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Preface

This book is a comprehensive study of the tractability of multivariate problems. We
present various existing results obtained by many researchers in the last years, as well
as numerous new results. We hope that this book will encourage many people to study
tractability and further advance our understanding of tractability. In the course of the
book we present a lot of open problems and we would be delighted to see the solution
of these problems in the near future.

This book consists of several volumes. The first volume begins with a general
introduction to tractability, which is provided by twelve examples of particular multi-
variate problems, along with a survey of results in information-based complexity that
are especially relevant to tractability. The rest of Volume I is devoted to tractability
for the case of algorithms using linear information (arbitrary continuous linear func-
tionals). Volumes II and III deal with algorithms using mostly function values. In
Volume II we approximate functionals, whereas in Volume III we approximate general
operators.

We appreciate valuable comments, suggestions and improvements from our col-
leagues: Jakob Creutzig, Michael Gnewuch, Dorothee Haroske, Stefan Heinrich,
Stephen Joe, Stanisław Kwapień, Thomas Müller-Gronbach, Anargyros Papageorgiou,
Friedrich Pillichshammer, Leszek Plaskota, Klaus Ritter, Winfried Sickel, Kris Sikor-
ski, Vasile Sinescu, Joseph Traub, Hans Triebel, Jan Vybíral, Xiaoqun Wang, Greg
Wasilkowski, and Art Werschulz.

We are pleased to thank the warm hospitality of the Institute of Mathematics, Uni-
versity of Jena, where the second author spent his sabbatical in 2006–2007 as a recipient
of the Humboldt Research Award and where our work on writing the book was started.
We also thank our home institutions, University of Jena (for EN), and Columbia Uni-
versity and University of Warsaw (for HW) for allowing us to concentrate on finishing
this book project and for supplying excellent research conditions over many years. The
second author is pleased to thank the Humboldt Foundation and the National Science
Foundation for supporting the work reported here.

Erich Novak

Henryk Woźniakowski
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Chapter 1

Overview

Multivariate continuous problems are defined on spaces of functions of d variables,
where d may be in the hundreds or even in the thousands. They occur in numerous
applications including physics, chemistry, finance, economics, and the computational
sciences. For path integration, which lies at the foundation of quantum mechanics,
statistical mechanics and mathematical finance, the number of variables is infinite;
approximations to path integrals result in arbitrarily large d .

Such problems can almost never be solved analytically. Since they must be solved
numerically they can only be solved approximately to within a threshold ". Algorithms
for solving multivariate problems use n information operations given typically by ei-
ther function values or linear functionals. Computational complexity is the study of
the minimal resources needed to solve a problem. It is defined as the minimal number
of information operations and combinatory operations needed to combine computed
information operations in order to obtain the solution to within ". The information com-
plexity is defined as the minimal number n."; d/ of information operations needed to
solve the d -variate problem to within ". For all problems, the information complexity is
a lower bound on the computational complexity. Surprisingly, for many computational
problems, including in particular many linear multivariate problems, the information
complexity is proportional to the computational complexity. For this reason, we con-
centrate on the information complexity in this book. It is studied in various settings
including the worst case, average case, randomized and probabilistic settings for the
absolute, normalized and relative error criteria. Depending on the setting and on the
error criterion, " has different meanings, but it always represents the error tolerance.

A central issue is the study of how the information complexity depends on "�1
and d . If it depends exponentially on "�1 or d , we say the problem is intractable. For
many multivariate problems, we have exponential dependence on d , which is called
after Bellman the curse of dimensionality. If the information complexity depends
polynomially on "�1 and d then we have polynomial tractability, if it depends only
on a polynomial in "�1 we have strong polynomial tractability. If the information
complexity is not exponential in both "�1 and d , then we have weak tractability. There
are more types of tractability depending on how we measure the lack of exponential
behavior.

There is a huge literature on the computational complexity of d -variate problems.
Most of these papers and books study error bounds that lead to bounds on the informa-
tion complexity. These bounds are usually sharp with respect to "�1 but have, unfortu-
nately, unknown dependence on d . But to determine if a problem is tractable we need
to know the dependence on both "�1 and d . Tractability requires new proof techniques
to obtain sharp bounds on d . There is therefore a need to revisit even multivariate
problems thoroughly studied in the past if we want to investigate their tractability.
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Research on tractability of multivariate continuous problems started in 1994 and
there are many surprising results. Today this subject is thoroughly studied by many
people. This is the first book on tractability of multivariate continuous problems. We
summarize the known results and present many new results. So far only polynomial
tractability has been thoroughly studied in many papers. The study of more general
tractability and, in particular, weak tractability has just begun. Therefore most of results
on weak tractability are new. Weak tractability means that we allow a more general
dependence on "�1 and d , as long as it is non-exponential. This obviously enlarges
the class of tractable problems.

Many multivariate problems suffer from the curse of dimensionality when they are
defined over standard (unweighted) spaces. In this case, all variables and groups of vari-
ables play the same role and this causes the information complexity to be exponential
in d .

But many practically important problems, such as problems in financial mathe-
matics, are solved today for huge d in a reasonable time. One of the most intriguing
challenges of the theory is to understand why this is possible. We believe the reason
is that many practically important multivariate problems belong to weighted spaces.
For weighted spaces, the dependence on the successive variables or groups of variables
can be moderated by weights. We consider various weights such as product weights,
order-dependent weights, finite-order and finite-diameter weights. For example, for
finite-order weights, functions of d variables can be represented as sums of functions
of! variables, where! is fixed and moderate, and d varies and can be arbitrarily large.
For finite-order weights, most multivariate problems are polynomially tractable.

Multivariate problems may become weakly tractable, polynomially tractable or
even strongly polynomially tractable if they are defined over weighted spaces with
properly decaying weights. One of the main purposes of this book is to study weighted
spaces and obtain necessary and sufficient conditions on weights for various notions
of tractability.

The tractability results are illustrated for many specific multivariate problems. We
consider general linear problems including multivariate integration, approximation, as
well as a number of specific non-linear problems such as partial differential or integral
equations, including the Schrödinger equation. Some of these applications will be
presented in Volumes II and III.

The book contains a number of open problems, including the 15 open problems in
Chapter 3, and the other 15 open problems in the remaining chapters. They should be
of interest to a general audience of mathematicians. Volume I of the book contains a
bibliography of over 290 papers and books, whereas Volume II will have additionally
about 150 papers and books. We hope that the book will further intensify research on
tractability of multivariate continuous problems.



Chapter 2

Motivation for Tractability Studies

High dimensional multivariate continuous problems occur in many applications:

• High dimensional integrals or path integrals with respect to the Wiener measure
have many important applications, especially in physics and in mathematical
finance. High dimensional integrals also occur when we want to compute cer-
tain parameters of stochastic processes, see Müller-Gronbach and Ritter [152].
Moreover, path integrals arise as solutions of partial differential equations given,
for example, by the Feynman–Kac formula, see e.g., Gerstner and Griebel [62],
Kwas [127], Kwas and Li [128], Morokoff [151], Tezuka [234], the book of Traub
and Werschulz [243], as well as [197], [270]. We will study high dimensional
integration in many chapters of this book.

• Global optimization, where we wish to compute the (global) minimum of a func-
tion of d variables. This occurs in many applications, for example, in pattern
recognition and in image processing, see the book of Winkler [283], or in the
modeling and prediction of the geometry of proteins, see Neumayer [157]. Sim-
ulated annealing strategies and genetic algorithms are often used, as well as
smoothing techniques and other stochastic algorithms, see Boender and Romeijn
[15] and Schäffler [208]. Some error bounds for deterministic and stochastic
algorithms can be found in Nemirovsky [154], and in the books of Nemirovsky
and Yudin [155], and Nesterov and Nemirovsky [156], as well in the book [160]
and in [170]. We return to global optimization in the next volumes.

• The Schrödinger equation for m particles in R3 is an example of a d D 3m-di-
mensional problem. Since m is often large, d is even larger, see the books of
Atkins and Friedman [1], Levine [132], and Messiah [144], the computational
survey of Le Bris [21], as well as Flad, Hackbusch and Schneider [59] and
Yserentant [295]. We illustrate general tractability results for the Schrödinger
equation, in Chapters 5 and 6 we consider the linear case, and in the next volumes
the nonlinear case.

These problems are all defined on spaces of d -variate functions and d can be huge –
in the hundreds or even in the thousands! For path integration, the number of variables
is infinite, and approximations of path integrals yield arbitrarily large d .

Some high dimensional problems, such as convex optimization and systems of
ordinary differential equations, can be solved efficiently, i.e., their cost increases poly-
nomially in d , see e.g., Nemirovsky and Yudin [155], and Nesterov and Nemirovsky
[156] for convex optimization, and Kacewicz [105] for systems of ordinary differential
equations. However, there are many other problems (including the ones mentioned
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above) for which it appears that the cost increases exponentially in d . This exponential
dependence on d is called intractability or the curse of dimensionality; the latter notion
goes back to Bellman [9].

For example, the minimal error for integration of C r -functions in one variable is
of order n�r , where n is the number of function values used by the algorithm. Using
product rules, it is easy to obtain an error of order n�r=d for functions of d variables.
It is known that the exponent r=d is best possible. Hence, if we want to guarantee an
error " we must take n of order "�d=r . For fixed regularity r , this is an exponential
function of d . For large d , we cannot afford to sample the function so many times.

A central problem is to investigate which multivariate continuous problems are
tractable and which are intractable. There are different types of tractability such as
weak, polynomial and strong polynomial tractability. The essence of all these types of
tractability is that the cost of the computational problem that we want to solve does not
grow exponentially in terms of its input parameters.

In contrast, tractability of discrete decision problems means that the cost is poly-
nomial in terms of the number of input bits, and the Turing machine is used as a model
of computation. It is conjectured that numerous such problems are intractable. This is
the essence of the famous conjecture P 6D NP. According to Smale [221], the question
of whether P 6D NP is one of the three most important problems in mathematics1.

We deal with multivariate continuous problems and we use the real number model
with oracles as the model of computation2. In this model we assume that we can
compute arithmetic operations over the reals exactly and compare real numbers. We
can also compute function values or linear functionals as information operations. In-
formation operations are sometimes called oracles or black box computations. This
model is typically used for numerical and scientific computations, since it is an ab-
straction of fixed precision floating point arithmetic. The real number model is used
for algebraic problems, see e.g., Coppersmith and Winograd [32], Pan [186], Strassen
[226] for the famous matrix multiplication problem and the books of Bini and Pan
[12], Bürgisser, Claussen and Shokrollahi [23] for more general algebraic problems,
for computational geometry problems, see e.g., the book of Preparata and Shamos
[199], and for information-based complexity problems, see e.g, [164] and the books
[242], [244]. The real number model without oracles was formalized by Blum, Shub
and Smale [13] and the famous P 6D NP conjecture was, in particular, extended there
for real numbers. Oracles were introduced in [164]. Pros and cons of the real number

1Smale wrote in 1998: “In fact, included are what I believe to be the three greatest open problems
of mathematics: the Riemann Hypothesis, the Poincaré Conjecture, and ‘Does P D NP?’”. The Poincaré
Conjecture was recently established by G. Perelman.

2Some problems can be analyzed in both the Turing machine model and in the real number model.
Which model is more appropriate depends on the application. A problem can be tractable in one model and
intractable in the other, because the assumptions concerning cost and size of a problem are quite different in
both models. For example, it is well known that the problem of linear optimization is tractable with respect
to the Turing model. It is still unknown, and it is an important open problem, whether the same is true with
respect to the real number model, see [245].

We stress that a P 6D NP conjecture has been defined also over the real (or the complex) numbers, see
Blum, Shub and Smale [13], and the book of Blum, Cucker, Shub and Smale [14].
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model versus the Turing number model can be found in Traub [239]. More about the
real number model can be found in Meer and Michaux [143], Weihrauch [274] and in
[174], [175], [176], [290], as well as in the book of Blum, Cucker, Shub and Smale [14];
see also Chapter 4.

The subject of tractability for multivariate continuous problems was introduced in
[287] and [288]. Today this topic is being thoroughly studied by many researchers
in information-based complexity. Numerous tractability results have been recently
obtained, and they will be reported in this book.

Multivariate continuous problems are defined on classes (spaces) of d -variate func-
tions. We want to compute the solution to within ". These two parameters " and d
are used in tractability studies. Following the approach used in the study of discrete
decision problems it would be tempting to define tractability of a continuous problem
when the cost is of order�
1C dlog2 "

�1e�p C .1C dlog2 de/q or
�
1C dlog2 "

�1e�p �1C dlog2 de�q
for some non-negative p and q. This is so because d requires 1C dlog2 de bits for its
representation, and assuming without loss of generality that "�1 is a positive integer, "
requires 1C dlog2 "

�1e bits.
More generally, we can argue that for d -variate functions we need to work with

vectors of d components and the number of bits needed for d numbers to be represented
to within " is proportional to d.1 C dlog2 "

�1e/. Hence, tractability of a continuous
problem should require that the cost is of order�

d
�
1C dlog2 "

�1e��p
for some non-negative p.

Indeed, there are continuous problems for which the cost is of this form. Examples
include convex optimization, fixed point problems, various zero finding problems for
which the bisection or Newton-type algorithms work, as well as large linear systems
with well conditioned matrices.

Unfortunately these definitions would imply that almost all linear continuous prob-
lems arising in computational practice are intractable, since even for the univariate case
(d D 1) the cost is proportional to some power of "�1. To include this typical behavior
of the cost of linear continuous problems, we usually say that a problem is tractable
when the cost can be bounded by a multiple of a power of T ."�1; d / for some func-
tion T .

More precisely, we take a function T W Œ1;1/ � Œ1;1/ ! Œ1;1/ which is non-
decreasing in both arguments and which is not exponential, i.e.,

lim
xCy!1

ln T .x; y/

x C y
D 0:

Then we have T -tractability if the information complexity n."; d/ can be bounded by
a polynomial of T ."�1; d /, see [69], [70], [71].
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For T .x; y/ D .1C ln x/.1C ln y/ we have the case often studied in theoretical
computer science in which tractability means polynomial dependence on the number
of input bits.

For T .x; y/ D xy we obtain polynomial tractability, and for

T .x; y/ D exp..1C ln x/.1C ln y//

we permit super-polynomial growth of the information complexity.
Furthermore, for T -tractability, also called generalized tractability, we can restrict

the domain of "�1 and d , and consider the case when only one of them goes to infinity.
This seems especially well-suited for problems appearing in computational finance,
where d is huge but it is enough to solve the problem with a relatively large error
tolerance ". This case corresponds to restricted tractability.

Multivariate continuous problems are given as operators defined on classes of d -
variate functions that enjoy some degree of smoothness. We approximate these prob-
lems with an error at most ". We will consider different types of errors in this book. We
concentrate on the absolute, normalized and relative errors in the worst case, average
case, probabilistic and randomized settings. Some of these notions will be studied in
Volume II. We shall see that the tractability results depend crucially on the type of error
and on the setting.

There is a huge literature on the complexity of multivariate problems. The typical
approach is to fix d and consider the best possible rate of convergence of algorithms
that use n information operations given usually by function values or linear functionals.
Assume for simplicity that the optimal rate is pd and we have an algorithm whose
worst case error3 is e.n; d/ D ‚.n�pd / for all n. More precisely, this means that for
d D 1; 2; : : : ; there exist two positive numbers Cd;1 and Cd;2, such that

Cd;1n
�pd � e.n; d/ � Cd;2n

�pd for all n D 1; 2; : : : . (2.1)

The optimal order (or rate, and we will be using these two words interchangeably) of
convergence pd depends on d and is often of the form pd D r=d , where r is a measure
of the smoothness of the class of functions. The factors Cd;1 and Cd;2 in (2.1) depend
on d , but this dependence has usually not been previously studied.

The essence of different types of tractability is that the minimal number of infor-
mation operations needed to solve the problem to within " must not be exponential
in "�1 and d . This minimal number, which we denote as n."; d/, is the information
complexity of the problem. Since the total cost of computing the solution to within " is
often proportional to n."; d/, the information complexity n."; d/ is then proportional
to the total complexity of the problem, and it is enough to study n."; d/. We do so in
this book; see Section 4.1.5 of Chapter 4 for more details.

3For many multivariate problems the situation is a little more complicated since the worst case error of
an optimal algorithm is of order n�pd .lnn/qd with qd usually depending linearly on d . This means that
(2.1) holds modulo some powers of logarithms. Then for any positive ı , one can replace the exponent pd

by pd C ı in the left hand side of (2.1) and by pd � ı in the right hand side of (2.1) and appropriately
change Cd;1 and Cd;2. Since the presence of logarithms is not important for our discussion, we simplify
the situation by assuming that qd D 0.
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Hence, we want to guarantee that n."; d/ is asymptotically much smaller than
a"

�1Cd for any a > 1. This means that a necessary condition on tractability is

lim
"�1Cd!1

ln n."; d/

"�1 C d
D 0: (2.2)

If condition (2.2) holds then we say that the problem is weakly tractable, whereas if
(2.2) is not satisfied then we say that the problem is not weakly tractable or simply that
it is intractable.

We stress that the concept of weak tractability is new and has been so far only
studied in [70], [71] at the same time as this book was written. Most results on weak
tractability that will be presented in this book are new.

There are many ways to measure the lack of exponential dependence, and so there
are many specific types of tractability. The most commonly studied case is polynomial
tractability, for which we want to guarantee that n."; d/ is polynomially bounded in
"�1 and d , i.e., that there exist three non-negative numbers C; p and q such that

n."; d/ � C"�pdq for all " 2 .0; 1/ and d D 1; 2; : : : . (2.3)

If the condition (2.3) holds then we say that the problem is polynomially tractable,
whereas if (2.3) is not satisfied we say that the problem is polynomially intractable.

We shall see in Chapter 5 that any function n W RC �N ! N0 that is non-increasing
in the first variable is the information complexity of a suitable problem. An example
of such a function is

n."; d/ D ˙
inf

˛2Œ0;100�
"˛�100 � d˛�:

This problem is polynomially tractable but of course the exponents p and q are not
uniquely defined since we may take q D ˛ and p D 100 � ˛ for any ˛ 2 Œ0; 100�.
Hence, there is a trade-off between the exponents p and q for polynomial tractability.
Another possible example would be

n."; d/ D ˙
2d � ln.1C "�1/

�
:

Here we have an excellent order of convergence for any fixed dimension d , but the
problem is intractable.

There are obviously functions that go faster to infinity than any polynomial but
slower than any exponential function. For example, if

n."; d/ D ˙
exp

�
ln.1C "�1/ ln.1C d/

��
or n."; d/ D ˙

exp
�p
"�1 C

p
d
��
;

then the problem is polynomially intractable but it is weakly tractable. We will study
tractability in full generality. That is, we estimate n."; d/ by a multiple of a power of
T ."�1; d / for a general T which is not exponential as explained before. However, our
emphasis will be on polynomial tractability, and we postpone the study of generalized
tractability to Chapter 8.
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There is also the notion of strong tractability whenn."; d/ can be bounded uniformly
in d by a non-exponential function depending only on "�1. For example, strong
polynomial tractability means that (2.3) holds with q D 0. The notion of strong
tractability seems very demanding and one might suspect that only trivial problems are
strongly tractable. Indeed, many problems defined over classical function spaces are
intractable, much less strongly tractable. Sometimes, such problems become strongly
polynomially tractable or polynomially tractable over function spaces with suitable
weights that moderate the behavior with respect to successive variables or groups of
variables. Such spaces are called weighted function spaces.

We stress that weighted spaces arise naturally in many applications. In compu-
tational finance, weights appear due to the discounted value of money, and d -variate
functions depend on successive variables in a diminishing way, see the book of Traub
and Werschulz [243]. In computational physics, weights appear due to the fact that
usually only the influence of neighboring particles is significant, and functions can
be represented as sums of functions of a few variables, see Coulomb pair potentials
discussed a little later. In computational economics, weights appear when the Cobb-
Douglas condition is used for the Bellman fixed point problem. This condition guaran-
tees equal partitioning of goods, see [204]. In computational chemistry there is the need
to construct poly-atomic potential energy surfaces which underlie molecular dynamics
and spectroscopies. It is observed that functions depending on many variables often
can be well approximated by a sum of functions that depend on only few variables, see
Ho and Rabitz [99] and Rabitz and Alis [200].

We believe that the reason so many high dimensional problems are solved efficiently
in computational practice is that these problems belong to weighted spaces for which
tractability holds.

We now briefly discuss two approaches how multivariate problems are typically
solved and indicate why these approaches are not good for tractability.

Suppose we deal with a class of d -variate functions with huge d , say d D 1000.
If we assume that the class of functions is a classical (unweighted) space then we
only know the global smoothness of functions, which is usually not enough to prevent
intractability. Indeed, one of the typical approaches of solving multivariate problems
is to use discretization of the domain of functions. If we use at least two points in each
direction than we have at least2d D 21000 subproblems and if each subproblem requires
at least one information operation, we need at least 21000 information operations, which
really shows intractability in action! Only algorithms that use information operations
not based on grids may have a computing time that does not increase exponentially with
the dimension. As we shall see inVolumes II and III, we may indeed achieve even strong
polynomial tractability for many multivariate problems if information operations are
from sparse grids and we use the weighted Smolyak algorithm. The reader is referred
to the recent survey of Griebel [72] where many papers on sparse grids and Smolyak’s
algorithm can be found.

Another popular approach is to guarantee that multivariate problems are exactly
solved for some special functions, for instance, for multivariate polynomials of degree
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at most k. The dimension of the latter space is
�
dCk
k

�
, which for fixed k behaves as

dk=kŠ, so at least this many information operations would usually be needed. Even
for a relatively small k, say k D 5 and d D 1000, we would need to perform at least�
1005
5

� � 8:46 � 1012 information operations, which would be quite a job. In general,
the second approach would contradict strong polynomial tractability but not tractability
as long as k is fixed and does not depend on d .

In any case, it is clear that tractability requires a different approach for choos-
ing proper classes of functions, as well as a different approach for choosing proper
algorithms.

To put it simply, the classical spaces seem to be too large for large d , which explains
why we have so many intractability results. We believe that multivariate problems of
practical importance with large d are defined on spaces of functions enjoying addi-
tional properties. For instance, functions may depend on successive variables or some
groups of variables in a diminishing way. So we may have functions of d variables
approximately equal to a sum of functions, each depending on ! variables with !
independent of d . Or we might have functions for which the dependence on the first
variable is more important than the dependence on the second variable, and the depen-
dence on the j th variable is more important than on the j C 1st variable, and so on,
assuming that the variables are properly labeled.

For the reader who is familiar with theANOVA decomposition of functions, we may
add that an arbitrary function f of d variables from the spaceL2 can be decomposed as
the sum of 2d mutually orthogonal functions fu, with u being a subset of f1; 2; : : : ; dg
and fu depending only on variables from u; see Section 3.1.6 of Chapter 3, where
the ANOVA decomposition is discussed. Then some fu may be negligible or even 0;
alternatively only terms fu for which the set u has a small cardinality are important.

Weighted function spaces play a major role in the study of tractability of multivariate
problems. Weighted function spaces allow us to model problems for which some
variables and groups of variables are more important than others, see [216] where this
concept was first introduced for the study of tractability. The weighted space of d -
variate functions depends on 2d weights �d;u, with u being a subset of f1; 2; : : : ; dg.
Each weight �d;u measures the importance of the set of variables xj with j 2 u. If
we take the unweighted case �d;u � 1, then we are back to the classical spaces, in
which all variables and groups of variables play the same role. It is now natural to seek
conditions on the weights �d;u that are necessary and sufficient for weak, polynomial
or strongly polynomial tractability. This will be one of the major subjects of our book.
Not surprisingly, the case �d;u � 1 often leads to polynomial intractability or even
intractability, whereas for weights that decay sufficiently fast, we obtain polynomial
tractability or even strong polynomial tractability.

In particular, we want to mention finite-order weights, which are defined by assum-
ing that �d;u D 0 for all u of cardinality greater than !, with ! independent of d , see
[45] where this concept was first introduced. That is, finite-order weights guarantee that
functions can be decomposed as sums of functions depending on at most ! variables.
An example is a polynomial of d variables whose order is at most ! with ! indepen-
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dent of d . Another example of such a function is a sum of Coulomb pair potentials of
d D 3m variables, f .x/ D P

1�i<j�m kxi � xj k�1 for vector x D Œx1; x2; : : : ; xm�

with xj 2 R3, and k � k denoting the Euclidean norm, see e.g., the book of Glimm
and Jaffe [64]. Since f is not defined for xi D xj , we typically modify it by taking a
small positive � and considering f�.x/ D P

1�i<j�m.kxi � xj k2 C �/�1=2. Hence,
f and f� only depend on groups of two variables, each of which is a 3-dimensional
vector. This corresponds to finite-order weights with ! D 6. Such functions are called
“partially separable” in optimization, see e.g., Griewank and Toint [73].

Finite-order weights have been analyzed in a number of papers. Typical results
are positive, and we find that multivariate problems defined over weighted spaces with
finite-order weights are polynomially tractable. Furthermore, we can achieve strong
polynomial tractability if the finite-order weights satisfy some additional conditions.
For finite-order weights, the minimal number n."; d/ of information operations de-
pends, in particular, on C!d c! for some C > 1 and a positive c. Hence, we have
exponential dependence on the order ! of finite-order weights. Since ! is the same
for all d , this does not matter, and C! is just a number. The order ! also effects the
degree of the polynomial in d . Such estimates are especially useful if ! is relatively
small.

We will also thoroughly study product weights. For these weights, we have �d;u DQ
j2u �d;j for non-increasing non-negative weights �d;j that may sometimes even

be independent of d , i.e., �d;j D �j . That is, �d;j controls the importance of the
variable xj , and the groups of variables are controlled by the product of the weights of
variables from the group. The smaller the weight �d;j the less important the variablexj .
In the limiting case, if one sets �d;j D 0 for j > d0, the functions depend only on
at most the first d0 variables. Typical results for product weights are that for some
positive � ,

lim sup
d!1

dX
jD1

� �d;j < 1

is needed for strong polynomial tractability, whereas

lim sup
d!1

Pd
jD1 � �d;j
ln d

< 1

is needed for polynomial tractability. The last condition is significantly relaxed for
weak tractability, which usually holds if

lim
d!1

Pd
jD1 � �d;j
d

D 0:

The value of � depends on the particular multivariate problem. For linear functionals
such as multivariate integration studied in Volume II, typically � D 1.

Note that the unweighted case �d;j � 1, with all variables playing the same role, is
intractable. For � D 1 and decaying weights of the form �d;j D j�k we have strong
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polynomial tractability if k > 1, polynomial tractability if k D 1, and polynomial
intractability if k < 1. The subject of weighted spaces will be studied in detail, paying
special attention to finite-order and product weights.

We explain relations between the optimal order of convergence and tractability.
Suppose that (2.1) holds. Then the optimal rate of convergence is pd , and n."; d/ D
‚."�1=pd / for all ", or more precisely

C
1=pd

d;1
"�1=pd � n."; d/ � C

1=pd

d;2
"�1=pd for all " 2 .0; 1/.

Note that we often know the optimal (smallest) exponent of "�1. However, since Cd;1
and Cd;2 are not known, we do not know the dependence on d . For example, suppose
that pd D r=d . Then n."; d/ D ‚."�d=r/. Hence for a fixed r , the exponent d=r is
arbitrarily large for large d . This means that we have polynomial intractability. We
stress that since the optimal exponent ispd D r=d , we are able to conclude polynomial
intractability without knowing howCd;1 andCd;2 depend ond . From this point of view,
many classical works on multivariate problems are useful for polynomial tractability
studies.

Suppose now that the optimal order of convergence is independent of d , i.e.,
pd D p. Can we now claim polynomial or weak tractability? No, since the error
depends on the factorsCd;1 andCd;2 which, in turn, are often unknown functions of d .
Indeed, if Cd;2 � Cd s then n."; d/ � dC 1=pd s=p"�1=pe and polynomial tractability
holds. On the other hand, if Cd;1 � Ccd with c > 1, then n."; d/ � C 1=pcd=p"�1=p
and we have intractability. Hence, even if pd is independent of d , these results are too
weak for tractability studies.

We now turn to weak tractability, assuming that we know that the optimal order
of convergence is pd D r=d and polynomial intractability holds. Can we also claim
that the problem is intractable? The answer again depends on how the factors Cd;1
and Cd;2 in (2.1) depend on d . Indeed, assume that Cd;1 � C for all d for some
positive C . Then n."; d/ � C d=r"�d=r . Since (2.2) does not hold, the problem is
intractable. On the other hand, assume that Cd;2 � Ccd for all d for some positive C

and c 2 .0; 1/. Then n."; d/ D dC d=rcd2=r"�d=re. Since (2.2) holds, the problem is
weakly tractable. This means that knowing the optimal order of convergence does not
tell us whether the problem is weakly tractable or intractable. We again see that the
known results are too weak for tractability studies.

This short discussion tells us that tractability studies require new analysis. Even
for multivariate problems thoroughly studied in the literature, we can rarely conclude
whether they are weakly or polynomial tractable. Therefore we need to revisit many
of such problems and seek sharp error estimates in terms of both " and d . We will use
several specific multivariate problems to illustrate this point in Sections 3.1 and 3.2 of
the introductory Chapter 3.

The tractability of a multivariate problem depends on the class of functions. In this
book, we will present classes of functions with four types of results:

• Classes of functions for which a multivariate problem is intractable and suffers
from the curse of dimensionality, or is polynomially intractable. This will be
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done by establishing exponential lower bounds in d or arbitrarily large degree
polynomial lower bounds in d on the number of function values or linear func-
tionals.

• Classes of functions for which a multivariate problem is weakly, polynomially or
strongly polynomially tractable by proving the existence of suitable algorithms
by non-constructive arguments.

• Classes of functions for which a multivariate problem is weakly, polynomially
or strongly polynomially tractable by semi-construction of suitable algorithms.

• Classes of functions for which a multivariate problem is weakly, polynomially
or strongly polynomially tractable by construction of suitable algorithms.

For problems belonging to the first type we prove intractability. This is in contrast
to discrete complexity theory, where it is often only believed, not proved, that certain
problems are intractable.

For problems belonging to the second type, we only know that suitable algorithms
exist, but we do not know how to construct them. This existence is usually established
by using a probabilistic argument for some class of algorithms enjoying tractability
error bounds. By a tractability error bound we mean, for instance, that the error of an
algorithm that uses n information operations is bounded by cdan�b for some a, b and
c independent of d and n and with a positive b. Then indeed, its error is at most " if
n D dCdq"�pe, with C D c1=b , q D a=b and p D 1=b, which means that we have
polynomial tractability.

