
An Introduction to Non-Classical Logic

From If to Is

Second Edition

GRAHAM PRIEST
University of Melbourne

and

University of St Andrews

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

First published in print format

ISBN-13 978-0-521-85433-7

ISBN-13 978-0-521-67026-5

ISBN-13 978-0-511-39361-7

© Graham Priest 2001, 2008

2008

Information on this title: www.cambridge.org/9780521854337

This publication is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

Cambridge University Press has no responsibility for the persistence or accuracy of urls
for external or third-party internet websites referred to in this publication, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

paperback

eBook (EBL)

hardback

1 Classical Logic and the Material
Conditional

1.1 Introduction

1.1.1 The first purpose of this chapter is to review classical propo-

sitional logic, including semantic tableaux. The chapter also sets out

some basic terminology and notational conventions for the rest of the

book.

1.1.2 In the second half of the chapter we also look at the notion of the

conditional that classical propositional logic gives, and, specifically, at some

of its shortcomings.

1.1.3 The point of logic is to give an account of the notion of validity: what

follows from what. Standardly, validity is defined for inferences couched in

a formal language, a language with a well-defined vocabulary and grammar,

the object language. The relationship of the symbols of the formal language

to the words of the vernacular, English in this case, is always an important

issue.

1.1.4 Accounts of validity themselves are in a language that is normally

distinct from the object language. This is called the metalanguage. In our

case, this is simply mathematical English. Note that ‘iff’ means ‘if and

only if’.

1.1.5 It is also standard to define two notions of validity. The first

is semantic. A valid inference is one that preserves truth, in a certain

sense. Specifically, every interpretation (that is, crudely, a way of assign-

ing truth values) that makes all the premises true makes the conclu-

sion true. We use the metalinguistic symbol ‘|=’ for this. What distin-

guishes different logics is the different notions of interpretation they

employ.

3

4 An Introduction to Non-Classical Logic

1.1.6 The second notion of validity is proof-theoretic. Validity is defined in

terms of some purely formal procedure (that is, one that makes reference

only to the symbols of the inference). We use the metalinguistic symbol ‘ ’

for this notion of validity. In our case, this procedure will (mainly) be one

employing tableaux. What distinguish different logics here are the different

tableau procedures employed.

1.1.7 Most contemporary logicians would take the semantic notion of valid-

ity to be more fundamental than the proof-theoretic one, though the matter

is certainly debatable. However, given a semantic notion of validity, it is

always useful to have a proof-theoretic notion that corresponds to it, in

the sense that the two definitions always give the same answers. If every

proof-theoretically valid inference is semantically valid (so that entails |=)

the proof-theory is said to be sound. If every semantically valid inference is

proof-theoretically valid (so that |= entails) the proof-theory is said to be

complete.

1.2 The Syntax of the Object Language

1.2.1 The symbols of the object language of the propositional calcu-

lus are an infinite number of propositional parameters:1 p0, p1, p2, . . . ;

the connectives: ¬ (negation), ∧ (conjunction), ∨ (disjunction), ⊃
(material conditional), ≡ (material equivalence); and the punctuation

marks: (,).

1.2.2 The (well-formed) formulas of the language comprise all, and only, the

strings of symbols that can be generated recursively from the propositional

parameters by the following rule:

If A and B are formulas, so are ¬A, (A ∨ B), (A ∧ B), (A ⊃ B), (A ≡ B).

1.2.3 I will explain a number of important notational conventions here. I

use capital Roman letters, A,B,C, . . . , to represent arbitrary formulas of the

object language. Lower-case Roman letters, p, q, r, . . . , represent arbitrary,

1 These are often called ‘propositional variables’.

Classical Logic and the Material Conditional 5

but distinct, propositional parameters. I will always omit outermost paren-

theses of formulas if there are any. So, for example, I write (A ⊃ (B ∨ ¬C))

simply as A ⊃ (B ∨ ¬C). Upper-case Greek letters, �, �, . . . , represent arbi-

trary sets of formulas; the empty set, however, is denoted by the (lower case)

φ, in the standard way. I often write a finite set, {A1, A2, . . . ,An}, simply as

A1,A2, . . . ,An.

1.3 Semantic Validity

1.3.1 An interpretation of the language is a function, ν, which assigns to each

propositional parameter either 1 (true), or 0 (false). Thus, we write things

such as ν(p) = 1 and ν(q) = 0.

1.3.2 Given an interpretation of the language, ν, this is extended to a func-

tion that assigns every formula a truth value, by the following recursive

clauses, which mirror the syntactic recursive clauses:2

ν(¬A) = 1 if ν(A) = 0, and 0 otherwise.

ν(A ∧ B) = 1 if ν(A) = ν(B) = 1, and 0 otherwise.

ν(A ∨ B) = 1 if ν(A) = 1 or ν(B) = 1, and 0 otherwise.

ν(A ⊃ B) = 1 if ν(A) = 0 or ν(B) = 1, and 0 otherwise.

ν(A ≡ B) = 1 if ν(A) = ν(B), and 0 otherwise.

1.3.3 Let � be any set of formulas (the premises); then A (the conclusion) is

a semantic consequence of � (� |= A) iff there is no interpretation that makes

all the members of � true and A false, that is, every interpretation that

makes all the members of � true makes A true. ‘� |= A’ means that it is not

the case that � |= A.

1.3.4 A is a logical truth (tautology) (|= A) iff it is a semantic consequence of

the empty set of premises (φ |= A), that is, every interpretation makes A

true.

2 The reader might be more familiar with the information

contained in these clauses when it is depicted in the form

of a table, usually called a truth table, such as the one for

conjunction displayed:

∧ 1 0
1 1 0

0 0 0

6 An Introduction to Non-Classical Logic

1.4 Tableaux

1.4.1 A tree is a structure that looks, generally, like this:3

.

↓
.

" #
. .

↓ " #
. . .

The dots are called nodes. The node at the top is called the root. The nodes at

the bottom are called tips. Any path from the root down a series of arrows as

far as you can go is called a branch. (Later on we will have trees with infinite

branches, but not yet.)

1.4.2 To test an inference for validity, we construct a tableau which begins

with a single branch at whose nodes occur the premises (if there are any) and

the negation of the conclusion. We will call this the initial list. We then apply

rules which allow us to extend this branch. The rules for the conditional

are as follows:

A ⊃ B
" #

¬A B

¬(A ⊃ B)

↓
A

↓
¬B

The rule on the right is to be interpreted as follows. If we have a formula

¬(A ⊃ B) at a node, then every branch that goes through that node is

extended with two further nodes, one for A and one for ¬B. The rule on

the left is interpreted similarly: if we have a formula A ⊃ B at a node, then

every branch that goes through that node is split at its tip into two branches;

one contains a node for ¬A; the other contains a node for B.

3 Strictly speaking, for those who want the precise mathematical definition, it is a partial

order with a unique maximum element, x0, such that for any element, xn, there is a

unique finite chain of elements xn ≤ xn−1 ≤ · · · ≤ x1 ≤ x0.

Classical Logic and the Material Conditional 7

1.4.3 For example, to test the inference whose premises are A ⊃ B, B ⊃ C,

and whose conclusion is A ⊃ C, we construct the following tree:

A ⊃ B

↓
B ⊃ C

↓
¬(A ⊃ C)

↓
A

↓
¬C

" #
¬A B

" ↓ ↓ #
¬B C ¬B C

× × × ×

The first three formulas are the premises and negated conclusion. The next

two formulas are produced by the rule for the negated conditional applied to

the negated conclusion; the first split on the branch is produced by applying

the rule for the conditional to the first premise; the next splits are produced

by applying the same rule to the second premise. (Ignore the ‘×’s: we will

come back to those in a moment.)

1.4.4 The other connectives also have rules, which are as follows.

¬¬A�
A

A ∨ B

" #
A B

¬(A ∨ B)�
¬A�
¬B

8 An Introduction to Non-Classical Logic

¬(A ∧ B)

" #
¬A ¬B

A ∧ B�
A�
B

A ≡ B

" #
A ¬A� �
B ¬B

¬(A ≡ B)

" #
A ¬A� �
¬B B

Intuitively, what a tableau means is the following. If we apply a rule to a

formula, then if that formula is true in an interpretation, so are the for-

mulas below on at least one of the branches that the rule generates. (Of

course, there may be only one such branch.) This is a useful mnemonic for

remembering the rules. It must be stressed, though, that officially the rules

are purely formal.

1.4.5 A tableau is complete iff every rule that can be applied has been applied.

By applying the rules over and over, we may always construct a complete

tableau. In the present case, the branches of a completed tableau are always

finite,4 but in the tableaux of some subsequent chapters they may be

infinite.

1.4.6 A branch is closed iff there are formulas of the form A and¬A on two of

its nodes; otherwise it is open. A closed branch is indicated by writing an ×
at the bottom. A tableau itself is closed iff every branch is closed; otherwise

it is open. Thus the tableau of 1.4.3 is closed: the leftmost branch contains

A and ¬A; the next contains A and ¬A (and C and ¬C); the next contains B

and ¬B; the rightmost contains C and ¬C.

