∧B), − ∼(A∨B), + ∼(A∨B), −
↙ ↘ ↓ ↓ ↙ ↘

∼ A, + ∼ B,+ ∼ A, − ∼A, + ∼ A, − ∼B,−
∼ B,− ∼B,+

∼ ∼A, + ∼ ∼A, −
↓ ↓

A, + A, −
Based on these rules, we write A1, . . . , An �t B iff there exists a completed
and closed tableau for the following initial list:

A1, +
A2, +
. . .

An, +
B,−

Theorem 4. (Priest). For any finite set Γ∪{A} ⊂ Form, Γ �t A iff Γ |=2 A.

2.3 Remarks on Extensions of FDE

Before turning to additional connectives, let us briefly make a comment on
three extensions of FDE. The most familiar one, of course, is the two-valued
classical logic. This is obtained by eliminating the intermediate values b
and n in the four-valued semantics, assuming that the relation r is actually
a function in the two-valued Dunn semantics, and assuming that the star
world is identical to the starred world in the Star semantics.
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Moreover, there are two famous three-valued extensions. One is a rather
old logic known as the strong Kleene logic. The other is the logic known as
the Logic of Paradox which has been studied in detail by Graham Priest
since [32].

A note on the papers in the special issue. The joint contribution by
Hugo Albuquerque, Adam Přenosil and Umberto Rivieccio, as well as
Adam Přenosil’s contribution, focus on extensions of FDE, building on
the results of Rivieccio and Přenosil in [39] and [37] respectively. More-
over, the joint contribution by Stefan Wintein and Reinhard Muskens
also explores extensions of FDE with special attention to the interpola-
tion property.

2.4 Preliminaries for Expansions of FDE

Before discussing various expansions, we present some semantic frameworks
that will be useful later. The first one will be used in discussing various
modal operators.

Definition 16. A Kripke frame is a structure 〈W, R〉 where

• W a non-empty set,

• R is a binary relation on W .

Definition 17. A Kripke model is a structure 〈W, R, v+, v−〉 where

• 〈W, R〉 is a Kripke frame,

• vi: Prop −→ 2W (i ∈ {+, −}).

Remark 18. Given a Kripke model M = 〈W, R, v+, v−〉, we will write
M, w |=+ p and M, w |=− p for w ∈ v+(p) and w ∈ v−(p) respectively.
The same notation will be also deployed for other models introduced in this
subsection.

Second, we introduce a special kind of a Kripke models for the purpose
of discussing various binary connectives.

Definition 19. A constructive frame is a structure 〈W, ≤〉 where

• W a non-empty set,

• ≤ is a reflexive and transitive binary relation on W .

Definition 20. A intuitionistic Kripke model is a structure 〈W, ≤, v〉 where

• 〈W, ≤〉 is a constructive frame,



40 years of FDE: An Introductory Overview 1029

• v: Prop −→ 2W such that for all w, w′ ∈ W and for all p ∈ Prop:

if w ≤ w′, then w ∈ v(p) implies w′ ∈ v(p).

Definition 21. A Nelson model is a structure 〈W, ≤, v+, v−〉 where

• 〈W, ≤〉 is a constructive frame,

• vi: Prop −→ 2W such that for both i ∈ {+, −}, for all w, w′ ∈ W and for
all p ∈ Prop:

if w ≤ w′, then w ∈ vi(p) implies w′ ∈ vi(p)

Finally, we introduce yet another world semantics with a ternary relation.

Definition 22. A Routley-Meyer frame is a structure 〈W, R〉 where

• W a non-empty set,

• R is a ternary relation on W .

Definition 23. A Routley-Meyer model is a structure 〈W, R, v+, v−〉 where

• 〈W, R〉 is a Routley-Meyer frame,

• vi: Prop −→ 2W (i ∈ {+, −}).

Based on these basics of FDE, as well as the above preliminaries, we are
now ready to discuss various expansions of FDE.

3 Constants

Since FDE is a four-valued logic, there are only four constants. Unlike in
classical logic, in which two constants (top and bottom) are definable, none
of the four constants are definable in FDE. Indeed, constants that always
take b and n are not definable since the classical values are closed under the
operations of FDE. Moreover, constants that always take t and f are also
not definable since b and n are fixpoints with respect to the operations of
FDE. Therefore, the addition of any of the constants will strictly strengthen
the expressivity of the system.