For problems belonging to the third type we know semi-construction of an algorithm
with tractability error bounds. By semi-construction, we have two possibilities in mind:

• We know how to construct such an algorithm only if d and "�1 are not too large.
This is related to the cost of precomputing which is prohibitively expensive if
either d or "�1 are too large. An illustration of this situation can be found in [197]
for the approximation of Feynman–Kac path integrals, where many complicated
multivariate integrals need to be precomputed. These integrals are computed by
the use of the Monte Carlo algorithm, which is feasible only for relatively small
d and "�1.

• We know how to construct such an algorithm probabilistically. More specifically,
we explain this construction for the worst case setting. Usually, we need to
construct a linear algorithm that uses function values at some points. The major
problem is to find these points. We first randomly select n points with the
distribution depending on a given multivariate problem. Then we compute the
worst case error of the linear algorithm that uses these points and check if a
tractability error bound holds. If so, we are done; if not, we repeat this process.
Usually we can prove that after k trials, the probability of failure is exponentially
small in k, and therefore after a few trials we have a high probability of finding
suitable points. This approach requires that we know
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– how to select randomized points with a given distribution. This can usually
be achieved only approximately by using a pseudo-random generator for the
uniform distribution and by the corresponding transformation of uniformly
distributed points, see e.g., Box and Muller [18].

– how to compute the worst case error of a linear algorithm relatively quickly
which is the case for some multivariate problems defined over reproducing
kernel Hilbert spaces. It is also sometimes the case for more general spaces
if again d and "�1 are not too large.

For the fourth class of problems, we know how to construct algorithms with
tractability error bounds. Only in this case we can claim that we know how to solve
efficiently multivariate continuous problems.

The early papers in this area often provide non-constructive proofs of tractabil-
ity. There is much more emphasis later on constructive proofs by designing algo-
rithms whose errors achieve tractability error bounds. For example, there is the CBC
(component-by-component) algorithm designed by the Australian school of Ian Sloan,
and the weighted tensor product algorithm, also known as the weighted Smolyak algo-
rithm from [271]. First the CBC algorithm was used for multivariate integration and
later for multivariateL2 andL1 approximation in the worst case and average case set-
tings, see Dick [42], Dick and Kuo [43], [44], Kuo [119], Sloan, Kuo and Joe [213] for
multivariate integration, and [121], [122], [124], [125] for multivariate approximation.
The implementation cost of the CBC algorithm was also significantly reduced due to
work of Nuyens and Cools [180], [181], and today is linear (modulo a logarithm) in the
number of input data. The weighted Smolyak algorithm can be applied to any linear
tensor product problem. We will be analyzing these algorithms in Volumes II and III
of the book.

Still, there are many non-constructive tractability results. An important area for
tractability research is to continue to move problems from the second and third to the
fourth class. That is, we want to provide constructive algorithms for problems for which
we currently have only existence or semi-construction. Obviously, we are especially
interested in a simple construction that does not involve extensive precomputations.

2.1 Notes and Remarks

NR 2:1. Chapter 2 is partially based on the survey [177] as well as on [294]. The
concepts of weak tractability and intractability are new and will be studied in the course
of this book. Relations between the optimal order of convergence and tractability are
also new, although quite straightforward.



Chapter 3

Twelve Examples

This introductory chapter informally introduces the concept of tractability for multi-
variate continuous problems. We will illustrate tractability by a number of representa-
tive examples that have already been thoroughly studied or for which the analysis of
tractability is relatively easy. We also hope that these examples will help the reader
to develop the proper intuition needed for tractability studies. Section 3.1 deals with
the worst case setting, whereas Section 3.2 deals with the average case, probabilistic
and randomized settings. In Section 3.3 we present 15 open problems related to the
tractability of problems studied in the first two sections.

We add that the 12 examples presented in this chapter can be read in any order.
Furthermore, the reader who is more interested in a general study of tractability may
skip this chapter and go directly to

• Chapter 4, where we survey information-based complexity results relevant for
tractability study, or even may go to

• Chapter 5, where tractability is studied in the worst case or to
• Chapter 6, where tractability in the average case is considered.

3.1 Tractability in the Worst Case Setting

In this section, we illustrate tractability results by presenting several examples in the
worst case setting, in which the error and cost of an algorithm is defined by its worst
performance with respect to functions from a given class and the cost (complexity) of
a multivariate problem is defined as the minimal cost of algorithms that approximate
the solution to within ". As will be explained in this section and more thoroughly
in Chapter 4, for many multivariate problems the complexity is proportional to the
minimal number n."; d/ of function values or linear functionals needed for computing
the solution to within ", and that is why we concentrate on n."; d/.

3.1.1 Example 1: Integration of Lipschitz Functions

Consider the class of functions

F
lip
d

D ˚
f W Œ0; 1�d ! R

ˇ̌ kf k < 1�
;
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where the norm of f is defined by

kf k D max
�

sup
x2Œ0;1�d

jf .x/j; sup
x;y2Œ0;1�d

jf .x/ � f .y/j
kx � yk1

�

with kxk1 D maxjD1;2;:::;d jxj j for x D Œx1; x2; : : : ; xd �. Hence, F lip
d

consists of
Lipschitz functions, and its unit ball consists of functions whose absolute values and
the Lipschitz constant are bounded by 1.

Many continuous problems have been studied for the class F lip
d

. Examples include
integration, approximation, optimization, ordinary or partial differential equations, and
integral equations. For brevity, we restrict ourselves to integration. Let

INTdf D
Z
Œ0;1�d

f .x/ dx for all f 2 F lip
d
:

We want to approximate INTdf to within ". Algorithms for approximating INTd must
use finitely many function values, and they are of the form

An.f / D 'n .f .x1/; f .x2/; : : : ; f .xn//

for some linear or non-linear mapping 'n W Rn ! R and for some points xj 2 Œ0; 1�d .
The pointsxj may be chosen adaptively, i.e., xj may depend on the already computedxk
and f .xk/ for k D 1; 2; : : : ; j � 1. The worst case error of An is defined as

ewor.An/ D sup
f 2F lip

d
;kf k�1

jINTdf � An.f /j :

We want to find the smallest n for which the error is at most ", i.e.,

nwor."; INTd ; F
lip
d
/ D min fn j there exists An with ewor.An/ � "g :

In the previous chapter, nwor."; INTd ; F
lip
d
/was simply denoted byn."; d/. We now use

a more accurate notation in which we mention the worst case setting by the superscript
“wor” and the multivariate integration problem for the class F lip

d
by replacing “d” by

“INTd ; F
lip
d

”.

We stress that nwor."; INTd ; F
lip
d
/ can be regarded as the minimal cost (complexity)

of solving this integration problem. Indeed, from general results that we present in
Chapter 4, we know that adaptive choice of points xj as well as non-linear mappings
'n do not help. That is, an algorithm with the minimal n among all algorithms having
worst case error at most " is linear. Such an algorithm requires us to compute n function
values; its evaluation can then be done by performing at most 2n arithmetic operations.
Since the cost of one function evaluation is usually much larger than the cost of one
arithmetic operation, the minimal cost is therefore proportional to nwor."; INTd ; F

lip
d
/.

The integration problem for Lipschitz functions has been thoroughly studied in the
literature. Already in 1959, Bakhvalov [7] proved that the optimal order of convergence
is n�1=d , i.e.,

e.n; d/ ´ inf
An

ewor.An/ D ‚
�
n�1=d �;
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as n ! 1.1 As we already know, this implies polynomial intractability, but weak
tractability is an open question until we know how the factors in the big theta notation
depend on d . If we examine Bakhvalov’s proof of the lower and upper bounds then
we realize that there are two numbers

0 < c < 1 < C

such that
cdn�1=d � e.n; d/ � C dn�1=d for all n:

That is, the lower bound is exponentially small in d , whereas the upper bound is expo-
nentially large in d . Obviously, if the upper bound is sharp then we have intractability.
However, if the lower bound is sharp then we have weak tractability. Hence, these
two estimates are too weak in their dependence on d , and based on them we cannot
say whether the integration problem for Lipschitz functions is intractable or weakly
tractable.

Fortunately, Sukharev [227] provided an explicit formula for e.n; d/ if n D md

for some integer m. We have

e.n; d/ D d

2d C 2

�
1

n

�1=d
: (3.1)

This error can be achieved by the midpoint algorithm using function values from a grid
with n D md points.

The error (3.1) implies that if " D 1=..2C 2=d/m/ for some integer m then

nwor."; INTd ; F
lip
d
/ D 1

.1C 1=d/d

�
1

2"

�d
D 1C o.1/

e

�
1

2"

�d
:

Hence, nwor."; INTd / is exponentially large in d , meaning that the integration problem
suffers from the curse of dimensionality and is intractable.

3.1.2 Example 2: Integration of Trigonometric Polynomials

Integration of Lipschitz functions is intractable. This may be interpreted as stating that
the Lipschitz class F lip

d
is just too large. So, we should study the integration problem

INTdf D
Z
Œ0;1�d

f .x/ dx

1Here and elsewhere in the book we use the standard notation O.f .n//,�.f .n// and‚.f .n// for a
function f W N ! .0;1/. For completeness, we remind the reader that these notations mean that there
are three positive numbers n0, C1, and C2 such that

• g.n/ D O.f .n// means that g.n/ � C1f .n/ for n � n0,

• g.n/ D �.f .n// means that g.n/ � C2f .n/ for n � n0, and

• g.n/ D ‚.f .n// means that C2f .n/ � g.n/ � C1f .n/ for n � n0.
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for a much smaller class Fd than F lip
d

. The elements of the class Fd that we shall study
are now trigonometric polynomials of degree at most one in each variable. Note that
the class Fd is finite dimensional, whereas the class F lip

d
is infinite dimensional.

For d D 1, the space F1 is linear and generated by three functions, e1 D 1,
e2.x/ D cos.2�x/, and e3.x/ D sin.2�x/ for x 2 Œ0; 1�. We define a scalar product
h � ; � iF1

on F1 by

hei ; ej iF1
D 0 for i 6D j , and hei ; ei iF1

D 1:

Hence, the ei ’s are orthonormal. Let Fd be the (d -fold) tensor product of F1 with the
tensor (cross-) scalar product

hf1 ˝ f2 ˝ � � � ˝ fd ; g1 ˝ g2 ˝ � � � ˝ gd iFd
D

dY
jD1

hfj ; gj iF1
;

for fj ; gj 2 F1. The tensor product of functions is defined by

.f1 ˝ f2 ˝ � � � ˝ fd /.x/ D f1.x1/f2.x2/ � � �fd .xd /;
where x D Œx1; x2; : : : ; xd �.

For j D Œj1; j2; : : : ; jd � with ji 2 f1; 2; 3g, define ej;d .x/ D Qd
iD1 eji

.xi / for
x 2 Œ0; 1�d . Then fej;d g is an orthonormal basis of Fd , and dim.Fd / D 3d .

Observe that kf kFd
� kf kL2

, i.e., the unit ball of Fd is smaller than the unit ball
of Fd with respect to the L2-norm.

It is easy to see thatFd is a Hilbert space with a reproducing kernelKd . This means
that Kd W Œ0; 1�d � Œ0; 1�d ! R, Kd . � ; x/ 2 Fd for all x 2 Œ0; 1�d , the m �m matrix
.Kd .xi ; xj //

m
i;jD1 is symmetric and semi positive-definite for all m and all choices of

points xj 2 Œ0; 1�d , and most importantly that

f .x/ D hf;Kd . � ; x/iFd
for all f 2 Fd and x 2 Œ0; 1�d :

Indeed, for f 2 Fd , the Dirac functional f 7! f .xi / can be written in the form

f .xi / D hf; ıxi
iFd

with

ıxi
.x/ D

dY
jD1

�
1C cos.2�.xi;j � xj //

	
;

where xi;j and xj are the j th components of the vector xi and x. This proves that the
function

Kd .x; y/ D hıx; ıyiFd
D

dY
jD1

�
1C cos.2�.xj � yj //

	
for all x; y 2 Œ0; 1�d
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is the reproducing kernel of Fd . Observe that the kernelKd is pointwise non-negative,
Kd .x; y/ � 0 for all x; y 2 Œ0; 1�d , and Kd .x; x/ D 2d .

For multivariate integration, we now have

INTdf D hf; 1iFd
and k1kFd

D 1 for all d 2 N:

This example has been studied in [167] with a more general norm kf kFd;ˇ
for

ˇ > 0. The case of this section corresponds to ˇ D 1, whereas the value ˇ D 2

corresponds to the L2-norm.
We consider the worst case error on the unit ball of Fd . Again we know from

general results that it is enough to consider linear algorithms (quadrature or cubature
formulas) of the form

Qn.f / D
nX
iD1

cif .xi /:

For ci D n�1 we obtain quasi-Monte Carlo algorithms, which are widely used for
multivariate integration especially for large d , see also Section 3.1.6. Many people
prefer to use algorithms with non-negative coefficients ci � 0 that integrate the func-
tion 1 exactly; this holds iff

Pn
iD1 ci D 1. The reason is that ci � 0 implies numerical

stability, and measurement errors for computation of f .xi / and rounding errors for
computation of Qn.f / are under tight control.

It is easy to check that the worst case error of Qn is

ewor.Qn/ D sup
f 2Fd ;kf kFd

�1
jINTdf �Qn.f /j D




1 �
nX
iD1

ciıxi





D
�
1 � 2

nX
iD1

ci C
nX

i;jD1
cicjKd .xi ; xj /

�1=2
:

Let

e.n; d/ D inf
Qn

ewor.Qn/

denote the minimal error when we use n function values.
For n D 1, we obtain�

ewor.Q1/
	2 D 1 � 2c1 C c21Kd .x1; x1/ D 1 � 2c1 C c212

d :

Note that the error is now independent of x1. For a quasi-Monte Carlo algorithm the
error is .2d �1/1=2, which is huge for large d , although we know a priori that the value
of an integral lies in Œ�1; 1� and the error of the zero algorithm, Qn D 0, is just one.
In fact, the best choice of c1 is to minimize the error which yields c1 D 2�d and

e.1; d/ D �
1 � 2�d �1=2:
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For n � 2 and ci � 0, we can find a lower bound on ewor.Qn/ using the fact that
Kd is pointwise non-negative, and we can drop the terms of the double sum for i 6D j .
Then we have

ewor.Qn/
2 � 1 � 2

nX
iD1

ci C
nX
iD1

c2i 2
d D 1 � n2�d C 2d

nX
iD1

�
ci � 2�d �2:

For a quasi-Monte Carlo algorithm, we have

Œewor.Qn/�
2 � 1

n
2d � 1;

which is exponentially large in d , whereas for all algorithms with ci � 0 we have

Œewor.Qn/�
2 � 1 � n2�d : (3.2)

This lower bound cannot be improved since any algorithm with weights ci D 2�d and

points xi from the set
˚
0; 1
2

�d
has an error e.Qn; Fd /2 D 1 � n2�d . In particular,

for n D 2d the error is 0. Indeed, if d D 1 then Q2.f / D 1
2

�
f .0/C f

�
1
2

��
is exact

for F1. The tensor product of Q2 yields the algorithm Q2d which is a quasi-Monte
Carlo algorithm and is exact for Fd , as claimed.

From (3.2) we conclude that the integration problem for Fd is intractable for the
class of algorithms with non-negative coefficients. Indeed, to achieve an error " we
need n � 2d .1 � "2/ function evaluations, which is exponential in d .

It is not clear whether the same is true if we consider arbitrary algorithms with some
negative coefficients, see Open Problem 3.

In general, multivariate integration defined over a Hilbert space whose reproducing
kernel is pointwise non-negative is much easier to analyze for algorithms with non-
negative coefficients than for algorithms with arbitrary coefficients, see [216], [291].

There are examples shown that intractability for the class of algorithms with non-
negative coefficients can be broken by using algorithms with negative coefficients, see
Section 5 of [177]. We will report these results and examples in Volume II of this book.

3.1.3 Example 3: Integration of Smooth Periodic Functions

We now consider the Korobov space Fd;˛ of complex functions from L1.Œ0; 1�
d /,

where ˛ > 1. This class is defined by controlling the sizes of Fourier coefficients
of functions. More precisely, for h D Œh1; h2; : : : ; hd � with integers hj , consider the
Fourier coefficients

Of .h/ D
Z
Œ0;1�d

f .x/e�2� ih�x dx;

where i D p�1 and h � x D Pd
jD1 hjxj . Denote Nhj D max.1; jhj j/. Then

Fd;˛ D ˚
f 2 L1.Œ0; 1�d / j j Of .h/j � � Nh1 Nh2 � � � Nhd

��˛
for all h 2 Zd

�
:
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For large ˛, the class Fd;˛ consists of smooth functions. Indeed, take

ˇ D Œˇ1; ˇ2; : : : ; ˇd �

with non-negative integers ǰ such that 1C ǰ < ˛. By jˇj we mean the sum of all
ǰ , i.e., jˇj D ˇ1 C ˇ2 C � � � C ˇd . Then we have

Dˇf .x/ ´ @jˇ j

@ˇ1x1@ˇ2x2 � � � @ˇdxd
f .x/

D
X
h2Zd

Of .h/.2� i/jˇ jhˇ1

1 h
ˇ2

2 � � � hˇd

d
e2� ih�x :

This derivative is well defined since the last series is absolutely convergent, i.e.,

jDˇf .x/j � .2�/jˇ j X
h2Zd

j Of .h/j. Nh1 Nh2 � � � Nhd /˛ Nh�.˛�ˇ1/
1

Nh�.˛�ˇ2/
2 � � � Nh�.˛�ˇd /

d

� .2�/jˇ j X
h2Zd

Nh�.˛�ˇ1/
1

Nh�.˛�ˇ2/
2 � � � Nh�.˛�ˇd /

d

D .2�/jˇ j
dY
kD1

X
h2Z

Nh�.˛�ˇk/ D .2�/jˇ j
dY
kD1

.1C 2�.˛ � ˇk// < 1:

Here, � denotes the Riemann zeta function, �.s/ D P1
jD1 j�s for s > 1. For ˇ D 0,

we conclude that functions from Fd;˛ have continuous 1-periodic extensions.
As in the previous examples, we consider the integration problem

INTdf D
Z
Œ0;1�d

f .x/ dx for f 2 Fd;˛:

We define several concepts just as before, namely, algorithms An that use n function
values, the worst case error ewor.An/, the nth minimal worst case error e.n; d/, and
the minimal number

nwor."; INTd ; Fd;˛/

of function values needed to approximate the integrals to within ".
The integration problem for the Korobov class Fd;˛ has been studied in a number

of papers and books. It is known, see the books of Niederreiter [158] and Sloan and
Joe [214], that

e.n; d/ D O .n�p/ as n ! 1; for all p < ˛.

For p D ˛ we have
e.n; d/ D O

�
n�˛.ln n/ˇ.d;˛/

�
where ˇ.d; ˛/ is of order d . Such errors can be obtained by lattice rules of rank 1, i.e.,
by algorithms of the form

An.f / D 1

n

n�1X
jD0

f
�n
j
z

n

o�
;
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where n is prime and z 2 f1; 2; : : : ; n� 1gd is a well-chosen integer vector. Here, fxg
denotes the vector whose j th component is the fractional part of xj .

Hence, for large ˛, the optimal order of convergence is also large and roughly equal
to ˛ independently of d . This is encouraging, but what can we say about tractability?

The tractability of this integration problem was studied in [215], where it was proved
that

e.n; d/ D 1 for n D 0; 1; : : : ; 2d � 1, (3.3)

which implies that

nwor."; INTd ; Fd;˛/ � 2d for all " 2 .0; 1/.
That is, even for arbitrarily large ˛, despite an excellent order of convergence, this
integration problem is intractable.

It is interesting to compare (3.3) with the statements in Section 3.1.2, in particular
with (3.2). Although the latter equation shows that even with one evaluation we obtain
algorithms which are slightly better than the zero algorithm A0 D 0, here the situation
is even worse:

for all n < 2d we cannot improve the quality of the zero algorithm at all.

The proof that e.n; d/ D 1 is short and instructive, and therefore we repeat it here.
First of all, take the most trivial algorithm, An D 0. Its worst case error is just

sup
f 2Fd;˛

jINTdf j D sup
f 2Fd;˛

j Of .0/j D 1:

Hence, e.n; d/ � 1 and we need to prove that as long as n < 2d , all algorithms behave
as badly as the most trivial zero algorithm. Take an arbitrary algorithm An.f / D
'.f .x1/; f .x2/; : : : ; f .xn// for some (perhaps non-linear) mapping ' and some (per-
haps adaptively) chosen points xj . We will construct a function f 2 Fd;˛ for which

f .xj / D 0 for j D 1; 2; : : : ; n

but jINTdf j D 1.
More precisely, if points xj are given adaptively, we take the first point x1 that

is independent of functions from Fd;˛ , and construct f such that f .x1/ D 0. This
implies a choice of the second point x2 for which we construct f for which f .x1/ D
f .x2/ D 0, and so on. That is, knowing that f .x1/ D f .x2/ D � � � D f .xk/ D 0,
the .k C 1/st point xkC1 is chosen and we again construct f for which additionally
f .xkC1/ D 0. This is done for k D 1; 2; : : : ; n � 1.

We first choose a trigonometric polynomial of the form

#.x/
X

h2f0;1gd

ahe
2� ih�x

with a trigonometric polynomial # to be specified later, and complex coefficients ah
that are a non-trivial solution of the homogeneous linear systemX

h2f0;1gd

ahe
2� ih�xj D 0:
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Here, we need the assumption that n < 2d . Indeed, we have 2d unknowns ah and
n homogeneous linear equations, since for n < 2d a non-zero solution exists. The
non-zero solution ah can be normalized and we choose the normalization such that

max
h2f0;1gd

jahj D ah� D 1;

for some h� 2 f0; 1gd . We now define #.x/ D e�2� ih��x . Our function f is given as

f .x/ D c
X

h2f0;1gd

ahe
2� i.h�h�/�x;

where c D 1 if <'.0; 0; : : : ; 0/ � 0, and c D �1 if <'.0; 0; : : : ; 0/ � 0.
We now show that f belongs to Fd;˛ . Indeed, observe that f is a trigonometric

polynomial with

hj � h�
j 2 f�1; 0; 1g for all j D 1; 2; : : : ; d and h 2 f0; 1gd .

This implies that hj � h�
j D max.1; jhj � h�

j j/ D 1 and

h1 � h�
1 h2 � h�

2 � � � hd � h�
d

D 1 for all h 2 f0; 1gd .

We have j Of .h � h�/j D jahj � 1 for all h 2 f0; 1gd , and Of .h � h�/ D 0 for
all h … f0; 1gd . Hence, j Of .h/j � . Nh1 Nh2 � � � Nhd /˛ for all h 2 Zd . This means that
f 2 Fd;˛ , as claimed.

Clearly, f .xj / D 0 for all j D 1; 2; : : : ; n and therefore An.f / D '.0; 0; : : : ; 0/.
Furthermore, INTdf D Of .0/ D cah� D c, and

jINTdf � An.f /j D jc � '.0; 0; : : : ; 0/j � jc � <'.0; 0; : : : ; 0/j � jcj D 1:

Hence, the worst case error of An is at least 1, which completes the proof.
It was also observed in [215] that the bound on n in the formula e.n; d/ D 1 is

sharp. Namely, for n D 2d , we may use the product rectangle rule

A2d .f / D 1

2d

1X
k1D0

1X
k2D0

� � �
1X

kd D0
f

�
k1

2
;
k2

2
; : : : ;

kd

2

�
;

which has the worst case error

ewor.A2d / D
�
1C �.˛/

2˛�1

�d
� 1:

If ˛ ! 1 then

ewor.A2d / D d�.˛/

2˛�1 C O .4�˛/

goes exponentially fast to 0. Hence, for large ˛ we have very peculiar behavior of the
nth minimal errors. Nothing happens for n D 1; 2; : : : ; 2d � 1, whereas for n D 2d

the nth minimal error is almost 0. This implies that for every "0 2 .0; 1/ and for every
integer d0 there exists a real ˛ such that

nwor."; INTd ; Fd;˛/ D 2d for all " 2 ."0; 1/ and for all d � d0.
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3.1.4 Example 4: Approximation of C 1 Functions

We now consider functions from the classC1.Œ0; 1�d / of infinitely differentiable func-
tions defined on the d -dimensional cube Œ0; 1�d . Let f 2 C1.Œ0; 1�d /. Obviously for
any multi-index

ˇ D Œˇ1; ˇ2; : : : ; ˇd � 2 Nd
0 with N0 D f0; 1; 2; : : : g,

the functionDˇf also belongs toC1.Œ0; 1�d /, whereDˇ is the differentiation operator
defined as in the previous example. For any p 2 Œ1;1�we also have kDˇf kLp

< 1,
where Lp is the classical space of functions defined on Œ0; 1�d , i.e., for p 2 Œ1;1/ we
have

kf kLp
D
�Z

Œ0;1�d
jf .x/jp dx

�1=p
;

whereas for p D 1,
kf kL1 D ess sup

x2Œ0;1�d
jf .x/j:

We restrict the class C1.Œ0; 1�d / by taking the linear space

F D Fd;p ´
n
f 2 C1.Œ0; 1�d / j kf kF ´ �P

ˇ2Nd
0

1
ˇŠ

kDˇf kpLp

�1=p
< 1

o
;

with ˇŠ D Qd
jD1 ǰ Š.

Hence, we deal with infinitely differentiable functions for which the sum of all
normalized derivatives is bounded in Lp . This class is nonempty since f � 1 belongs
to F . Furthermore, all multivariate polynomials belong to F since the series with
respect to ˇ for a polynomial consists of only finitely many positive terms. In any case,
we hope the reader agrees that F seems to be a “very small” set of functions.

For a given non-negative integer m, we consider the space G D Gd;m;p given by

G D
n
f 2 W m

p .Œ0; 1�
d / j kf kG ´ �P

ˇ2Nd
0

W j ǰ j�m
1
ˇŠ

kDˇf kpLp

�1=p
< 1

o
:

Hence, G is the Sobolev space W m
p .Œ0; 1�

d / of functions whose partial derivatives up

to order m in each variable belong to Lp.Œ0; 1�d /. Note that for m D 0, the space
Gd;0;p is just Lp.Œ0; 1�d /. For any m, and for all f 2 F we have kf kG � kf kF .
Let Pd;m denote the linear space of polynomials of d variables which are of degree at
most m in each variable. Clearly, dim.Pm/ D .mC 1/d and

kf kF D kf kG for all f 2 Pd;m.

Hence, the norms in F and G are the same for this .mC 1/d -dimensional subspace.
As we shall see this property will be very important for our analysis.

For the classes Fd;p andGd;m;p , we consider the multivariate approximation prob-
lem APPd with APPd W Fd;p ! Gd;m;p given by

APPdf D f:
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This is clearly a well-defined problem. Since

kAPPdk ´ sup
f 2Fd;p ;kf kF �1

kAPPdf kGd;m;p
D 1;

it is properly normalized. We approximate APPdf by algorithms An that may now
use not only function values but also arbitrary linear functionals, i.e.,

An.f / D 'n .L1.f /; L2.f /; : : : ; Ld .f // ;

where 'n W Rn ! Gd;m;p is some linear or non-linear mapping, and Lj is an arbitrary
linear functional whose choice may adaptively depend on the already computed values
L1.f /; L2.f /; : : : ; Lj�1.f /. As before, the worst case error of An is defined by

ewor.An/ D sup
f 2Fd;p ;kf kF �1

kAPPdf � An.f /kGd;m;p
:

The minimal number of information operations needed to solve the problem to within "
is now given by

nwor.";APPd ; Fd;p; Gd;m;p/ D min fn j there exists An with ewor.An/ � "g :
Observe that we also mention the range space in the list of the arguments of nwor. As
we shall see in a moment, tractability will depend on the range space parameter m. In
general, we adopt the strategy in our notation of showing all important parameters of
the problem and suppressing the parameters that are clear from the context and do not
play a major role.

We first discuss the optimal order of convergence. It is easy to see that for any
d 2 N and any r > 0 we have

e.n; d/ D inf
An

ewor.An/ D O .n�r/ as n ! 1.

To prove this, consider first the spaces C s WD C s.Œ0; 1�d / of s times continuously
differentiable functions with the norm kf ks D maxx2Œ0;1�d maxˇ Wjˇ j�s jDˇf .x/j.
Now take

s2 D d.r Cm/ and s1 D dm:

Note that the norm of the space C s1 is stronger than the norm of Gd;m;p . That is,
C s1 	 Gd;m;p and there exists a number C dependent on d;m and p such that
kf kGd;m;p

� Ckf ks1 for all f 2 C s1 .
Note that for any positive k, the class Fd;p is a subset of the Sobolev space

W k
p .Œ0; 1�

d /. If the embedding condition k � s2 > d=p holds then W k
p .Œ0; 1�

d /

and Fd;p can both be regarded as subsets of C s2 .
It is well-known that we can approximate functions from C s2 in the norm of C s1 ,

and then in the norm ofGd;m;p , by algorithms using n function values with worst case
error of order n�.s2�s1/=d . Moreover, r D .s2�s1/=d is the order of convergence; this
result was probably first observed by Bakhvalov [7] for m D 0, which gives s1 D 0.
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For general s1, which is needed form � 1, this result can be found, for instance, in the
book of Triebel [246, p. 348].

Take k D s2 C 1 C d=p. Then we conclude that functions from Fd;p can be
approximated in the norm of Gd;m;p with worst case error of order n�r , as claimed.

Since r can be arbitrarily large, the optimal order of convergence of the multivariate
approximation problem for the class Fd;p is formally infinite. This implies that for a
fixed d , the minimal number of information operations goes to infinity slower then any
power of "�1. That is, for any fixed d and any positive � we have

nwor.";APPd ; Fd;p; Gd;m;p/ D o."��/ as n ! 1.

Again, this is very encouraging but one could say that this is possible since the classFd;p
is so small.

But how about tractability? How long do we have to wait to see this nice conver-
gence of nwor.";APPd ; Fd;p; Gd;m;p/ to 0? We claim that

e.n; d/ D 1 for all n D 0; 1; : : : ; .mC 1/d � 1,

which implies that

nwor.";APPd ; Fd;p; Gd;m;p/ � .mC 1/d for all " 2 Œ0; 1/.
Hence ifm � 1 then we have the curse of dimensionality and the multivariate approx-
imation problem for the classes Fd;p and Gd;m;p is intractable. This means that the
set Fd;m is not so small after all.

The proof that e.n; d/ D 1 is essentially the same as the proof in the previous
subsection. First of all, observe that the zero algorithm An.f / D 0 has worst case
error at most 1 since APPd is properly normalized. Hence, e.n; d/ � 1. To prove the
reverse inequality, take an arbitrary algorithm An.f / D 'n.L1.f /; : : : ; Ln.f // that
uses adaptive linear functionals Lj . We now show that ewor.An/ � 1.