1.4.7 A is a proof-theoretic consequence of the set of formulas �(� A) iff

there is a complete tree whose initial list comprises the members of � and

the negation of A, and which is closed. We write A to mean that φ A,

4 This is not entirely obvious, though it is not difficult to prove.

Classical Logic and the Material Conditional 9

that is, where the initial list of the tableau comprises just¬A. ‘� A’ means

that it is not the case that � A.5

1.4.8 Thus, the tree of 1.4.3 shows that A ⊃ B, B ⊃ C A ⊃ C. Here is

another, to show that ((A ⊃ B) ∧ (A ⊃ C)) ⊃ (A ⊃ (B ∧ C)). To save space,

we omit arrows where a branch does not divide.

¬(((A ⊃ B) ∧ (A ⊃ C)) ⊃ (A ⊃ (B ∧ C)))

(A ⊃ B) ∧ (A ⊃ C)

¬(A ⊃ (B ∧ C))

(A ⊃ B)

(A ⊃ C)

A

¬(B ∧ C)

" #
¬B ¬C

" � � #
¬A B ¬A B
× × × ↓ #

¬A C
× ×

Note that when we find a contradiction on a branch, there is no point in

continuing it further. We know that the branch is going to close, what-

ever else is added to it. Hence, we need not bother to extend a branch as

soon as it is found to close. Notice also that, wherever possible, we apply

rules that do not split branches before rules that split branches. Though

this is not essential, it keeps the tableau simpler, and is therefore useful

practically.

1.4.9 In practice, it is also a useful idea to put a tick at the side of a for-

mula once one has applied a rule to it. Then one knows that one can forget

about it.

5 There may, in fact, be several completed trees for an inference, depending upon the

order of the premises in the initial list and the order in which rules are applied. For-

tunately, they all give the same result, though this is not entirely obvious. See 1.14,

problem 5.

10 An Introduction to Non-Classical Logic

1.5 Counter-models

1.5.1 Here is another example, to show that (p ⊃ q) ∨ (r ⊃ q) (p ∨ r) ⊃ q.

(p ⊃ q) ∨ (r ⊃ q)

¬((p ∨ r) ⊃ q)

(p ∨ r)

¬q

" #
(p ⊃ q) (r ⊃ q)

" ↓ ↓ #
¬p q ¬r q

" ↓ × ↓ # ×
p r p r

× ×

The tableau has two open branches. The leftmost one is emphasised in bold

for future reference.

1.5.2 The tableau procedure is, in effect, a systematic search for an inter-

pretation that makes all the formulas on the initial list true. Given an open

branch of a tableau, such an interpretation can, in fact, be read off from the

branch.6

1.5.3 The recipe is simple. If the propositional parameter, p, occurs at a

node on the branch, assign it 1; if ¬p occurs at a node on the branch, assign

it 0. (If neither p nor ¬p occurs in this way, it may be assigned anything one

likes.)

1.5.4 For example, consider the tableau of 1.5.1 and its (bolded) leftmost

open branch. Applying the recipe gives the interpretation, ν, such that

ν(r) = 1, and ν(p) = ν(q) = 0. It is simple to check directly that ν((p ⊃ q) ∨
(r ⊃ q)) = 1 and ν((p ∨ r) ⊃ q) = 0. Since p is false, p ⊃ q is true, as is

(p ⊃ q)∨ (r ⊃ q). Since r is true, p∨ r is true; but q is false; hence, (p∨ r) ⊃ q

is false.

6 If one thinks of constructing a tableau as a search procedure for a counter-model,

then the soundness and completeness theorems constitute, in effect, a proof that the

procedure always gives the right result, that is, which verifies the algorithm in question.

Classical Logic and the Material Conditional 11

1.5.4a Note that the tableau of 1.4.8 shows that any inference of the form

in question is valid. That is, A, B and C can be any formulas. To show that an

inference is invalid, we have to construct a counter-model, and this means

assigning truth values to particular formulas. This is why the example just

given uses ‘p’, ‘q’ and ‘r’, not ‘A’, ‘B’ and ‘C’. One may say that an inference

expressed using schematic letters (‘A’s and ‘B’s) is invalid, but this must

mean that there are some formulas that can be substituted for these letters

to make it so. Thus, we may write A � B, since p � q. But note that this does

not rule out the possibility that some inferences of that form are valid, e.g.,

p � q ∨ ¬q.

1.5.5 As one would hope, the tableau procedure we have been looking at is

sound and complete with respect to the semantic notion of consequence,

i.e., if � is a finite set of sentences, � A iff � |= A. That is, the search

procedure really works. If there is an interpretation that makes all the for-

mulas on the initial list true, the tableau will have an open branch which,

in effect, specifies one. And if there is no such interpretation, every branch

will close. These facts are not obvious. The proof is in 1.11.7

1.6 Conditionals

1.6.1 In the remainder of this chapter, we look at the notion of condition-

ality that the above, classical, semantics give us, and at its inadequacy. But

first, what is a conditional?

1.6.2 Conditionals relate some proposition (the consequent) to some other

proposition (the antecedent) on which, in some sense, it depends. They are

expressed in English by ‘if’ or cognate constructions:

If the bough breaks (then) the cradle will fall.

The cradle will fall if the bough breaks.

The bough breaks only if the cradle falls.

7 The restriction to finite � is due to the fact that tableaux have been defined only for

finite sets of premises. It is possible to define tableaux for infinite sets of premises as

well (not putting all the premises at the start, but introducing them, one by one, at

regular intervals down the branches). If one does this, the soundness and completeness

results generalise to arbitrary sets of premises. We will take up this matter again in

Chapter 12 (Part II), where the matter assumes more significance.

16 An Introduction to Non-Classical Logic

1.10.5 Now, suppose that ¬A ∨ B is true. Then from this and A we can

deduce B, by the disjunctive syllogism: A,¬A∨ B B. Hence, by (*), ‘If A then B’

is true.

1.10.6 We will come back to this argument in a later chapter. For now, just

note the fact that it uses the disjunctive syllogism.

1.11 ∗Proofs of Theorems

1.11.1 Definition: Let ν be any propositional interpretation. Let b be any

branch of a tableau. Say that ν is faithful to b iff for every formula, A, on the

branch, ν(A) = 1.

1.11.2 Soundness Lemma: If ν is faithful to a branch of a tableau, b, and a

tableau rule is applied to b, then ν is faithful to at least one of the branches

generated.

Proof:

The proof is by a case-by-case examination of the tableau rules. Here are

the cases for the rules for ⊃. The other cases are left as exercises. Suppose

that ν is faithful to b, that ¬(A ⊃ B) occurs on b, and that we apply a rule

to it. Then only one branch eventuates, that obtained by adding A and ¬B
to b. Since ν is faithful to b, it makes every formula on b true. In particular,

ν(¬(A ⊃ B)) = 1. Hence, ν(A ⊃ B) = 0, ν(A) = 1, ν(B) = 0, and so ν(¬B) = 1.

Hence, ν makes every formula on b true. Next, suppose that ν is faithful to

b, that A ⊃ B occurs on b, and that we apply a rule to it. Then two branches

eventuate, one extending b with ¬A (the left branch); the other extending

b with B (the right branch). Since ν is faithful to b, it makes every formula

on b true. In particular, ν(A ⊃ B) = 1. Hence, ν(A) = 0, and so ν(¬A) = 1, or

ν(B) = 1. In the first case, ν is faithful to the left branch; in the second, it is

faithful to the right. �

1.11.3 Soundness Theorem: For finite �, if � A then � |= A.

Proof:

We prove the contrapositive. Suppose that � |= A. Then there is an inter-

pretation, ν, which makes every member of � true, and A false – and hence

makes ¬A true. Now consider a completed tableau for the inference. ν is

faithful to the initial list. When we apply a rule to the list, we can, by the

Classical Logic and the Material Conditional 17

Soundness Lemma, find at least one of its extensions to which ν is faith-

ful. Similarly, when we apply a rule to this, we can find at least one of its

extensions to which ν is faithful; and so on. By repeatedly applying the

Soundness Lemma in this way, we can find a whole branch, b, such that ν

is faithful to every initial section of it. (An initial section is a path from the

root down the branch, but not necessarily all the way to the tip.) It follows

that ν is faithful to b itself, but we do not need this fact to make the proof

work. Now, if b were closed, it would have to contain some formulas of the

form B and ¬B, and these must occur in some initial section of b. But this

is impossible since ν is faithful to this section, and so it would follow that

ν(B) = ν(¬B) = 1, which cannot be the case. Hence, the tableau is open, i.e.,

� A. �

1.11.4 Definition: Let b be an open branch of a tableau. The interpretation

induced by b is any interpretation, ν, such that for every propositional param-

eter, p, if p is at a node on b, ν(p) = 1, and if ¬p is at a node on b, ν(p) = 0.

(And if neither, ν(p) can be anything one likes.) This is well defined, since b

is open, and so we cannot have both p and ¬p on b.

1.11.5 CompletenessLemma: Let bbe an open complete branch of a tableau.

Let ν be the interpretation induced by b. Then:

if A is on b, ν(A) = 1

if ¬A is on b, ν(A) = 0

Proof:

The proof is by induction on the complexity of A. If A is a propositional

parameter, the result is true by definition. If A is complex, it is of the form

B ∧ C, B ∨ C, B ⊃ C, B ≡ C, or ¬B. Consider the first case, and suppose that

B∧ C is on b. Since b is complete, the rule for conjunction has been applied

to it. Hence, both B and C are on the branch. By induction hypothesis, ν(B) =
ν(C) = 1. Hence, ν(B∧C) = 1, as required. Next, suppose that¬(B∧C) is on b.