4 Unary Operations

We now consider unary operations in expansions of FDE.
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4.1 “Affirmative” Operators

We first turn our attention to operators that either imply the plain sentence,
or are implied by the plain sentence. This classification is, needless to say,
not meant to be rigorous, but just a rough classification.

Extensional operators In [5], Matthias Baaz added a unary operator, now
known as Baaz’ delta, to infinitely many-valued Gödel logic. Based on the
fact that this operator can be intuitively read as “. . . is designated”, the
following unary operator is added to (first-order) FDE in [42].

x �x

t t
b t
n f
f f

This expansion, called BD� in [42], turns out to have a rather nice property
from a proof-theoretic perspective. More specifically, it is proved that given
any extensional expansion of BD�, we obtain a natural deduction system
in a mechanical manner.

Another unary operation that is studied in the literature on tetravalent
modal algebras and tetravalent modal logics (see [14]) is the following con-
nective:

x �x

t t
b f
n f
f f

As one may expect from the notation, the operator is introduced as kind of
a necessity operator, see also [8]. Font and Rius [14] suggest to read �A as
“the available information confirms that A is true”. The truth and falsity
conditions in Dunn semantics for this operation are as follows:

• �Ar1 iff (Ar1 and not Ar0),

• �Ar0 iff (Ar0 or not Ar1).

Note that this operator avoids some negative results for �Lukasiewicz’s truth-
functional necessity operator observed by Font and Hájek in [13]. For a recent
discussion on the many-valued approach to modality, see [21,22].
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Intensional operators There is quite a literature on modal many-valued
logics, and various expansions of FDE by intensional modalities have been
suggested. The smallest normal modal expansion of FDE in the language
L{�,♦} is known as KFDE; see [34, Chapter 11a], where a straightforward
expansion of T FDE is shown to be sound and complete with respect to
Kripke models M = 〈W, R, v+, v−〉. Intuitively, the interpretation relation
r of the Dunn semantics is parametrized by possible worlds to obtain an
interpretation relation rw for all possible worlds w ∈ W . More precisely, the
truth/falsity conditions of formulas �A and ♦A are as follows, as may be
expected:

• M, w |=+ �A iff for all w′ such that wRw′, M, w′ |=+ A,

• M, w |=− �A iff for some w′ such that wRw′, M, w′ |=− A,

• M, w |=+ ♦A iff for some w′ such that wRw′, M, w′ |=+ A,

• M, w |=− ♦A iff for all w′ such that wRw′, M, w′ |=− A.

A note on the papers in the special issue. The joint work of Sergei
Odintsov and Heinrich Wansing offers a systematic investigation into the
relationships between the logics BK (an expansion of both the smallest
normal modal propositional logic K and FDE), KN4 (an expansion of
FDE with �Lukasiewicz’s implication, see §5.1, and �), and MBL, modal
bilattice logic. For that purpose another modal expansion of FDE is intro-
duced, viz. the Fischer Servi–style modal logic BKFS, which is defined as
the set of all modal formulas valid under a modified standard translation
into first-order FDE.

In the study of interrelations between modalities and strong negation, ∼,
it has been emphasized that a distinction may be drawn between semantical
and formal duality, where semantical duality means that � and ♦ are inter-
preted with respect to one and the same accessibility relation R, whereas
formal (or syntactical) duality means that the familiar duality axioms are
provable in the presence of a suitable conditional. In [25] it is shown that
there are expansions of FDE by intuitionistic implication that satisfy seman-
tical (formal) duality but fail to satisfy formal (semantical) duality.

4.2 “Negative” Operators

We now turn to more negation-related operators.

Extensional operators One of the connectives one might think of adding
to FDE is a unary operation that behaves like the negation in classical
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logic. How to characterize this operation, however, is itself an interesting
question. From a proof-theoretic perspective, one would expect both the law
of excluded middle and the law of explosion. From a semantic perspective,
one would expect that the classical negation of a sentence is designated iff
the negated sentence is not designated. This, however, will not pin down
a unique operation. Indeed, from a proof-theoretic perspective there are a
few options regarding as to how the classical negation interacts with the
negation of FDE, and from a semantic perspective, there are a few options
as to how we set out the falsity condition. More specifically, there are 16
unary operations that may be referred to as classical negation, according
to an observation in [9], but here we will only highlight the following two
operations.

x ¬bx ¬ex

t f f
b n f
n b t
f t t

Note here that the subscripts b and e stand for boolean negation and exclu-
sion negation respectively. Note also that BD� is expressively equivalent to
FDE expanded by the exclusion negation.