For b D Œb1; b2; : : : ; bd � 2 f0; 1; : : : ; mgd , define the functions

fb.x/ D
dY
jD1

�
xj � 1

2

�bj

:

The functions fb are polynomials of at most degree m in each variable. Each b yields
a new polynomial fb and the set ffbg consists of .m C 1/d linearly independent
polynomials. Note also that kfbkF D kfbkG since all termsDˇfb are 0 if there is an
index ǰ > m, and hence the summation for the F -norm is the same as the summation
for the G-norm. Let

g.x/ D
X

b2f0;1;:::;mgd

abfb.x/

for some real numbers ab . Again for any choice of ab we have kgkF D kgkG .
We choose ab’s such that L1.g/ D 0. Based on this zero value, the second linear

functional L2 is chosen, and we add the second equation for ab’s by requiring that
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L2.g/ D 0. We do the same for all chosen linear functionals Lj based on the zero
information, and we have n homogeneous linear equations for fabg,X

b2f0;1;:::;mgd

abLj .fb/ D 0 for j D 1; 2; : : : ; n.

Since we have .m C 1/d > n unknowns, we can choose a non-zero vector ab D a�
b

satisfying these n equations. The function g with a�
b

is non-zero since the fb’s are
linearly independent. Then kgkFd;p

is well defined and positive. We finally define two
functions

fk D .�1/k g

kgkFd;p

for k 2 f0; 1g.

Note that
fk 2 Fd;p and kfkkFd;p

D kf kGd;m;p
D 1:

Furthermore, Lj .fk/ D 0 for all j D 1; 2; : : : ; n and therefore An.fk/ D '.0; : : : ; 0/

does not depend on k. Hence,

ewor.An/ � max
f0;f1

.kf0 � '.0; 0; : : : ; 0/kG ; kf1 � '.0; 0; : : : ; 0/kG/
� 1

2
.kf0 � '.0; 0; : : : ; 0/kG C kf1 � '.0; 0; : : : ; 0/kG/

� 1
2
kf0 � f1kG D 1:

This completes the proof.
Hence, for m � 1 we have the curse of dimensionality and intractability. How

about m D 0? In this case we restrict ourselves to p D 2 and analyze the problem in
detail.

We will need a couple of known general results that will be presented in Chapter 4.
The reader may also consult, for instance, the books [242], [244] where these results
can be also found. For m D 0 and p D 2, the space Gd;0;2 is just the Hilbert space
L2 D L2.Œ0; 1�

d / with the inner product

hf; giL2
D
Z
Œ0;1�d

f .x/g.x/ dx;

whereas F D Fd;2 is the unit ball of the Hilbert space with the inner product

hf; giF D
X
ˇ2Nd

0

1

ˇŠ

˝
Dˇf;Dˇg

˛
L2
:

Let Wd D APP�
dAPPd W Fd;2 ! Fd;2, where APP�

d W L2 ! Fd;2 is the adjoint
operator of APPd . Obviously Wd is a self-adjoint positive semi-definite operator. It
is well-known that limn!1 e.n; d/ D 0 iff Wd is compact. Since we already know
that the limit of e.n; d/ is 0, we conclude that Wd is compact. Hence, Fd;2 has an
orthonormal basis of the eigenfunctions �d;j of Wd , i.e.,

Wd�d;j D �d;j�d;j
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with
˝
�d;j ; �d;k

˛
F

D ıj;k . We may assume that the non-negative eigenvalues �d;j are
ordered, i.e.,

�d;1 � �d;2 � � � � � �d;n � � � � � 0:

Obviously limn!1 �d;n D 0. Since we now allow algorithms using arbitrary linear
functionals, it is well-known that

e.n; d/ D
q
�d;nC1 for all n D 0; 1; : : : ,

and that the algorithm

An.f / D
nX

jD1

˝
f; �d;j

˛
F
�d;j

has worst case error equal to e.n; d/. We stress that although the algorithmAn is linear
and uses non-adaptive information, it minimizes the worst case error in the class of all
non-linear algorithms using n arbitrary adaptive linear functionals. This is a typical
result that holds for much more general problems, as we shall see later in Chapter 4.

Periodic Case for m D 0 and p D 2

We now restrict our attention to functions from the spaceF D Fd;2 that are periodic. By
a periodic function f 2 Fd;2 we mean that for d D 1 we have f .ˇ/.1/ D f .ˇ/.0/ for
all ˇ 2 N0, whereas for d � 1, we have .Dˇf /.x/ D .Dˇf /.y/ if jxi � yi j 2 f0; 1g
for all i . That is, the values of all derivatives are the same if a component xi D 0 of x
is changed into xi D 1. Hence, let

F
per
d;2

D ff 2 Fd;2 j f is periodicg:

The space F per
d;2

is equipped with the same norm as Fd;2. For example, the functionsQd
kD1 �jk

.xj /, with j 2 Nd
0 and �jk

.x/ D sin.2�jkx/ or �jk
.x/ D cos.2�jkx/

belong to F per
d;2

. Note that the approximation problem is still properly normalized for

the subspace F per
d;2

since kAPPdkF per
d;2

!L2
D 1.

The subspace F per
d;2

is much smaller than Fd;2. So if we establish a negative result

for F per
d;2

, then the same result will be also true for the larger class Fd;2. Obviously,

positive results for F per
d;2

do not have to be true for Fd;2.

To verify tractability of the approximation problem defined over the subspace F per
d;2

,
we need to find the eigenpairs ofWd . It will be instructive to consider first the univariate
case d D 1. Define �1.x/ D 1, and for k D 1; 2; : : : , define

�2k.x/ D p
2e�2.�k/2 sin.2�kx/; �2kC1.x/ D p

2e�2.�k/2 cos.2�kx/:
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It is easy to check that the sequence f�kg is orthonormal in the subspace F per
1;2 , i.e.,

h�k; �siF1;2
D ık;s . Define

K1.x; y/ D
1X
jD1

�j .x/�j .y/ for x; y 2 Œ0; 1�.

We claim that K1 is the reproducing kernel of F per
d;2

. That is, in particular, K1. � ; y/ 2
F

per
d;2

for ally 2 Œ0; 1�, andf .y/ D hf;K1. � ; y/iF1;2
for allf 2 F per

d;2
and ally 2 Œ0; 1�.

Indeed, it is enough to check the last property. Observe that for arbitrary ˇ 2 N and
k � 1, we have˝

f .ˇ/; �
.ˇ/

2k

˛
L2
�2k.y/C ˝

f .ˇ/; �
.ˇ/

2kC1
˛
L2
�2kC1.y/

D .2�k/2ˇ
�hf; �2kiL2

�2k.y/C ˝
f; �2kC1

˛
L2
�2kC1.y/

�
:

Therefore,

hf;K1. � ; y/iF1;2
D

1X
jD1

˝
f; �j

˛
F1;2

�j .y/ D
1X
jD1

1X
ˇD0

1

ˇŠ

˝
f .ˇ/; �

.ˇ/
j

˛
L2
�j .y/

D
1X
jD1

˝
f; �j

˛
L2
�j .y/C

1X
ˇ;kD1

˝
f .ˇ/; �

.ˇ/

2k

˛
L2
�2k.y/C ˝

f .ˇ/; �
.ˇ/

2kC1
˛
L2
�2kC1.y/

ˇŠ

D hf; �1iL2
C

1X
kD1

e.2�k/
2 �hf; �2kiL2

�2k.y/C hf; �2kC1iL2
�2kC1.y/

�

D hf; 1iL2
C 2

1X
kD1

hf; sin 2�k � iL2
sin.2�ky/C hf; cos 2�k � iL2

cos.2�ky/:

The last series is the Fourier series for f evaluated at y. Since f is periodic and
differentiable, this is equal to f .y/.

This also proves that the sequence f�kg is an orthonormal basis of the subspaceF per
1;2 .

Indeed, it is enough to show that if f 2 F
per
1;2 and

˝
f; �j

˛
F1;2

D 0 for all j then

f D 0. Orthogonality of f to all �j implies that hf;K1. � ; y/iF1;2
D 0, and therefore

f .y/ D 0. Since this holds for all y 2 Œ0; 1�, we have f D 0, as claimed.
Note that for k 6D s, we have

0 D h�k; �siL2
D hAPP1�k;APP1�siL2

D h�k;APP�
1APP1�siF D h�k; W1�siF :

This means that W1�s is orthogonal to all �k except k D s. Hence,

W1�s D �s�s;

and �s D h�s; �siL2
. This yields

�1 D 1 and �2k D �2kC1 D e�.2�k/2 for k D 1; 2; : : : .
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For d � 2, it is easy to see that F per
d;2

is the tensor product of d copies of F per
1;2 and

Wd is the d -fold tensor product of W1. This implies that the eigenpairs of Wd are

Wd�d;j D �d;j�d;j ;

where j D Œj1; j2; : : : ; jd � 2 Nd and

�d;j .x/ D
dY
kD1

�jk
.xk/ and �d;j D

dY
kD1

�jk
:

Hence, the eigenvalues for the d -dimensional case are given as the products of the
eigenvalues for the univariate case. To find out the nth optimal error e.n; d/, we must
order the sequence f�j1

�j2
� � ��jd

gj2Nd . Then the square root of the .nC 1/st largest
eigenvalue is e.n; d/. Thus, e.n; d/ � " iff n is at least the cardinality of the set of
all eigenvalues �d;j > "2. If we denote n."; d/ WD nwor.";APPd ; F

per
d;2
; L2/ as the

minimal number of linear functionals needed to solve the problem to within ", then

n."; d/ D ˇ̌˚
j D Œj1; j2; : : : ; jd � 2 Nd j �j1

�j2
� � ��jd

> "2
�ˇ̌
:

Clearly, n."; d/ D 0 for all " � 1 since the largest eigenvalue is 1. It is also easy
to see that n."; d/ D 1 for all " 2 .e�2�2

; 1/ since the second largest eigenvalue is
�2 D e�4�2

. For d D 1, note that e�.2�k/2 > "2 iff k � dp
2 ln "�1=.2�/e � 1. This

yields that

n."; 1/ D 2


1

2�

p
2 ln "�1

�
� 1 D

p
2

�

r
ln
1

"
C O.1/ as " ! 0.

For d � 1, we have the formula

n."; d C 1/ D
1X
jD1

n
�
"=

q
�j ; d

�
D n."; d/C 2

1X
kD1

n
�
"e2.�k/

2

; d
�
;

which relates the cases for d C 1 and d . The last two series are only formally infinite,
since for large j and k the corresponding terms are 0. More precisely, to obtain a
positive n."e2.�k/

2
; d / we need to assume that "e2.�k/

2
< 1. Let

k" D
&p

2

2�

r
ln
1

"

'
� 1:

Then

n."; d C 1/ D n."; d/C 2

k"X
kD1

n
�
"e2.�k/

2

; d
�
:

We now show by induction on d that

n."; d/ D ‚

��
ln
1

"

�d=2 �
as " ! 0. (3.4)
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This is clearly true for d D 1. If it is true for d , then using the formula for n."; d C 1/

we easily see that we can bound n."; d C 1/ from above by O..ln 1="/.dC1/=2/ since
k" is of order .ln 1="/1=2. We can estimate n."; d C 1/ from below by taking k"=2
terms and using the lower bound on n."e2.�k/

2
; d /, which again yields an estimate of

order .ln 1="/.dC1/=2.
Let us pause and ask what (3.4) means. From one point of view, this estimate

of n."; d/ is quite positive since we have weak dependence on " only through ln 1=".
Hence, ifd is relatively small, then the multivariate approximation problem withm D 0

can be easily solved. But if d is large, (3.4) may suggest that we have an exponential
dependence on d , and the problem may be intractable. As we already know the factors
in the big theta notation are very important for large d and so we can claim nothing
based solely on (3.4). We need more information about how n."; d/ behaves. We now
prove that

Cd ´ lim
"!0

n."; d/

.ln 1="/d=2
D 1

.2�/d=2	.1C d=2/
; (3.5)

establishing the asymptotic behavior of n."; d/ as " tends to 0.
For d D 1, we have already shown the formula C1 D p

2=� . Assume that Cd is
the asymptotic constant for d , and consider the case d C 1. For every positive ı there
exists "d D "d;ı 2 .0; 1/ such that for all " 2 .0; "d �, we have

n."; d/ D Cd .1C g."//

�
ln
1

"

�d=2
with jg."/j � ı and lim"!0 g."/ D 0.

Define

k�
" D

& p
2

2�

r
ln
"d

"

'
� 1:

Note that k" � k�
" D O.1/ as " ! 0. We have

n."; d C 1/ D Cd .1C g."//

�
ln
1

"

�d=2

C 2Cd

k�
"X

kD1

�
1C g

�
"e2.�k/

2
���

ln
1

"
� 2.�k/2

�d=2

C 2

k"X
kDk�

" C1
n."e2.�k/

2

; d /:

Note that for k 2 Œk�
" C 1; k"� we have n."e2.�k/

2
; d / � n."d ; d /, and therefore

k"X
kDk�

" C1
n."e2.�k/

2

; d / � �
k" � k�

"

�
n."d ; d / D O

�
.ln "�1/d=2

�
:
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Now consider the terms for which k 2 Œ1; k�
" �. Then "e2.�k/

2 � "d . For " tending
to 0, we have

k�
"X

kD1

�
1C g

�
"e2.�k/

2
���

ln
1

"
� 2.�k/2

�d=2

D .1C o.1//

Z k�
"

1

�
ln
1

"
� 2.�x/2

�d=2
dx

D 1C o.1/p
2�

�
ln
1

"

�.dC1/=2 Z 1

0

.1 � x2/d=2 dx

D 1C o.1/p
2�

�
ln
1

"

�.dC1/=2
1
2
B
�
1
2
; 1C d=2

�
;

where B.x; y/ is the beta function and is related to the Gamma function by B.x; y/ D
	.x/	.y/=	.x C y/. This proves that

n."; d C 1/ D CdC1.1C o.1//.ln 1="/.dC1/=2

as " goes to 0, with

CdC1 D B
�
1
2
; 1C d=2

�
Cdp

2�
D 	.1=2/	.1C d=2/p

2�	.1C .d C 1/=2/
Cd :

Solving this recurrence, we obtain

CdC1 D 	.1=2/d	.3=2/

.
p
2�/d	.1C .d C 1/=2/

C1 D 1

.2�/.dC1/=2	.1C .d C 1/=2/

which agrees with the asymptotic formula (3.5).
We stress that the asymptotic constant Cd in (3.5) is super exponentially small in d

due to the presence of 	.1C d=2/ in the denominator. This property raises our hopes
that we can beat the apparent exponential dependence on d . Indeed, assume for a
moment that the limit in (3.5) is uniform in d . That is, suppose that there exists a
positive "0 such that for all " 2 .0; "0/ and all d , we have

n."; d/ � 2Cd

�
ln
1

"

�d=2
D 2.ln "�1/d=2

.2�/d=2	.1C d=2/
:

It can be easily checked that xd=2=	.1C d=2/ � exp.x/ for all x � 1. Therefore

n."; d/ � 2

.2�/d=2
1

"
:

Hence, we have strong polynomial tractability if (3.5) holds uniformly in d .
We now return to the proof of (3.5) with the new task of checking whether "d can

be uniformly bounded from below. Unfortunately, this is not true. It is enough to take
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"2 2 Œ�3; �2/ to realize that we can take d � 1 indices ji D 1 and the remaining index
ji D 2 to obtain the eigenvalue �d;j D �2 > "

2. Hence n."; d/ � d which contradicts
strong polynomial tractability.

In fact, even polynomial tractability does not hold. This follows from the general
observation that as long as the largest eigenvalue is 1, and the second largest eigenvalue
�2 for d D 1 is positive then there is no polynomial tractability. Indeed, for an arbitrary
integerk and arbitraryd > k , consider the eigenvalues�j1

�j2
� � ��jd

withd�k indices
ji equal to 1 andk indices ji equal to 2. Then we have at least

�
d
k

� D ‚.dk/ eigenvalues

equal to �k2 . It is enough to take now, say, "2 D �k2=2 to realize that n
�q
�k2=2; d

�
is at

least of order dk . Since k can be arbitrary, this contradicts not only strong polynomial
tractability but also polynomial tractability.

Well, we are back to square one. Despite the exponentially small asymptotic con-
stants, we have polynomial intractability of the multivariate problem form D 0. Hence,
the only remaining hope for a positive result is weak tractability. Here we will finally
report good news.

As in [288], let �j1
�j2

� � ��jd
> "2 and let k be the number of indices ji � 2.

Then2 .d � k/C indices are equal to 1. Note that �k2 > "
2 implies that

k � a."/ ´

2 ln "�1

ln ��1
2

�
� 1:

So we have at least .d � a."//C indices equal to 1. Observe also that ji � n."; 1/.
Thus �

d

.d � a."//C
�

� n."; d/ �
�

d

.d � a."//C
�
n."; 1/a."/:

For a fixed " and for d tending to infinity, we have

n."; d/ D ‚
�
d d2 ln "�1= ln��1

2
e�1�

with the factors in the big theta notation depending now on "�1.
For arbitrary d and " 2 .0; 1/ we conclude that

n."; d/ � .d C a."//a."/

a."/Š

 
2

&
1

2�

r
2 ln

1

"

'
� 1

!a."/
:

This implies that

lim
"�1Cd!1

ln n."; d/

"�1 C d
D 0

which means that weak tractability indeed holds.
Hence, we have mixed news for the periodic case of the approximation problem.

We have polynomial intractability, which obviously implies polynomial intractability
for the original non-periodic case. But we have weak tractability for the periodic case,
and it is not yet clear whether this good property extends to the non-periodic case.

2 Here and elsewhere in the book we use the standard notation xC D max.x; 0/.
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Weak tractability for m D 0 and p D 2

We now show that weak tractability holds not only for the original non-periodic case
but it also holds for a much larger space of less smooth functions. Namely, define

F 1d;2 D Gd;1;2 D W 1
2 .Œ0; 1�

d /

as the Sobolev space of functions whose partial derivatives up to order one belong to
L2 D L2.Œ0; 1�

d /. The norm in F 1
d;2

is defined as in Gd;1;2. Clearly

Fd;2 	 F 1d;2 and kf kF 1
d;2

� kf kFd;2
for all f 2 Fd;2.

Again, consider first the case d D 1, and the subspace zF 11;2 of periodic functions from
F 1
d;2

. Now periodicity means that f .1/ D f .0/. Proceeding as before, it is easy to
check that the functions �1 D 1, and

�2k.x/ D
p
2p

1C .2�k/2
sin.2�kx/; �2kC1.x/ D

p
2p

1C .2�k/2
cos.2�kx/

are orthonormal in zF 11;2, and the function

K1.x; y/ D
1X
jD1

�j .x/�j .y/

is the reproducing kernel of zF1;2. Therefore the sequence f�j g forms a basis of zF1;2.
The eigenvalues �per

j of W1 D APP�
1APP1 W zF 11;2 ! zF 11;2 are

�
per
1 D 1 and �

per
2k

D �
per
2kC1 D 1

1C .2�k/2
for k D 1; 2; : : : .

We now turn to the space F 11;2 of non-periodic functions. Define

g.x/ D x � 1
2

C
1X
kD1

1

�k.1C .2�k/2/
sin.2�kx/ for x 2 Œ0; 1�.

It is easy to check that g belongs to F 11;2 and is orthogonal to all �j . Note that g.1/ D
�g.0/ D 1

2
, hence g … zF 11;2. For f 2 F 11;2, let

hf .x/ D f .x/ � Œf .1/ � f .0/� g.x/:

Then hf 2 zF 11;2. Hence,

f D Œf .1/ � f .0/� g C hf for all f 2 F 11;2.
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This decomposition suggests that we first computeL1.f / D f .1/�f .0/ and then
approximate the function hf D f � L1.f /g. Note that˝

f; �j
˛
F 1

1;2

D L1.f /
˝
g; �j

˛
F 1

1;2

C ˝
hf ; �j

˛
F1;2

D ˝
hf ; �j

˛
F1;2

and
kf k2

F 1
1;2

D L1.f /
2kgk2

F 1
1;2

C khf k2
F 1

1;2

:

Hence, approximation of functions from the unit ball of F 11;2 with n information eval-
uations is not harder than approximation of periodic functions from the unit ball of
zF 11;2 with n � 1 information evaluations, and not easier than the periodic case with
n evaluations. Let �non-per

j denote the ordered sequence of eigenvalues of W1 D
APP�

1APP1 W F 11;2 ! F 11;2 for the non-periodic case. It is easy to check that�non-per
1 D 1,

and �non-per
2 < �

non-per
1 , as well as

�
per
j � �

non-per
j � �

per
j�1 for all j � 2.

Hence, �non-per
j D ‚.j�1/.

We turn to the case d � 2. Since F 1
d;2

is the d -fold tensor product of F 11;2, the

eigenvalues ofWd D APP�
dAPPd W F 1

d;2
! F 1

d;2
are products of �non-per

j1
� � ��non-per

jd
for

ji 2 N. In Theorem 5.5 of Chapter 5 we prove that linear tensor product problems
are weakly tractable as long as the eigenvalues for d D 1 satisfy the following two
conditions:

• the second largest eigenvalue is smaller than the largest eigenvalue,
• the nth largest eigenvalue goes to 0 faster than .ln n/�2.ln ln n/�2.

These two assumptions hold in our case, and therefore the approximation problems for
the space F 1

d;2
as well as for the smaller space Fd;2 are weakly tractable.

We finish this section with a short summary. The multivariate approximation prob-
lem studied in this section is defined on infinitely differentiable functions, and we allow
arbitrary linear functionals as information operations. The optimal rate of convergence
of this problem is infinite. Despite this excellent asymptotic speed of convergence,
the problem is intractable if the target space is equipped with the Lp-norm involving
partial derivatives, i.e., whenm � 1. Form D 0 and p D 2, the target space is simply
L2, and then the problem remains polynomially intractable, but is weakly tractable.

3.1.5 Example 5: Discrepancy

We now discuss the notion of discrepancy, which is related to multivariate integration
for some classes of functions. Discrepancy is a measure of the deviation from uni-
formity of a set of points. It is desirable that a set of n points be chosen so that the
discrepancy is as small as possible. The notion of discrepancy appears in many fields
of mathematics. One of the chapters of Volume II is devoted to discrepancy and its role
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for tractability of multivariate integration. Here, we only wish to introduce this subject
and illustrate it by a few surprising facts and results.

We begin with the definition of theLp-star discrepancy. Let x D Œx1; x2; : : : ; xd �

be from Œ0; 1�d . By the box Œ0; x/we mean the set Œ0; x1/� Œ0; x2/�� � �� Œ0; xd /, whose
(Lebesgue) measure is clearly x1x2 � � � xd . For given points t1; t2; : : : ; tn 2 Œ0; 1�d , we
approximate the volume of Œ0; x/ by the fraction of the points ti that are in the box
Œ0; x/. The error of such an approximation is called the discrepancy function, and is
given by

disc.x/ D x1x2 � � � xd � 1

n

nX
iD1

1Œ0;x/.ti /;

where 1Œ0;x/ is the indicator (characteristic) function, so that 1Œ0;x/.ti / D 1 if ti 2 Œ0; x/
and 1Œ0;x/.ti / D 0 otherwise.

TheLp-star discrepancy of the points t1; : : : ; tn 2 Œ0; 1�d is defined by theLp-norm
of the discrepancy function disc, i.e., for p 2 Œ1;1/,

disc�
p.t1; t2; : : : ; tn/ D

�Z
Œ0;1�d

ˇ̌̌
x1x2 � � � xd � 1

n

nX
iD1

1Œ0;x/.ti /
ˇ̌̌p

dx

�1=p
; (3.6)

and for p D 1,

disc�1.t1; t2; : : : ; tn/ D sup
x2Œ0;1�d

ˇ̌̌
x1x2 � � � xd � 1

n

nX
iD1

1Œ0;x/.ti /
ˇ̌̌
: (3.7)

The main problem associated with Lp-star discrepancy is that of finding points
t1; t2; : : : ; tn that minimize disc�

p , and to study how this minimum depends on d and n.
There are many deep results for this problem and we will report some of them in
Volume II.

We now show that the Lp-star discrepancy is intimately related to multivariate

integration. Let W 1
q WD W

.1;1;:::;1/
q .Œ0; 1�d / be the Sobolev space of functions defined

on Œ0; 1�d that are once differentiable in each variable and whose derivatives have
finite Lq-norm, where 1=p C 1=q D 1, see the books of Drmota and Tichy [50] and
Niederreiter [158]. We consider first the subspace of functions that satisfy the boundary
conditions f .x/ D 0 if at least one component of x is 1 and define the norm

kf k�
d;q D

�Z
Œ0;1�d

ˇ̌̌
ˇ@d
@x
f .x/

ˇ̌̌
ˇq dx

�1=q

for q 2 Œ1;1/ and

kf k�
d;1 D sup

x2Œ0;1�d

ˇ̌̌
ˇ@d
@x
f .x/

ˇ̌̌
ˇ

for q D 1. Here, @x D @x1@x2 : : : @xd .
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That is, we consider the class

F �
d;q D ˚

f 2 W 1
q j f .x/ D 0 if xj D 1 for some j 2 Œ1; d �, and kf k�

d;q
� 1

�
:

Consider the multivariate integration problem

INTdf D
Z
Œ0;1�d

f .x/ dx for f 2 F �
d;q

.

We approximate INTdf by quasi-Monte Carlo algorithms, which are of the form

Qd;nf D 1

n

nX
jD1

f .tj /

for some points tj 2 Œ0; 1�d . We stress that the points tj are chosen non-adaptively
and deterministically. The name “quasi-Monte Carlo” is widely used, since these
algorithms are similar to the Monte Carlo algorithm which takes the same form but for
which the points tj are randomly chosen, usually as independent uniformly distributed
points over Œ0; 1�d .

We also stress that we use especially simple coefficients n�1. This means that if
f .t1/; f .t2/; : : : ; f .tn/ are already computed then the computation ofQd;nf requires
just n � 1 additions and one division. Since the points t1; t2; : : : ; tn are non-adaptive,
Qd;nf can be very efficiently evaluated in parallel since each f .tj / can be computed
on a different processor. Obviously, Qd;n integrates constant functions exactly, even
though 1 … F �

d;q
.

The quality of the algorithm Qn;d depends on the points tj . There is a deep
and beautiful theory about how the points tj should be chosen, and we will spend
considerable time explaining a small part of this theory. We add that quasi-Monte
Carlo algorithms have been used very successfully for many applications, including
mathematical finance applications, ford equal 360 or even larger. The reader is referred
to the book of Traub and Werschulz [243] for a thorough discussion.

We now recall Hlawka and Zaremba’s identity, see Hlawka [98] and Zaremba [296],
which states that for f 2 W 1

q we have

INTdf �Qd;nf D
X

;6Du�f1;2;:::;dg
.�1/juj

Z
Œ0;1�juj

disc.xu; 1/
@juj

@xu
f .xu; 1/ dxu:

Here, we use the following standard notation. For any subset u of f1; 2; : : : ; dg and
for any vector x 2 Œ0; 1�d , we let xu denote the vector from Œ0; 1�juj, where juj is
the cardinality of u, whose components are those components of x whose indices are
in u. For example, for d D 5 and u D f2; 4; 5g we have xu D Œx2; x4; x5�. Then
@xu D Q

j2u @xj and dxu D Q
j2u dxj . By .xu; 1/ we mean the vector from Œ0; 1�d

with the same components as x for indices in u and with the rest of components being
replaced by 1. For our example, we have .xu; 1/ D Œ1; x2; 1; x4; x5�. Note that

disc.xu; 1/ D
Y
k2u

xk � 1

n

nX
jD1

1Œ0;xu/..tj /u/:
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For f 2 F �
d;q

, due to the boundary conditions, all terms in Hlawka and Zaremba’s
identity vanish except the term for u D f1; 2; : : : ; dg. Hence, for f 2 F �

d;q
we have

INTdf �Qd;nf D .�1/d
Z
Œ0;1�d

disc.x/
@d

@x
f .x/ dx:

Applying the Hölder inequality, we obtain that the worst case error of Qn;d is

ewor.Qd;n/ D sup
f 2F �

d;q

ˇ̌
INTdf �Qd;nf

ˇ̌ D disc�
p.t1; t2; : : : ; tn/;

which is theLp-star discrepancy for the points t1; t2; : : : ; td that are used by the quasi-
Monte Carlo algorithm Qd;n.

Now take n D 0 and defineQd;0 D 0. In this case we do not sample the function f .
The error of this zero algorithm is the initial worst case error, which is the norm of the
linear functional INTd . It is easy to check that

ewor.0/ D ewor.Qd;0/ D kINTdk D
�

1

p C 1

�d=p
;

which is 1 for p D 1.
Assume for now that p < 1, or (equivalently) that we consider the multivariate

integration problem for the class F �
d;q

with q > 1. Then the initial error goes to 0
exponentially fast with d . This means that the multivariate integration problem for the
class Fd;q is poorly scaled. To see this point better, take p D q D 2 and, as in some
financial applications, assume that d D 360. Then the initial error is 3�180 � 10�85:9.
Hence, without computing any function value we know a priori, just by the formulation
of the problem, that the absolute value of the integral which we want to approximate
is at most 3�180. Hence, as long as " � 3�180, the zero algorithm solves the problem,
and the minimal number of function values is nwor."; d/ D 0.

One can claim that this is because we introduced boundary conditions; perhaps it
might be hard to find practical applications for which functions satisfy these boundary
conditions. Let us agree with this criticism, and remove the boundary conditions. So
we now consider the class

Fd;q D ˚
f 2 W 1

q j kf kd;q � 1
�
;

where the norm is given by

kf kd;q D
� X

u�f1;2;:::;dg

Z
Œ0;1�juj

ˇ̌̌
ˇ @juj

@xu
f .xu; 1/

ˇ̌̌
ˇq dxu

�1=q
:

The term for u D ; corresponds to jf .1/jq .
We return to Hlawka and Zaremba’s identity and again apply the Hölder inequality,

this time for integrals and sums, and conclude that the worst case error is

ewor.Qd;n/ D sup
f 2Fd;q

ˇ̌
INTdf �Qd;nf

ˇ̌ D discp.t1; t2; : : : ; tn/;
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where the combined Lp-star discrepancy discp for p 2 Œ1;1� is given by

discp.t1; t2; : : : ; tn/ D
� X

;6Du�f1;2;:::;dg

�
disc�

p..t1/u; .t2/u; : : : ; .tn/u/
	p �1=p

;

with the usual change to the maximum for p D 1.
What is now the initial error? As before, it is the worst case error of the zero

algorithm, which is again the norm of INTd . However, this time the norm is given in
the space W 1

q without boundary conditions, and

ewor.0/ ´ ewor.Qd;0/ D kINTdk

D
� X

u�f1;2;:::;dg
.p C 1/�juj�1=p D

� dX
jD0

�
d

j

�
.p C 1/�j

�1=p

D
�
1C 1

p C 1

�d=p
:

So the initial error is now exponentially large in d . For p D 2 and d D 360, the
initial error is .4=3/180 � 10C22:5. Hence, we switch from almost a zero initial error
with the boundary conditions, to almost an infinite initial error without the boundary
conditions. Either way, the multivariate integration problem is very badly scaled.