Since the rule for negated conjunction has been applied to it, either ¬B or

¬C is on the branch. By induction hypothesis, either ν(B) = 0 or ν(C) = 0.

In either case, ν(B ∧ C) = 0, as required. The cases for the other binary

connectives are similar. For ¬: suppose that ¬B is on b. Then, since the

result holds for B, by the induction hypothesis, ν(B) = 0. Hence, ν(¬B) = 1.

If ¬¬B is on b, then so is B, by the rule for double negation. By induction

hypothesis, ν(B) = 1, so ν(¬B) = 0. �

18 An Introduction to Non-Classical Logic

1.11.6 completeness theorem: For finite �, if � |= A then � A.

Proof:

We prove the contrapositive. Suppose that � A. Consider a completed

open tableau for the inference, and choose an open branch. The interpreta-

tion that the branch induces makes all the members of � true, and A false,

by the Completeness Lemma. Hence, � |= A. �

1.12 History

The propositional logic described in this chapter was first formulated by

Frege in his Begriffsschrift (translated in Bynum, 1972) and Russell (1903).

Semantic tableaux in the form described here were first given in Smullyan

(1968). The issue of how to understand the conditional is an old one. Dis-

putes about it can be found in the Stoics and in the Middle Ages. Some

logicians at each of these times endorsed the material conditional. For an

account of the history, see Sanford (1989). The defence of the material con-

ditional in terms of conversational rules first seems to have been suggested

by Ajdukiewicz (1956). The idea was brought to prominence by Grice (1989,

chs. 1–4). The argument for distinguishing between the indicative and sub-

junctive conditionals was first given by Adams (1970). The examples of 1.9

are taken from a much longer list given by Cooper (1968). The argument of

1.10 was given by Faris (1968).

1.13 Further Reading

For an introduction to classical logic based on tableaux, see Jeffrey (1991),

Howson (1997) or Restall (2006). For a number of good papers discussing the

connection between material, indicative and subjunctive conditionals, see

Jackson (1991). For further discussion of the examples of sec1.9, see Routley,

Plumwood, Meyer and Brady (1982, ch. 1).

1.14 Problems

1. Check the truth of each of the following, using tableaux. If the inference

is invalid, read off a counter-model from the tree, and check directly that

it makes the premises true and the conclusion false, as in 1.5.4.

7 Many-valued Logics

7.1 Introduction

7.1.1 In this chapter, we leave possible-world semantics for a time, and turn

to the subject of propositional many-valued logics. These are logics in which

there are more than two truth values.

7.1.2 We have a look at the general structure of a many-valued logic, and

some simple but important examples of many-valued logics. The treatment

will be purely semantic: we do not look at tableaux for the logics, nor at

any other form of proof procedure. Tableaux for some many-valued logics

will emerge in the next chapter.

7.1.3 We also look at some of the philosophical issues that have moti-

vated many-valued logics, how many-valuedness affects the issue of the

conditional, and a few other noteworthy issues.

7.2 Many-valued Logic: The General Structure

7.2.1 Let us start with the general structure of a many-valued logic. To

simplify things, we take, henceforth, A ≡ B to be defined as (A ⊃ B) ∧
(B ⊃ A).

7.2.2 Let C be the class of connectives of classical propositional logic

{∧, ∨,¬, ⊃}. The classical propositional calculus can be thought of as defined

by the structure �V, D, {fc; c ∈ C}�. V is the set of truth values {1,0}. D is the

set of designated values {1}; these are the values that are preserved in valid

inferences. For every connective, c, fc is the truth function it denotes. Thus,

f¬ is a one-place function such that f¬(0) = 1 and f¬(1) = 0; f∧ is a two-place

function such that f∧(x, y) = 1 if x = y = 1, and f∧(x, y) = 0 otherwise; and so

120

Many-valued Logics 121

on. These functions can be (and often are) depicted in the following ‘truth

tables’.

f¬
1 0

0 1

f∧ 1 0

1 1 0

0 0 0

7.2.3 An interpretation, ν, is a map from the propositional parameters to V .

An interpretation is extended to a map from all formulas into V by applying

the appropriate truth functions recursively. Thus, for example, ν(¬(p∧q)) =
f¬(ν(p ∧ q)) = f¬(f∧(ν(p), ν(q))). (So if ν(p) = 1 and ν(q) = 0, ν(¬(p ∧ q)) =
f¬(f∧(1, 0)) = f¬(0) = 1.) Finally, an inference is semantically valid just if

there is no interpretation that assigns all the premises a value in D, but

assigns the conclusion a value not in D.

7.2.4 A many-valued logic is a natural generalisation of this structure. Given

some propositional language with connectives C (maybe the same as those

of the classical propositional calculus, maybe different), a logic is defined

by a structure �V, D, {fc; c ∈ C}�. V is the set of truth values: it may have

any number of members (≥ 1). D is a subset of V, and is the set of desig-

nated values. For every connective, c, fc is the corresponding truth function.

Thus, if c is an n-place connective, fc is an n-place function with inputs and

outputs in V .

7.2.5 An interpretation for the language is a map, ν, from propositional

parameters into V . This is extended to a map from all formulas of the lan-

guage to V by applying the appropriate truth functions recursively. Thus,

if c is an n-place connective, ν(c(A1, . . . ,An)) = fc(ν(A1), . . . , ν(An)). Finally,

� |= A iff there is no interpretation, ν, such that for all B ∈ �, ν(B) ∈ D,

but ν(A) /∈ D. A is a logical truth iff φ |= A, i.e., iff for every interpretation

ν(A) ∈ D.

7.2.6 If V is finite, the logic is said to be finitely many-valued. If V has n

members, it is said to be an n-valued logic.

7.2.7 For any finitely many-valued logic, the validity of an inference with

finitely many premises can be determined, as in the classical propositional

calculus, simply by considering all the possible cases. We list all the possible

combinations of truth values for the propositional parameters employed.

122 An Introduction to Non-Classical Logic

Then, for each combination, we compute the value of each premise and

the conclusion. If, in any of these, the premises are all designated and the

conclusion is not, the inference is invalid. Otherwise, it is valid. We will

have an example of this procedure in the next section.

7.2.8 This method, though theoretically adequate, is often impractical

because of exponential explosion. For if there are m propositional param-

eters employed in an inference, and n truth values, there are nm possible

cases to consider. This grows very rapidly. Thus, if the logic is 4-valued and

we have an inference involving just four propositional parameters, there

are already 256 cases to consider!

7.3 The 3-valued Logics of Kleene and Lukasiewicz

7.3.1 In what follows, we consider some simple examples of the above

general structure. All the examples that we consider are 3-valued logics.

The language, in every case, is that of the classical propositional calculus.

7.3.2 A simple example of a 3-valued logic is as follows. V = {1, i, 0}. 1 and

0 are to be thought of as true and false, as usual. i is to be thought of as

neither true nor false. D is just {1} . The truth functions for the connectives

are depicted as follows:

f¬
1 0

i i

0 1

f∧ 1 i 0

1 1 i 0

i i i 0

0 0 0 0

f∨ 1 i 0

1 1 1 1

i 1 i i

0 1 i 0

f⊃ 1 i 0

1 1 i 0

i 1 i i

0 1 1 1

Thus, if ν(p) = 1 and ν(q) = i, ν(¬p) = 0 (top row of f¬), ν(¬p ∨ q) = i

(bottom row, middle column of f∨), etc.

7.3.3 Note that if the inputs of any of these functions are classical (1 or 0),

the output is exactly the same as in the classical case. We compute the other

entries as follows. Take A∧B as an example. If A is false, then, whatever B is,

this is (classically) sufficient to make A∧B false. In particular, if B is neither

true nor false, A∧ B is false. If A is true, on the other hand, and B is neither

true nor false, there is insufficient information to compute the (classical)

value of A ∧ B; hence, A ∧ B is neither true nor false. Similar reasoning

justifies all the other entries.

Many-valued Logics 123

7.3.4 The logic specified above is usually called the (strong) Kleene 3-valued

logic, often written K3.1

7.3.5 The following table verifies that p ⊃ q |=K3 ¬q ⊃ ¬p:

p q p ⊃ q ¬q ⊃ ¬p
1 1 1 0 1 0

1 i i i i 0

1 0 0 1 0 0

i 1 1 0 1 i

i i i i i i

i 0 i 1 i i

0 1 1 0 1 1

0 i 1 i 1 1

0 0 1 1 1 1

In the last three columns, the first number is the value of ¬q; the last

number is that of ¬p, and the central number (printed in bold) is the value

of the whole formula. As can be seen, there is no interpretation where

the premise is designated, that is, has the value 1, and the conclusion

is not.

7.3.6 In checking for validity, it may well be easier to work backwards.

Consider the formula p ⊃ (q ⊃ p). Suppose that this is undesignated. Then

it has either the value 0 or the value i. If it has the value 0, then p has the

value 1 and q ⊃ p has the value 0. But if p has the value 1, so does q ⊃ p.

This situation is therefore impossible. If it has the value i, there are three

possibilities:

p q ⊃ p

1 i

i i

i 0

The first case is not possible, since if p has the value 1, so does q ⊃ p. Nor is

the last case, since if p has the value i, q ⊃ p has value either i or 1. But the

1 Weak Kleene logic is the same as K3, except that, for every truth function, if any input

is i, so is the output.