Intensional operators Once a semantics for FDE is generalized to accom-
modate intensional notions by introducing possible worlds and accessibil-
ity relations (or neighborhood functions), FDE can be expanded by nega-
tive modalities, such as the negative alethic modalities of impossibility and
unnecessity. Also, intuitionistic negation may be seen as a negative modal-
ity that can be added to FDE, but probably one would want to consider it
together with intuitionistic implication, cf. §5.1. Whilst there is a literature
on negation as a modal operator (see, e.g., the references given in [17]), it
seems that so far no compelling motivation for adding negative modalities
to FDE has given rise to studies of such FDE-based systems.

4.3 Others

Here, we discuss some operators that are neither affirmative nor negative.

Extensional operators Paul Ruet in [41] considers a unary operation � with
the following truth table:
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x � x

t b
b f
n t
f n

It is then claimed that the algebra resulting from adding � to BD is func-
tionally complete. Here we revisit the notion of functional completeness by
following a presentation due to Grzegorz Malinowski in [19] with some slight
modifications.

Definition 24. For any natural number n ≥ 2, we denote by Un any algebra
of the form Un = (En, F) where En = {1, 2, . . . , n} and F is a set of finitary
operations on En. Then,

• g defines the k-place operation f in F if g is a composition of some of
the operations from F such that: f(�x) = g(�x) for all �x ∈ Ek

n.

• f is definable in F if g defines f in F for some g.

• Un is functionally complete if every finitary mapping f : Ek
n → En

(k ∈ ω) is definable in F .

For stating a result due to S�lupecki, the following definition is useful.

Definition 25. Let Un be an algebra, and f be a binary operation defined
in F . Then, f is unary reducible iff for some unary operation g definable in
F , f(x, y) = g(x) for all x, y ∈ Un or f(x, y) = g(y) for all x, y ∈ Un. And f
is essentially binary if f is not unary reducible.

Intuitively speaking, an essentially binary operation has a truth table “in
which at least one line [= row] and one column do not have all elements
identical”, and this is exactly the way how S�lupecki stated the condition (cf.
[44, p.154]).

Theorem 5. (S�lupecki [44]). Un (n ≥ 3) is functionally complete iff in Un

(i) all unary operations on En are definable, and

(ii) at least one surjective and essentially binary operation on En is defin-
able.

In case of expansions of the algebra related to FDE, we can simplify even
further.

Theorem 6. (Omori & Sano [30]). Given any expansion F of BD, the
following claims are equivalent:
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(i) F is functionally complete.

(ii) All of the δas as well as Cas (a ∈ {t,b,n, f}) of the following tables are
definable.

x δt(x) δb(x) δn(x) δf (x) Ca(x)
t t f f f a
b f t f f a
n f f t f a
f f f f t a

Based on this theorem, it remains to be proved that eight unary oper-
ations are definable, and this is indeed possible only by adding the unary
operation of Ruet (details are spelled out in [30]).

Remark 26. We may also think of a generalized notion of functional com-
pleteness along the two-valued Dunn semantics. For details, see [30].

Another unary operation that deserves special attention is conflation with
the following truth table:

x −x

t t
b n
n b
f f

The truth and falsity conditions in Dunn semantics for conflation are as
follows:

• −Ar1 iff not Ar0,

• −Ar0 iff not Ar1.

From an intuitive point of view, it is hard to grasp its meaning based on
these conditions. This is not a surprise, however, since the importance of
this operation becomes much clearer in the context of bilattices which is
briefly reviewed in §5.4, and we will reintroduce conflation in Definition 29.
Here we only note that ∼ −x (or − ∼x) defines the boolean negation.

Finally, we discuss the classicality operator which has the following truth
table:
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x ◦x

t t
b f
n f
f t

The truth and falsity conditions in Dunn semantics for the classicality oper-
ator are as follows:

• ◦Ar1 iff (Ar1 and not Ar0) or (not Ar1 and Ar0),

• ◦Ar0 iff (Ar1 and Ar0) or (not Ar1 and not Ar0).