What should we then do? A possible solution is to consider weighted discrep-
ancy for which the initial error will be reasonable for all d and p 2 Œ1;1/. For
weighted discrepancy each variable or, more generally, each group xu of variables,
may play a different role measured by some weight �d;u. With a proper condition on
the weights �d;u, we achieve reasonable initial errors.

Another point which we want to make is that the absolute error that we discussed so
far is only reasonable if the initial error is properly scaled. In fact, for all problems stud-
ied in the preceding sections, the initial error was 1. If the initial error is poorly scaled,
then it is much better to use the normalized error criterion instead of the absolute error.

Now we want to solve the problem to within "ewor.0/, with the natural assumption
that " 2 .0; 1/. That is, for the normalized error we want to reduce the initial error by a
factor ". Then we define the minimal number n."; d/ of information operations as the
minimal number of function values needed to solve the problem to within "ewor.0/ and
ask again whether the integration problem is polynomially tractable. That is exactly
what we will be doing in Volume II, and therefore we do not pursue this point further
here.

We now consider the remaining case p D 1, or equivalently q D 1. Note that in
this case, we have

disc�1.t1; t2; : : : ; tn/ D disc1.t1; t2; : : : ; tn/;

and the multivariate problem is properly scaled for both classes F �
d;1

and Fd;1 since
the initial error is 1. Then

n."; d/ D minfn j there are t1; t2; : : : ; tn 2 Œ0; 1�d with disc�1.t1; t2; : : : ; tn/ � "g
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is the same for both classes, it is just the inverse of theL1-discrepancy, the latter being
simply called the star discrepancy.

Hence, tractability of multivariate problems depends on how the inverse of the star
discrepancy behaves as a function of " and d . Based on many negative results for clas-
sical spaces and on the fact that all variables play the same role for the star discrepancy,
it would be natural to expect an exponential dependence on d , i.e., intractability. In
fact, such a bad behavior was conjectured by Larcher [129]. Therefore it was quite a
surprise when a positive result was proved in [91]. More precisely, let

disc�1.n; d/ D inf
t1;t2;:::;tn2Œ0;1�d

disc�1.t1; t2; : : : ; tn/

denote the minimal star discrepancy that can be achieved with n points in the d -
dimensional case. Then there exists a positive number C such that

disc�1.n; d/ � Cd1=2n�1=2 for all n; d D 1; 2; : : : .

The proof of this bound follows directly from deep results of the theory of empirical
processes. In particular, we use a result of Talagrand [231] combined with a result of
Haussler [78], and a result of Dudley [51] on the Vapnik–Červonenkis dimension of
the family of rational cubes Œ0; x/. The proof is unfortunately non-constructive, and
we do not know points for which this bound holds.

The slightly worse upper bound

disc�1.n; d/ � 2
p
2n�1=2

�
d ln

�
dn1=2

2.ln 2/1=2

�
C 1

�
C ln 2

�1=2

follows from Hoeffding’s inequality and is quite elementary, see also Doerr, Gnewuch
and Srivastav [48], and Gnewuch [68]. Also this proof is non-constructive. However,
using a probabilistic argument, it is easy to show that many points t1; t2; : : : ; tn satisfy
both bounds modulo a multiplicative factor greater than one, see [91] for details.

In fact, it is possible to have a semi-construction of such points by selecting them
randomly and checking their star discrepancy. If their star discrepancy satisfies the
needed bound, say the last displayed bound times 10, we are done; if not we repeat the
process. The probability of failure after k trials will be exponentially small in k so with
high probability we will find points with a good bound on the star discrepancy. However,
there is a problem with this approach. Namely, today’s algorithms for computing the
star discrepancy for given points are exponential in d . Hence, for large d the cost will
be prohibitively expensive. One of the main open problems for the star discrepancy is
to construct points with a good bound on the star discrepancy.

One can also use the results on the average behavior of the Lp-star discrepancy for
an even integer p to obtain upper bounds for the star discrepancy, see again [91] and
Gnewuch [67]. For concrete values of d and n, these upper bounds seem to be better
than those presented above.
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The upper bounds on disc�1.n; d/ can be easily translated into upper bounds on
n."; d/. In particular, we have

n."; d/ �
&
C 2d

�
1

"

�2'
for all " 2 .0; 1/ and d D 1; 2; : : : . (3.8)

This means that we have polynomial tractability. Furthermore it was also shown in
[91] that there exists a positive number c such that

n."; d/ � cd ln "�1 for all " 2 .0; 1=64� and d D 1; 2; : : : .

In fact, this lower bound holds not only for quasi-Monte Carlo algorithms but in full
generality for all algorithms. The last bound was improved by Hinrichs [97], who
showed that there exist positive numbers c and "0 such that

n."; d/ � cd"�1 for all " 2 .0; "0� and d D 1; 2; : : : .

The essence of the lower bounds is that we do not have strong polynomial tractability,
and the factor d in the bounds on n."; d/ cannot be removed.

How about the dependence on "�1? This is open and seems to be a difficult problem.
We know that for a fixed d , the minimal star discrepancy disc�1.n; d/ behaves much
better asymptotically in n. More precisely, we know that for arbitrary d , we have



�
n�1.ln n/.d�1/=2� D disc�1.d; n/ D O

�
n�1.ln n/d�1� as n ! 1.

The lower bound follows from the lower bound on the minimalL2-star discrepancy due
to Roth [202], whereas the upper bound is due to Halton [75], see also Hammersley [74].
Another major open problem for the star discrepancy is to find the proper power of the
logarithm of n in the asymptotic formula for disc�1.n; d/.

Hence, modulo powers of logarithms, the star discrepancy behaves like n�1, which
is optimal since such behavior is already present for the univariate case d D 1. This
means that n."; d/ grows at least as "�1. Furthermore, for any d , we have

lim
"!0

n."; d/

"�.1Cı/ D 0 for any ı > 0.

This may suggest that the exponent 2 of "�1 in the upper bound on n."; d/ in (3.8) can
be lowered. However, we think that as long as we consider upper bounds of the form
n."; d/ � Cdk"�˛ , the exponent ˛ � 2 and 2 cannot be improved. This is another
open problem related to the star discrepancy, see also Section 3.3.

3.1.6 Example 6: Diagonal Problems for Weighted Spaces

The purpose of this section is to introduce the reader to weighted spaces, which play
a major role in tractability studies. We will present weighted spaces for relatively
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simple diagonal multivariate problems to make the analysis simpler; however, the
basic tractability proof technique will be the same as for general linear multivariate
problems, as long as we use arbitrary linear functionals as information operations.

Let L2.Œ0; 1�d / be the space of square integrable real functions defined on the d -
dimensional unit cube with the inner product

hf; gid D
Z
Œ0;1�d

f .x/g.x/ dx:

Let

�1.x/ D 1; �2k.x/ D p
2 sin.2�kx/; �2kC1.x/ D p

2 cos.2�kx/

for x 2 Œ0; 1� and k D 1; 2; : : : . For j D Œj1; j2; : : : ; jd � 2 Nd , let

�d;j .x/ D
dY
kD1

�jk
.xk/ for x D Œx1; x2; : : : ; xd � 2 Œ0; 1�d :

Clearly, f�d;j gj2Nd is an orthonormal basis ofL2.Œ0; 1�d /, i.e., we have
˝
�d;i ; �d;j

˛
d

D
ıi;j for all i; j 2 Nd .

For the univariate case d D 1, we define a diagonal operator as a continuous linear
operator S1 W L2.Œ0; 1�/ ! L2.Œ0; 1�/ such that

S1�k D �k�k for all k D 1; 2; : : : .

Here we assume that

1 D �1 � �2 � � � � � �n � � � � � 0:

Note that kS1kL2.Œ0;1�/!L2.Œ0;1�/ D �1 D 1, and therefore the problem is well normal-
ized.

For d � 2, we define a diagonal operator as the tensor product of d copies of S1,
i.e., Sd W L2.Œ0; 1�d / ! L2.Œ0; 1�

d / is a continuous linear operator such that

Sd�d;j D �d;j�d;j with �d;j D Qd
kD1 �jk

for all j D Œj1; j2; : : : ; jd � 2 Nd .

Clearly, kSdkL2.Œ0;1�d /!L2.Œ0;1�d /
D 1 for all d .

We want to approximate Sdf for f belonging to some class Fd that is the unit ball
of a weighted space L2;� .Œ0; 1�d /.

To explain the idea of weighted spaces, we first recall the ANOVA (for “analysis
of variance”) decomposition of functions from L2.Œ0; 1�

d /. See Efron and Stein [55],
Sobol [222], Ho and Rabitz [99] and Rabitz and Alis [200] for this and related represen-
tations of functions. The ANOVA decomposition is widely used in statistics, as well as
in the study of quasi-Monte Carlo algorithms for multivariate integration. It represents
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a function f of d variables as a sum of functions in which each term depends only on
one specific group of variables. More precisely, we have

f .x/ D f; C
X

;6Du�f1;2;:::;dg
fu.xu/; (3.9)

where f; D R
Œ0;1�d

f .x/ dx, and the rest of the ANOVA terms fu are defined recur-
sively with respect to the increasing cardinality of juj, i.e.,

fu.xu/ D
Z
Œ0;1�d�juj

f .x/ dx�u �
X

v�u;v6Du

fv.xv/;

where x�u denotes the vector xf1;2;:::;dg�u. For u D f1; 2; : : : ; dg, the integral is
replaced by f .x/. Here we use the same notation as in the discrepancy section, namely,
xu denotes the vector from Œ0; 1�juj whose components are those components ofxwhose
indices are in u.

Clearly fu depends only on xu, since we integrate over all variables not present
in u and the summation involves functions that depend only on some variables from u.
The recursive definition is done in a way such that we first know f;, then ffig for
all i D 1; 2; : : : ; d , then ffi;j g for all 1 � i < j � d , and so on. Finally we get
2d ANOVA terms. From the definition of fu, we easily conclude (3.9) by taking
u D f1; 2; : : : ; dg.

We give some examples. The easy case is when d D 1. Then x D x1, and we
have only two terms, f; D R 1

0
f .t/ dt and ff1g.x1/ D f .x/ � f;. Let d D 2. Then

x D Œx1; x2� and we have four terms

f; D
Z 1

0

Z 1

0

f .t1; t2/ dt1 dt2;

ff1g.x1/ D
Z 1

0

f .x1; t / dt � f;;

ff2g.x2/ D
Z 1

0

f .t; x2/ dt � f;;

ff1;2g.x1; x2/ D f .x1; x2/ � f; � ff1g.x1/ � ff2g.x2/:

For f .x/ D 1C x1x2 C sin.2�x1/C cos.2�x2/ we have

f; D 5
4
;

ff1g.x1/ D �1
4

C 1
2
x1 C sin.2�x1/;

ff2g.x2/ D �1
4

C 1
2
x2 C cos.2�x2/;

ff1;2g.x1; x2/ D f .x1; x2/ � 3
4

� 1
2
x1 � 1

2
x2 � sin.2�x1/ � cos.2�x2/:

Let us return to the case of general d . It follows easily that the ANOVA terms are
orthogonal in the L2 sense, i.e.,Z

Œ0;1�d
fu.xu/fv.xv/ dx D 0 for all u ¤ v.



3.1 Tractability in the Worst Case Setting 43

In particular, this means that the integrals of all fu are 0 if u 6D ;. We also have

kf k2d D
X

u�f1;2;:::;dg
kfuk2d : (3.10)

We see then that the contributions of all fu to the norm of f are the same. Furthermore,
if we compute the variance �2.f /, defined as

�2.f / D
Z
Œ0;1�d

f 2.x/ dx �
�Z

Œ0;1�d
f .x/ dx

�2
;

then the variance of f is a sum of the variances of the separate ANOVA terms fu,

�2.f / D
X

;6Du�f1;2;:::;dg
�2.fu/:

The last property was used in many papers to explain the efficient error behavior of
quasi-Monte Carlo algorithms for multivariate integration, see for example the papers
of Caflisch, Morokoff and Owen [25], Sobol [222], andWang and Fang [256]. The point
was that some �.fu/ are small or even 0 for functions arising in practical computations,
especially for sets u of large cardinality.

This is our point of departure on the road to weighted spaces. We want to treat the
influence of each fu on the norm of f separately, and to model situations for which we
may know a priori that some terms fu in the ANOVA decomposition of f are small or
even negligible. In particular, we wish to be able to model cases for which we know
that f is a sum of functions of at most ! variables with ! much smaller than d , or that
the influence of the first variable is more important than the second variable which is,
in turn, more important than the third variable and so on.

This is achieved by introducing weights � D f�d;ug for u 	 f1; 2; : : : ; dg and
d D 1; 2; : : : . We always assume that �d;u � 0. We define the weighted space
L2;� .Œ0; 1�

d / as the space of square integrable functions with the finite inner product

hf; gid;� D
X

u�f1;2;:::;dg

1

�d;u

Z
Œ0;1�juj

fu.xu/gu.xu/ dxu;

and with the convention that 0=0 D 0. That is, �d;u D 0 implies that fu D gu D 0 and
the term for u disappears from the sum. For all positive �d;u, we haveL2;� .Œ0; 1�d / D
L2.Œ0; 1�

d / but the norms of f in these two spaces can be quite different since

1

maxu
p
�d;u

kf kd � kf kd;� � 1

minu
p
�d;u

kf kd for all f 2 L2;� .Œ0; 1�d /.

However, if there is a weight �d;u D 0 then the spaces L2;� .Œ0; 1�d / and L2.Œ0; 1�d /
are not equivalent, and L2;� .Œ0; 1�d / is a proper subset of L2.Œ0; 1�d /. In the extreme
case, when all �d;u D 0 we have L2;� .Œ0; 1�d / D f0g.
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Take the class Fd D Fd;� as the unit ball of the space L2;� .Œ0; 1�d /, i.e.,

Fd;� D ˚
f 2 L2;� .Œ0; 1�d / j kf kd;� � 1

�
:

Suppose for a moment that �d;u is small for some u. Then for f 2 Fd;� we know a
priori that kfuk2 � p

�d;u, and that the ANOVA term fu does not play much of a role.
Furthermore, if �d;u D 0 we know a priori that fu D 0.

By a proper choice of weights �d;u, we can model our a priori knowledge about f .
For instance, suppose we know that f is a sum of functions depending on at most !
variables. Then we choose finite-order weights � D f�d;ug which are defined by
assuming that

�d;u D 0 for all d and u for which juj > !.

If we know that the i th variable is more important than the .i C 1/st variable then we
choose product weights � D f�d;ug which are defined by assuming that

�d;u D
Y
j2u

�d;j

for some non-increasing �d;1 � �d;2 � � � � � �d;d � 0. Finally, if we choose �d;u D 1

for all u, then we are back to the unweighted case for which all ANOVA terms play
the same role and L2;� .Œ0; 1�d / D L2.Œ0; 1�

d / with kf kd;� D kf kd for all f .
We are ready to return to the diagonal multivariate problem, defined as approxi-

mation of Sdf for f from Fd;� . We want to determine conditions on an arbitrary set
of weights � that guarantee tractability. For simplicity, we restrict ourselves in this
section to polynomial tractability.

We stress that if we consider the diagonal operator Sd over the class Fd;� , the
norm kSdkFd;� !L2.Œ0;1�d /

, which is the initial error and the worst case error of the
zero algorithm, depends on � . Indeed, for the extreme case of all �d;u D 0 we
have kSdkFd;� !L2.Œ0;1�d /

D 0 since Fd;� D f0g. On the other hand, if we take

�d;u � ˛ > 0 then kf kd;� D ˛�1=2kf kd and kSdkFd;� !L2.Œ0;1�d /
D p

˛. To avoid
the scaling problem, we will use the normalized error and compute approximation of
Sdf to within "kSdkFd;� !L2.Œ0;1�d /

.
As in Section 3.1.4, we assume that arbitrary linear functionals can be used. As

before, an algorithm using n information operations has the form

An.f / D '.L1.f /; L2.f /; : : : ; Ln.f //

for some mapping ', where ' W Rn ! L2.Œ0; 1�
d /. The worst case error of An is now

given by
ewor.An/ D sup

f 2Fd;�

kSdf � An.f /kd ;

whereas the minimal3 number of information operations is given by

nwor."; Sd ; Fd;� / D minfn j ewor.An/ � "kSdkFd;� !L2.Œ0;1�d /
for some Ang:

3Here and elsewhere in the book, by the minimum over an empty set we mean 1.
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We want to find necessary and sufficient conditions on the diagonal operators Sd
in terms of the numbers �j and on the weights �d;u to obtain polynomial tractability.
More precisely, we say that the problem S D fSd g is polynomially tractable if there
exist three non-negative numbers C; p and q such that

nwor."; Sd ; Fd;� / � C"�pdq for all " 2 .0; 1/ and for all d D 1; 2; : : : . (3.11)

If q D 0 in the bound above, then we say that the problem is strongly polynomially
tractable.

As in Section 3.1.4, we need to know the ordered eigenvalues f�d;�;j gj2N of the
operator Wd D S�

d
Sd W Fd;� ! Fd;� since kSdkFd;� !L2.Œ0;1�d /

D p
�d;�;1 and

nwor."; Sd ; Fd;� / D min
n
n j

q
�d;�;nC1 � "

q
�d;�;1

o
:

Polynomial tractability depends on the summability of some powers of �d;�;j . More
precisely, for a positive � , define

Md;� .�/ D
� 1X
jD1

�
�d;�;j

�d;�;1

�� �1=�
;

with the convention that if the series above is not convergent then we formally set
Md;� .�/ D 1.

It is known that polynomial tractability holds iff there exist two numbers s and �
such that s � 0 and � > 0 and

M ´ sup
dD1;2;:::

d�sMd;� .�/ < 1;

see Theorem 5.2 of Chapter 5. If this holds then (3.11) holds with C D M � , p D 2� ,
and q D s� . Furthermore, strong polynomial tractability holds iff s D 0 in the formula
above.

We first compute the ANOVA terms of �d;j for a given j D Œj1; j2; : : : ; jd � 2 Nd .
Define the set u.j / as the set of all indices k for which jk � 2, i.e.,

u.j / D fk j jk � 2g:
In particular, for j D Œ1; 1; : : : ; 1� we have u.j / D ;, and for j D Œj1; j2; : : : ; jd �

with all jk � 2, we have u.j / D f1; 2; : : : ; dg.
We claim that �

�d;j
�

u
D ı.u;u.j //�d;j ;

i.e., all ANOVA terms of �d;j are 0 for u 6D u.j /, and the ANOVA term for u D u.j /
is just the function �d;j itself. Indeed, if we take u 	 u.j / and u 6D u.j /, then all
terms in the definition of .�d;j /u involve integration over a variable (say, k) for which
jk � 2 and therefore the corresponding integral is 0, and hence .�d;j /u D 0. For
u D u.j /, we integrate only over variables not present in u and the corresponding
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integral reproduces �d;j and therefore .�d;j /u.j / D �d;j . From (3.10) we conclude
that all ANOVA terms .�d;j /u are 0 for u 6D u.j /, as claimed.

For all j 2 Nd , define

�d;�;j D p
�d;u.j /�d;j :

Then for all i; j 2 Nd , we have

˝
�d;�;i ; �d;�;j

˛
d;�

D
X

u�f1;2;:::;dg

1

�d;u

Z
Œ0;1�juj

�
�d;�;i

�
u
.xu/

�
�d;�;j

�
u
.xu/ dxu D ıi;j :

Hence, f�d;�;j gj2Nd is an orthonormal basis of L2;� .Œ0; 1�d /, which obviously is or-
thogonal in L2.Œ0; 1�d /. We then have

p
�d;u.i/�d;u.j /�d;i�d;j ıi;j D ˝

Sd�d;�;i ; Sd�d;�;j
˛
d

D ˝
�d;�;i ; S

�
dSd�d;�;j

˛
d;�

D ˝
�d;�;i ; Wd�d;�;j

˛
d;�
:

Thus, Wd�d;�;j is orthogonal to all �d;�;i with i 6D j , and therefore

Wd�d;�;j D �d;u.j /�
2
d;j�d;�;j for all j 2 Nd .

This proves that the eigenvalues of Wd are

f�d;�;j gj2N D f�d;u.j /�2d;j gj2Nd :

Note that u.j / D ; only for j D Œ1; 1; : : : ; 1�, whereas if u is not empty then
u.j / D u for all j D Œj1; j2; : : : ; jd � for which jk � 2 only for all k 2 u. Recall that
�d;j D Qd

kD1 �jk
with the ordered �j . From this we conclude that

kSdkFd;� !L2.Œ0;1�d /
D max

u�f1;2;:::;dg
p
�d;u�

juj
2 :

This allows us to compute the sums of powers of the eigenvalues as

Md;� .�/ D
�
� �
d;; CP

;6Du�f1;2;:::;dg � �d;u
�P1

jD2 �2�j
�juj�1=�

maxu�f1;2;:::;dg �d;u�2juj
2

:

Hence, polynomial tractability holds iff

sup
dD1;2;:::

d�s

�
� �
d;; CP

;6Du�f1;2;:::;dg � �d;u
�P1

jD2 �2�j
�juj�1=�

maxu�f1;2;:::;dg �d;u�2juj
2

< 1

for some s � 0 and � > 0. Strong polynomial tractability holds iff we can take s D 0

in the formula above.
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We first provide some trivial conditions which imply strong polynomial tractabil-
ity. The first is when all �d;u D 0 and the second when �2 D 0. For the first case,
nwor."; Sd ; Fd;� / D 0 whereas for the second case nwor."; Sd ; Fd;� / � 1. From now
on assume then that not all �d;u are 0 and that �2 > 0. Then polynomial tractability
requires, in particular, that

P1
jD2 �2�j be finite. This means that �n D O.n�1=.2�//.

Hence, polynomial decay of f�j g1
jD1 is a necessary condition for polynomial tractabil-

ity.
Assume then also that f�j g decays polynomially. Consider now the case of finite-

order weights, i.e., �d;u D 0 if juj > !. Observe that the maximal number of non-zero
�d;u is now of order d! . In fact, it can be shown that it is no more than 2d! . Let

C� D �P1
jD2 �2�j

�1=�
< 1. Then

sup
d

d�sMd;� .�/ � 21=� sup
d

d�sC!=� maxuWjuj�!
�
�d;uC

juj
�

�
maxuWjuj�!

�
�d;u�

2juj
2

�
� max

d
d�sC!=� max

�
1; C!�

�
min

�
1; �2!2

� < 1

if we take s � !=� . Hence, finite-order weights imply polynomial tractability.
Now assume product weights, �d;u D Qd

j2u �d;j with �d;; D 1 � �d;1. Then

sup
d

d�sMd;� .�/ � sup
d

d�s
dY
jD1

�
1C C �� �

�
d;j

�1=�
:

It is easy to check that we get strong polynomial tractability iff

lim sup
d

dX
jD1

� �d;j < 1;

and polynomial tractability iff

lim sup
d

Pd
jD1 � �d;j
ln d

< 1:

Hence, polynomial or even strong polynomial tractability is indeed possible for
some weights such as finite-order or product weights. On the other hand, note that
for �d;u � 1, we have polynomial intractability since Md;� .�/ D .1 C C �� /

d is
exponentially large in d . Furthermore, if we take �2 D �1 D 1, then for the d -
dimensional case we have 2d eigenvalues of Wd equal to 1, and

nwor."; Sd ; Fd;� / � 2d for all " 2 .0; 1/,
which means that the problem is intractable.
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We hope we have convinced the reader that weighted spaces may be a natural
choice of spaces to obtain tractability. Finally we want to stress that the ANOVA
decomposition is just one possible source of weighted spaces. As we shall see, any
Hilbert space of functions can be used for an ANOVA-type decomposition of functions
and for introducing weighted spaces for which tractability holds under some conditions
on the weights.

3.2 Tractability in Other Settings

In the previous section, we illustrated tractability of selected multivariate problems
in the worst case setting. In this setting, the error of an algorithm is defined by its
worst performance or, speaking more mathematically, by taking the supremum over
all problem elements. In our case, problem elements are d -variate functions from
some class. We stress that the worst case setting, although quite conservative, has
a big advantage for problems for which we can establish positive results. Suppose
we have, say, polynomial tractability in the worst case setting with the absolute error
criterion. Then we can claim that the error is at most " for all problem elements using
polynomially many information operations. In other settings, an error of at most "
will not hold for all problem elements but will hold only on the average or with high
probability with respect to all problem elements. Only in the worst case setting can we
guarantee that the error is at most " for a specific problem element and for one run of
the algorithm. But there is a price for this desirable property. Namely, many results in
the worst case setting may be overly pessimistic. In particular, the reader may suspect
that at least some negative tractability results are due to the fact that the error defined
in the worst case setting is too pessimistic. Indeed, if we switch to more lenient ways
of defining the error of an algorithm, some negative results of the worst case setting
disappear. Again we stress that this may happen due to a weaker error assurance, which
unfortunately tells us nothing about the error for a particular problem element.

We indicated in the previous section that intractability (or the curse of dimension-
ality) of a multivariate problem in the worst case setting may sometimes be broken by
using weights to shrink the class of problem elements. This led us to study weighted
spaces, seeking necessary and sufficient conditions on the weights to obtain weak or
polynomial tractability still in the worst case setting. Another way of breaking worst
case intractability is to switch to a different setting for the same class of problem ele-
ments. As we shall see, for some multivariate problems this approach indeed works,
and a more lenient definition of an algorithm’s error allows us to attain weak or poly-
nomial tractability. However, some other multivariate problems are so difficult that
they remain intractable in all settings studied here. We will encounter such examples
in the course of the book but here we only mention that multivariate approximation
for the class of continuous d -variate functions is intractable in the worst case, average
case (with the isotropic Wiener measure), randomized, and probabilistic settings. So
switching to another setting is not always a remedy for intractability. In any case, it
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is of practical and mathematical interest to identify multivariate problems for which
intractability in the worst case setting can be broken by switching to another setting, as
well as multivariate problems which remain intractable in all settings. This will be a
major subject of this book. Here, we only illustrate what can happen in other settings
for some problems.

We will study three more settings in this book, and illustrate them in this section for
selected multivariate problems. We begin with the average case setting in which the
error of an algorithm is defined by its average performance, and the probabilistic setting
in which the error of an algorithm is defined by its worst performance over a set of
measure 1� ı, where ı is a (small) positive parameter from .0; 1/. In both the average
case and probabilistic settings, we need to assume that problem elements are distributed
according to some probability measure. In our case, we deal with problem elements
that are d -variate functions from a linear space, which is typically infinite dimensional.
Therefore we use measure theory over infinite dimensional spaces. We usually assume
a Gaussian measure; the reader who wants to know more about Gaussian measures
on infinite dimensional spaces is referred to the books of Kuo [118], and Vakhania,
Tarieladze and Chobanyan [251]. For the reader’s convenience we also survey the
properties of Gaussian measures needed for tractability studies in Appendix B.

Tractability in the average case setting is defined in the same way as in the worst
case setting. The only difference is what we mean by the error of an algorithm. In the
probabilistic setting, the situation is a little more complicated since we have one more
parameter ı, which is used in the definition of the error of an algorithm. It is desirable
to also vary ı and study tractability in terms of three parameters "; ı and d , the first
two parameters with respect to the error performance, and the third with respect to the
number of variables. As we shall see, sometimes the parameter ı plays a less important
role than the other parameters. Indeed, sometimes we may have positive results even
if we define tractability as polynomial dependence on "�1 and d and only logarithmic
dependence on ı�1. This will depend on the error criterion. Indeed, as long as we use
the absolute or normalized error criteria, the dependence on ı is usually expressed by
a small power of ln ı�1 or no dependence on ı at all. But as we shall also see, for
some other error criteria, such as the very important relative error criteria, the situation
changes, and the parameter ı will play more or less the same role as ". In this case,
positive tractability results will be possible only if we allow polynomial dependence
on ı�1. These points will be illustrated in Sections 3.2.5 and 3.2.6. The three settings
– worst case, average case and probabilistic – deal with deterministic algorithms. That
is, there is no random element in the choice of an algorithm and no random element in
the choice of output. Put differently, we will get always the same output for the same
problem element.

But randomized algorithms are widely used and have proved to be efficient for a
number of computational problems. The most famous example is probably the classical
Monte Carlo algorithm and its many modifications for multivariate integration. Monte
Carlo is widely used, especially in computational physics and chemistry. Hence we
will be also studying the randomized setting, in which we allow randomized algorithms
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whose error is defined by the average performance with respect to randomization and
the worst case performance with respect to problem elements. We also study tractability
in this setting, with the hope that randomization will allow us to find positive tractability
results that are impossible to obtain in the worst case setting. As we shall see, this is
indeed the case for some multivariate problems such as multivariate integration over
some classes of functions. However, it is also true that for some other multivariate
problems, such as multivariate approximation defined over Hilbert spaces, randomiza-
tion does not help and we have essentially the same results as in the worst case setting.
These points will be illustrated in Sections 3.2.7 and 3.2.8.

In general, we will see that error estimates and tractability results in the average
case setting are no worse than those in the randomized setting which, in turn, are no
worse than those in the worst case setting. This may be schematized as

AVERAGE � RANDOMIZED � WORST:

Sometimes we have equality or near-equality between all three of them, whereas in
other cases error estimates and tractability results are much better in one or two of the
settings.

We finally remark that tractability results in the average case setting obviously
depend on the choice of a measure. For some measures, we can trivialize the problem.
Indeed, take an extreme case of an atomic measure on one problem element. Then
although the original problem may have been defined over a large infinite dimensional
space, the atomic measure makes it trivial as the problem defined only on one problem
element. That is why we must be careful to choose a proper measure in the average
case setting, avoiding measures that trivialize otherwise interesting problems.

3.2.1 Average Case Setting

We present two multivariate problems in the average case setting. The first is Gaussian
integration with the isotropic Wiener measure and with algorithms using only function
values. The second is approximation with the folded Wiener sheet measure, with
algorithms using arbitrary linear functionals.