124 An Introduction to Non-Classical Logic

second case is possible, namely when both p and q have the value i. Thus,

ν(p) = ν(q) = i is a counter-model to p ⊃ (q ⊃ p), as a truth-table check

confirms. So |=K3 p ⊃ (q ⊃ p).

7.3.7 A distinctive thing about K3 is that the law of excluded middle is not

valid: |=K3 p ∨ ¬p. (Counter-model: ν(p) = i.) However, K3 is distinct from

intuitionist logic. As we shall see in 7.10.8, intuitionist logic is not the same

as any finitely many-valued logic.

7.3.8 In fact, K3 has no logical truths at all (7.14, problem 3)! In particular,

the law of identity is not valid: |=K3 p ⊃ p. (Simply give p the value i.) This

may be changed by modifying the middle entry of the truth function for ⊃,

so that f⊃ becomes:

f⊃ 1 i 0

1 1 i 0

i 1 1 i

0 1 1 1

(The meaning of A ⊃ B in K3 can still be expressed by ¬A ∨ B, since this

has the same truth table, as may be checked.) Now, A ⊃ A always takes the

value 1.

7.3.9 The logic resulting from this change is one originally given by

Lukasiewicz, and is often called L3.

7.4 LP and RM3

7.4.1 Another 3-valued logic is the one often called LP. This is exactly the

same as K3, except that D = {1, i}.

7.4.2 In the context of LP, the value i is thought of as both true and false.

Consequently, 1 and 0 have to be thought of as true and true only, and false

and false only, respectively. This change does not affect the truth tables,

which still make perfectly good sense under the new interpretation. For

example, if A takes the value 1 and B takes the value i, then A and B are both

true; hence, A∧ B is true; but since B is false, A∧ B is false. Hence, the value

of A ∧ B is i. Similarly, if A takes the value 0, and B takes the value i, then A

Many-valued Logics 125

and B are both false, so A∧ B is false; but only B is true, so A∧ B is not true.

Hence, A ∧ B takes the value 0.

7.4.3 However, the change of designated values makes a crucial differ-

ence. For example, |=LP p ∨ ¬p. (Whatever value p has, p ∨ ¬p takes either

the value 1 or i. Thus it is always designated.) This fails in K3, as we saw

in 7.3.7.

7.4.4 On the other hand, p ∧ ¬p |=LP q. Counter-model: ν(p) = i (making

ν(p ∧ ¬p) = i), ν(q) = 0. But p ∧ ¬p can never take the value 1 and so be

designated in K3. Thus, the inference is valid in K3.

7.4.5 A notable feature of LP is that modus ponens is invalid: p, p ⊃ q |=LP q.

(Assign p the value i, and q the value 0.)

7.4.6 One way to rectify this is to change the truth function for ⊃ to the

following:

f⊃ 1 i 0

1 1 0 0

i 1 i 0

0 1 1 1

(As in 7.3.8, the meaning of A ⊃ B in LP can still be expressed by ¬A ∨ B.)

Now, if A and A ⊃ B have designated values (1 or i), so does B, as a moment

checking the truth table verifies.

7.4.7 This change gives the logic often called RM3.

7.5 Many-valued Logics and Conditionals

7.5.1 Further details of the properties of ∧, ∨ and ¬ in the logics we have

just met will emerge in the next chapter. For the present, let us concentrate

on the conditional.

7.5.2 In past chapters, we have met a number of problematic inferences

concerning conditionals. The following table summarises whether or not

they hold in the various logics we have looked at. (A tick means yes; a cross

means no.)

126 An Introduction to Non-Classical Logic

K3 L3 LP RM3

(1) q |= p ⊃ q
√ √ √ ×

(2) ¬p |= p ⊃ q
√ √ √ ×

(3) (p ∧ q) ⊃ r |= (p ⊃ r) ∨ (q ⊃ r)
√ √ √ √

(4) (p ⊃ q) ∧ (r ⊃ s) |= (p ⊃ s) ∨ (r ⊃ q)
√ √ √ √

(5) ¬(p ⊃ q) |= p
√ √ √ √

(6) p ⊃ r |= (p ∧ q) ⊃ r
√ √ √ √

(7) p ⊃ q, q ⊃ r |= p ⊃ r
√ √ × √

(8) p ⊃ q |= ¬q ⊃ ¬p √ √ √ √

(9) |= p ⊃ (q ∨ ¬q) × × √ ×
(10) |= (p ∧ ¬p) ⊃ q × × √ ×

(1) and (2) we met in 1.7, and (3)–(5) we met in 1.9, all in connection with the

material conditional. (6)–(8) we met in 5.2, in connection with conditional

logics. (9) and (10) we met in 4.6, in connection with the strict conditional.

The checking of the details is left as a (quite lengthy) exercise. For K3, a gen-

erally good strategy is to start by assuming that the premises take the value

1 (the only designated value), and recall that, in K3, if a conditional takes

the value 1, then either its antecedent takes the value 0 or the consequent

takes the value 1. For L3, it is similar, except that a conditional with value 1

may also have antecedent and consequent with value i. For LP, a generally

good strategy is to start by assuming that the conclusion takes the value 0

(the only undesignated value), and recall that, in LP, if a conditional takes

the value 0, then the antecedent takes the value 1 and the consequent takes

the value 0. For RM3, it is similar, except that if a conditional has value 0,

the antecedent and consequent may also take the values 1 and i, or i and 0,

respectively. And recall that classical inputs (1 or 0) always give the classical

outputs.

7.5.3 As can be seen from the number of ticks, the conditionals do not

fare very well. If one’s concern is with the ordinary conditional, and not

with conditionals with an enthymematic ceteris paribus clause, then one may

ignore lines (6)–(8). But all the logics suffer from some of the same problems

as the material conditional. K3 and L3 also suffer from some of the problems

that the strict conditional does. In particular, even though (10) tells us that

(p∧¬p) ⊃ q is not valid in these logics, contradictions still entail everything,

since p ∧ ¬p can never assume a designated value. By contrast, this is not

Many-valued Logics 127

true of LP (as we saw in 7.4.4), but this is so only because modus ponens is

invalid, since (p∧¬p) ⊃ q is valid, as (10) shows. (Modus ponens is valid for the

other logics, as may easily be checked.) About the best of the bunch is RM3.

7.5.4 But there are quite general reasons as to why the conditional of any

finitely many-valued logic is bound to be problematic. For a start, if disjunc-

tion is to behave in a natural way, the inference from A (or B) to A∨ B must

be valid. Hence, we must have:

(i) if A (or B) is designated, so is A ∨ B

Also, A ≡ A ought to be a logical truth. (Even if A is neither true nor false,

for example, it would still seem to be the case that if A then A, and so, that

A iff A.) Hence:

(ii) if A and B have the same value, A ≡ B must be designated (since A ≡ A is).

Note that both of these conditions hold for all the logics that we have looked

at, with the exception of K3, for which (ii) fails.

7.5.5 Now, take any n-valued logic that satisfies (i) and (ii), and consider

n+1 propositional parameters, p1, p2, . . . , pn+1. Since there are only n truth

values, in any interpretation, two of these must receive the same value.

Hence, by (ii), for some j and k, pj ≡ pk must be designated. But then the

disjunction of all biconditionals of this form must also be designated, by (i).

Hence, this disjunction is logically valid.

7.5.6 But this seems entirely wrong. Consider n + 1 propositions such as

‘John has 1 hair on his head’, ‘John has 2 hairs on his head’, . . ., ‘John has

n + 1 hairs on his head’. Any biconditional relating a pair of these would

appear to be false. Hence, the disjunction of all such pairs would also appear

to be false – certainly not logically true.

7.6 Truth-value Gluts: Inconsistent Laws

7.6.1 Let us now turn to the issue of the philosophical motivations for

many-valued logics and, in particular, the 3-valued logics we have met.

Typically, the motivations for those logics that treat i as both true and

false (a truth-value glut), like LP and RM3, are different from those that treat

i as neither true nor false (a truth-value gap), like K3 and L3. Let us start

8 First Degree Entailment

8.1 Introduction

8.1.1 In this chapter we look at a logic called first degree entailment (FDE). This

is formulated, first, as a logic where interpretations are relations between

formulas and standard truth values, rather than as the more usual functions.

Connections between FDE and the many-valued logics of the last chapter

will emerge.

8.1.2 We also look at an alternative possible-world semantics for FDE, which

will introduce us to a new kind of semantics for negation.

8.1.3 Finally, we look at the relation of all this to the explosion of

contradictions, and to the disjunctive syllogism.

8.2 The Semantics of FDE

8.2.1 The language of FDE contains just the connectives ∧, ∨ and ¬. A ⊃ B

is defined, as usual, as ¬A ∨ B.

8.2.2 In the classical propositional calculus, an interpretation is a function

from formulas to the truth values 0 and 1, written thus: ν(A) = 1 (or 0).

Packed into this formalism is the assumption (usually made without com-

ment in elementary logic texts) that every formula is either true or false;

never neither, and never both.

8.2.3 As we saw in the last chapter, there are reasons to doubt this

assumption. If one does, it is natural to formulate an interpretation, not as

a function, but as a relation between formulas and truth values. Thus, a for-

mula may relate to 1; it may relate to 0; it may relate to both; or it may relate

to neither. This is the main idea behind the following semantics for FDE.