This operator may be seen as a generalized version of the characteristic con-
nective in the tradition of paraconsistent logics known as Logics of Formal
Inconsistency (LFIs), now controlling the behavior of not only gluts but also
gaps. An interesting property of this operation is that it does not force the
definability of classical negation. For more details on the expansion of FDE
by the classicality operator, see [29].

Intensional operators We may also consider a constructive version of the
classicality operator. More specifically, based on a Nelson model M, the
following truth and falsity conditions give rise to a constructive variant of
the classicality operator:

• M, w |=+ ◦A iff for all w′ ≥ w : (M, w′ |=+ A and M, w′ �|=− A) or
(M, w′ �|=+ A and M, w′ |=− A),

• M, w |=− ◦A iff for all w′ ≥ w : M, w′ |=+ A iff M, w′ |=− A.

Again, for more details on this expansion of FDE, see [29].

5 Binary Operations

We now turn to the binary operations.

5.1 Conditional

FDE is known to lack a “decent” conditional. Of course we can define the
material conditional in terms of negation and disjunction, but many of the
properties that may be expected to hold for a genuine conditional are lost:
not only modus ponens and transitivity, but even identity, namely “if A then
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A” is not valid. This motivates one to expand the language by various con-
ditionals. We will give an overview of the most important and/or interesting
ones known in the literature.

Extensional operators There are a number of conditionals that can be
considered in the context of FDE. Here, we focus on the following four
conditionals:

x →e y t b n f
t t b n f
b t b n f
n t t t t
f t t t t

x →b y t b n f
t t b n f
b t t n n
n t b t b
f t t t t

x →l y t b n f
t t f n f
b t b n f
n t n t n
f t t t t

x →c y t b n f
t t b n f
b t b n f
n b b b b
f b b b b

The most well-known, as well as well-studied, implication is →e. This may
be also seen as a material implication defined in terms of exclusion negation
and disjunction (this justifies our choice of the subscript e). We may also
define the material implication in terms of boolean negation and disjunction,
and leads us to →b (subscript b, of course, for boolean).

A note on the papers in the special issue. Norihiro Kamide’s paper
explores a variant of the expansion of FDE by →e (called B→

4 in [23]),
in which double-negation simulates classical negation in a very unusual
manner.

One of the features missing in the above conditionals →e and →b is
the contraposition with respect to ∼. This is sometimes handled by con-
sidering a conjunction of the implication and its contraposed form. If we
apply this to →e, then we obtain →l which may be seen as a four-valued
generalization of �Lukasiewicz’s implication (this again justifies our sub-
script being l). Note also that →e can be defined modulo L{→l} as follows:
x →e y := (x →l (x →l y)) ∨ y.

Finally, much less studied, but very interesting, is the connexive impli-
cation →c. See [50] for connexive logics in general, and [50, §2.5] and [28,
§3.5] for systems with →c.

Remark 27. Here are precise explications for two modal logics based on
FDE. The smallest modal expansion BK of FDE from [26] is formulated in
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the language L{⊥,→e,�,♦}, where in this case ⊥ stands for the constantly false
proposition, and � and ♦ are interpreted as in KFDE. The modal logic KN4
from [16] is presented in the language L{→l,�}, where the necessity operator
� is interpreted as in BK.

Intensional operators One of the most popular expansions of FDE is obtained
by adding the conditional of intuitionistic logic. This results in a system
nowadays known as N4 ([18,24,47]) which has the following truth and fal-
sity conditions within a given Nelson model M:

• M, w |=+ (A→B) iff for all w′ ≥ w : M, w′ �|=+ A or M, w′ |=+ B,

• M, w |=− (A→B) iff M, w |=+ A and M, w |=− B.

Note also that there is a connexive variant of N4 obtained by replacing the
above falsity condition by the following one:

• M, w |=− (A→B) iff for all w′ ≥ w : M, w′ �|=+ A or M, w′ |=− B.

For details of the resulting system C, see [48].

A note on the papers in the special issue. Melvin Fitting’s paper devises a
justification logic closely related to N4. Norihiro Kamide’s paper explores
a variant of N4 in which double-negation simulates intuitionistic negation,
again in a very unusual manner.

Another famous and important expansion of FDE is obtained by adding
a conditional interpreted by means of a ternary relation R. More specifically,
if we add the following truth condition within the star semantics, then we
obtain the relevance logic à la Australian plan:

• I(w, A→B)=1 iff for all x, y such that Rwxy : (I(x, A) �=1 or I(y, B)=1).