3.2.2 Example 7: Isotropic Wiener Measure

We take Fd as the Banach space of those continuous real functions defined over Rd

for which
kf k D sup

x2Rd

jf .x/j.1C kxk2/�ˇ < 1;

where k � k2 denotes the Euclidean norm of real vectors, i.e., for x D Œx1; x2; : : : ; xd �

we have kxk2 D
qPd

jD1 x2j . Here ˇ is any real number such that ˇ > 1
2

.
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The space Fd is equipped with the isotropic Wiener measure wd , which is a zero-
mean Gaussian measure whose covariance kernel is

Kd .x; y/ D 1
2
.kxk2 C kyk2 � kx � yk2/ :

Knowing the mean element and the covariance kernel of wd , we know how to
integrate linear and bilinear forms. Namely,Z

Fd

f .x/wd .df / D 0 for all x 2 Rd ;Z
Fd

f .x/f .y/wd .df / D Kd .x; y/ for all x; y 2 Rd :

The isotropic Wiener measure is also called Brownian motion in Lévy’s sense4. We
add that we will be also studying the Wiener sheet measure, which is a zero-mean
Gaussian measure with the covariance kernel zKd .x; y/ D Qd

jD1 zK1.xj ; yj /, where
zK1.x; y/ D min.jxj; jyj/ for xy > 0, and zK1.x; y/ D 0 otherwise. As we shall see,

the Wiener sheet measure is related to discrepancy. For d D 1, we have K1 D zK1,
and so the isotropic Wiener and Wiener sheet measures are the same. For d � 2, we
have Kd 6D zKd , and so the isotropic Wiener and Wiener sheet measures are different.
As we shall see, we obtain quite different tractability results for these two measures.

We consider Gaussian integration, which is defined as the approximation of

INTdf D
Z

Rd

f .x/%d .x/ dx for all f 2 Fd ,

with the standard Gaussian weight,

%d .x/ D 1

.2�/d=2
exp

��1
2
kxk22

�
for all x 2 Rd .

We approximate INTdf by algorithms using function values. As in the worst case
setting, let An.f / D 'n.f .x1/; f .x2/; : : : ; f .xn// be an algorithm using n adaptive
function values. In the average case setting, we assume for simplicity that An is
measurable5 and define the average case error of An by its average performance

eavg.An/ D
�Z

Fd

.INTdf � An.f //2wd .df /
�1=2

:

We would like to convince the reader that the analysis of the average case setting with
a Gaussian measure is not too difficult, perhaps being even easier than the analysis of

4Lévy [133], see also Ciesielski [30], proved thatwd .Fd / D 1 for ˇ > 1
2

. That is, the isotropic Wiener
measure is concentrated on continuous functions that can go to infinity no faster than .1C kxk2/

ˇ .
5It is also possible to define the average case error ofAn without assuming its measurability, which will

be discussed in Chapter 4. In any case, the measurability assumption is quite weak and there is not much
loss in studying only measurable algorithms.
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the worst case setting. As a partial proof of this claim, we now show that as long as An
is a linear algorithm, its average case error can be easily computed. Indeed, assume
that

An.f / D
nX

jD1
ajf .xj /;

for some aj 2 R and for some non-adaptively chosen xj 2 Rd . Then

eavg.An/
2 D

Z
Fd

.INTdf /
2wd .df / � 2

nX
jD1

aj

Z
Fd

f .xj /INTdf wd .df /

C
nX

i;jD1
aiaj

Z
Fd

f .xi /f .xj /wd .df /:

We note that the last integral within the double sum is simplyKd .xi ; xj /, whereas the
integral within the single sum isZ

Fd

f .xj /INTdf wd .df / D
Z

Rd

�Z
Fd

f .xj /f .x/wd .df /

�
%d .x/ dx

D
Z

Rd

Kd .xj ; x/%d .x/ dx:

Finally, the first integral can be computed by notingZ
Fd

.INTdf /
2wd .df / D

Z
Fd

Z
Rd

f .x/%d .x/ dx
Z

Rd

f .y/%d .y/ dy wd .df /

D
Z

R2d

�Z
Fd

f .x/f .y/wd .df /

�
%d .x/%d .y/ dx dy

D
Z

R2d

Kd .x; y/%d .x/%d .y/ dx dy:

Hence, without much work, we have the explicit formula

eavg.An/
2 D

Z
R2d

Kd .x; y/%d .x/%d .y/ dx dy � 2
nX

jD1
aj

Z
Rd

Kd .xj ; x/%d .x/ dx

C
nX

i;jD1
aiajKd .xi ; xj /

for the average case error of the linear algorithm An. This formula allows us to com-
pute the initial average case error. As always, the initial error depends only on the
formulation of the problem without sampling the function. Clearly, this is the average
case error for the zero algorithm (i.e., aj D 0 for all j ), which can be also called the
average case norm of INTd , so that

eavg.0/2 D
Z
Fd

.INTdf /
2wd .df / D

Z
R2d

Kd .x; y/%d .x/%d .y/ dx dy:



3.2 Tractability in Other Settings 53

We now elaborate on the initial average case error. Using the formula for the covariance
kernel Kd we obtain

eavg.0/2 D
Z

Rd

kxk2%d .x/ dx � 1

2

Z
R2d

kx � yk2%d .x/%d .y/ dx dy:

For the last integral we use coordinate rotations by changing variables to

v D
p
2

2
.x � y/;

w D
p
2

2
.x C y/:

Clearly, kvk22 C kwk22 D kxk22 C kyk22 and %d .v/%d .w/ D %d .x/%d .y/ and thereforeZ
R2d

kx � yk2%d .x/%d .y/ dx dy D p
2

Z
Rd

kvk2%d .v/ dv:

Hence,

eavg.0/2 D
�
1 �

p
2

2

�Z
Rd

kxk2%d .x/ dx:

Finally changing variables to t D kxk2, see the book of Gradshtein and Ryzhik [66,
3.461 and 4.642], we obtain

eavg.0/2 D
�
1 �

p
2

2

�
2�d=2

.2�/d=2	.d=2/

Z 1

0

tde�t2=2 dt;

which for even d is equal to

eavg.0/2 D p
2�

�
1 �

p
2

2

�
.d � 1/ŠŠ

2d=2.�1C d=2/Š

D p
2�

�
1 �

p
2

2

�
.d � 1/Š

2d�1Œ.�1C d=2/Š�2
;

and for odd d is equal to

eavg.0/2 D p
2

�
1 �

p
2

2

�
Œ.d � 1/=2�Š
	.d=2/

D 2d=2

�1=2

�
1 �

p
2

2

�
Œ.d � 1/=2�Š
.d � 2/ŠŠ ;

with .�1/ŠŠ D 1.6 For odd d with d � 3 we have

eavg.0/2 D 2d�3=2

�1=2

�
1 �

p
2

2

�
Œ.d � 1/=2�ŠŒ.d � 3/=2�Š

.d � 2/Š :

6Here nŠŠ denotes the product of all even (if n is even) or odd (if n is odd) integers from Œ1; n�. That is,
.2k/ŠŠ D 2 � 4 � � � .2k/ and .2k C 1/ŠŠ D 1 � 3 � � � .2k C 1/.
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Using Stirling’s formula, nŠ � nnC1=2e�np
2� , it is possible to check that for large d

we have

eavg.0/ D
s
1 �

p
2

2
d1=4 .1C o.1// as d ! 1.

It is also easy to see that eavg.0/ is an increasing function of d . This follows from the
fact that Z

RdC1

q
x21 C x22 C � � � C x2

dC1%dC1.x/ dx

�
Z

RdC1

q
x21 C x22 C � � � C x2

d
%dC1.x/ dx

D
Z

Rd

q
x21 C x22 C � � � C x2

d
%d .x/ dx;

i.e., the integral
R

Rd kxk2%d .x/ dx increases with d . Furthermore, since

Z
Rd

q
x21 C � � � C x2

d
%d .x/ dx �

�Z
Rd

�
x21 C � � � C x2d

�
%d .x/ dx

�1=2
D

p
d;

we conclude that

eavg.0/ �
s
1 �

p
2

2
d1=4 for all d 2 N.

The asymptotic formula for eavg.0/ tells us that the last estimate is sharp for large d .
We choose the normalized error criterion and define

navg-nor."; INTd / D min
˚
n j there exists An with eavg.An/ � "eavg.0/

�
as the minimal number of function values needed to solve the Gaussian integration
problem in the average case setting to within "eavg.0/.

As we have already said, tractability in the average case setting is defined similarly
to the worst case setting. In particular, polynomial tractability means that there exist
three non-negative numbers C; p and q such that

navg-nor."; INTd / � C"�pdq for all " 2 .0; 1/ and d D 1; 2; : : : .

If q D 0 then we have strong polynomial tractability.
Surprisingly, it is easy to establish strong polynomial tractability of Gaussian in-

tegration in the average case setting. The proof is short and based on the averaging
argument that is often used in tractability studies. The downside of this approach is
that the proof is not fully constructive and usually gives too large an exponent of "�1.
However, in our case, the exponent of "�1 is sharp.

To prove strong polynomial tractability, let An be a quasi-Monte Carlo algorithm
using sample points xj . Hence a1 D a2 D � � � D an D 1=n. To stress the role of xj ,
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let us denote An D An.x1; x2; : : : ; xn/. We know the formula for its average case
error, which obviously depends on the sample points xj . We now treat these points xj
as independent identically distributed points over Rd with the standard Gaussian dis-
tribution. We compute the average value of the squares of the average case error of
An.x1; x2; : : : ; xn/ with respect to such xj , defined as

�
eavg
n

	2 ´
Z

Rdn

Œeavg .An.x1; : : : ; xn//�
2 %d .x1/%d .x2/ : : : %d .xn/ dx1 : : : dxn:

So we need to integrate

eavg.0/2 � 2

n

nX
kD1

Z
Rd

Kd .xk; x/%d .x/ dx C 1

n2

nX
i;kD1

Kd .xi ; xk/:

The integration of
R

Rd Kd .xk; x/%d .x/ dx with respect to the points xj will give us
eavg.0/2, whereas the integration of Kd .xi ; xk/ depends on whether i and k are equal
or different. If they are equal, then we obtainZ

Rd

Kd .x; x/%d .x/ dx D
Z

Rd

kxk2%d .x/ dx D
�
2C p

2
�
eavg.0/2;

and if they are different we obtain eavg.0/2. This yields

�
eavg
n

	2 D
�
1 � 2C .2C p

2/n

n2
C n2 � n

n2

�
eavg.0/2 D 1C p

2

n
eavg.0/2:

Hence,

eavg
n D

p
1C p

2

n1=2
eavg.0/:

We now apply the mean value theorem. If the average of Œeavg.An.x1; x2; : : : ; xn//�
2

is
�
e

avg
n

	2
then there must exist points x�

1 ; x
�
2 ; : : : ; x

�
n for which

eavg.An.x
�
1 ; x

�
2 ; : : : ; x

�
n// � eavg

n D
p
1C p

2

n1=2
eavg.0/:

This means that we can reduce the initial average case error by a factor " by using a
quasi-Monte Carlo algorithm with n chosen such that .1 C p

2/=n � "2. Hence we
can choose

n D
&
1C p

2

"2

'
;

which does not depend on d and depends quadratically on "�1. This implies strong
polynomial tractability of Gaussian integration, as well as the estimate

navg-nor."; INTd / �
&
1C p

2

"2

'
; (3.12)
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see [94] where this result was originally shown.
The exponent of "�1 in the last estimate is 2. We can hope to improve it since the ex-

ponent2measures the behavior ofAn.x1; x2; : : : ; xn/ for average pointsx1; x2; : : : ; xn,
whereas the best exponent p cannot be worse than the behavior of An.x1; x2; : : : ; xn/
for points x1; x2; : : : ; xn minimizing its average case error. This is, however, not the
case as shown by Wasilkowski [263]7. Hence, the bound above is sharp with respect
to the exponent of "�1.

Although this is a good result, the choice of x�
j is not constructive. We can do a

little better in terms of constructivity by using Chebyshev’s inequality. More precisely,
let us take a number C > 1 and form the set

AC D ˚
Œx1; x2; : : : ; xn� 2 Rdn j eavg.An.x1; x2; : : : ; xn// � Ceavg

n

�
of points with the average case error bounded by Ceavg

n . Then Chebyshev’s inequality
states that

�dn.AC / � 1 � C�2;
where �dn is the standard Gaussian measure over Rdn. Hence if we take, say, C D 10

then we can select good points xj with probability at least 0:99. This leads us to a semi-
construction of sample points xj . We select the points randomly from Rdn, compute
the average case error of An.x1; x2; : : : ; xn/ and accept them if

eavg.An.x1; x2; : : : ; xn// � Ceavg
n :

If not, then we select the points xj again. As long as we select them independently and
identically distributed according to the standard Gaussian measure, see e.g., Box and
Muller [18] how it can be done, we succeed after a few trials, since the probability of
failure of all k trials is C�2k; for C D 10 this probability is 10�2k . In this way we can
construct points and solve the problem as long as

n D
&
C 2.1C p

2/

"2

'
:

We now comment on the absolute error criterion. Since

"eavg.0/ � "

s
1 �

p
2

2
d1=4

and this estimate is sharp for large d , we conclude that for the absolute error criterion
we have

navg-abs."; INTd / �
&p

2d

2"2

'
;

7Wasilkowski [263] studied multivariate integration over the unit ball with weight equal to 1 and proved
that the optimal exponent for the d -variate case is 2=.1C1=d/. Since our integration problem is not easier
we conclude that the optimal exponent must be at least 2=.1C1=d/. Since this holds for all d , we see that
the optimal exponent is indeed 2.
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and that the exponents of "�1 and d are sharp. Hence, we lost strong polynomial
tractability but we still have polynomial tractability with the (small) exponent 1

2
with

respect to d .
We end this example by a remark that will be fully explained and used in the course of

this book. There is a useful relationship between the average case and worst case errors
for approximating continuous linear functionals. We explain this relation for Gaussian
integration and for the isotropic Wiener measure. Namely, having the covariance kernel
Kd we can take the Hilbert space H.Kd / that has the same reproducing kernel Kd as
the Gaussian measure.

Reproducing kernel Hilbert spaces play a major role in tractability studies. In
Appendix A, the reader may find many useful properties of such spaces, which will be
used throughout this book. See also Appendix B as well as Aronszajn [2] and the book
of Berlinet and Thomas-Agnan [10]. Here, we only mention that the space H.Kd / is
the completion of the linear space of functions f D Pm

kD1 ˛kKd . � ; tk/ for any choice
of integer m, real coefficients ˛k and points tk 2 Rd . If g is of the same form as f
with coefficients ˇk then the inner product in H.Kd / of f and g is

hf; giH.Kd /
D

mX
k;jD1

˛k ǰKd .tk; tj /:

Clearly, H.Kd / is a subset of Fd . In fact, it is known that wd .H.Kd // D 0.
The space H.Kd / was characterized by Molchan [150] for odd d , and later by

Ciesielski [30] for arbitrary d . In particular, it was shown that the inner product of f
and g that have finite support, vanish at 0, and are infinitely differentiable is given by

hf; giH.Kd /
D ad

˝
.��/.dC1/=4f; .��/.dC1/=4g

˛
L2.Rd /

;

with known numbers ad . Here, � is the Laplace operator, and for d C 1 not divisible
by 4, the operator .��/.dC1/=4 is understood in the generalized sense, see the book of
Stein [224].

For the reproducing kernel Hilbert space H.Kd / we have Kd . � ; x/ 2 H.Kd / and

f .x/ D hf;Kd . � ; x/iH.Kd /
for all f 2 H.Kd / and all x 2 Rd .

This property allows us to compute the worst case error of any linear algorithm. Indeed,
consider Gaussian integration for functions from the unit ball of H.Kd / in the worst
case setting. Then

INTdf D
Z

Rd

hf;Kd . � ; x/iH.Kd /
%d .x/ dx D hf; hd iH.Kd /

;

where

hd .t/ D
Z

Rd

Kd .t; x/%d .x/ dx:
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Take a linear algorithm An.f / D Pn
jD1 ajf .xj /. Then

INTdf � An.f / D
D
f; hd �

nX
jD1

ajKd . � ; xj /
E
H.Kd /

;

and the worst case error of An is

ewor.An/D sup
f 2H.Kd /W kf kH.Kd /�1

jINTdf �An.f /j D



hd�

nX
jD1

ajKd . � ; xj /




H.Kd /

:

Due to the fact thatH.Kd / is a Hilbert space, we can compute the last norm to conclude
that

ewor.An/
2 D khdk2H.Kd /

� 2
nX

jD1
ajhd .xj /C

nX
i;jD1

aiajKd .xi ; xj /:

Observe finally that

khdk2H.Kd /
D
Z

R2d

Kd .x; y/%d .x/%d .y/ dx dy:

Hence, the worst case error of An for the unit ball of H.Kd / is exactly the same as
the average case error of An for the space Fd equipped with the zero-mean Gaussian
measure with the covariance function Kd .

This duality between the average case setting for a zero-mean Gaussian measure
with a covariance kernelKd and the worst case setting for the unit ball of a reproducing
kernel Hilbert space H.Kd / holds for all continuous linear functionals. Hence, it is
enough to analyze the problem in one setting and claim the results in the other. In
our case, we can claim the results for Gaussian integration in the worst case setting
for the unit ball of the reproducing kernel Hilbert space H.Kd /. Then we have strong
polynomial tractability with the normalized error criterion and the exponent of "�1 is 2,
and polynomial tractability with the absolute error criterion and the exponent of "�1
is 2, and the exponent of d is 1

2
. All these exponents are sharp.

3.2.3 Example 8: Folded Wiener Sheet Measure

Let r be a non-negative integer. In this section we consider the class

Fd;r D C
r;r;:::;r
0 .Œ0; 1�d /

of functions that satisfy the boundary conditions and that are r times continuously
differentiable with respect to all variables. Namely, we assume that all partial deriva-
tives up to order r are 0 if one component of x is 0, i.e., .Dj1;j2;:::;jdf /.x/ D 0 for
all ji D 0; 1; : : : ; r whenever xk D 0 for some k. For example, Fd;0 is the class of
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continuous functions f such that f .x/ D 0 if some component of x is 0. The space
Fd;r is equipped with the sup norm, i.e.,

kf kFd;r
D sup
x2Œ0;1�d

j.Dr;r;:::;rf /.x/j:

Fd;r is a separable Banach space. We equip the space Fd;r with the r-folded Wiener
sheet measure, which is the classical Wiener sheet measure placed on partial derivatives
of order r , i.e., for any Borel set B of Fd;r we have

d .B/ D wd .D
r;r;:::;r.B//;

where wd is the Wiener sheet measure defined on Borel sets of the space C.Œ0; 1�d /
of continuous functions. Recall that wd is a zero-mean Gaussian measure whose
covariance function is

Kd .x; y/ D
dY
jD1

min.xj ; yj /:

The covariance kernel of the measure d is

Kd;r.x; y/ D
dY
jD1

Z 1

0

.xj � u/rC
rŠ

.yj � u/rC
rŠ

du:

Note that for r D 0, we have d D wd ; functions from Fd;0 are distributed according
to the Wiener sheet measure. For r > 0, the r th partial derivatives of functions from
Fd;r are distributed according to the Wiener sheet measure.

We consider multivariate approximation, APPd W Fd;r ! L2 WD L2.Œ0; 1�
d /, de-

fined as
APPdf D f for all f 2 Fd;r ,

and we consider algorithms using arbitrary linear functionals. This problem has been
studied by Papageorgiou and Wasilkowski [188], and we now report their results. Let
�d D wdAPP�1

d be the a priori measure on the target space APPd .Fd;r/. Then �d is a
zero-mean Gaussian measure whose covariance operator C	d

W L2 ! L2, defined as

˝
C	d

g1; g2
˛
L2

D
Z
L2

hf; g1iL2
hf; g2iL2

�d .df / for all g1; g2 2 L2,

is given by
C	d

D T0;rT1;r ;

where T0;r ; T1;r W L2 ! L2 are

.T0;rf /.x/ D
Z
Œ0;1�d

dY
jD1

.xj � tj /r�1C
.r � 1/Š f .t/ dt;

.T1;rf /.x/ D
Z
Œ0;1�d

dY
jD1

.tj � xj /r�1C
.r � 1/Š f .t/ dt:
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The operator C	d
is self-adjoint, positive definite, and has a finite trace. Let us denote

the eigenpairs ofC	d
by .�d;j ; �d;j /withC	d

�d;j D �d;j�d;j , where the eigenvalues
�d;j are ordered, �d;1 � �d;2 � � � � , and the eigenfunctions �d;j are orthonormal,˝
�d;i ; �d;j

˛
L2

D ı.i; j /. Then

trace.C	d
/ D

1X
jD1

�d;j < 1:

The eigenpairs of C	d
are the non-zero solutions of the differential equation

�D2rC2;2rC2;:::;2rC2z � .�1/d.rC1/z D 0;

with the boundary conditions

@iz.x1; x2; : : : ; xd /

@xij

ˇ̌̌
ˇ
xj D0

D 0; i D 0; 1; : : : ; r;

@iz.x1; x2; : : : ; xd /

@xij

ˇ̌̌
ˇ
xj D1

D 0; i D r C 1; r C 2; : : : ; 2r C 1

for j D 1; 2; : : : ; d . For the univariate case, d D 1, let us denote �1;j D �j and
�1;j D �j . It is known, see the book of Tikhomirov [237], that

�j D
�
1

�j

�2.rC1/
.1C o.1// as j ! 1.

For d � 2, it is easy to see that the eigenpairs are products of the eigenpairs of the
univariate case, i.e.,˚
�d;j

�1
jD1 D ˚

�j1
�j2

� � ��jd

�
ji D1;2;::: and

˚
�d;j

�1
jD1 D ˚

�j1
�j2

� � � �jd

�
ji D1;2;::: :

Hence,

trace.C	d
/ D

� 1X
jD1

�j

�d
< 1:

On the other hand,

1X
jD1

�j D
Z
F1;r

kf k2L2
1.df / D

Z 1

0

�Z
F1;r

f 2.x/1.df /

�
dx

D
Z 1

0

K1;r.x; x/ dx D
Z 1

0

Z 1

0

.x � u/2rC
.rŠ/2

du dx

D
Z 1

0

x2rC1

.rŠ/2.2r C 1/
dx D 1

.rŠ/2.2r C 1/.2r C 2/
:
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This yields

trace.C	d
/ D 1

Œ.rŠ/2.2r C 1/.2r C 2/�
d
:

The asymptotic behavior for �d;j follows from Micchelli and Wahba [147], and we
have

�d;j D 1

Œ.d � 1/Š�2.rC1/�2d.rC1/

�
.ln j /d�1

j

�2rC2
.1C o.1// as j ! 1.

These facts are needed to analyze multivariate approximation for the folded Wiener
sheet measure. We consider algorithms of the form

An.f / D 'n.L1.f /; L2.f /; : : : ; Ln.f /.f //

for some adaptively chosen continuous linear functionals Lj and n.f /. Here we
assume that the average value of n.f / is n, i.e.,

n D
Z
Fd

n.f /wd .df /:

For simplicity, as in the previous section, we assume that An is measurable and that n
is a non-negative integer. The average case error of An is now given as

eavg.An/ D
�Z

Fd

kf � An.f /k2L2
wd .df /

�1=2
:

For n D 0, we take the zero algorithm A0 D 0 and obtain the initial average case error

eavg.0/2 D
Z
Fd

kf k2L2
d .df / D

Z
L2

kf k2L2
�d .df /

D trace.C	d
/ D 1

Œ.rŠ/2.2r C 1/.2r C 2/�
d
:

We analyze the normalized error. Let navg-nor."; d/ D navg-nor.";APPd ; Fd;r/ denote
the minimal number of information operations needed to reduce the initial error by a
factor ", i.e.,

navg-nor."; d/ D minfn j there exists An with eavg.An/ � "eavg.0/g.

From general results on the average case setting, see Wasilkowski [260] and Chapter 4,
we know that

navg-nor."; d/ D min
˚
n j P1

jDnC1 �d;j � "2
P1
jD1 �d;j

�
:

From the behavior of the eigenvalues �d;j we have

navg-nor."; d/ D ‚

 �
1

"

�1=.rC1=2/ �
ln
1

"

�.d�1/.rC1/=.rC1=2/!
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for fixed r and d . Hence, modulo a logarithmic factor, we have a polynomial de-
pendence on "�1. Furthermore, the exponent of "�1 is at most 2 and goes to 0 with
increasing r .

From the asymptotic formula for the eigenvalues �d;j we conclude that the asymp-
totic formula for the minimal number navg-nor."; d/ is given by

navg-nor."; d/ D Cd;r

�
1

"

�1=.rC1=2/ �
ln
1

"

�.d�1/.rC1/=.rC1=2/
.1C o.1//

as " ! 0, where the asymptotic constant is equal to

Cd;r D
�

1

2.2r C 1/

�.d�1/pr
�
.rŠ/2.2r C 1/.2r C 2/

	d=.2rC1/

Œ.d � 1/Š�pr �dpr .2r C 1/1=.2rC1/

with pr D .r C 1/=.r C 1
2
/. We stress that Cd;r goes exponentially fast to 0 with

increasing d due to the presence of .d � 1/Š in the denominator.
So far, all looks promising. The minimal number navg-nor."; d/ behaves nicely as "

goes to 0, the asymptotic constant is exponentially small in d , so it is natural to expect
that we have polynomial tractability. But we don’t. In fact, it is easy to show the
opposite, namely that we have intractability, since navg-nor."; d/ depends exponentially
on d for a fixed ". Indeed, suppose that we perform n information operations. The
best we can do is to use the algorithm

An.f / D
nX

jD1

˝
f; �d;j

˛
L2
�d;j ;

for which the square of the average case error is

eavg.An/
2 D

1X
jDnC1

�d;j �
1X
jD1

�d;j � n�d;1

D
� 1X
jD1

�j

�d � n�d1 ;

Hence, eavg.An/ � "eavg.0/ implies that

navg-nor."; d/ D n �
�
1C

1X
jD2

�j

�1

�d �
1 � "2� :

Since �2 is positive, 1CP1
jD2 �j =�1 > 1, and therefore n is exponential in d for all

" 2 .0; 1/. This indeed means intractability. As we shall see in this book, this is an
instance of a general result that intractability holds for linear tensor product problems
in the average case setting.

Hence, as in many previous examples, good asymptotic behavior of navg-nor."; d/

does not prevent exponential behavior in d . To get tractability, we must again introduce
weights and reduce the role of at least some groups of variables.
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3.2.4 Probabilistic Setting

In the probabilistic setting, the error of an algorithm is defined as in the worst case
setting, but disregarding a set of preassigned measure ı 2 Œ0; 1/. In this introductory
chapter, we only wish to show the role of the parameter ı for different error criteria
and how ı affects tractability results. To simplify technical considerations, we limit
ourselves to Gaussian integration, discussed in Section 3.2.2. We first consider the
absolute and normalized error criteria. Then we turn, for the first time in this book, to
the relative error criterion, and explain why we have waited to analyze this important
error criterion until the probabilistic setting.

3.2.5 Example 9: Absolute and Normalized Errors

Recall the definition of Gaussian integration INTd for the class Fd and the isotropic
Wiener measure wd from Section 3.2.2. For ı 2 Œ0; 1/, the probabilistic error of an
algorithm An using n function values is defined as

eprob.AnI ı/ D inf
BWwd .B/�ı

sup
f 2Fd �B

jINTdf � An.f /j:

For the absolute error criterion, we want to find the minimal n for which we solve the
problem to within ". That is, this minimal number is now equal to

nprob-abs."; ı; INTd / D minfn j there exists An with eprob.AnI ı/ � "g.

Note that in the probabilistic setting, the minimal number of function values also
depends on ı and, as we shall see in a moment, goes to infinity as ı goes to 0.

The probabilistic setting is closely related to the average case setting, see Wasil-
kowski [261] and Chapter 8 in [242], as well as Chapter 4, where the relation between
the two settings will be explained. In particular, this relation is especially pleasing for
problems specified by continuous linear functionals, such as our introductory example
of Gaussian integration. (In fact, that was the reason for choosing such an example.)
Namely, let

navg-abs."; INTd / D minfn j there exists An with eavg.An/ � "g
be the corresponding minimal number of function values needed to solve the same
problem to within "with the absolute error criterion in the average case setting. Finally,
let

 .z/ D
r
2

�

Z z

0

exp
��t2=2� dt for z 2 Œ0;1/

be the probability integral. Then it is shown in Chapter 8 of [242] that

nprob-abs."; ı; INTd / D navg-abs."= �1.1 � ı/; INTd /:
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Thus, the minimal number of function values in the probabilistic setting is the same as
the minimal number of function values in the average case setting if we replace " by
"= �1.1 � ı/. Note that  .z/ D 1 �p

2=�z�1 exp.�z2=2/.1C o.1// as z goes to
infinity. This implies that

 �1.1 � ı/ D
p
2 ln ı�1 .1C o.1// as ı ! 0.

Hence, for small ı, we have

"= �1.1 � ı/ � "=
p
2 ln ı�1:

The average case setting for the normalized error criterion was studied in Sec-
tion 3.2.2. This obviously corresponds to the absolute error criterion with " replaced
by "eavg.0/. Using the estimate (3.12) we therefore conclude that

navg-abs."= �1.1 � ı/; INTd / �
&
.1C p

2/
�
 �1.1 � ı/	2
"2

Œeavg.0/�2

'
:

We know that eavg.0/ is of order d1=4. Therefore

nprob-abs."; ı; INTd / D O

�
d1=2 ln ı�1

"2

�

with the factor in the big O notation independent of "; ı and d . Observe that all expo-
nents of "�1, ln ı�1 and d are sharp. We also stress the weak logarithmic dependence
on ı.

We are ready to address tractability of Gaussian integration in the probabilistic
setting. Suppose we adopt the following definition of tractability, which is quite con-
servative as far as the dependence on ı�1 is concerned. Namely, we say that the
problem is tractable in the probabilistic setting iff there exist non-negative numbers
C; p; q and s such that

nprob-abs."; ı; INTd / � C"�pdq
�
ln ı�1�s for all "; ı 2 .0; 1/ and all d 2 N,

(3.13)
and strongly tractable with respect to d if q D 0, and strongly tractable with respect
to ı if s D 0.

Then Gaussian integration is tractable in the probabilistic setting for the absolute
error with p D 2, q D 1

2
and s D 1, and all exponents are sharp.

This illustrates how positive tractability results from the average case setting can
be easily transferred to positive tractability results in the probabilistic setting for con-
tinuous linear functionals.