142

First Degree Entailment 143

8.2.4 Note that it is now very important to distinguish between being false

in an interpretation and not being true in it. (There is, of course, no differ-

ence in the classical case.) The fact that a formula is false (relates to 0) does

not mean that it is untrue (it may also relate to 1). And the fact that it is

untrue (does not relate to 1) does not mean that it is false (it may not relate

to 0 either).

8.2.5 An FDE interpretation is a relation, ρ1 between propositional parame-

ters and the values 1 and 0. (In mathematical notation, ρ ⊆ P×{1, 0}, where

P is the set of propositional parameters.) Thus, pρ1 means that p relates to

1, and pρ0 means that p relates to 0.

8.2.6 Given an interpretation, ρ, this is extended to a relation between all

formulas and truth values by the recursive clauses:

A ∧ Bρ1 iff Aρ1 and Bρ1

A ∧ Bρ0 iff Aρ0 or Bρ0

A ∨ Bρ1 iff Aρ1 or Bρ1

A ∨ Bρ0 iff Aρ0 and Bρ0

¬Aρ1 iff Aρ0

¬Aρ0 iff Aρ1

Note that these are exactly the same as the classical truth conditions,

stripped of the assumption that truth and falsity are exclusive and exhaus-

tive. Thus, a conjunction is true (under an interpretation) if both conjuncts

are true (under that interpretation); it is false if at least one conjunct is

false, etc.

8.2.7 As an example of how these conditions work, consider the formula

¬p ∧ (q ∨ r). Suppose that pρ1, pρ0, qρ1 and rρ0, and that ρ relates no

parameter to anything else. Since p is true, ¬p is false; and since p is

false, ¬p is true. Thus ¬p is both true and false. Since q is true, q ∨ r

is true; and since q is not false, q ∨ r is not false. Thus, q ∨ r is sim-

ply true. But then, ¬p ∧ (q ∨ r) is true, since both conjuncts are true;

and false, since the first conjunct is false. That is, ¬p ∧ (q ∨ r)ρ1 and

¬p ∧ (q ∨ r)ρ0.

1 Not to be confused with the reflexive ρ of normal modal logics.

144 An Introduction to Non-Classical Logic

8.2.8 Semantic consequence is defined, in the usual way, in terms of truth

preservation, thus:

� |= A iff for every interpretation, ρ, if Bρ1 for all B ∈ � then Aρ1

and:

|= A iffφ |= A, i.e., for all ρ, Aρ1

8.3 Tableaux for FDE

8.3.1 Tableaux for FDE can be obtained by modifying those for the classical

propositional calculus as follows.

8.3.2 Each entry of the tableau is now of the form A,+ or A, −. Intuitively, A,

+ means that A is true, A, − means that it isn’t. As we noted in 8.2.4, and as

with intuitionist logic (6.4.1), ¬A,+ no longer means the same, intuitively,

as A, −.

8.3.3 To test the claim that A1, . . . ,An B, we start with an initial list of the

form:
A1,+

...

An,+
B, −

8.3.4 The tableaux rules are as follows:

A ∧ B,+�
A,+
B,+

A ∧ B, −
" #
A, − B, −

A ∨ B,+
" #
A,+ B,+

A ∨ B, −�
A, −
B, −

¬(A ∧ B),+�
¬A ∨ ¬B,+

¬(A ∧ B), −�
¬A ∨ ¬B, −

First Degree Entailment 145

¬(A ∨ B),+�
¬A ∧ ¬B,+

¬(A ∨ B), −�
¬A ∧ ¬B, −

¬¬A,+�
A,+

¬¬A, −
↓

A, −

The first two rules speak for themselves: if A ∧ B is true, A and B are true;

if A ∧ B is not true, then one or other of A and B is not true. Similarly for

the rules for disjunction. The other rules are also easy to remember, since

¬(A∧ B) and ¬A∨¬B have the same truth values in FDE, as do ¬(A∨ B) and

¬A∧¬B, and ¬¬A and A. (De Morgan’s laws and the law of double negation,

respectively.)

8.3.5 Finally, a branch of a tableau closes if it contains nodes of the form

A,+ and A, −.

8.3.6 For example, the following tableau demonstrates that ¬(B ∧ ¬C) ∧ A

 (¬B ∨ C) ∨ D:

¬(B ∧ ¬C) ∧ A,+
(¬B ∨ C) ∨ D, −
¬(B ∧ ¬C),+

A,+
¬B ∨ ¬¬C,+
¬B ∨ C, −

D, −
¬B, −
C, −

" #
¬B,+ ¬¬C,+
× C,+

×

The third and fourth lines come from the first, by the rule for true

conjunctions. The next line comes from the third by De Morgan’s laws.

The next two lines come from the second by the rule for untrue disjunc-

tions, which is then applied again, to get the next two lines. The branching

arises because of the rule for true disjunctions, applied to line five. The left

146 An Introduction to Non-Classical Logic

branch is now closed because of ¬B, − and ¬B,+; an application of double

negation then closes the righthand branch.

8.3.7 Here is another example, to show that p ∧ (q ∨ ¬q) r:

p ∧ (q ∨ ¬q),+
r, −
p,+

q ∨ ¬q,+
" #

q,+ ¬q,+

8.3.8 Counter-models can be read off from open branches in a simple way.

For every parameter, p, if there is a node of the form p,+, set pρ1; if there

is a node of the form ¬p,+, set pρ0. No other facts about ρ obtain.

8.3.9 Thus, the counter-model defined by the righthand branch of the

tableau in 8.3.7 is the interpretation ρ, where pρ1 and qρ0 (and no other

relations hold). It is easy to check directly that this interpretation makes

the premises true and the conclusion untrue.

8.3.10 The tableaux are sound and complete with respect to the semantics.

This is proved in 8.7.1–8.7.7.

8.4 FDE and Many-valued Logics

8.4.1 Given any formula, A, and any interpretation, ρ, there are four

possibilities: A is true and not also false, A is false and not also true, A

is true and false, A is neither true nor false. If we write these possibilities as

1, 0, b and n, respectively, this makes it possible to think of FDE as a 4-valued

logic.

8.4.2 The truth conditions of 8.2.6 give the following truth tables:

f¬
1 0

b b

n n

0 1

f∧ 1 b n 0

1 1 b n 0

b b b 0 0

n n 0 n 0

0 0 0 0 0

f∨ 1 b n 0

1 1 1 1 1

b 1 b 1 b

n 1 1 n n

0 1 b n 0

First Degree Entailment 147

The details are laborious, but easy enough to check. Thus, suppose that A is

n and B is b. Then it is not the case that A and B are both true; hence, A ∧ B

is not true. But B is false; hence, A ∧ B is false. Thus, A ∧ B is false but not

true, 0. Since B is true, A ∨ B is true; and since A and B are not both false,

A ∨ B is not false. Hence, A ∨ B is true and not false, 1. The other cases are

left as an exercise.

8.4.3 An easy way to remember these values is with the following diagram,

the ‘diamond lattice’:

1

& +
b n

+ &
0

The conjunction of any two elements, x and y, is their greatest lower bound,

that is, the greatest thing from which one can get to both x and y going up

the arrows. Thus, for example, b ∧ n = 0 and b ∧ 1 = b. The disjunction

of two elements, x and y, is the least upper bound, that is, the least thing

from which one can get to both x and y going down the arrows. Thus, for

example, b∨ n = 1, b∨ 1 = 1. Negation toggles 0 and 1, and maps each of n

and b to itself.2

8.4.4 Since validity in FDE is defined in terms of truth preservation, the set

of designated values is {1, b} (true only, and both true and false).

8.4.5 This is not one of the many-valued logics that we met in the last

chapter, but two of the ones that we did meet there are closely related

to FDE.

8.4.6 Suppose that we consider an FDE interpretation that satisfies the

constraint:

Exclusion: for no p, pρ1 and pρ0

2 In fact, this structure is more than a mnemonic. The lattice is one of the most funda-

mental of a group of structures called ‘De Morgan lattices’, which can be used to give a

different semantics for FDE.

148 An Introduction to Non-Classical Logic

i.e., no propositional parameter is both true and false. Then it is not difficult

to check that the same holds for every sentence, A.3 That is, nothing takes

the value b.

8.4.7 The logic defined in terms of truth preservation over all interpre-

tations satisfying this constraint is, in fact, K3. For if we take the above

matrices, and ignore the rows and columns for b, we get exactly the matri-

ces for K3 (identifying n with i). (In K3, A ⊃ B can be defined as ¬A∨ B, as we

observed in 7.3.8.)

8.4.8 K3 is sound and complete with respect to the tableaux of the previous

section, augmented by one extra closure rule: a branch closes if it contains

nodes of the form A,+ and¬A,+. (This is proved in 8.7.8.) Here, for example,

is a tableau showing that p ∧ ¬p K3 q. (The tableau is open in FDE.)

p ∧ ¬p,+
q, −
p,+
¬p,+
×

Counter-models are read off from open branches of tableaux in exactly the

same way as in FDE.

8.4.9 Suppose, on the other hand, that we consider an FDE interpretation

that satisfies the constraint:

Exhaustion: for all p, either pρ1 or pρ0

i.e., every propositional parameter is either true or false – and maybe

both. Then it is not difficult to check that, again, the same holds for every

sentence, A.4 That is, nothing takes the value n.