On the other hand, if we add the following truth and falsity conditions
within a given Routley-Meyer model M, then we obtain the relevance logic
à la American plan:

• M, w |=+ A→B iff for all x, y such that Rwxy:
(M, x �|=+ A or M, y |=+ B),

• M, w |=− A→B iff for some x, y such that Rwxy:
(M, x |=+ A and M, y |=− B).

Note that there are a number of falsity conditions one may take. See for
example [27,36].

Finally, one may also add a strict implication on top of FDE. For example,
the underlying logic for the logic of intentionality developed by Priest in
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[35] deploys the following truth and falsity conditions within a given Kripke
model M such that the binary relation R is the universal relation:

• M, w |=+ A→B iff for all x such that wRx: (M, x �|=+ A or M, x |=+ B),

• M, w |=− A→B iff for some x such that wRx:
(M, x |=+ A and M, x |=− B).

Again, one may consider a number of falsity conditions for the conditional.

5.2 Coimplication

Many implications (but not all, such as the relevant implication), residuate
the extensional conjunction, namely the following holds:

A ∧ B � C iff A � B → C.

It is then not unnatural to introduce a connective that residuates disjunction
in the following manner:

C � A ∨ B iff C ← B � A.

It is this connective ← that is called coimplication, and sometimes it is also
called “pseudo-difference”.

Extensional operators In the extensional case one may consider “dual”
versions of the truth tables from §5.1:

x ←e y t b n f
t f b n t
b f b n t
n f f f f
f f f f f

x ←b y t b n f
t f b n t
b f f n n
n f b f b
f f f f f

x ←l y t b n f
t f t n t
b f b n t
n f n f n
f f f f f

x ←c y t b n f
t f b n t
b f b n t
n b b b b
f b b b b

To the best of our knowledge, these connectives have not yet been investi-
gated.

Intensional operators Coimplication appears in the language of dual-
intuitionistic logic (and in that of bi-intuitionistic logic, also called Heyting–
Brouwer logic). As an intensional operator, coimplication is interpreted on
intuitionistic Kripke models M. The support of truth of a formula A at
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w ∈ W (M, w |= A) is defined recursively; for implication and coimplica-
tion the defining clauses are:

• M, w |= (A→B) iff for all w′ ≥ w : M, w′ �|= A or M, w′ |= B,

• M, w |= (A←B) iff for some w′ ≤ w : M, w′ |= A and M, w′ �|= B.

If intuitionistic implication and dual-intuitionistic co-implication are added
to L, then we make use of Nelson models M. The positive clauses are as
expected:

• M, w |=+ (A→B) iff for all w′ ≥ w : M, w′ �|=+ A or M, w′ |=+ B,

• M, w |=+ (A←B) iff for some w′ ≤ w : M, w′ |=+ A and M, w′ �|= B.

Although there is a standard, “classical” understanding of the falsity con-
ditions of a conditional, there are indeed several options for defining such
conditions, including the so-called connexive understanding of negated con-
ditionals. In [49] sixteen different expansions of FDE are considered and
proof-theoretically characterized by display sequent calculi. These logics are
obtained as combinations of the following support of falsity conditions of
implications:

• M, w |=− (A→B) iff M, w |=+ A and M, w |=− B,

• M, w |=− (A→B) iff for all w′ ≥ w : M, w′ �|=+ A or M, w′ |=− B,

• M, w |=− (A→B) iff for some w′ ≤ w : M, w′ |=+ A and M, w′ �|=+ B,

• M, w |=− (A→B) iff for some w′ ≤ w : M, w′ �|=− A and M, w′ |=− B,

and co-implications:

• M, w |=− (A←B) iff M, w |=− A or M, w |=+ B,

• M, w |=− (A←B) iff for some w′ ≤ w : M, w′ |=− A and M, w′ �|=+ B,

• M, w |=− (A←B) iff for all w′ ≥ w : M, w′ �|=+ A or M, w′ |=+ B,

• M, w |=− (A←B) iff for all w′ ≥ w : M, w′ |=− A or M, w′ �|=− B.

5.3 Conjunction and Disjunction

Since we already have conjunction and disjunction in the basic language of
FDE, the demand for additional conjunctions and disjunctions is not very
high. Still there are some important connectives considered in the literature.