We now turn to the normalized error criterion. We need to consider the initial error
in the probabilistic setting, i.e., the error of the zero algorithm. It is known, again see
Chapter 8 of [242], that

eprob.0I ı/ D  �1.1 � ı/eavg.0/ �
p
2 ln ı�1eavg.0/:
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Note that the initial error now depends on ı, and it goes (slowly) to infinity as ı
approaches 0. Let

nprob-nor."; ı; INTd / D minfn j there exists An with eprob.AnI ı/ � "eprob.0I ı/g
be the minimal number of function values needed to reduce the initial error by a factor ".
Observe that for decreasing ı, the probabilistic error ofAn increases but the error bound
"eprob.0I ı/ also increases. So there is a trade-off, and it is not yet clear which of these
two behaviors is more important. In fact, they cancel and there is no dependence on ı.
Indeed,

nprob-nor."; ı; INTd / D nprob-abs."eprob.0I ı/; ı; INTd /;

and the formula for the initial error and the estimate for the absolute error yields

nprob-nor."; ı; INTd / D navg-nor."; INTd / �
&p

2d

2"2

'
:

Hence, ı does not play any role for the normalized error in the probabilistic setting for
continuous linear functionals. We now have strong tractability with respect to ı.

3.2.6 Example 10: Relative Error

For the first time in our book we now consider the relative error criterion. That is, for
Gaussian integration and an algorithm An that uses n function values, we define the
relative errors jINTdf � An.f /j

jINTdf j for all f 2 Fd
with the convention that 0=0 D 0.

We first consider the worst case error,

ewor�rel.An/ D sup
f 2Fd

jINTdf � An.f /j
jINTdf j :

Obviously, the initial error, which is the worst case error for An D 0, is now 1.
Unfortunately, there is no way to reduce the initial error, no matter how large n is and
how sophisticated An is chosen, see [242, p. 105]. Indeed, take a function f with n
zero values at the points used by An. What can we say about f ? Since f D 0 is
one such function, we must take An.f / D '.0/ D 0, since otherwise the worst case
error will be infinite. But f can be also a non-zero function with a non-zero integral
INTdf . In this case, since our algorithm cannot distinguish this function from the zero
function, the relative error is 1. Hence, there is no way to solve the problem with the
relative error criterion in the worst case setting. We showed this negative property for
Gaussian integration but it is clear that this property holds for all problems that cannot
be recovered exactly by the use of finitely many function values.
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Let us then switch to the average case setting, and define the average case error as

eavg�rel.An/ D
Z
Fd

jINTdf � An.f /j
jINTdf j wd .df /:

Again, the initial error is 1, and again we cannot reduce it no matter how n and An
are chosen, see [242, p. 268]. However, the proof is not as obvious as in the worst
case setting. Moreover, unlike the worst case setting, the result is not true for general
problems; our problem must be a continuous linear functional. We now sketch the proof
for An.f / D '.N.f // with N.f / D Œf .x1/; f .x2/; : : : ; f .xn/� for some adaptive
points xj ’s. Knowing y D N.f / we decompose the Gaussian measure wd such that

wd .B/ D
Z
N.Fd /

d;2.Bjy/d;1.dy/ for any Borel set B of Fd

withd;1 D wdN
�1 andd;2. � j y/being the conditional measure that is concentrated

on functions sharing the information y, i.e., d;2.N�1.y/ j y/ D 1 for almost all y.
It is known that both d;1 and d;2. � j y/ are Gaussian measures. Then we define
�d . � j y/ D d;2.INT�1

d � j y/, which is a univariate Gaussian measure with a non-
zero variance. This decomposition allows us to present the average case error of An
as

eavg�rel.An/ D
Z
N.Fd /

�Z
R

jx � '.y/j
jxj �d .dxjy/

�
d;1.dy/:

Now consider the inner integral. This integral is 1, if '.y/ D 0, and it is infinite if
'.y/ 6D 0. Hence, the average case error of An is at least one, as claimed.

Thus, there is no way to solve the problem with the relative error in the average case
setting. This holds for Gaussian integration, as well for all continuous linear functionals
that cannot be recovered exactly by the use of finitely many function values.

This explains why we did not consider the relative error in the worst and average
case settings so far. We now switch to the probabilistic setting and show that Gaussian
integration can be solved in this setting. The probabilistic error is now given by

eprob-rel.AnI ı/ D inf
BWwd .B/�ı

sup
f 2Fd �B

jINTdf � An.f /j
jINTd j :

Positive results in the probabilistic setting are possible because we can disregard func-
tions with small jINTd j, which caused the trouble in the worst and average case settings.

The initial error is still 1. Let

nprob-rel."; ı; INTd / D minfn j there exists An with eprob-rel.AnI ı/ � "g
be the minimal number of function values needed to solve the problem to within " in
the probabilistic setting with the relative error criterion. It was shown in [102], see also
Section 6.1 of Chapter 6 in [242] as well as Volume II, that

nprob-rel."; ı; INTd / � navg-nor

 
" tan.ı�=2/p

1C "2 tan2.ı�=2/

!
;
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and the last inequality is sharp for small ".
Using the estimate (3.12) we obtain

nprob-rel."; ı; INTd / �
&
.
p
2d/.1C "2 tan2.ı�=2//

2"2 tan2.ı�=2/

'
D O

�
d1=2

"2ı2

�
;

with the factor in the big O notation independent of ", ı and d . Furthermore, the
exponents of "�1, ı�1 and d are sharp.

So now " and ı play the same role and the minimal number of function values
depends polynomially on both of them. Does it mean that we have tractability? No, it
does not if we want to work with (3.13) which requires a poly-log dependence on ı�1.
However, if we relax this definition and switch to polynomial tractability with respect
to all parameters then Gaussian integration will be tractable. More precisely, let us say
that the problem is polynomially tractable in the probabilistic setting if

nprob-rel."; ı; INTd / � C"�pdqı�s for all "; ı 2 .0; 1/ and all d 2 N. (3.14)

Then Gaussian integration is indeed polynomially tractable withp D s D 2 and q D 1
2

.

3.2.7 Randomized Setting

In the worst case, average case and probabilistic settings, we consider deterministic al-
gorithms. We now turn to the randomized setting, in which randomized algorithms are
considered. Randomized algorithms have proved to be very efficient for many discrete
and continuous problems. Probably one of the first randomized algorithm for a compu-
tational mathematical problem was the classical Monte Carlo algorithm of Metropolis
and Ulam [145] for multivariate integration invented in the 1940’s. Today the Monte
Carlo algorithm and its many modifications are widely used in computational practice,
especially in physics and chemistry. This algorithm is so popular that sometimes all
randomized algorithms are also called Monte Carlo, since today the phrase “Monte
Carlo” is a synonym for using randomization. We prefer that “Monte Carlo” only
refers to the classical Monte Carlo algorithm for multivariate integration, referring to
“randomized algorithms” for all other cases.

Obviously, tractability can also be studied in the randomized setting. We feel
obliged first to address the question whether the Monte Carlo algorithm for multivariate
integration has a tractability error bound. The reader probably knows that the rate of
convergence of Monte Carlo does not depend on the number d of variables, but as we
know, this is not enough for tractability. The randomized error of Monte Carlo depends
also on the variance of a function; here we may have a good or bad dependence on d ,
which in turn depends on the class of functions. This point will be further explained
in Section 3.2.8. In Section 3.2.9 we then present a multivariate problem for which
randomization does not help and for which we have roughly the same results as in the
worst case setting. This shows that the power of randomization very much depends on
the problem we want to solve.
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3.2.8 Example 11: Monte Carlo Algorithm

We introduce the randomized setting by studying multivariate integration

INTdf D
Z
Œ0;1�d

f .x/ dx for f 2 Fd .

We assume that the class Fd consists of square integrable real functions, Fd 	
L2.Œ0; 1�

d /.
We use randomized algorithms based on function values at randomly selected sam-

ple points. The general form of algorithms An is now

An.f; !/ D '!
�
f .t1;!/; f .t2;!/; : : : ; f .tn.!/;!/

�
:

Here,! 2 
 is a random element distributed according to some probability measure.
The sample points tj;! , their number n.!/, and the mapping '! may depend on the
random element!; moreover adaptive choice of tj;! and n.!/ is allowed. In particular,
this means that n.!/ D n.f; !/ depends on f through its computed function values.
Finally,

n D sup
f 2Fd

Z
�

n.f; !/.d!/

denotes the average value of function values used by the algorithm An for a worst f .
For example, the classical Monte Carlo algorithm

MCn.f; !/ D 1

n

nX
jD1

f .!j /

is of this form, with ! D Œ!1; !2; : : : ; !n� for independent and uniformly distributed
!j over Œ0; 1�d . That is, the measure D �dn is the Lebesgue measure on Œ0; 1�dn, the
sample points tj;! D !j , the cardinality n.!/ is always equal to n, and the mapping
'! is deterministic in this case, being given by '!.y1; y2; : : : ; yn/ D n�1Pn

jD1 yj .
For a randomized algorithm An we first select a random element !, and we then

proceed as before with this particular !. That is, we compute function values at
adaptively chosen points, adaptively decide how many function values we need and
finally combine the computed function values to obtain the final approximation.

The randomized error of the algorithm An is defined as the average error with
respect to randomization for a worst function from the class Fd , i.e.,

eran.An/ D sup
f 2Fd

�Z
�

jINTdf � An.f; !/j2.d!/
�1=2

:

The initial error in the randomized setting is the error of the zero algorithm, see
Chapter 4 for a more general discussion. Hence we have

eran.0/ D ewor.0/ D kINTdkFd !R:
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Having defined the randomized error, we can address tractability of multivariate
integration in the randomized setting with the absolute and normalized error criteria.
Namely, let

nran."; INTd / D minfn j there exists An with eran.An/ � "CRId g,

with CRId indicated which error criterion is used. We have CRId D 1 for the ab-
solute error criterion, and CRId D eran.0/ for the normalized error criterion. Hence,
nran."; INTd / is the minimal number of function values needed to solve the problem to
within " in the randomized setting with a given error criterion.

Then tractability is defined as in other settings. In particular, weak tractability of
multivariate integration in the randomized setting means that

lim
"�1Cd!1

ln nran."; INTd /

"�1 C d
D 0;

whereas polynomial tractability of multivariate integration in the randomized setting
means that there exist three non-negative numbers C , p and q such that

nran."; INTd / � C"�pdq for all " 2 .0; 1/ and d 2 N.

Strong polynomial tractability means that q D 0 in the estimate above.

Observe that the randomized setting is not harder than the worst case setting. Indeed,
all algorithms that we want to use in the worst case setting may be also used in the
randomized setting by taking all sample points tj;! and the mapping '! independently
of !. This means that

nran."; INTd / � nwor."; INTd /:

Obviously, we hope thatnran."; INTd / is much smaller thannwor."; INTd /; in particular,
we hope that intractability in the worst case setting can be broken by switching to the
randomized setting.

It is instructive and easy to illustrate the randomized error by considering the Monte
Carlo algorithm and to rediscover the famous and very useful formula for its randomized
error. We first need to compute

eran.f /2 D
Z
Œ0;1�dn

�
INTdf � 1

n

nX
jD1

f .!j /
�2
�dn.d!/:

By squaring the expression for the integrand, and remembering that !1; !2; : : : ; !n
are independent and uniformly distributed, as well as by performing integration over
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dummy variables, we obtain

eran.f /2 D INT2df � 2

n

nX
jD1

Z
Œ0;1�d

INTdff .!j / d!j

C 1

n2

nX
i;jD1;i 6Dj

Z
Œ0;1�2d

f .!i /f .!j / d!i d!j

C 1

n2

nX
jD1

Z
Œ0;1�d

f 2.!j / d!j :

This obviously simplifies to

eran.f /2 D
�
1 � 2C n2 � n

n2

�
INT2df C n

n2
INTdf

2:

In this way we rediscover the well-known formula

eran.f / D 1p
n

�
INTdf

2 � INT2d .f /
	1=2

:

The rate of convergence of the Monte Carlo algorithm, although not great, does not
depend on d and its randomized error is proportional to n�1=2. Does this imply
tractability? It does not. The reason is that n�1=2 is multiplied by the square root of
the variance �2.f / of the function f ,

�2.f / D INTdf
2 � INT2df;

which may depend on d in an arbitrary way. In any case, the randomized error of the
Monte Carlo algorithm is equal to

eran.MCn/ D 1p
n

sup
f 2Fd

�.f /:

Hence, if the variances of functions from Fd divided by CRI2d are polynomially de-
pendent on d then the Monte Carlo algorithm has a tractability error bound. That is, if
there are two numbers C and q such that

sup
f 2Fd

�.f / � .Cdq/
1=2 CRId (3.15)

then setting

n D

Cdq

"2

�
;

we obtain eran.MCn/ � "CRId . This implies

nran."; INTd / �

Cdq

"2

�
;
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and so multivariate integration is polynomially tractable in the randomized setting.
Furthermore, if q D 0 we obtain strong polynomial tractability.

For simplicity, consider now the absolute error criterion, CRId D 1. Then (3.15)
holds if Fd is a subset of the ball in L2.Œ0; 1�d / of radius Cdq . This simply follows
from the fact that

�.f / � kf kL2.Œ0;1�d /
:

We now consider several spaces that we studied in the worst case setting previously
in this chapter. In Section 3.1.1, we studied Lipschitz functions F lip

d
for which mul-

tivariate integration is intractable in the worst case setting. The problem is strongly
polynomially tractable in the randomized setting, sinceFd D F

lip
d

is a subset of the unit
ball ofL2.Œ0; 1�d /. One can ask if the exponent 2 of "�1 in the estimate onnran."; INTd /
can be improved. This problem was studied by Bakhvalov [7] who proved that the min-
imal randomized error of algorithms using n function values in the randomized setting
is ‚.n�.1=2C1=d// which means that

nran."; INTd / D ‚

 �
1

"

�2=.1C2=d/!

but the factors in the ‚-notation may depend on d . Hence for d D 1, the optimal
exponent of nran."; INT1/ is 2=3 instead of the Monte Carlo exponent of 2. However,
if we want the estimate of nran."; INTd / to hold for all d , then the exponent 2 is the
best possible. Similar results hold for smoother functions. For instance, if we take
Fd D C r.Œ0; 1�d / then we are still in the unit ball of L2.Œ0; 1�d / and we find that
multivariate integration is strongly polynomially tractable in the randomized setting,
although polynomial tractability does not hold in the worst case setting. The minimal
randomized error is of order n�.r=dC1=2/, see again Bakhvalov [7] or Heinrich [80] or
[160], [242], which implies that

nran."; INTd / D ‚

 �
1

"

�2=.1C2r=d/!
:

Again for large d , the exponent of "�1 is close to 2, which means that the Monte Carlo
algorithm not only gives strong polynomial tractability but also minimizes the exponent
of "�1.

If (3.15) does not hold, then all bets are off for the Monte Carlo algorithm. We
illustrate this by an (admittedly artificial) example, for which the randomized error of
Monte Carlo is infinite, even though the problem itself is trivial. Indeed, let

Fd D ff W Œ0; 1�d ! R j f .x/ D cx1 for some c 2 Rg.

Clearly, for f .x/ D cx1, we have �2.f / D c2=12 and since c can be arbitrarily large,
(3.15) does not hold and the randomized error of the Monte Carlo algorithm is indeed
infinite. On the other hand,Z

Œ0;1�d
f .x/ dx D f

�
1
2
; 0; 0; : : : ; 0

�
for all f 2 Fd .
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This means that the integration problem can be exactly solved even in the worst case
setting using just one function value.

What is the lesson from this artificial example? We learn that the a priori information
given by the fact that f 2 Fd may be very powerful. The Monte Carlo algorithm may
be very bad for some classes Fd because it is not using the information that integrands
enjoy properties hidden in the definition of Fd .

We now turn to the normalized error. As in [219], we take Fd as the unit ball of the
weighted Sobolev H.Kd / space, which is the reproducing kernel Hilbert space with
the kernel

Kd .x; y/ D
dY
jD1

�
1C �j min.xj ; yj /

�
for some sequence of weights �j with �1 � �2 � � � � � 0, see also Appendix A 2.2.

It is known and easy to verify that the initial error is given by

eran.0/ D
�Z

Œ0;1�2d

Kd .x; y/ dx dy

�1=2
D

dY
jD1

�
1C 1

3
�j
�1=2

:

Observe that for the unweighted case �j D 1, we have eran.0/ D .4=3/d=2, which is
exponentially large in d . Furthermore, it is easy to check that eran.0/ are uniformly
bounded in d iff

P1
jD1 �j < 1.

The assumption (3.15) does not hold for the unit ball ofH.Kd / for general weights.
One can ask what are necessary and sufficient conditions on the weights f�j g to guar-
antee strong polynomial tractability or polynomial tractability error bounds for the
Monte Carlo algorithm using the normalized error criterion. This problem was solved
in [219]. Namely,

1X
jD1

�2j < 1

is a necessary and sufficient condition for strong polynomial tractability of the Monte
Carlo algorithm, and

lim sup
d!1

Pd
jD1 �2j
ln d

< 1
is a necessary and sufficient condition for polynomial tractability of the Monte Carlo
algorithm.

For example, this means that for the unweighted case �j D 1, the Monte Carlo
algorithm requires exponentially many randomized function values in d to reduce the
initial error by a factor of ", whereas for decaying weights such that

P1
jD1 �2j < 1,

this number is independent of d and is of order "�2.
Hence,

P1
jD1 �2j < 1 implies that multivariate integration is strongly polynomi-

ally tractable for the unit ball of H.Kd / in the randomized setting for the normalized
error criterion. It should be added that for the same problem in the worst case setting,
we obtain strong polynomial tractability iff

P1
jD1 �j < 1, see [178]. Hence, the

randomized setting relaxes the conditions on the weights, see also Open Problem 13.
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3.2.9 Example 12: Class ƒall

In the previous subsection we indicated that randomization can be very powerful for
multivariate integration. In particular, we showed that randomization can break in-
tractability of multivariate integration in the worst case setting for the class ƒstd of
function values.

In this subsection we consider the class ƒall of all linear functionals and consider
linear operators S W F ! G, where F is the unit ball of a Hilbert space, and the target
space G is also a Hilbert space. Without loss of generality we also assume that S is
compact, since otherwise the problem cannot be solved to within " for small " in the
worst case and randomized settings.

Randomized algorithms are defined analogously to the previous subsection. Since
we can use linear functionals, the general form of An is now

An.f; !/ D '!
�
L1;!.f /; L2;!.f; y1/; : : : ; Ln.!/;!.f; y1; y2; : : : ; yn.!/�1/

�
;

where ! 2 
 is a random element distributed according to some probability mea-
sure , yi D Li;!.f; y1; y2; : : : ; yi�1/, and Li;!. � ; y1; y2; : : : ; yi�1/ 2 ƒall. The
mapping '! now goes to the target space G, and n is the average value of information
operations this time from ƒall for a worst f , i.e.

n D sup
f 2F

Z
�

n.f; !/.d!/;

where n.!/ D n.f; !/may depend adaptively on f through its information operations
values.

The randomized error of An now takes the form

eran.An/ D sup
f 2F

�Z
�

kSf � An.f; !/k2G.d!/
�1=2

:

Finally, define the minimal randomized error in the class An of all randomized
algorithms using n information operations from ƒall on the average as

eran
n .S/ D inf

An2An

eran.An/:

We stress that the class An contains all randomized algorithms that we can get by
varying the randomized adaptive choices of linear functionals, mappings '! , and dis-
tributions .

We compare the numbers eran
n .S/ to the minimal errors ewor

n .S/ that we can achieve
in the worst case setting. Formally, ewor

n .S/ is defined as above if we assume that all
algorithms An.f; !/ do not depend on !.

One of the most important and difficult research problems of information-based
complexity is to study the power of randomization and compare it to the power of
deterministic algorithms. We report on this line of research in the course of this book.
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It turns out that as long as we deal with compact operators between Hilbert spaces
and use the class ƒall, randomization does not really help. More precisely, modulo
the measurability assumption of algorithms in the randomized setting, we have the
inequality

1
2
ewor
4n�1.S/ � eran

n .S/ � ewor
n .S/; (3.16)

which will be proved in Chapter 4. Results similar to (3.16) have been already obtained
in Mathé [141], Heinrich [79], and Wasilkowski [262], as well as in [161].

Obviously, the second inequality is trivial since the class of randomized algorithms
is simply larger than the class of deterministic algorithms in the worst case setting.
The essence of (3.16) is the first inequality. It states that the minimal randomized
errors of algorithms with n information operations from ƒall on the average must be
at least as large as a half of the minimal worst case errors of algorithms using at most
4n � 1 information operations. Since the constants usually do not play a significant
role, (3.16) says that randomization does not really help.

Indeed, let us consider nran."; S;ƒall/ and nwor."; S;ƒall/ as the minimal number
of information operations from ƒall needed to compute the solution to within " in the
randomized setting and in the worst case setting, respectively, using the absolute or
normalized error criterion. As in the previous subsection we note that the initial errors
in both the worst case and randomized settings are the same, which is why we may
consider both error criteria.

Then (3.16) implies that

1
4
nwor.2"; S;ƒall/ � nran."; S;ƒall/ � nwor."; S;ƒall/ for all " > 0. (3.17)

Again the second inequality is obvious, and the essential part of (3.17) is the first
inequality. We now show that (3.17) can be used for tractability studies.

Assume that we have a sequence of linear operatorsSd W Hd ! Gd defined between
Hilbert spaces Hd and Gd of functions of d variables. We take Fd as the unit ball of
Hd and assume without loss of generality that each Sd is compact. As before we use
ƒall as the class of information operations.

We may now talk about tractability of the problem S D fSd g. We define

nran."; Sd ; ƒ
all/ and nwor."; Sd ; ƒ

all/

as above, and say that S is weakly tractable in the randomized/worst case setting iff

lim
"�1Cd!1

ln nsett."; Sd ; ƒ
all/

"�1 C d
D 0;

where sett 2 fran;worg.
Then (3.17) implies that S is weakly tractable in the worst case setting iff S is

weakly tractable in the randomized setting.
The same is true for polynomial tractability. Obviously, S is polynomially tractable

in the randomized/worst case setting iff

nsett."; Sd ; ƒ
all/ � C"�pdq for all " 2 .0; 1/ and d 2 N,



3.3 Open Problems 75

where sett 2 fran;worg. Strong polynomial tractability holds if q D 0.
Then (3.17) implies that strong polynomial and polynomial tractability of S are

equivalent in the worst case and randomized settings with the same exponents for "�1
and d .

We stress that this tractability equivalence holds for the absolute and normalized
error criteria and for the classƒall. As we know from the previous subsection, it is not
true for the class ƒstd.

3.3 Open Problems

We end this introductory chapter by presenting fifteen open problems related to multi-
variate problems discussed in this chapter. We will continue to present open problems
in later chapters and we will number them accordingly to their occurrence. We hope
that our readers will find these open problems challenging.

In Section 3.1.1 we considered multivariate integration for Lipschitz functions. As-
sume now that we have smoother functions that are r times continuously differentiable
and consider the class

Fd;r D ˚
f W Œ0; 1�d ! R j kf kd;r ´ max

˛Wj˛j�r
max

x2Œ0;1�d
jD˛f .x/j � 1

�
:

This class has been studied for many linear multivariate problems Sd W Fd;r ! Gd
for specific continuous linear operators Sd and normed linear spaces Gd . Examples
include multivariate integration,

Sdf ´ INTdf D
Z
Œ0;1�d

f .x/ dx with Gd D R,

and multivariate approximation

Sdf ´ APPdf D f with Gd D Lp.Œ0; 1�
d / for some p 2 Œ1;1�.

Let e.n; d/ denote the minimal worst case error that can be achieved by algorithms
using n function values, and let

n."; d/ D n."; Sd ; Fd;r ; Gd /

denote the minimal number of function values needed to solve the problem to within
"kSdk. This means we now consider the normalized error criterion; as always, this
coincides with the absolute error criterion whenever kSdk D 1.

For multivariate integration and approximation, i.e., for Sd 2 fINTd ;APPd g, it is
known, see Bakhvalov [7], Heinrich [80] and [160], [242], that e.n; d/ D ‚.n�r=d /,
which implies that

n."; d/ D ‚."�d=r/:
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For a fixed smoothness parameter r and for varying d , this means that the problem is
not polynomially tractable.

The question is whether the problem is weakly tractable, i.e., whether

lim
"�1Cd!1

ln n."; d/

"�1 C d
D 0:

If we go back to Bakhvalov’s proof, then we conclude that indeed there are two se-
quences of positive numbers Cd;1 and Cd;2 such that

Cd;1"
�d=r � n."; d/ � Cd;2"

�d=r for all " 2 .0; 1/.
However, Cd;1 is exponentially small in d whereas Cd;2 is exponentially large in d .
This means that these bounds are too weak to establish whether weak tractability holds.
This leads us to the first open problem.

Open Problem 1.

• Consider the class Fd;r for fixed r and algorithms using function values. Let
Sd 2 fINTd ;APPd g. Verify whether S D fSd g is weakly tractable.

• Consider the class Fd;r for a fixed r and algorithms using arbitrary linear func-
tionals. Verify whether multivariate approximation APP D fAPPd g is weakly
tractable.

Polynomial intractability was shown for fixed r by noting that the exponent d=r
of "�1 goes to infinity with d . Assume now that r can vary with d , i.e., r D r.d/,
and consider the class Fd;r.d/. Clearly, if the sequence d=r.d/ is unbounded then
we cannot have polynomial tractability. Assume then that supd d=r.d/ < 1. In
particular, we can even consider the case r.d/ D 1, which means that we deal with
infinitely differentiable functions. Obviously, Fd;1 	 Fd;r.d/.

What happens now with polynomial tractability? There are a few interesting nega-
tive results for multivariate integration and approximation with r.d/ D 1. Obviously,
these results also apply for all Fd;r.d/ with finite r.d/.

For multivariate integration, Sd D INTd , it was proved by J. Wojtaszczyk [284]
that

lim
d!1

e.n; d/ D 1 for any n.

This implies that

lim
d!1

n."; INTd ; Fd;1;R/ D 1 for any " 2 .0; 1/,

and so this problem is not strongly polynomially tractable. In fact, this means even
more, namely that multivariate integration cannot be strongly T -tractable; that is the
inequality

n."; INTd ; Fd;1;R/ � CT ."�1/p for all " 2 .0; 1/,
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cannot hold for any function T W Œ1;1/ ! Œ1;1/ and numbersC andp, see Chapter 8
where generalized tractability is studied.

For multivariate approximation, Sd D APPd with Gd D L1.Œ0; 1�d /, and for
algorithms using arbitrary linear functionals, the same result was proved by Huang
and Zhang [100]. Hence, strong polynomial tractability also does not hold for this
approximation problem.

But it is still open whether polynomial or weak tractability holds for the class Fd;1
or for the class Fd;r.d/ with some finite r.d/. This leads us to the next open problem.

Open Problem 2.

• Consider the class Fd;r.d/ with bounded d=r.d/, and algorithms using function
values. Let Sd 2 fINTd ;APPd g. Verify whether S D fSd g is polynomially or
weakly tractable.

• Consider the class Fd;r.d/ with bounded d=r.d/ and algorithms using arbitrary
linear functionals. Verify whether multivariate approximation APP D fAPPd g
is polynomially or weakly tractable.

• What is the answer to these two questions if r.d/ D 1?

In Section 3.1.2 we considered the integration problem for a finite dimensional
space Fd of trigonometric functions. It was relatively easy to show that for positive
quadrature formulas Qn we obtain

Œe.Qn/�
2 D 1 � n2�d for n � 2d .

It is not clear whether the problem is weakly or polynomially tractable since we do not
know whether positive quadrature formulas are optimal. This leads to the following
open problem.

Open Problem 3.

• Prove (or disprove) the same bound for general quadrature formulas, i.e.,

Œe.n; d/�2 D 1 � n2�d for all n � 2d :

This example is discussed in [167], where one can also find two equivalent
conjectures:

– For any given points x1; x2; : : : ; xn 2 Œ0; 1�d there is a trigonometric poly-
nomial f of degree 1 in each variable such that

f .x1/ D f .x2/ D � � � D f .xn/ D 1 and kf k � 2�d=2 � n1=2

with the norm as in Example 2.
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– Any matrix A 2 Rn�n with entries aij defined by

aij D
� dY
kD1

1C cos.˛i;k � j̨;k/

2

�
� 1

n
;

for arbitrary real ˛i;k , is positive semi-definite.

• If e.n; d/ is of the form conjectured here, then the problem is intractable. How-
ever, if e.n; d/ is not of this form, tractability of the problem may be still open.
This suggests the next problem of verifying polynomial and weak tractability of
this integration problem independently of the form of e.n; d/.

In Section 3.1.3 we considered multivariate integration for the unweighted Korobov
space with bounded Fourier coefficients. Consider now a weighted Korobov space by
assuming that

Fd;�;˛ D ˚
f 2 L1.Œ0; 1�d / j j Of .h/j � �d;u.h/

� Nh1 Nh2 � � � Nhd
��˛

for all h 2 Zd
�
.

Here, u.h/ D fj j hj 6D 0g and � D f�d;ug is a sequence of non-negative weights
with u 	 f1; 2; : : : ; dg and d 2 N.

For �d;u � 1, we have the unweighted Korobov space previously studied, for
which we know that multivariate integration is intractable. What happens for general
weights �? What conditions on the weights imply tractability?

Multivariate integration for weighted Korobov spaces has been studied in many
papers for the case where bounds on the Fourier coefficients are given in the L2 sense,
i.e., for � X

h2Zd

��1
d;u.h/j Of .h/j2� Nh1 Nh2 � � � Nhd

�˛�1=2 � 1;

see e.g., Dick [42], Dick and Kuo [43], [44], Kuo [119], Wang, Sloan and Dick [257]
as well as [45], [95], [217]. The case with bounds in the L1 case, i.e.,

sup
h2Zd

��1
d;u.h/j Of .h/j� Nh1 Nh2 � � � Nhd

�˛ � 1;

has not been yet studied. It would be interesting to see what we must assume about the
sequence � to obtain different types of tractability for multivariate integration. This
leads us to the next open problem.

Open Problem 4.

• Consider the class Fd;�;˛ with the sequence � D f�d;ug of weights. Find neces-
sary and sufficient conditions on � to obtain strong polynomial, polynomial and
weak tractability of multivariate integration.

In Section 3.1.4 we considered multivariate approximation APPd W Fd;p ! Gd;m;p .
Here, Fd;p is the class of infinitely differentiable functions with derivatives bounded
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in theLp-norm. The norm in the target spaceGd;m;p depends onm, which determines
how many derivatives of functions we want to approximate. For m � 1, we have
intractability for any p, whereas for m D 0 and p D 2 we have weak tractability but
polynomial intractability. This leaves the case m D 0 and p 6D 2.