3 Proof: The proof is by an induction over the complexity of sentences. Suppose that it is

true for A and B; we show that it is true for ¬A, A∧ B and A∨ B. Suppose that ¬Aρ1 and

¬Aρ0; then Aρ0 and Aρ1, contrary to supposition. Suppose that A ∧ Bρ1 and A ∧ Bρ0;

then Aρ1 and Bρ1, and either Aρ0 or Bρ0; hence, either Aρ1 and Aρ0, or the same for B.

Both cases are false, by assumption. The argument for A ∨ B is similar.
4 Proof: The proof is by an induction over the complexity of sentences. Suppose that it is

true for A and B; we show that it is true for ¬A, A∧ B and A∨ B. Suppose that either Aρ1

or Aρ0; then either ¬Aρ0 or ¬Aρ1. Since Aρ1 or Aρ0, and Bρ1 or Bρ0, then either Aρ1

and Bρ1, and so A∧Bρ1; or Aρ0 or Bρ0, and so A∧Bρ0. The argument for A∨B is similar.

First Degree Entailment 149

8.4.10 The logic defined by truth preservation over all interpretations

satisfying this constraint is, in fact, LP. For if we take the matrices of 8.4.2

and ignore the rows and columns for n, we get exactly the matrices for LP

(identifying b with i). (Again, in LP, A ⊃ B can be defined as ¬A ∨ B, as we

observed in 7.4.6.)

8.4.11 LP is sound and complete with respect to the tableaux of the previous

section, augmented by one extra closure rule: a branch closes if it contains

nodes of the form A, − and¬A, −. (This is proved in 8.7.9.) Here, for example,

is a tableau showing that p LP q ∨ ¬q. (The tableau is open in FDE.)

p,+
q ∨ ¬q, −

q, −
¬q, −
×

Counter-models are read off from open branches of tableaux by employing

the following rule: if p, − is not on the branch (and so, in particular, if p,+
is), set pρ1; and if ¬p, − is not on the branch (and so, in particular, if ¬p,+
is), set pρ0.

8.4.12 Finally, and of course, if an interpretation satisfies both Exclusion and

Exhaustion, then for every p, pρ0 or pρ1, but not both, and the same follows

for arbitrary A. In this case, we have what is, in effect, an interpretation

for classical logic. Adding the closure rules for K3 and LP to those of FDE,

therefore gives us a new tableau procedure for classical logic.

8.4.13 Since all K3 interpretations are FDE interpretations, and all LP inter-

pretations are FDE interpretations, FDE is a sub-logic of K3 and LP. It is a

proper sub-logic of each, as the tableaux of 8.4.8 and 8.4.11 show.

8.4a Relational Semantics and Tableaux for L3 and RM3

8.4a.1 Before we move on to a different kind of semantics for FDE, it is

worth noting that the semantics for L3 and RM3 can be reformulated in a

relational fashion as well. The only difference from K3 and LP (respectively)

concerns the appropriate conditional.

150 An Introduction to Non-Classical Logic

8.4a.2 For L3, we consult the truth table of 7.3.8, and recall that i is n – that

is, neither true (relates to 1) nor false (relates to 0). It is not difficult to check

that:

A ⊃ Bρ1 iff Aρ0 or Bρ1 or (none of Aρ1, Aρ0, Bρ1, Bρ0)

A ⊃ Bρ0 iff Aρ1 and Bρ0

8.4a.3 For LP, we consult the truth table of 7.4.6, and recall that i is b – that

is, both true (relates to 1) and false (relates to 0). It is not difficult to check

that:

A ⊃ Bρ1 iff it is not the case that Aρ1 or it is not the case that Bρ0 or (Aρ1

and Aρ0 and Bρ1 and Bρ0)

A ⊃ Bρ0 iff Aρ1 and Bρ0

8.4a.4 In virtue of these truth conditions, it is straightforward to give

tableaux systems for the two logics. The tableaux for L3 are the same as

those for K3, with the additional rules for ⊃:

A ⊃ B,+
" � #

¬A,+ B,+ A ∨ ¬A, −
B ∨ ¬B, −

A ⊃ B, −
" #
A,+ ¬B,+
B, − ¬A, −

¬(A ⊃ B),+�
A,+
¬B,+

¬(A ⊃ B), −
" #
A, − ¬B, −

8.4a.5 The tableaux for RM3 are the same as those for LP, with the additional

rules for ⊃:

A ⊃ B,+
" � #
A, − ¬B, − A ∧ ¬A,+

B ∧ ¬B,+

A ⊃ B, −
" #
A,+ ¬B,+
B, − ¬A, −

First Degree Entailment 151

¬(A ⊃ B),+�
A,+
¬B,+

¬(A ⊃ B), −
" #
A, − ¬B, −

8.4a.6 The tableau systems are sound and complete with respect to the

appropriate semantics. (See 8.10, problem 11.)

8.5 The Routley Star

8.5.1 We now have two equivalent semantics for FDE, a relational semantics

and a many-valued semantics.5 For reasons to do with later chapters, we

should have a third. This is a two-valued possible-world semantics, which

treats negation as an intensional operator; that is, as an operator whose

truth conditions require reference to worlds other than the world at which

truth is being evaluated.

8.5.2 Specifically, we assume that each world, w, comes with a mate, w∗,

its star world, such that ¬A is true at w if A is false, not at w, but at w∗. If

w = w∗ (which may happen), then these conditions just collapse into the

classical conditions for negation; but if not, they do not. The star operator

is often described with a variety of metaphors; for example, it is sometimes

described as a reversal operator; but it is hard to give it and its role in the

truth conditions for negation a satisfying intuitive interpretation.

8.5.3 Formally, a Routley interpretation is a structure �W , ∗, ν�, where W is a

set of worlds, ∗ is a function from worlds to worlds such that w∗∗ = w, and ν

assigns each propositional parameter either the value 1 or the value 0 at

each world. ν is extended to an assignment of truth values for all formulas

by the conditions:

νw(A ∧ B) = 1 if νw(A) = 1 and νw(B) = 1; otherwise it is 0.

νw(A ∨ B) = 1 if νw(A) = 1 or νw(B) = 1; otherwise it is 0.

νw(¬A) = 1 if νw∗(A) = 0; otherwise it is 0.

5 At least, they are equivalent given the standard set-theoretic reasoning employed in

the reformulation. Such reasoning employs classical logic, however, and in a set theory

based on a paraconsistent logic it may fail. See Priest (1993).

152 An Introduction to Non-Classical Logic

Note that νw∗(¬A) = 1 iff νw∗∗(A) = 0 iff νw(A) = 0. In other words, given a

pair of worlds, w and w∗, each of A and ¬A is true exactly once. Validity is

defined in terms of truth preservation over all worlds of all interpretations.

8.5.4 Appropriate tableaux for these semantics are easy to construct. Nodes

are now of the form A,+x or A, −x, where x is either i or i#, i being a natural

number. (In fact, i will always be 0, but we set things up in a slightly more

general way for reasons to do with later chapters.) Intuitively, i# represents

the star world of i. Closure occurs if we have a pair of the form A,+x and

A, −x. The initial list comprises a node B,+0 for every premise, B, and A, −0,

where A is the conclusion. The tableau rules are as follows, where x is either

i or i#, and whichever of these it is, x is the other.

A ∧ B,+x�
A,+x
B,+x

A ∧ B, −x

" #
A, −x B, −x

A ∧ B,+x
" #

A,+x B,+x

A ∨ B, −x�
A, −x

B, −x

¬A,+x�
A, −x̄

¬A, −x�
A,+x̄

8.5.5 Here are tableaux demonstrating that ¬(B ∧ ¬C) ∧ A (¬B ∨ C) ∨ D

and p ∧ (q ∨ ¬q) r:

¬(B ∧ ¬C) ∧ A,+0

(¬B ∨ C) ∨ D, −0

(¬B ∨ C), −0

D, −0

¬B, −0

C, −0

B,+0#
�

First Degree Entailment 153

¬(B ∧ ¬C),+0

A,+0

B ∧ ¬C, −0#

" #
B, −0# ¬C, −0#

× C,+0

×
Line two is pursued as far as possible. Then line one is pursued to produce

closure.

p ∧ (q ∨ ¬q),+0

r, −0

p,+0

q ∨ ¬q,+0

" #
q,+0 ¬q,+0

q, −0#

8.5.6 To read off a counter-model from an open branch: W = {w0,w0#}
(there are only ever two worlds); w∗

0 = w0# and (w0#)∗ = w0. (W and ∗
are always the same, no matter what the tableau.) ν is such that if p,+x
occurs on the branch, νwx(p) = 1, and if p, −x occurs on the branch, νwx(p) =
0. Thus, the counter-model defined by the righthand open branch of the

second tableau of 8.5.5 has νw0(p) = 1, νw0(r) = 0 and νw0# (q) = 0. It is easy

to check directly that this interpretation does the job. Since q is false at w0# ,

¬q is true at w0, as, therefore, is q∨¬q; but p is true at w0, hence p∧ (q∨¬q)
is true at w0. But r is false at w0, as required.

8.5.7 The soundness and completeness of this tableau procedure is proved

in 8.7.10–8.7.16.

8.5.8 It is not at all obvious that the ∗ semantics are equivalent to the

relational semantics, but it is not too difficult to establish this. Essentially,

it is because a relational interpretation, ρ, is equivalent to a pair of worlds,

w and w∗. Specifically, the relation and the worlds do exactly the same job

when they are related by the condition:

νw(p) = 1 iff pρ1

νw∗(p) = 0 iff pρ0

154 An Introduction to Non-Classical Logic

for all parameters, p. The proof of the equivalence is given in 8.7.17 and

8.7.18.