Extensional operators First, we should mention the “informational” con-
junction and disjunction which have the following truth tables.
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x ⊗ y t b n f
t t t n n
b t b n f
n n n n n
f n f n f

x ⊕ y t b n f
t t b t b
b b b b b
n t b n f
f b b f f

In terms of truth and falsity conditions in Dunn semantics, we obtain the
following conditions:

• A ⊗ Br1 iff Ar1 and Br1,

• A ⊗ Br0 iff Ar0 and Br0,

• A ⊕ Br1 iff Ar1 or Br1,

• A ⊕ Br0 iff Ar0 or Br0.

These connectives play a very important role in the context of bilattices,
which will be briefly overviewed in the next subsection.

A note on the papers in the special issue. The contribution by Ofer Arieli
and Arnon Avron offers a detailed examination of the expressivity of
languages with ⊕ and ⊗, as well as a systematic study of proof systems
in the style of Hilbert and Gentzen.

Intensional operators Intensional variants of conjunction and disjunction
are the fusion and fission operators from relevance logic, referred to in linear
logic as multiplicative conjunction and disjunction, respectively, which we
here also write as ⊗ and ⊕. In the star semantics with a ternary relation R,
one obtains the following semantic clauses:

• I(w, A⊗B)=1 iff for some y, z: Ryzw, I(y, A)=1 and I(z, B)=1,

• I(w, A⊕B)=1 iff for all y, z: if Rwyz and I(y∗, A)=0 then I(z, B)=1.

The intensional conjunction also appears in substructural subsystems of the
FDE-based logic N4 (cf. [18,46]).

5.4 Interlude: Bilattice Semantics

Given that we have mentioned the informational connectives, it is now a
good moment to introduce some basic notions related to bilattices (see [4,
11,15]).

Definition 28. A bilattice is a structure B = 〈B,≤t, ≤k, ∼〉 where

• B is a non-empty set that contains at least two elements,
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• 〈B,≤t〉, 〈B,≤k〉 are complete lattices,

• ∼ is a unary operation on B that has the following properties:

– if a ≤t b then ∼ b ≤t ∼ a,
– if a ≤k b then ∼ a ≤k ∼ b,
– ∼ ∼ a = a.

Definition 29. A conflation, −, is a unary operation on a bilattice B that
has the following properties:

• if a ≤t b then −a ≤t −b,

• if a ≤k b then −b ≤k −a,

• −−a = a,

• ∼ −a = − ∼ a.

Definition 30. A bifilter of a bilattice B = 〈B,≤t, ≤k, ∼〉 is a non-empty
subset F � B such that:

• a ∧ b ∈ F iff a ∈ F and b ∈ F ,

• a ⊗ b ∈ F iff a ∈ F and b ∈ F .

Moreover, a bifilter is prime iff it also satisfies:

• a ∨ b ∈ F iff a ∈ F or b ∈ F ,

• a ⊕ b ∈ F iff a ∈ F or b ∈ F .

Definition 31. A logical bilattice is a pair (B, F), in which B is a bilattice,
and F is a prime bifilter on B.

Definition 32. A formula A is a bilattice semantic consequence of Γ (Γ |=bl

A) iff for all logical bilattices (B, F), if v(C)∈F for all C ∈ Γ then v(A) ∈ F .

Remark 33. Note that the definition of the notion of a bilattice itself does
not assume additional connectives beside ∼, but for logical bilattices, the
informational conjunction and disjunction are required, which implies that
strict expansions of FDE are concerned in the discussion. Note, moreover,
that the implications →e and →l coincide with the weak and strong impli-
cations considered in the logic of bilattices, see [4]. The theory of bilattices
has been generalized to a study of tri- and multilattices, cf. [43].
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A note on the papers in the special issue. The contribution by Thomas
Ferguson focuses on trilattices, and reports some new results on cut-down
connectives, originally introduced by Fitting in the context of bilattices.
In particular, Ferguson establishes some interesting connections to con-
tainment logics of Harry Deutsch and Richard Angell. The logics of multi-
lattices expanded by bi-intuitionistic and connexive vocabulary are intro-
duced and some basic results are established in the paper by Norihiro
Kamide, Yaroslav Shramko and Heinrich Wansing.

Remark 34. The language of the modal bilattice logic MBL from [40]
extends the language of the logic of logical bilattices from [4] with the four
constants from FDE, �, and ♦ (as a defined operator). However, the seman-
tics of the modal operators is significantly modified insofar as the binary
relation R is required to be four-valued, with the effect that MBL is not a
normal modal logic.