Furthermore, the partially positive result for m D 0 and p D 2 was obtained by
assuming that algorithms use arbitrary linear functionals. It is not clear what happens
if we allow algorithms that can only use function values. This leads us to the next open
problem.

Open Problem 5.

• Consider multivariate approximation as in Section 3.1.4 with m D 0 and p 6D
2, and algorithms using arbitrary linear functionals. Verify whether weak or
polynomial tractability hold.

• Consider multivariate approximation as in Section 3.1.4 withm D 0 and arbitrary
p 2 Œ1;1�, and algorithms using only function values. Verify whether weak
tractability holds.

In Section 3.1.5 we discussed discrepancy and its relation to multivariate integra-
tion. For the star discrepancy, which corresponds to p D 1, we have polynomial
tractability with the exponents of n�1 and d equal to 1

2
. However, the proof of this

result is non-constructive. It is important to find a construction of points even if this
results in larger exponents. The best constructions known at this time have running
time exponential in d , see Doerr and Gnewuch [46], Doerr, Gnewuch, Kritzer and
Pillichshammer [47], Doerr, Gnewuch and Srivastav [48], Kritzer and Pillichsham-
mer [116], and Thiémard [235], which is infeasible for large d . This leads us to the
next open problem.

Open Problem 6.

• Construct points t1; t2; : : : ; tn 2 Œ0; 1�d for which

disc�1.t1; t2; : : : ; tn/ D O.dqn�r/ for all n; d D 1; 2; : : : ;

with the factor in the big O notation independent of d and n. The running time
of the construction should be polynomial in d and n. Here q and r are positive
numbers. Obviously, the construction for which q is small and r is relatively
large, i.e., q D r D 1

2
, would be especially interesting.

We already mentioned that it is unknown whether the exponent 1
2

of n�1 in the star
discrepancy bound can be improved. In fact, there is a conjecture, see Heinrich [83],
that states that the exponent 1

2
is sharp as long as we have a polynomial dependence

on d in bounds on the star discrepancy. We repeat this conjecture as the next open
problem.
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Open Problem 7.

• Consider the minimal star discrepancy disc�1.n; d/. Let

p� D supfp j disc�1.n; d/ � Cdkn�p for some C , k and all n; d 2 Ng.

Verify whether p� D 1
2

. If not, determine p�.

We want to add that there are many more open problems concerning different types
of discrepancy. These will be presented in Volume II, which deals with discrepancy in
greater depth.

In Section 3.1.6 we considered diagonal multivariate problems for weighted spaces
related to the ANOVA decomposition, and we analyzed algorithms using arbitrary
linear functionals.

We could not analyze algorithms using function values for the class Fd;� with
positive weights. The reason is that these spaces are built on L2 spaces, for which
function values are not even well defined. To allow the study of algorithms using
function values we need to restrict the class Fd;� to functions for which function
values are well defined. This can be done in many different ways. Here, we propose
one such restriction. Using theANOVA decomposition of f fromL2.Œ0; 1�

d /we know
that fu 2 L2.Œ0; 1�

juj/. Assume additionally that fu is smooth, say, it belongs to the
space C r.Œ0; 1�juj/ for some r � 0. The norm in the space C r.Œ0; 1�juj/ is given by

kfukr D max
˛Wj˛j�r

max
xu2Œ0;1�juj

jD˛fu.xu/j:

Then we can restrict the class Fd;� by assuming that kfukr � 1. That is, the new class
is of the form

Fd;�;r D ˚
f 2 Fd;� j max

u�f1;2;:::;dg
kfukr � 1

�
:

Function values of f fromFd;�;r are now well defined. Hence we can study tractability
for algorithms using only function values, as well as for algorithms using arbitrary linear
functionals. In particular, we can study how the smoothness parameter r helps. This
leads us to the next open problem.

Open Problem 8.

• Consider the diagonal multivariate problem for the classFd;�;r as in Section 3.1.6,
and algorithms using only function values. Give necessary and sufficient condi-
tions on � for weak and polynomial tractability.

• Consider the diagonal multivariate problem for the classFd;�;r as in Section 3.1.6,
and algorithms using arbitrary linear functionals. Give necessary and sufficient
conditions on � for weak and polynomial tractability.

In Section 3.2.2 we considered Gaussian integration for the class of continuous
d -variate functions equipped with the isotropic Wiener measure. We know that the
problem is strongly polynomially tractable, with a sharp exponent of "�1 equal to 2.
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However, the proof was semi-constructive, since the selection of points at which we
compute the function with good average case error bounds was done probabilistically.
It is of interest to construct such points deterministically. This is our next open problem.

Open Problem 9.

• Consider Gaussian integration for the class of continuous d -variate functions
equipped with the isotropic Wiener measure. For all d , construct points

x1; x2; : : : ; xn from Rd

for which the quasi-Monte Carlo algorithm An.f / D n�1Pn
jD1 f .xj / has the

average case error of order O.dqn�r/, with the factor in the big O notation inde-
pendent of d and n. The running time of the construction should be polynomial
in d and n.

In Section 3.2.3 we considered multivariate approximation for functions that are r
times continuously differentiable functions in each variable. This class was equipped
with the folded Wiener sheet measure, defined as the classical Wiener sheet measure
placed on r th derivatives. We showed that as long as r is fixed, the problem is in-
tractable. It would be of interest to allow r to depend on d , i.e., r D r.d/, as in Open
Problem 2. Then a natural question is whether we can break intractability by making
r.d/ sufficiently large. This is our next open problem.

Open Problem 10.

• Consider multivariate approximation for the classC r.d/;r.d/;:::;r.d/0 equipped with
the foldedWiener sheet measure as in Section 3.2.3. Give necessary and sufficient
conditions on � for weak or polynomial tractability.

Another way of dealing with smoothness is to consider different smoothness in each
variable. That is, instead of assuming that functions are r times continuously differen-
tiable in each variable, let us assume that they are rd;j times continuously differentiable
in the j th variable. This corresponds to the class C

rd;1;rd;2;:::;rd;d

0 equipped with the
folded Wiener sheet measure placed on rd;j derivatives. This is a zero-mean Gaussian
measure whose covariance function is

Kd .x; y/ D
dY
jD1

Z 1

0

.xj � u/rd;j

C
rd;j Š

.yj � u/rd;j

C
rd;j Š

du:

This class was analyzed by Papageorgiou and Wasilkowski [188] who found the op-
timal order of convergence and the asymptotic constant; however, they did not study
tractability. A natural question is whether we can obtain tractability for some rd;j .
Obviously, tractability may hold only if the rd;j ’s are large enough and the point is to
verify whether sufficiently large rd;j ’s indeed lead to tractability. If so we would have
an example for which increasing smoothness implies tractability. This is our next open
problem.
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Open Problem 11.

• Consider multivariate approximation for the classC
rd;1;rd;2;:::;rd;d

0 equipped with
the folded Wiener sheet measure similarly as in Section 3.2.3. Find necessary
and sufficient conditions on frd;j g to obtain weak tractability and polynomial
tractability.

In Section 3.2.6 we studied the relative error for Gaussian integration. We men-
tioned that the problem cannot be solved under this error criterion in the worst and
average case settings. The reason why this result holds is that when finitely many
function values are 0, we were unable to check whether the integral was 0. In fact, a
small relative error, say,

jINTdf � An.f /j
jINTdf j � 1

10

for small integrals, say jINTdf j � 10�k , means that the absolute error ofAn.f /must
be at least 10�k�1. Since k can be arbitrarily large this requires thatAn almost exactly
recovers small integrals, which as we know, can be done only in the probabilistic
setting.

From this point of view, there is a valid criticism of the relative error criterion for
problems with small solutions. A possible remedy is to study a combination of the
absolute and relative error by taking a positive (and small) number � and measure the
error by

jINTdf � An.f /j
jINTdf j C �

;

see [242] where this modified relative error has been studied. Hence, if jINTdf j is
larger than �, this is close to the relative error, if jINTdf j is comparable to or smaller
than �, this is close to the absolute error modulo a factor of order ��1.

It is easy to see that now we can solve the problem in the worst case and average
case setting with " replaced by "�; however, the minimal number of function values
needed for the solution will go to infinity as � goes to 0.

Consider the probabilistic setting with this modified error criterion. The probabilis-
tic error of An is now given by

eprob-mod.An; ı; �/ D inf
BWwd .B/�ı

sup
f 2Fd �B

jINTdf � An.f /j
jINTdf j C �

:

Let

nprob-mod."; ı; �; INTd / D minfn j there exists An with eprob-mod.An; ı; �/ � "g
be the minimal number of function values needed to solve the problem to within "with
this modified error criterion.

Observe that we obtain an obvious upper bound on nprob-mod."; ı; �; INTd / by
switching to the absolute error with " replaced by "�, finding that

nprob-mod."; ı; �; INTd / � nprob-abs."�; ı; INTd / D O

�
ln ı�1

"2�2

�
:
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So the dependence on ı�1 is only through ln ı�1; however, the dependence on � is
through ��1. For small �, we can propose another upper bound by switching to the
relative error criterion and by neglecting the parameter �. That is,

nprob-mod."; ı; �; INTd / � nprob-rel."; ı; INTd / D O

�
1

"2ı2

�
:

So the dependence on ı�1 is now much more severe; however, the dependence on �
disappears.

There is thus a trade-off between the dependence on ı�1 and ��1, which will be
the essence of our next open problem.

We briefly discuss tractability. We have now one more parameter � for tractability
study. Define tractability when there exist five non-negative numbers C , p, q, s and t
such that

nprob-mod."; ı; �; INTd / � C"�pdq
�
g1.ı

�1/
�s �
g2.�

�1/
�t

for all "; ı; � 2 .0; 1/ and all d 2 N.
Here, the functions gi are either gi .x/ D x or gi .x/ D ln x. That is, for g1.x/ D

g2.x/ D x we allow polynomial dependence on all four parameters, whereas for
g1.x/ D g2.x/ D ln x we allow poly-log dependence on ı�1 and ��1, and polynomial
dependence on "�1 and d .

Open Problem 12.

• Find sharp estimates of
nprob-mod."; ı; �; INTd /

as a function of the four variables ", ı, � and d .

• Do we have tractability for all four choices of .g1; g2/?

In Section 3.2.8 we studied the randomized setting for multivariate integration. In
particular, we mentioned that for the weighted Sobolev space H.Kd / with the kernel

Kd .x; y/ D
dY
jD1

�
1C �j min.xj ; yj /

�
for some sequence of weights �j with �1 � �2 � � � � � 0, we obtain strong polynomial
tractability in the randomized setting for the normalized error criterion if

1X
jD1

�2j < 1:

If the latter condition holds then the Monte Carlo reduces the initial error to within "
using O."�2/ randomized function values, with the factor in the big O notation inde-
pendent of d . The open question is whether this condition is also necessary for strong
polynomial tractability. We know that it is necessary for good behavior of the Monte
Carlo algorithm, but perhaps a more relaxed condition on the weights would suffice
for a more sophisticated algorithm. This leads us to the next open problem
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Open Problem 13.

• Find necessary and sufficient conditions on the weights f�j g of the Sobolev
space H.Kd / for strong polynomial and polynomial tractability of multivariate
integration in the randomized setting for the normalized error criterion.

• Find the smallest exponent of "�1 when this problem is strongly polynomially
tractable.

It is interesting to add that for the weighted Sobolev space H. zKd / of periodic
functions, see Section A.2.2, with the kernel

zKd .x; y/ D
dY
jD1

�
1C �j

�
min.xj ; yj / � xjyj

��
;

the Monte Carlo algorithm can be improved as shown by Wasilkowski [264]. Namely,
the Monte Carlo algorithm enjoys a strong polynomial tractable randomized error
bound in this space of periodic functions iff

1X
jD1

�2j < 1;

as shown in [219]. Hence, we have the same condition as for the non-periodic case of
the space H.Kd /.

For the space H. zKd /, Wasilkowski proposed a randomized algorithm that enjoys
a strong polynomial tractable randomized error bound if

1X
jD1

�3j < 1:

Hence, it is enough to assume that the weight sequence is cubic-summable, which
obviously relaxes the Monte Carlo condition of square-summability. But it is unknown
whether cubic-summability is necessary for strong polynomial tractability. This is our
next open problem.

Open Problem 14.

• Find conditions on the weights f�j g of the Sobolev space H. zKd / of periodic
functions that are necessary and sufficient for strong polynomial and polynomial
tractability of multivariate integration in the randomized setting for the normal-
ized error criterion.

• Find the exponent of strong polynomial tractability of this problem.

In Section 3.2.9 we showed that randomization does not really help for the classƒall

as long as we consider compact linear problems defined over Hilbert spaces. The
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assumption that we consider Hilbert spaces is essential since randomization may indeed
help if we switch to Banach spaces as proved by Mathé [141] and Heinrich [79].
One of the major problems of information-based complexity is to characterize linear
problems for which randomization essentially helps, as compared to the worst case
setting. By “essentially”, we mean by more than a constant. This should be done
for both classes ƒstd and ƒall and for various error criteria. It is of great interest to
characterize multivariate problems that are weakly or polynomially tractable in the
randomized setting, and to characterize multivariate problems which are intractable or
polynomially intractable in the worst case setting but weakly or polynomially tractable
in the randomized setting. We summarize these questions in the next open problem.

Open Problem 15.

• Characterize linear operators, their source and target spaces for which the ran-
domized setting is essentially easier than the worst case setting for the two classes
of information ƒstd and ƒall and for the absolute and normalized error criteria.

• Characterize linear multivariate problems that are weakly tractable or polynomi-
ally tractable in the randomized setting.

• Characterize linear multivariate problems for which randomization breaks in-
tractability or polynomial intractability in the worst case setting.

3.4 Notes and Remarks

NR 3.1.1:1. Intractability of multivariate integration for the class of Lipschitz func-
tions implies intractability of other problems that are at least as hard as multivariate
integration. For example, this holds for multivariate approximation, APPdf D f 2
Lp.Œ0; 1�

d / for f 2 F
lip
d

, where p 2 Œ1;1�. This follows from the simple fact that
jINTdf j � kf kp and from general results of information-based complexity. Indeed,
we can solve the multivariate integration problem to within " iff

inf
x1;x2;:::;xn2Œ0;1�d

sup
f 2F lip

D
f .xj /D0

jINTdf j � ";

which can happen iff n � nwor."; INTd ; F
lip
d
/. Hence, for n < nwor."; INTd ; F

lip
d
/ and

for any points x1; x2; : : : ; xn, there exists a function from F
lip
d

such that f .xj / D 0

and jINTdf j > ". Since the best approximation of multivariate approximation for
zero function values is 0, we conclude that the worst case error of any algorithm for
multivariate approximation is also larger than ". Hence, we can solve the multivariate
approximation problem only if n � nwor."; INTd ; F

lip
d
/, which implies intractability,

as claimed.
In turn, intractability of multivariate approximation for the class F lip

d
implies in-

tractability of all problems (with respect to the absolute error) that are at least as hard
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as approximation. We add that relations of various computational problems to the ap-
proximation problem have been studied by Wasilkowski [259], Werschulz [277], and
in [160].

NR 3.1.1:2. We considered the absolute error criterion for multivariate integration of
Lipschitz functions. Observe that the initial error of this problem and the initial error
of the multivariate approximation problem mentioned above are both 1. Hence, the
same intractability results hold for the normalized error criterion.

NR 3.1.3:1. For the Korobov class, the initial error of multivariate integration is 1, so
the same intractability result holds for the normalized error criterion. Now consider
the multivariate approximation problem APPdf D f 2 Lp.Œ0; 1�d / for f 2 Fd;˛ and
p 2 Œ1;1�. As before, this problem is intractable if we use the absolute error criterion.
It is not clear, however, what happens with the normalized error criterion, since the
initial error may be exponentially large in d , as happens for p D 2.

NR 3.1.4:1. This section is based on [179].

NR 3.1.5:1. The notion of discrepancy plays an important role in the study of tractabil-
ity. The first tractability papers aimed at understanding the empirical success of QMC
algorithms for finance applications of 360-dimensional integrals, see the book of Traub
and Werschulz [243] for a survey. Since the error of a QMC algorithm can be expressed
by various notions of discrepancy, it was natural to try to understand why discrepancy
behaves so well for large d . As already indicated, this led us to weighted spaces and
to product and finite-order weights. The story of discrepancy and tractability will be
continued in Volume II.

NR 3.1.6:1. This section is new, although technical results are based on the existing
papers indicated in the text.

NR 3.2.2:1. As mentioned in the text, strong polynomial tractability of Gaussian
integration for the isotropic Wiener measure and for the normalized error criterion was
shown in [94]. The use of Chebyshev’s inequality for semi-construction of good sample
points is standard. The intriguing dependence of the initial error on d , and polynomial
tractability for the absolute error criterion is new, although quite straightforward.

NR 3.2.3:1. The major technical part of this section is based on Papageorgiou and
Wasilkowski [188], but the tractability analysis is new.

NR 3.2.4:1. Tractability in the probabilistic setting has not been yet thoroughly
studied. There are, however, interesting papers by Lifshits and Tulyakova [135], and
Lifshits and Zani [136], with negative results for multivariate approximation. For
linear functionals, there is a very close relation between the probabilistic and average
case settings, which is why we studied a special linear functional given by Gaussian
integration. We concentrated on the dependence on the new error parameter ı appearing
in the probabilistic setting.
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NR 3.2.5:1. The dependence on ln ı�1 is typical for the absolute error criterion. We
showed that there is no dependence on ı for the normalized error criterion. Again this
is true for all linear functionals, but not for general linear operators.

We want to stress once more that the notion of the initial error, which is quite natural
in the worst case and average case settings, is not so natural in the probabilistic setting
as long as ı goes to 0. The reason is that the initial error goes (slowly) to infinity,
making the problem easier under the normalized error criterion. This would change if
instead of the whole space, we consider a ball of finite radius. Then the initial error
in the probabilistic setting with ı tending to 0 will go to the worst case initial error.
The study of the probabilistic and average case settings over balls of finite radius and
the use of normalized Gaussian measure would allow us to compare the worst, average
and probabilistic settings.

NR 3.2.6:1. The relative error may seem to be the most practical error criterion.
Unfortunately, as indicated in this section, the relative error is the source of misleading
negative results in the worst case setting for linear problems, and in the average case
setting for linear functionals. Only in the probabilistic setting can we solve linear
functionals under the relative error criterion, although the price is paid by a much more
severe dependence on ı�1. We believe that a good alternative to the relative error is
the modified error, which is a combination of the absolute and relative error criteria,
see Open Problem 12.

NR 3.2.8:1. We discussed the Monte Carlo algorithm for multivariate integration in
the randomized setting. There are many variants of this algorithm. One stream of work
deals with reducing the variance of the function, which occurs in the randomized error
of the Monte Carlo. The idea is to replace the function f by a function g. The function
g should have the same integral of f , or we should know a simple formula that allows
to compute the integral of f if we know the integral of g. Furthermore, function values
g.x/ should be easily computed by function values of f . And the main point is that
g should have the variance as small as possible. Different transformations for g have
been proposed in the literature.

NR 3.2.9:1. We indicated that randomization does not really help for linear problems
defined over Hilbert spaces as long as the classƒall of all linear functionals is allowed.
A natural question is what happens if instead of ƒall only the class ƒstd can be used.
This problem will be studied in Volumes II and III.

We wish to stress that there are many open problems in the randomized setting. It
seems to us that the randomized setting is especially difficult to analyze; this should
be regarded as an additional challenge for researchers. The technical difficulty of this
setting is the reason that today we have a relatively small number of results. This
explains why tractability of many multivariate problems in the randomized setting is
unknown or only partially known.

NR 3.3:1. We decided to introduce open tractability problems as soon as possible
in this book. We want the reader to start thinking about solving these open problems
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without the necessity of studying the rest of this book and grasping many technical
results that are sometimes not so easy. In the further course of this book we will be
presenting additional open problems. The total number of open problems in Volume I
is 30. We hope that this number will quickly decrease.



Chapter 4

Basic Concepts and Survey of IBC Results

In this chapter we present basic definitions and survey results from information-based
complexity (IBC) that are needed to study tractability. In Sections 4.1–4.3, we assume
that

S W F ! G (4.1)

is any mapping, called the solution operator. The set F is a subset of a normed space,
such as the unit ball, and the problem elements of F are usually functions defined on
a set D 	 Rd . The set G is a normed space.

We will discuss the complexity of computing values of S to within some error. In
Section 4.1 we recall the basic definitions for the worst case setting and in Section 4.2
we state and prove certain important facts about this setting.

In Section 4.3 we consider different settings. We first study the average case and
probabilistic settings followed by the randomized setting. In the worst case, aver-
age case and probabilistic settings we use deterministic algorithms, whereas in the
randomized setting we use randomized algorithms which are sometimes also called
Monte Carlo algorithms.

In Section 4.4 we assume that a whole family of such operators

Sd W Fd ! Gd ; d 2 N; (4.2)

is given. The number d is usually the number of variables of functions from Fd . Often
Fd is the unit ball of an infinite dimensional space.

For much of the following the reader can think of the examples Sd D INTd and
Sd D APPd , where the integration problem is given by

Sd .f / D INTdf D
Z
Œ0;1�d

f .x/ dx

with Gd D R and the approximation problem is given by Sd .f / D APPd .f / D f

and Gd is a normed space, often chosen as L2.D/.

4.1 Complexity in the Worst Case Setting

We assume that S W F ! G is a mapping, where F is a subset of a normed space zF
and G is a normed space. The problem elements of zF are usually functions defined
on a set D 	 Rd . We want to compute an approximation of S.f / for f 2 F . The
set F is typically infinite dimensional and hence we cannot input f 2 F directly into
the computer. We always work with the real number model, which implies that we can
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only input finitely many real numbers y1; y2; : : : ; yn into the computer. Clearly, these
numbers yi D yi .f / should describe f 2 F as well as possible. Let

N.f / D Œy1.f /; y2.f /; : : : ; yn.f /� 2 Rn (4.3)

be the information about f . We use algorithms of the form

A.f / D '.N.f //; (4.4)

where ', ' W N.F / ! G, transforms y D N.f / into an element of the target spaceG.
The worst case error of A is given by

ewor.A/ D sup
f 2F

kS.f / � A.f /k: (4.5)

Remark 4.1. Here we use the error at f as

e.A; f / D kS.f / � A.f /k
that leads to the worst case error (4.5) of A by taking the supremum with respect to
f 2 F . In this book we primarily use this error but for some computational problems
it is not appropriate, see e.g., [240]. Assume, for example, that F is a set of continuous
functions on Œ0; 1� with f .0/ < 0 and f .1/ > 0 and we want to approximate an
arbitrary zero x of f , i.e., f .x/ D 0. HereG D R. Since f is continuous and changes
sign at 0 and 1, such a number x exists, however, it is in general not unique. In any
case, the set f �1.0/ D fx 2 Œ0; 1� j f .x/ D 0g is nonempty for all f 2 F . Then one
might consider the root criterion, which is defined by

e.A; f / D dist.f �1.0/; A.f //;

i.e., the error of A at f is now the distance of A.f / 2 R to the nearest zero of f .
Starting with this definition of the error at f we then define the worst case error of A
by

ewor.A/ D sup
f 2F

e.A; f /:

This permits the definition of the error at f and the worst case error without specifying
the solution operator S .

We say that N is partial if N is many-to-one. This is generally the case in compu-
tational practice for continuous problems. IfN is partial, then we are unable to identify
f 2 F from the informationN.f / since there are many problem elements sharing the
same information with f . Let

N�1.y/ D f Qf 2 F j N. Qf / D yg
be the set of indistinguishable problem elements, and let

S.N�1.y// D fS. Qf / 2 G j Qf 2 N�1.y/g
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be the set of indistinguishable solution elements. For M 	 G let

rad.M/ D inf
x2G

sup
m2M

kx �mk

be the radius of M . Roughly speaking, rad.M/ is the smallest radius of all balls that
contain M .

We shall denote the radius of S.N�1.y// by rwor.N; y/, which we call the local
radius of information N at y, i.e.,

rwor.N; y/ D rad.S.N�1.y///:

Observe that for f 2 N�1.y/ we have A.f / D '.y/, so A.f / is constant over
N�1.y/, and clearly the best we can do to minimize the worst case error of A given
N is to take a center, if it exists, of the ball with the radius r.N; y/. Then the error is
rwor.N; y/. If the center of N�1.y/ does not exist then we can take A.f / whose error
is arbitrarily close to rwor.N; y/.

The (global) radius of information N is defined by

rwor.N / D sup
y2N.F /

rwor.N; y/:

Hence, the radius rwor.N / of informationN is roughly the smallest radius of balls that
contain all sets S.N�1.y// of indistinguishable solution elements.

Hence, we minimize the error of A given N if we take a center of S.N�1.y// for
each y 2 N.F /, and then the error of A is rwor.N /. If the center of S.N�1.y// does
not exist for some y then we can take A whose error is arbitrarily close to rwor.N /.
This proves the following result, see [242, p. 50], which although quite simple, is
nevertheless a basic result often used for the proof of lower bounds.

Theorem 4.2.
rwor.N / D inf

'

sup
f 2F

kS.f / � '.N.f //k: (4.6)

Hence, the radius of information determines the worst case error of an optimal al-
gorithm of the form (4.4). The radius of information plays a major role in information-
based complexity. It measures the intrinsic uncertainty caused by the partial informa-
tion N . Observe that rwor.N / also depends on the mapping S W F ! G. It does not,
however, depend on ' or A.

As a technical tool, we also use the diameter of information N , since it is often
much easier to obtain than the radius. For M 	 G let

diam.M/ D sup
m1;m22M

km1 �m2k:

Roughly speaking, diam.M/ is the largest distance between two points of M . It is
easy to prove that for each M 	 G we have

rad.M/ � diam.M/ � 2 rad.M/
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and these inequalities cannot be improved in general. That is, for any ˛ 2 Œ1; 2�

there exist a normed space G and a set M such that rad.M/ D ˛ diam.M/ and
diam.M/ 2 .0;1/.

The local diameter of information N is defined by

d.N; y/ D diam.S.N�1.y///;

and the (global) diameter of information N by

d.N / D sup
y2N.F /

d.N; y/:

Combining these definitions we have

d.N / D supfkS.f1/ � S.f2/k j f1; f2 2 F; N.f1/ D N.f2/g:
Hence, the diameterd.N / of informationN is the largest distance between two solution
elements which are indistinguishable with respect to N . Obviously the radius and
diameter of information are related by the inequality

r.N / � d.N / � 2r.N /; (4.7)

and again these inequalities cannot be improved in general, see [242, p. 47].
Now we discuss the following questions:

• Which information N should be used?

• What is the cost of A?

• How are other errors of A defined?

• Which mappings ' should be used to define the algorithm A D ' B N with
reasonable cost?

• What is the "-complexity (minimal cost) of approximating S?

4.1.1 Types of Information

To compute an approximation to S.f / we need to know some information about f .
Even if we would have full knowledge about f , we could only use partial information
about f if F is infinite dimensional since we can only input finitely many numbers
y1; y2; : : : ; yn into the computer. We mostly study the case where the numbers yi are
values of linear functionals, yi D Li .f /. Sometimes the form of Li is restricted, as
will be explained below.

In different parts of mathematics, the numbers yi may be defined differently, for
example by best n-term approximation or by the n largest coefficients of f in some
basis. We comment on these choices in the second part of this subsection.
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Information Given by Linear Functionals

In IBC we usually assume that we can compute certain linear functionals, and therefore

yi D Li .f / where Li 2 ƒ 	 zF �.

Here zF � is the dual space of zF , i.e., it is the set of all continuous linear functionals
L W zF ! R. The class ƒ is the class of admissible information operations given by
certain functionals.

We do not discuss how the values yi D Li .f / are computed, they are just given to
us by an oracle or subroutine or even by some physical measurement.

We now discuss two classes of information N . The first one is the class of
non-adaptive information, where the same information operations are computed for
each f 2 F . The information N W F ! Rn is called non-adaptive if there exist
L1; L2; : : : ; Ln 2 ƒ such that

N.f / D ŒL1.f /; L2.f /; : : : ; Ln.f /� for all f 2 F . (4.8)

Observe that in this case the mappingN W zF ! Rn is linear. The number n of informa-
tion operations, called the cardinality of N , is denoted by card.N /. The computation
of non-adaptive information can be done very efficiently in parallel and hence this
information is sometimes called parallel information. The word passive information
is also used.

The second class of information is called adaptive. Now the number and choice
of information operations may vary with f , hence N.f / is a finite or even infinite
sequence of numbers. More precisely, the information N is called adaptive if it is of
the form

N.f / D ŒL1.f /; L2.f; y1/; : : : ; Ln.f /.f; y1; y2; : : : ; yn.f /�1/�; (4.9)

where y1 D L1.f / and yi D Li .f; y1; y2; : : : ; yi�1/ for i D 2; 3; : : : ; n.f /. Here yi
is the value of the i th information operation and the choice of the i th operationLi may
depend on the previously computed values y1; y2; : : : ; yi�1. Since only admissible
information operations can be performed, we assume that

Li . � ; y1; y2; : : : ; yi�1/
belongs to the class ƒ for every fixed y1; y2; : : : ; yi�1.

The number n.f / denotes the total number of information operations on the prob-
lem element f and is called the cardinality of N at f . It is determined during the
process of computing successive values yi . More precisely, suppose that we have al-
ready computed y1 D L1.f / and so on until yi D Li .f; y1; y2; : : : ; yi�1/. Based on
the values .y1; y2; : : : ; yi / we decide whether another functional LiC1 is needed or
not. If not then n.f / D i and N.f / D Œy1; y2; : : : ; yi � 2 Ri . Otherwise we choose
LiC1 and evaluate yiC1 D LiC1.f; y1; y2; : : : ; yi /. As mentioned above, the decision
is made based on the available knowledge about f . More precisely, we have Boolean
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functions teri W Ri ! f0; 1g, called termination functions, and in the i th step our ter-
mination decision is “yes” if teri .y1; y2; : : : ; yi / D 1. Thus, the cardinality n.f / is
equal to

n.f / D minfi j teri .y1; y2; : : : ; yi / D 1g; (4.10)

with the convention that min ; D 1. Usually we choose termination functions to
guarantee that n.f / is finite for all f 2 F .

Observe that adaptive informationN is given by all the mappingsLi and the termi-
nation functions teri . In general, adaptive information requires sequential computation.
That is, we have to wait until yi is computed to decide whether another information
operation is needed and, if so, what it should be. That is why adaptive information
is sometimes also called sequential information. The word active information is also
used.