8.6 Paraconsistency and the Disjunctive Syllogism

8.6.1 As we have seen (8.4.8 and 8.4.11), both of the following are false in

FDE: p |= q∨¬q, p∧¬p |= q. This is essentially because there are truth-value

gaps (for the former) and truth-value gluts (for the latter). In particular, then,

FDE does not suffer from the problem of explosion (4.8).

8.6.2 A logic in which the inference from p and¬p to an arbitrary conclusion

is not valid is called paraconsistent. FDE is therefore paraconsistent, as is

LP (7.4.4).

8.6.3 It is not only explosion that fails in FDE (and LP). The disjunctive syl-

logism (DS) is also invalid: p,¬p ∨ q |=FDE q. (Relational counter-model: pρ1

and pρ0, but just qρ0.)

8.6.4 This is a significant plus. We have seen theDS involved in two problem-

atic arguments: the argument for the material conditional of 1.10, and the

Lewis argument for explosion of 4.9.2. We can now see that these arguments

do not work, and (at least one reason) why.6

8.6.5 Note, also, that theDS is just modus ponens for the material conditional.

Since this fails, we have another argument against the adequacy of the

material conditional to represent the real conditional.

8.6.6 The failure of the DS has also been thought by some to be a significant

minus. First, it is claimed that the DS is intuitively valid. For if¬p∨q is true,

either ¬p or q is true. But, the argument continues, if p is true, this rules out

the truth of ¬p. Hence, it must be q that is true. But once one countenances

the possibility of truth-value gluts, this argument is patently wrong. The

truth of p does not rule out the truth of ¬p: both may hold. From this

perspective, the inference is intuitively invalid.

8.6.7 A more persuasive objection is that we frequently use, and seem to

need to use, the DS to reason, and we get the right results. Thus, we know

6 For good measure, the argument of 4.9.3 for the validity of the inference from A to

B ∨ ¬B is also invalid in FDE, since p � (p ∧ q) ∨ (p ∧ ¬q), as may be checked.

First Degree Entailment 155

that you are either at home or at work. We ascertain that you are not at

home, and infer that you are at work – which you are. If the DS is invalid,

this form of reasoning would seem to be incorrect.

8.6.8 If the DS fails, then the inference about being at home or work is

not deductively valid. It may be perfectly legitimate to use it, none the less.

There are a number of ways of spelling this idea out in detail, but at the root

of all of them is the observation that when the DS fails, it does so because

the premise p involved is a truth-value glut. If the situation about which

we are reasoning is consistent – as it is, presumably, in this case – the DS

cannot lead us from truth to untruth. So it is legitimate to use it. This fact

will underwrite its use in most situations we come across, since consistency

is, arguably, the norm.

8.6.9 In the same way, if we have some collection, X, one cannot infer

from the fact that some other collection, Y , is a proper subset of X that

it is smaller.7 But provided that we are working with collections that are

finite, this inference is perfectly legitimate: violations can occur only when

infinite sets are involved.

8.6.10 Thus, this objection can also be set aside.

8.7 *Proofs of Theorems

8.7.1 The soundness and completeness proofs for the relational semantics

for FDE modify those for classical logic (1.11).

8.7.2 Definition: Let ρ be any relational interpretation. Let b be any branch

of a tableau. ρ is faithful to b iff for every node, A,+, on the branch, Aρ1, and

for every node, A, −, on the branch, it is not the case that Aρ1.

8.7.3 Soundness Lemma: If ρ is faithful to a branch of a tableau, b, and a

tableau rule is applied to b, then ρ is faithful to at least one of the branches

generated.

7 For example, the set of all natural numbers is the same size as the set of all even

numbers, as can be seen by making the following correlation:

0 1 2 3 4 . . .

- - - - -
0 2 4 6 8 . . .

156 An Introduction to Non-Classical Logic

Proof:

The proof is by a case-by-case examination of the tableau rules. First, the

rules for ∧. Suppose that we apply the rule for A ∧ B,+; then since ρ is

faithful to the branch, A ∧ Bρ1. Hence, Aρ1 and Bρ1. Hence, ρ is faithful to

the extended branch. Next, suppose that we apply the rule for A∧B, −; then

since ρ is faithful to the branch, it is not the case that A∧Bρ1. Hence, either

it is not the case that Aρ1 or it is not the case that Bρ1. Hence, ρ is faithful

to either the left branch or the right branch. The argument for ∨ is similar.

For the other rules, it is easy to check that in FDE, ¬(A ∧ B) is true under

an evaluation iff ¬A ∨ ¬B is true; the same goes for ¬(A ∨ B) and ¬A ∧ ¬B,

and ¬¬A and A. (Details are left as an exercise.) The cases for the other rules

follow simply from these facts. �

8.7.4 Soundness Theorem for FDE: For finite �, if � A then � |= A.

Proof:

The proof follows from the Soundness Lemma in the usual way. �

8.7.5 Definition: Let b be an open branch of a tableau. The interpreta-

tion induced by b is the interpretation, ρ, such that for every propositional

parameter, p:

pρ1 iff p,+ occurs on b

pρ0 iff ¬p,+ occurs on b

8.7.6 CompletenessLemma: Let bbe an open completed branch of a tableau.

Let ρ be the interpretation induced by b. Then:

if A,+, occurs on b, then Aρ1

if A, − occurs on b, then it is not the case that Aρ1

if ¬A,+, occurs on b, then Aρ0

if ¬A, − occurs on b, then it is not the case that Aρ0

Proof:

The proof is by an induction on the complexity of A. If A is a propositional

parameter, p: if p,+ occurs on b, then pρ1 by definition. If p, − occurs on b,

then p,+ does not occur on b, since it is open. Hence, by definition, it is not

the case that pρ1. The cases for 0 are similar. For B ∧ C: if B ∧ C,+ occurs

on b, then B,+ and C,+ occur on b. By induction hypothesis, Bρ1 and Cρ1.

Hence, B∧Cρ1 as required. The argument for B∧C, − is similar. If¬(B∧C),+

First Degree Entailment 157

occurs on b, then by applications of a De Morgan rule and a disjunction rule,

either ¬B,+ or ¬C,+ are on b. By induction hypothesis, either Bρ0 or Cρ0.

In either case, B∧Cρ0. The case for ¬(B∧C), − is similar. The argument for

∨ is symmetric. This leaves negation. Suppose that ¬B,+ occurs on b. Since

the result holds for B, Bρ0. Hence, ¬Bρ1, as required. Similarly for ¬B, −.

If ¬¬B,+ is on b, B,+ is on b. Hence, by induction hypothesis, Bρ1, and so

¬¬Bρ1 as required. The case for ¬¬B, − is similar. �

8.7.7 Completeness Theorem for FDE: For finite �, if � |= A then � A.

Proof:

The proof follows from the Completeness Lemma in the usual way. �

8.7.8 Theorem: The tableau rules of 8.4.8 are sound and complete for K3.

Proof:

The soundness proof is exactly the same as that for FDE. (If the rules are

sound with respect to FDE interpretations, they are sound with respect to

K3 interpretations, which are a special case.) The completeness proof is also

essentially the same. All we have to check, in addition, is that the induced

interpretation is a K3 interpretation. It cannot be the case that pρ1 and pρ0,

for then we would have both p,+ and ¬p,+ on b. But this is impossible, or

b would be closed by the new closure rule. �

8.7.9 Theorem: The tableau rules of 8.4.11 are sound and complete for LP.

Proof:

The soundness proof is exactly the same as that for FDE. (If the rules are

sound with respect to FDE interpretations, they are sound with respect to

LP interpretations, which are a special case.) In the completeness proof, the

induced interpretation is defined slightly differently, thus:

pρ1 iff p, − is not on b

pρ0 iff ¬p, − is not on b

Note that this makes ρ an LP interpretation. By the new closure rule, either

p, − or ¬p, − is not on b. Hence, either pρ1 or pρ0. In the Completeness

Lemma, the new definition makes the argument for the basis case different.

If p,+ occurs on b, then p, − does not occur on b, by the FDE closure rule, so

pρ1. If p, − occurs on b, then it is not the case that pρ1, by definition. The

158 An Introduction to Non-Classical Logic

argument for ¬p is the same. The rest of the Completeness Lemma, and the

proof of the Completeness Theorem itself, are as usual. �

8.7.10 The soundness and completeness proofs for the ∗ semantics are vari-

ations on those for intuitionist tableaux (6.7). We start off, as usual, with a

redefinition of faithfulness.

8.7.11 Definition: Let I = �W , ∗, ν� be any Routley interpretation, and b be

any branch of a tableau. Then I is faithful to b iff there is a map, f , from

the natural numbers to W , such that:

for every node A,+x on b, A is true at f (x) in I,

for every node A, −x on b, A is false at f (x) in I,

where f (i#) is, by definition, f (i)∗.

8.7.12 Soundness Lemma: Let b be any branch of a tableau, and I = �W , ∗, ν�
be any Routley interpretation. If I is faithful to b, and a tableau rule

is applied, then it produces at least one extension, b%, such that I is

faithful to b%.