6 Quantifiers

It is desirable to extend the language of propositional FDE by first- and
higher-order universal and particular quantifiers. In the first-order case the
language comprises a denumerable supply of individual variables, x, y, z, x1,
x2, etc., individual constants, a, b, c, a1, a2, etc., n-place predicate symbols
P , Q, P1, P2, etc. (for all natural numbers n > 0), with the tacit assumption
of using them with appropriate arity, and quantifier prefixes of the form ∀x
and ∃x. The set Q1FORM of all formulas of first-order quantified FDE is
defined as usual (and the focus on studying the addition of quantifiers may
justify neglecting function symbols and a distinguished primitive identity
predicate).

6.1 Semantics

We first spell out several semantics for first-order FDE.

Dunn semantics The extension of the relational semantics of FDE from [34,
chapter 22] can be presented as follows. A model for quantified FDE is a pair
〈D, v〉 = M, where D is a non-empty set of individuals and v is a function
such that for all individual constants a, v(a) ∈ D and for all n-ary predicate
symbol P , v(P ) is a pair 〈v+(P ), v−(P )〉, where v+(P ) (the extension of P )
and v−(P ) (the anti-extension of P ) are subsets of Dn. In order to avoid
variable assignments and to define, for a given model M, an interpretation
relation between closed formulas and the values 1 and 0, the language is
extended by constants a, for all a ∈ D.
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Definition 35. Let M = 〈D, v〉 be a model for quantified FDE. For closed
atomic formulas, the interpretation relation r for M is defined as follows:

• P (a1, . . . , an)r1 iff 〈v(a1), . . . , v(an)〉 ∈ v+(P ),

• P (a1, . . . , an)r0 iff 〈v(a1), . . . , v(an)〉 ∈ v−(P ).

The relation r is extended to a relation between all closed formulas and the
values 1 and 0 by the clauses from Definition 3 and the following stipulations,
where A(a/x) is the result of replacing all free occurrences of x in A by a:

• ∀xAr1 iff for all a ∈ D, A(a/x)r1,

• ∀xAr0 iff for some a ∈ D, A(a/x)r0,

• ∃xAr1 iff for some a ∈ D, A(a/x)r1,

• ∃xAr0 iff for all a ∈ D, A(a/x)r0.

Definition 36. If Γ ∪ {A} ⊆ Q1FORM is a set of closed formulas, then A
is a two-valued semantic consequence of Γ (Γ |=2 A) iff for all models M for
quantified FDE, if Br1 for all B ∈ Γ then Ar1.

Algebraic semantics There seems to be no worked out algebraic semantics
for first-order FDE, at least to the best of our knowledge.

Bilattice semantics An extension of the bilattice semantics to the first-order
case is briefly mentioned in [4, Sect 3.5]. The semantics of the universal and
of the particular quantifier are defined in terms of the infimum and supre-
mum, respectively, of the truth-order. Note also that one can also introduce
quantifiers for the information order.

6.2 Proof Systems

We now turn to proof systems.

Hilbert style At the time being we are not aware of a sound and complete
Hilbert-style proof system for first-order FDE.

Gentzen style The following Gentzen-style sequent calculus for first-order
FDE is taken from [2]5 (notation adjusted). In the axiom and rules of the
calculus, J , K, L, and M range over finite, possibly empty sequences of
formulas.

5Anderson and Belnap treat ∧ and ∀ as defined in the standard way: A ∧ B =def

∼(∼A ∨ ∼B); ∀xA =def ∼ ∃x∼A.
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Definition 37. Let GQFDE be the Gentzen-style system consisting of the
axiom J, A, K → L, A, M , in which A is an atomic formula or a negated
atomic formula, and the following sequent rules:

K, A, L → J

K, ∼ ∼A, L → J
(R1)

J, A, K → L J, B, K → L

J, A ∨ B, K → L
(R3)

J,∼ A, ∼ B, K → L

J,∼(A ∨ B), K → L
(R5)

J, Ay, K → L

J,∃xAx, K → L
(R7)

J,∼ Ay, K, ∼ ∃xAx → L

J,∼ ∃xAx, K → L
(R9)

J → K, A, L

J → K, ∼ ∼A, L
(R2)

J → K, A, B, L

J → K, A ∨ B, L
(R4)

J → K, ∼ A, L J → K, ∼ B, L

J → K, ∼(A ∨ B), L
(R6)

J → K, Ay, L,∃xAx

J → K, ∃xAx, L
(R8)

J → K, ∼ Ay, L

J → K, ∼ ∃xAx, L
(R10)

with the restriction in (R7) and (R10) that y does not occur free in the con-
clusion sequent. Moreover, a rule for alphabetic change of bound variables
is assumed.