Proof:

Let f be a function which shows I to be faithful to b. The proof proceeds

by a case-by-case consideration of the tableau rules. Suppose we apply the

rule to A∧ B,+x, then, by assumption A∧ B is true at f (x). Thus, A and B are

both true at f (x), and so f shows that I is faithful to b%. If we apply the rule

to A ∧ B, −x, then, by assumption, A ∧ B is false at f (x). Consequently, A is

false at f (x) or B is false at f (x), i.e., f shows that I is faithful to either the

left branch or the right branch. The arguments for the rules for disjunction

are also similar. This leaves the rules for negation. Suppose that we apply

the rule to ¬A,+i. Then, by assumption, ¬A is true at f (i). Hence, A is false

at f (i)∗, as required. If we apply the rule to ¬A,+i#, then we know that ¬A
is true at f (i)∗. Hence, A, is false at f (i), as required. The argument for the

other negation rule is similar. �

8.7.13 Soundness Theorem: For finite �, if � A then � |= A.

Proof:

This follows from the Soundness Lemma in the usual way. �

First Degree Entailment 159

8.7.14 Definition: Let b be an open branch of a tableau. The interpreta-

tion, I = �W , ∗, ν�, induced by b, is defined as in 8.5.6. W = {w0,w0#}.w∗
0 =

w0# , (w0#)∗ = w0. ν is such that:

νwx (p) = 1 if p,+x is on b

νwx (p) = 0 if p, −x is on b

(where x is either 0 or 0#). Since the branch is open, this is well defined. Note

also that, by the definition of ∗, w∗∗
x = wx, i.e., the induced interpretation is

a Routley interpretation.

8.7.15 Completeness Lemma: Let b be any open completed branch of a

tableau. Let I = �W , ∗, ν� be the interpretation induced by b. Then:

if A,+x is on b, A is true at wx

if A, −x is on b, A is false at wx

Proof:

This is proved by induction on the complexity of A. If A is atomic, the result

is true by definition. If B ∧ C,+x occurs on b, then B,+x and C,+x occur on

b. By induction hypothesis, B and C are true at wx. Hence, B∧C is true at wx.

If B∧C, −x occurs on b, then either B, −x, or C, −x occurs on b. By induction

hypothesis, B is false at wx or C is false at wx. Hence, B ∧ C is false at wx

as required. The cases for disjunction are similar. For negation: if ¬B,+x
occurs on b, then B, −x̄ occurs on b. By induction hypothesis, B is false at

wx; hence, by the definition of ∗, B is false at w∗
x , that is, ¬B is true at wx, as

required. The other negation rule is the same. �

8.7.16 Completeness Theorem: For finite �, if � |= A then � A.

Proof:

The result follows from the Completeness Lemma in the usual fashion. �

8.7.17 Theorem: If � |= A under the relational semantics, � |= A under the

Routley semantics.

Proof:

We prove the contrapositive. Suppose that there is a Routley interpretation,

�W , ∗, ν�, and a world w ∈ W , which makes all the members of � true and

160 An Introduction to Non-Classical Logic

A false (i.e., untrue). Define a relational interpretation, ρ, by the following

conditions:

pρ1 iff νw(p) = 1

pρ0 iff νw∗(p) = 0

If it can be shown that the displayed conditions hold for all formulas, then

the result follows. This is proved by induction on the construction of A. If

A is a propositional parameter, the result holds by definition. Suppose that

the result holds for B and C. B ∧ Cρ1 iff Bρ1 and Cρ1; iff νw(B) = 1 and

νw(C) = 1, by induction hypothesis; iff νw(B∧C) = 1. B∧Cρ0 iff Bρ0 or Cρ0;

iff νw∗(B) = 0 or νw∗(C) = 0, by induction hypothesis; iff νw∗(B ∧ C) = 0, as

required. The cases for disjunction are similar. ¬Aρ1 iff Aρ0; iff νw∗(A) = 0,

by induction hypothesis; iff νw(¬A) = 1. ¬Aρ0 iff Aρ1; iff νw(A) = 1, by

induction hypothesis; iff νw∗(¬A) = 0, as required. �

8.7.18 Theorem: If � |= A under the Routley semantics, � |= A under the

relational semantics.

Proof:

We prove the contrapositive. Suppose that there is a relational interpreta-

tion, ρ, which makes all the members of � true and A untrue. Define a

Routley interpretation, �W , ∗, ν�, where W = {a, b}, a∗ = b and b∗ = a, and ν

is defined by the conditions:

νa(p) = 1 iff pρ1

νb(p) = 1 iff it is not the case that pρ0

If it can be shown that the displayed condition holds for all formulas, then

the result follows. This is proved by induction on the construction of A. If

A is a propositional parameter, the result holds by definition. Suppose that

the result holds for B and C. νa(B ∧ C) = 1 iff νa(B) = 1 and νa(C) = 1; iff

Bρ1 and Cρ1, by induction hypothesis; iff B∧Cρ1. νb(B∧C) = 1 iff νb(B) = 1

and νb(C) = 1; iff it is not the case that Bρ0 and it is not the case that Cρ0,

by induction hypothesis; iff it is not the case that B ∧ Cρ0. The cases for

disjunction are similar. νa(¬B) = 1 iff νa∗(B) = 0; iff νb(B) = 0; iff Bρ0 by

induction hypothesis; iff ¬Bρ1. νb(¬B) = 1 iff νb∗(B) = 0; iff νa(B) = 0; iff

it is not the case that Bρ1, by induction hypothesis; iff it is not the case

that ¬Bρ0. �

First Degree Entailment 161

8.8 History

The logic FDE is the core of a family of relevant logics (which we will meet in

later chapters), developed by the US logicians Anderson and Belnap, start-

ing at the end of the 1950s. (Strictly speaking, A |=FDE B iff A → B is valid

in their system of first degree entailment.) See Anderson and Belnap (1975,

esp. ch. 3). The relational semantics were discovered by Dunn in the 1960s as

a spin-off from his algebraic semantics for FDE (on which, see Anderson and

Belnap 1975, sect. 18). He published them only later, however, by which

time they had been discovered by others too. The Routley semantics for

FDE were first given by Richard Routley (later Sylvan) and Val Routley (later

Plumwood) in Routley and Routley (1972). There are many paraconsistent

logics. FDE, LP and the relevant logics that we will meet in later chapters

constitute one kind. Paraconsistent logics of different kinds were developed

by the Polish logician Jaśkowski in 1948 (see Jaśkowski 1969) and the Brazil-

ian logician da Costa in the 1960s (see da Costa 1974). A general history and

survey of paraconsistent logics can be found in Priest (2002a).

8.9 Further Reading

On the various semantics for FDE covered in this chapter, see Priest (2002a,

sects. 4.6 and 4.7); and for a much more detailed account, see Routley, Plum-

wood, Meyer and Brady (1982, sects. 3.1 and 3.2). For the Routleys’ own

discussion of the meaning of the star operator, see Routley and Routley

(1985). For a defence of the Routley star, see Restall (1999). Discussions of

the disjunctive syllogism can be found in Burgess (1983), Mortensen (1983)

and Priest (1987, ch. 8).

8.10 Problems

1. Using the tableau procedure of 8.3, determine whether or not the

following are true in FDE. If the inference is invalid, specify a relational

counter-model.

(a) p ∧ q p

(b) p p ∨ q

(c) p ∧ (q ∨ r) (p ∧ q) ∨ (p ∧ r)

(d) p ∨ (q ∧ r) (p ∨ q) ∧ (p ∨ r)

162 An Introduction to Non-Classical Logic

(e) p ¬¬p
(f) ¬¬p p

(g) (p ∧ q) ⊃ r (p ∧ ¬r) ⊃ ¬q
(h) p ∧ ¬p p ∨ ¬p
(i) p ∧ ¬p q ∨ ¬q
(j) p ∨ q p ∧ q

(k) p,¬(p ∧ ¬q) q

(l) (p ∧ q) ⊃ r p ⊃ (¬q ∨ r)

2. For the inferences of problem 1 that are invalid, determine which ones

are valid in K3 and LP, using the appropriate tableaux.

3. Check all the details omitted in 8.4.2.

4. By checking the truth tables of 8.4.2, note that if A and B have truth

value n, then so do A ∨ B,A ∧ B and ¬A. Infer that if A is any formula

all of whose propositional parameters take the value n, it, too, takes the

value n. Hence infer that there is no formula, A, such that |=FDE A.

5. Similarly, show that if A is a formula all of whose propositional param-

eters take the value b, then A takes the value b. Hence, show that if

A and B have no propositional parameters in common, A |=FDE B. (Hint:

Assign all the parameters in A the value b, and all the parameters in B the

value n.)

6. Repeat problem 1 with the ∗ semantics and tableaux of 8.5.

7. Using the ∗ semantics, show that if A |=FDE B, then ¬B |=FDE ¬A. (Hint:

Assume that there is a counter-model for the consequent.) Why is this

not obvious with the many-valued or the relational semantics? (Note

that contraposition of this kind does not extend to multiple-premise

inferences: p, q |=FDE p, but p,¬p |=FDE ¬q.)

8. Test the validity of the inferences in 7.5.2 using the tableau of this

chapter.

9. Under what conditions is it legitimate to employ a deductively invalid

inference?

10. *Check the details omitted in 8.7.3.

11. *Show that the tableaux of 8.4a.4 and 8.4a.5 are sound and complete with

respect to the semantics of L3 and RM3. (Hint: consult 8.7.8 and 8.7.9.)