We write Γ �g A iff there is a sequence of closed formulas B1, . . . , Bn ∈ Γ
(n ≥ 0) such that the sequent B1, . . . , Bn → A is derivable in GQFDE.
In order to prove soundness of GQFDE with respect to the Dunn seman-
tics, the definition of semantical consequence is extended (cf. [45, Definition
2.8.1]).

Definition 38. Let Γ∪{A} ⊆ Q1FORM, let {xi1 , . . . , xi2 , . . .} be the set of
free variables occurring in formulas from Γ ∪ {A}, and let M = 〈D, v〉 be a
model for quantified FDE with interpretation relation r. If a is a sequence
a1, a2, . . . of elements from D, then Γ(a), respectively A(a), is the result of
simultaneously replacing the xij by aj (for j ≥ 1) in all formulas from Γ,
respectively in A. Then Γ(a)r1 iff Br1 for all B ∈ Γ(a). Moreover, Γ |=2 A
iff for all models M and sequences a, if Γ(a)r1 then A(a)r1.

Theorem 7. For any set of closed formulas Γ ∪ {A} ⊆ Q1FORM, Γ �g A
iff Γ |=2 A.6

6It suffices to show (i) that if a sequent K → L is provable, then
∧

K |=2

∨
L and

(ii) in view of Theorem 8, that any natural deduction derivation of A from finite Δ can
be transformed into a proof of J → A in GQFDE, where J is a sequence consisting of all
members of Δ.
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Natural deduction Providing a natural deduction system is straightforward.

Definition 39. The natural deduction proof system NQFDE for QFDE
is obtained by augmenting NFDE with the following rules [33, p. 331 ff.]:

B ∨ A(c/x)
B ∨ ∀xA

∀I
∀xA

A(c/x) ∀E
A(c/x)
∃xA

∃I
∃xA

A(c/x)
...
B

B
∃E

∀x ∼ A
∼ ∃xA

∃x ∼ A
∼ ∀xA

Note that rules ∀I and ∃E are applicable provided that c does not occur in
B, or in any undischarged assumption on which the premise depends.

Syntactic consequence for NQFDE, �n, is defined as in Definition 14.

Theorem 8. (Priest). For any set of closed formulas Γ ∪ {A} ⊆ Q1FORM,
Γ �n A iff Γ |=2 A.

Tableaux Providing a tableau calculus is also quite straightforward.

Definition 40. The tableau calculus T QFDE for QFDE is the result of
extending T FDE by the following rules ([34, Chap. 22]):

∀xA,+ ∀xA,− ∼ ∀xA,± ∃xA,+ ∃xA,− ∼ ∃xA,±
↓ ↓ ↓ ↓ ↓ ↓

A(a/x), + A(c/x), − ∃x ∼ A, ± A(c/x), + A(a/x), − ∀x ∼ A, ±
where ± stands uniformly for either + or −, a is any constant on the branch,
or a new constant if there is none, and c is a constant new to the branch.
Tableau consequence, �t, for Q1FORM is defined as in Definition 15.

Theorem 9. (Priest). For any finite set of closed formulas Γ ∪ {A} ⊂
Q1FORM, Γ �t A iff Γ |=2 A.

7 Open Problems

There are, of course, topics for future research; they include, for example:

• investigation of an intensional disjunction that residuates relevant co-
implication,
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• the study of quantifiers defined in bilattice semantics with respect to the
information order,

• reassurance for 2nd-order minimal FDE, cf. [33],

• axiomatizing the relevance logics à la American plan, cf. [27,36].

8 Conclusion

40 years after the birth of FDE, it seems that much progress has been made
in the field. FDE is a well-understood core system of many-valued, rele-
vance, and paraconsistent logic. It is naturally arrived at from different
proof-theoretic and semantical perspectives and its expansions by various
additional operators and quantifiers invite further investigation. The papers
from this special issue contribute to that enterprise.
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