So far, we did not specify the class ƒ. In many cases F consists of functions that
are defined on a setD 	 Rd . In this case it is natural to assume that we have an oracle
for function values, and hence ƒ is the class of all functionals of the form

L.f / D f .x/ for all f 2 F , (4.11)

for some x 2 D. This information is called standard information, and is denoted by
ƒ D ƒstd.

One might assume that also other linear functionals can be computed, such as
Fourier coefficients, wavelet coefficients, or other weighted integrals. For many theo-
retical studies it is convenient to allow all continuous linear functionals; we denote the
class of all continuous linear functionals by ƒ D ƒall D zF �.

Most results on tractability refer to the classes ƒstd or ƒall. Nevertheless we stress
that other types of linear functionals have been studied in the literature. We mention one
example, see Bojanov [16] for a survey. Assume that a multiple integral

R
�
f .x/ dx

with 
 	 Rd is approximately recovered from the given values of some integrals of
f over manifolds of lower dimension (as, for example, in tomography). Hence, in this
case ƒ consists of certain integrals f 7! R



f .x/ dx, where 	 	 
. In particular,

such manifolds as planes and spheres are used in Babenko and Borodachov [4], [5].

Information Given by Nonlinear Functionals

It should be stressed that the functionalsLk in (4.9) cannot depend on f in an arbitrary
way but only via the already computed values of

y1 D L1.f /; y2 D L2.f; y1/; : : : ; yk�1 D Lk�1.f; y1; y2; : : : ; yk�2/:

This is because we are interested in feasible computations with small cost, including the
cost of obtaining the information onf . Hence, we charge for operations that are needed
to select the functional Lk. � ; y1; y2; : : : ; yk�1/ and we also charge for computing the
value Lk.f; y1; y2; : : : ; yk�1/.
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Sometimes it is interesting to even allow the Lk to depend on f in a more general
way. Usually this is done without a cost analysis. We illustrate this point by two
examples that we believe are typical for many other situations.

We begin with the classical problem of uniform approximation. For a given univari-
ate real continuous function f defined on Œ0; 1�, we want to find the best approximation
in the class Pn of polynomials of degree at most n, i.e.,

epol
n .f / D inf

p2Pn

kf � pnk; where kf � pnk D maxx2Œ0;1� jf .x/ � pn.x/j.

There is a rich and beautiful theory of this problem dating back to Bernstein, Chebyshev,
Jackson, Weierstraß and many others. In particular we know that the best polynomial
approximation

pn;f .x/ D L0.f /C L1.f /x C � � � C Ln.f /x
n

exists, i.e., epol
n .f / D kf � pn;f k, the error epol

n .f / goes to 0 for an arbitrary con-
tinuous function with the rate of convergence depending on the smoothness of the
function f , etc.

From our point of view, it is important to note that the coefficients Li .f / of the
best polynomial approximation depend nonlinearly on f , and they form a special type
of information about f . However, we know how to compute these coefficients only
for very specific functions f . For a general continuous function f , we only know
that they exist but do not know how to compute them. On the other hand, if we knew
L1.f /; L2.f /; : : : ; Ln.f / then we would replace f by the polynomialpn;f and many
operations with pn;f are computationally easy.

If we want to approximate the coefficientsLi .f / then this can be done by Remez’s
algorithm, which is a variant of Newton’s algorithm, see, e.g., the book of Kowalski,
Sikorski and Stenger [115]. However, the information used by Remez’s algorithm is
given by function values. If we want to do this for a special function f as a part of
a precomputation, then the cost is not really an issue and this approach is completely
acceptable. Otherwise, if we want to deal with functions from a general class F ,
then directly approximating f may be much faster than computing its best polynomial
approximation.

This approach which does not address the cost of computing best approximants
is also typical for other subareas of the theory of approximation and other norms.
Examples include rational approximation, approximation by splines with free knots,
and wavelet approximation.

Typically, only if the target space is a Hilbert space, it is possible to show that
the best approximants depend linearly on f , or equivalently, that the best coefficients
Li .f / are given by linear functionals. Only in the latter case, and only for the class
ƒall, it is clear how to compute the best approximants.

We now turn to our second example of data compression, see e.g., DeVore [39].
We explain this problem by assuming that zF is a finite dimensional real space, thus
s D dim. zF / < 1, although s is huge, say, at least in the millions. If the  j form a
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basis then f D Ps
jD1 cj .f / j with real numbers cj .f / that depend linearly on f .

Assume that all the cj .f / are known. In data compression, we want to replace the
complete information given by these s numbers by only a few of them at the expense of
losing the exact approximation of f . That is, we want to find indices ji 2 f1; 2; : : : ; sg
for which the partial informationN.f / D Œj1; cj1

.f /; j2; cj2
.f /; : : : ; jn; cjn

.f /�will
allow us to have a good approximation of f , hopefully, with n much less than s. In
many cases, a good choice of cji

is to select the n largest coefficients from the set
fjc1.f /j; jc2.f /j; : : : ; jcs.f /jg. In this case, we have

Li .f / D cji
.f / for i D 1; 2; : : : ; n,

and the information is not linear in f . So the cost of computing N.f / will be equal
to the cost of selecting n largest elements out of s elements, which is linear in s even
if we assume that the jcj .f /j are given for free. This is a reasonable assumption for
data compression, since the only important factor of the cost is to transfer n largest
coefficients and the rest of the cost can be neglected as a (usually very expensive)
precomputing.

The situation is quite different if we assume that zF is an infinite dimensional space
and we still want to compute the n largest coefficients cj .f / from the representation of
f D P1

jD1 cj .f / j . So now we select the n largest elements from the set fjcj .f /jg
of infinitely many elements. It is really not clear how we can do this computationally.

Consider the general problem of approximating f 2 F by an arbitrary expression
of the form

g D
nX
kD1

cjk
.f / jk

;

where f j gj is a given sequence of basis functions, and the coefficients cjk
and the

indices jk may depend on f . A good n-term approximation g might be difficult if not
impossible to compute, but if it is available then it can easily be transmitted and eval-
uated. Nonlinear approximation is strongly related to Bernstein and manifold widths,
see DeVore [39], DeVore, Howard and Micchelli [40], DeVore, Kyriazis, Leviatan and
Tikhomirov [41], Dung and Thanh [52], Dung [53], Oswald [183], Temlyakov [233],
as well as [36], [37], [38] for many results and further references.

One can assume that a best n-term approximation (with respect to a given basis or
with respect to an optimally chosen basis) is given and ask what kind of algorithms
and error bounds can be proved under this assumption. The papers cited contain many
results in this direction. Moreover many papers on adaptive wavelet algorithms or finite
element algorithms assume this kind of information, see, e.g., the papers by Cohen,
Dahmen and DeVore [31], Dahlke, Dahmen and DeVore [35] and Stevenson [225]. We
will not further pursue this area.
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4.1.2 Algorithms and Their Cost

We already said that all approximations of S W F ! G are of the form A.f / D
'.N.f //, and ' W N.F / ! G for some mapping ' that transforms the information
N.f / to an element of the target spaceG. The informationN is built from admissible
information given by linear functionals Li 2 ƒ. An adaptive information operator N
is of the form (4.9). Hence, in general, the functional Li has to be determined such
that Li .f / can be computed. In addition, also A.f / D '.y1; y2; : : : ; yn.f // has to be
computed. What kind of mappings or computations

.y1; y2; : : : ; yi�1/ 7! Li and y 7! '.y/ (4.12)

do we allow? Usually we have two different strategies depending on whether we deal
with lower or upper bounds, respectively.

For lower bounds, we usually are very generous and allow all mappings of the
form (4.12).1 This makes our lower bounds stronger, since they are valid for an (unre-
alistically) large class of idealized algorithms. The reader may ask, however, whether
one can prove reasonable lower bounds using only such a general assumption on the
mappings. Surprisingly, the answer is often (not always) yes, since N is partial. We
will see many examples where such lower bounds are quite close to upper bounds that
are proved under much stronger conditions on the mappings in (4.12).

We now turn to the assumptions for the upper bounds. In the IBC model of com-
putation, we assume that we can work with elements gi of the space G and perform
basic operations on them. That is, we can compute linear combinations

g D
mX
kD1

ckgik

for ck 2 R and gik 2 G. More formally, we assume the real number model, which
will be discussed later, and an output of the form

out.f / D Œi1; c1; i2; c2; : : : ; im; cm�; (4.13)

with ik 2 N and ck 2 R, is identified with the element g of the target space G.
We comment on the choice of the sequence fgig. Usually, we are free to choose

the sequence fgig. That is, we choose fgig depending on the global parameters of
the problem (such as S; F;G and the error parameter ") but independently of f . It
is desirable to choose fgig such that the number m in out.f / is minimized and the
coefficients ck and the indices ik are easy to compute for all f 2 F . This case is
usually studied in IBC and tight complexity bounds are obtained for many problems.

Sometimes, we are not free to choose the gi ’s. The sequence fgig is given a priori as
part of the formulation of the problem. For example, fgig can be given as a sequence
of B-splines and we want to use it to approximate solutions of partial differential

1Sometimes it is useful to assume that these mappings are measurable. Observe, however, that this is a
very weak assumption.
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equations. Furthermore, we may want to use the same sequence fgig for different
problems, i.e., for different operators S and/or different domains F . We do not discuss
this second case further; we refer the reader to our paper [175].

The standard model of computation used in numerical analysis and scientific com-
puting is the real number model. This is also the underlying model of this book.
For a formal description see Blum, Shub and Smale [13], Blum, Cucker, Shub and
Smale [14], Meer and Michaux [143], and [164], [174], [175], [176]. Here we only
mention some properties of this model.

We assume that the reader is familiar with the concept of an algorithm over a ring as
presented by Blum, Shub and Smale in [13], and Blum, Cucker, Shub and Smale in [14].
We sketch how computation is performed by such algorithms and we restrict ourselves
to algorithms over the reals. Input and output consist of finitely many real numbers.
We have arithmetic instructions, a jump instruction, and several copy instructions. We
now describe these instructions. For simplicity, we restrict ourselves to real numbers,
although it is obvious how to generalize everything to complex numbers.

The standard arithmetic operations are the following: addition of a constant, addi-
tion of two numbers, multiplication by a constant, multiplication of two numbers, and
division of two numbers. Division by 0 is equivalent to a non-terminating computation.
Other instructions, such as x 7! ln.x/ or x 7! bxc are also often allowed.

The algorithm is able to perform backward and forward jumps in the list of instruc-
tions. We also have the usual copy instructions including indirect addressing, see also
[164]. It is clear that many problems of computational mathematics are computable
by such algorithms. Examples include problems that are determined by finitely many
parameters and whose solutions may be obtained by performing a finite number of arith-
metic operations and comparisons. This holds for problems involving polynomials and
matrices.

To deal also with problems that are defined for general spaces of functions, we need
to have an information operation. Typically a black box computes f .x/ for any x or
L.f / for L 2 ƒ. This black box (or oracle) is an additional computational device.
Observe that, in this case, the information about the function f is restricted to f .xi /
orLi .f / for finitely many i . As already discussed, this information does not generally
determine the function f uniquely; it is partial.

The cost of computation can be simply defined by counting how many operations
of various types are performed. In computational mathematics, one usually counts
the number of arithmetic operations, the number of comparisons, and the number
of information operations (oracle calls). The costs of input, output as well as copy
instructions are usually neglected. For simplicity, we also assume that input, and copy
instructions cost 0, although it is obvious how to proceed without this assumption.

Assume that cari denotes the cost of performing one arithmetic operation, whereas
ctop denotes the cost of one comparison, i.e., the cost of performing one comparison of
two real numbers. Comparisons are related to topological complexity and that is why
we use the notation ctop to denote the cost of such an operation, see Hertling [92], Smale
[220], Vassiliev [252], and [174]. We assume that cinfo is the cost of one information
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operation. Suppose that the algorithm terminates on input f 2 F . Let the computation
require nari arithmetic operations, ntop comparisons, and ninfo information operations.
The cost of computing the output is

cost.';N; f / D naricari C ntopctop C ninfocinfo: (4.14)

Sometimes we call ninfocinfo the information cost and naricari Cntopctop the combinatory
or arithmetic cost. The number ntopctop is called topological cost, it is related to the
topological complexity of a problem.

For simplicity, we assume that the cost of all arithmetic operations is the same.
(Of course, this could be easily modified.) On the other hand, it is usually much more
expensive to compute an information operation than any other operation. For some
practical problems, computation of f .x/ or L.f / may require billions of arithmetic
operations and comparisons. That is, it can take hours even on a modern computer,
whereas arithmetic operations or comparisons can be done in a tiny fraction of a second.
That is why in many cases the cost is mainly given by the information cost. It is also
the reason why we use different parameters for the cost of permissible operations. In
general, we want to see how arithmetic, comparison, and information operations affect
the complexity of a problem. The global cost of an algorithm ' BN over F in the worst
case setting is defined as

cost.';N; F / D sup
f 2F

cost.';N; f /: (4.15)

Here we identify, for simplicity, the mapping ' BN with the simplest algorithm for its
computation, i.e., we first compute the information N.f / and then apply ' to obtain
'.N.f // D .' BN/.f /.

4.1.3 Why Do We Use the Real Number Model?

The purpose of this section is to explain in a rather informal way why information-
based complexity uses the real number model as its model of computation. We also
explain why the results in the real number model are practically important for many,
but not for all, computational problems.

First of all, we stress that the real number model is used in many areas of computa-
tion. It is almost universally used in scientific computing and numerical analysis. This
model had already been used in algebraic complexity in the fifties in the work of Os-
trowski [182] and Pan [185] for polynomial evaluations. It was also used in the work of
Coppersmith and Winograd [32], Pan [186], Strassen [226], and others for the famous
problem of matrix multiplication. For more general algebraic problems, the reader
is referred to the books of Bini and Pan [12], and Bürgisser, Claussen and Shokrol-
lahi [23]. The real number model is also used for computational geometry problems,
see e.g., the book of Preparata and Shamos [199], and, in particular Jaromczyk and
Wasilkowski [103], [104] for computation of convex hulls.
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The formal definition of the real number model can be found in the paper of Blum,
Shub and Smale [13], which had a great impact on the further study of this model
and which presented the first NP-complete problem over the reals. For many IBC
problems, as well as many problems in scientific computing and numerical analysis,
we need to use the real number model with “oracles.” The oracles are usually defined
as subroutines (oracles, black boxes) which compute function values at a given point or
the value of a more general linear functional. The formal extension of the real number
model to include oracles can be found in Plaskota [195] and in [164]. More about the
real number model can be found in Meer and Michaux [143], Weihrauch [274] and in
[174], [175], [176], [290]. Pros and cons of the real number model versus the Turing
number model can be found in Traub [239].

Before we go on, we pause for a moment and ask why so many people who solve
scientific computing or numerical problems are using the real number model, and why
there are so few complaints about this model. In fact, with a little exaggeration, one
can say that only some theoreticians are unhappy with the real number model, whereas
many practitioners do not experience any problem with it.

To be fair, we admit that today’s (digital) computers do not use the real number
model. In fact, we believe that tomorrow’s computers won’t use the real number model
no matter how much progress we may observe in the future computer technology.
Why? The reason is simple. In the real number model, we assume that we can store
and perform arithmetic operations on real numbers, and that each such operation costs
one unit. Since even one single real number may require an infinite number of bits to
store, it is really hard to believe that this can be done by a physical device. Take for
example the number � . In the real number model, we assume that any number can be a
built-in parameter; of course, this also includes � as a special case. How can we really
do this if we do not even know all the bits of �? In fact, the computation of the first n
bits of � for large n is a very challenging problem, and it is studied in the bit model,
see for instance the work of Brent [19], [20] and Salamin [206]. More information can
be found in the book of J. M. Borwein and P. B. Borwein [17].

It is now natural to ask what is really used by today’s computers. Almost universally
today’s computers use floating point arithmetic for scientific computation. In many
cases, it is floating point arithmetic with fixed (single) precision. Sometimes double
precision is used for part of the computation, and in rare cases varying precision is
recommended. For the remainder of this section we assume that we are computing
with fixed precision floating point arithmetic.

Most practitioners of scientific computing do not experience much difference be-
tween the results obtained in the real number model and floating point arithmetic (with
fixed precision). Why is this the case? The reason may be that the real number model
and floating point arithmetic are closely related. Indeed, they are. Of course, as always
with mathematical theories, this is true modulo a couple of assumptions. These as-
sumptions hold for many (but not for all) algorithms used in floating point arithmetic,
and for many (but not for all) practical computational problems; this explains why
the difference between the real number model and floating point arithmetic is rarely
observed.
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What are these assumptions that make the real number model practically indistin-
guishable from floating point arithmetic? They are:

• The stability assumption: stable algorithms exist and we use only stable algo-
rithms, and

• The error demand assumption: the approximation error is larger than the product
of the condition number, the roundoff unit of floating point arithmetic, and the
accumulation constant of a stable algorithm.

We now discuss these assumptions in turn. Stability of an algorithm means that
the computed result in floating point arithmetic is the exact solution for a slightly
perturbed problem. Sometimes this property can be significantly weakened but we do
not pursue this in our book, see for instance Kiełbasiński [111]. This is the best possible
property since, in general, there is no way to know the exact data of the problem. The
data are usually measured or observed with some deterministic or stochastic errors.
Furthermore, when we input the data we also perturb them a little. So even assuming
that we have an idealized computer with no rounding errors, at best we could only
exactly solve the problem with slightly perturbed data. The essence of stability is that
we demand this property even in the presence of rounding errors. There is a huge and
beautiful, though in many cases tedious, theory of stability initiated by the fundamental
work of Wilkinson [281], [282] in the sixties. The current state of art can be found in a
recent monograph of Higham [96] with over one thousand references. As the result of
this extensive study of many people over many years, we know stable algorithms for
many computational problems. Still, plenty of open problems need to be solved and
stability is far from being completely understood.

Many stable algorithms are careful implementations of algorithms analyzed over
the reals. Sometimes a few things need to be changed, and a few precautions should
be taken when we want to make the real number algorithm stable. Still, in most cases,
the cost of the stable algorithm is basically the same in floating point arithmetic as in
the real number model.

The cost is basically the same, since in both the real number model and floating
point arithmetic the cost of a single arithmetic operation and comparison does not
essentially depend on the size of the operands.2 We only need to replace the unit cost
of arithmetic operations and comparisons in the real number model by the actual cost
of such operations in floating point arithmetic. The cost of an oracle may be treated
similarly. In the real number model we usually assume that the cost of an oracle call
is fixed; in floating point arithmetic this corresponds to the cost of one subroutine call
that computes, for example, one function value.

Assume that we know an algorithm that enjoys some optimality properties in the
real number model. For instance, it is often the case that we know an algorithm whose
cost in the real number model is close to the complexity of the problem. If we know a

2The property of the real number model and floating point arithmetic that the cost of arithmetic operations
does not depend on the size of operands is probably the most important difference between these models
and the classical Turing machine model (the bit model).
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stable implementation of such an algorithm then we have the same cost also in floating
point arithmetic. Can we then claim that the complexity is the same in both the real
number model and floating point arithmetic? Not yet, since the stable algorithm won’t
compute the same result as its real number counterpart.

This leads us to the error demand assumption. The first lesson in scientific com-
puting is that there is really no way to compute the exact solution for most practical
scientific problems.3 As we have already mentioned, the reason is that the data of the
problem are usually not given exactly. The good thing is, however, that we do not
need to have the exact solution, and a reasonable approximation to the exact solution is
good enough for most practical purposes. There is one more reason why a reasonable
approximation is enough, and this reason is related to mathematical modeling. Usually,
the computational problem is the solution of the mathematical problem which at best
can only approximate the original problem by some modeling, and simplifications like
linearization or discretization. So why should we insist on the exact solution of the
computational problem when we already accepted the modeling error?

Hence, let us agree that we want to compute an approximation to the exact solution.
Let " be the approximation error that we can tolerate as the difference between the
computed and the exact solution.4 The actual value of " depends on the particular
application. We believe that for many problems " needs not be very small and, with
the proper scaling, " from the interval Œ10�8; 10�2� covers numerous applications.5

We assume that we know a stable algorithm for our problem. Since this algorithm
computes the exact solution of a slightly perturbed problem, we need to estimate the
error between the solutions of the exact and perturbed problems. This is measured by the
condition number �.P / of the problemP , see e.g., Kiełbasiński [111], Wilkinson [282]
or [285] for the precise definition. The condition number tells us about the sensitivity
of the solution to small changes of the data. If the condition number is not too large,
the problem is well-conditioned; otherwise, the problem is ill-conditioned. There is a
deep theory of condition numbers, which is not restricted to scientific computing and
numerical analysis. This theory is a form of sensitivity analysis. Nevertheless, for
typical computational problems, the study of condition numbers is often part of the
stability analysis, and can be found in the work of Wilkinson and many others.

We stress that the concepts of stability and conditioning are not related. Stability
is a property of the algorithm whereas conditioning is a property of the problem. If
the problem is ill-conditioned all stable algorithms may fail, since they will generally

3Notable exceptions are problems solved by symbolic computations and combinatorial problems. Such
problems are not solved in floating point arithmetic.

4Hence, we now consider the absolute error. Obviously, it is also reasonable to consider the relative or
normalized error, as will be done later.

5In many papers, including many IBC papers, results are obtained for the asymptotic case, i.e., for
" tending to 0. Such results are not necessarily practical for relatively large ", say once more for " 2
Œ10�8; 10�2�. We believe that more emphasis should be devoted to the non-asymptotic case where "
does not have to be sufficiently small, and error and cost bounds are not presented in terms of O.h."//
or ‚.h."// for some function h, but have an explicit dependence on ". Obviously, obtaining such an
explicit dependence on " is much harder than obtaining asymptotic bounds, and requires much more work.
Generalized tractability addresses these issues, see Chapter 8.
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compute results with large errors. On the other hand, if the problem is well-conditioned
then all stable algorithms will compute results with small errors.

To address the error of a stable algorithm more precisely, let % be the roundoff unit
of floating point arithmetic. That is, % D 2�t , where t is the number of mantissa bits
in floating point arithmetic. For modern computers, % 2 Œ10�16; 10�8�. Furthermore,
there is usually an option to significantly decrease % by the use of double or multiple
precision. We can now put the error demand assumption in a more technical way,
namely

C%.�.P /C 1/ � ": (4.16)

Here, C is the accumulation constant of rounding errors of a stable algorithm. Usually,
C is a low degree polynomial in the number of inputs. Note that we added 1 to the
condition number to have a reasonable lower bound on " also for very well-conditioned
problems for which �.P / � 0.

Inequality (4.16) relates the approximation error to the quality of a stable algorithm
given by its accumulation constant, to the quality of floating point arithmetic given by
its roundoff unit and to the measure of sensitivity of the problem given by its condition
number. We believe that (4.16) holds for many, but not for all, stable algorithms and
computational problems. Indeed, if the problem is relatively well-conditioned, i.e.,
�.P / is not too large, then (4.16) holds in spades, since usually the allowed error "
is much larger than C%.�.P / C 1/. On the other hand, for ill-conditioned problems
we may have troubles with (4.16). There is then the option of switching to double
precision, which roughly corresponds to replacing % by %2. This significantly extends
the domain of applications for which the assumption (4.16) holds. In fact, (4.16) can
be regarded as a guide for selecting an appropriate % when solving a problem with a
given condition number by a stable algorithm.

We briefly comment on well and ill-conditioned problems. Some people believe
that ill-conditioned problems occur only for artificially-generated cases, and that with
proper modeling, we should always end up with a relatively well-conditioned compu-
tational problem. We believe that this is not always the case, and that ill-conditioning is
an inherent part of some practical problems. One notable example is given by ill-posed
problems. However, a regularized ill-posed problem may be well or ill-conditioned. In
any case, we prefer not to rule out ill-conditioned problems, and defer the discussion
what to do if (4.16) does not hold to the concluding part of this section.

We are ready to discuss the error of a stable algorithm. Since a stable algorithm
computes the exact solution of a slightly perturbed problem in floating point arithmetic,
its error is bounded by C%�.P /. Due to (4.16), its error does not exceed ", and
the computed solution is an "-approximation. Hence, we have solved our problem,
although we have used floating point arithmetic instead of the real number model.
Furthermore, as indicated earlier, we did so with basically the same cost as in the real
number model. If the cost of our algorithm in the real number model is close to the
complexity of the problem, we have achieved the same complexity in floating point
arithmetic.
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This shows that results in the real number model and floating point arithmetic are
equivalent, as well as the practical importance of results from the real number model.
We stress once more that the equivalence of results in the real number model and
floating point arithmetic holds modulo the stability and error demand assumptions.

We now assume that at least one of the stability or error demand assumptions does
not hold. Then we may lose the equivalence of results in the real number model and the
floating point arithmetic. In this case, the real number model is no longer appropriate
for computation. We should then use a different model, possibly yielding different
complexity results and different optimal algorithms.

Let us first discuss the stability assumption. Imagine the following situation. For a
given computational problem, we find good complexity bounds and optimal algorithms
in the real number model. Then we take one of the optimal algorithms and try to find
a stable implementation. We stress that for most computational problems, such stable
algorithms have been found. Sometimes, however, the notion of stability had to be
relaxed.

Still, there is always the possibility that for some problem, no optimal algorithm
has a stable implementation. That is, there may be an intrinsic trade-off between
complexity in the real number model and stability. Such a trade-off was shown by
Miller [148] for matrix multiplication. Miller proved that any algorithm that multiplies
two n � n real matrices with cost of order nˇ for ˇ < 3 cannot be stable, whereas the
classical algorithm with cost of order n3 is stable. Hence, the gain in cost must spoil
stability for this problem.

A few comments are now in order. We do not want to give too many technical
details, but let us only mention that the notion of stability used by Miller is quite
strong. The trade-off between complexity and stability for matrix multiplication may
disappear if a more relaxed notion of stability is used.

In any case, the real number model is potentially risky since we may be unable to
find a (weakly) stable implementation of an optimal algorithm. In this case, the real
number model results are useless for practical computations. The existence of such a
practical problem has yet to be shown, but today we cannot rule it out.

One could try to resolve the potential lack of stable algorithms by restricting the
study of complexity to stable algorithms. This is obviously a good idea. However,
the technical difficulty of finding upper and lower complexity bounds for the class of
stable algorithms is significantly higher than for the unrestricted class of algorithms.
For example, for some classes of functions, we know that optimal quadrature formulas
have positive weights, hence they are stable. Unfortunately, there are not many results
along these lines.

We now turn to the case when the error demand assumption is not satisfied. Since the
productC% is usually very tiny, this means that the condition number �.P / is too large,
when compared to the approximation error ".6 Hence, the error demand assumption
fails for ill-conditioned problems. As we already mentioned, one easy fix is to switch

6One can equivalently say that " is too small, compared to the condition number. Since we assume that
the choice of " was indeed reasonable, i.e., not too small, we prefer to say that the condition number is too
large.
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to double or to multiple precision. Indeed, this is often done in computational practice.
Then the cost of an operation depends logarithmically on the precision. If we use only
single or double precision, the cost does not change much.

If the error demand assumption fails and fixed precision floating point arithmetic is
too weak to solve our problem, we may choose a different model of computation. Then
a natural choice is the bit model, in which all arithmetic and comparison operations are
performed on numbers having a finite number of (binary) bits and in which the cost of
all operations depends on the desired accuracy of the output and on the length of the
input numbers. Oracles can also be used, but we must now compute the function value
f .x/ to within a given accuracy ı, the cost being an increasing function of 1=ı. This
model, usually without oracles, is studied in the work of Ko, Schönhage, Weihrauch and
others, see for instance [108], [210], [274], [275]. There is also some IBC work relevant
to the bit model, particularly the work of Plaskota, who studies noisy information with
the cost depending on the noise level. Plaskota’s monograph [195] covers this subject
in depth.

In the bit model, we still want to compute an "-approximation at minimal cost. The
complexity study in the bit model is difficult since, in particular, we must determine
precision needed for each operation used by an algorithm. Although the bit model
may be used for all problems, we believe that its importance can be only seen for ill-
conditioned problems, when the relative simplicity of floating point arithmetic is not
available. A good model problem that should be also studied in the bit model is zero
finding for polynomials or general functions. Clearly, the precision of computation
must be increased as we have better approximations to a zero, see for example the
paper of Neff and Reif [153].

4.1.4 Errors and Complexity

For each f 2 F we want to compute an approximation to S.f /. Let A.f / be the
computed approximation. The distance between S.f / and A.f / will be measured
according to a given error criterion. The most basic error criterion in this book is

the absolute error kS.f / � A.f /k:
Examples of other error criteria include

the relative error
kS.f / � A.f /k

kS.f /k (4.17)

and

the normalized (by kf k) error
kS.f / � A.f /k

kf k ; (4.18)

with the interpretation of 0=0 D 0. We stress that we mainly consider another normal-
ization of the error. We first define the initial error of S by

ewor
0 WD inf

g2G
sup
f 2F

kS.f / � gk: (4.19)
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This is the minimal worst case error of a constant algorithm A.f / D g for all f 2 F .
It is called the initial error since we can compute it by knowing only the formulation of
the problem, without any information about any particular f 2 F . For linear problems,
where S is linear and F is the unit ball of the space zF , the initial error ewor

0 is just the
norm of S since g D 0 is optimal. We believe that properly normalized problems
should have the initial error of order 1. As already indicated in Chapter 3, this is not
the case for some classical problems for which the initial error can be exponentially
small or large in d for the d -variate problem.

We define

the normalized (by the initial error) error
kS.f / � A.f /k

ewor
0

: (4.20)

For a moment we restrict ourselves to the absolute error criterion and recall that the
worst case error of A is given by

ewor.A/ D sup
f 2F

kS.f / � A.f /k: (4.21)

The normalized (by the initial error) error of A is defined by ewor.A/=ewor
0 . Often we

study normalized problems with ewor
0 D 1, for which there is no difference between

these two error criteria.
For the absolute error, we want to find the smallest n for which the error is at most "

and define

nwor."; S; F / D minfn j there exists An with ewor.An/ � "g. (4.22)

Here An is any algorithm of the form An D ' BN , whereN uses at most n admissible
information functionals from ƒ. If we want to stress the role of ƒ, then we write
nwor."; S; F;ƒ/.

For the normalized (by the initial error) error we use instead the definition

nwor."; S; F / D minfn j there exists An with ewor.An/ � " � ewor
0 g. (4.23)

It should be always clear from the context whether we mean the absolute error, the
normalized error, or another type of error. Sometimes it is more convenient to consider
the numbers

ewor.n/ D ewor.n; S; F / D inf
An

ewor.An/ (4.24)

or their normalized counterparts ewor.n/=ewor
0 . Again, if we want to stress the role of

ƒ we write ewor.n;ƒ/. Obviously, nwor."; S; F / and ewor.n/ are inversely related.
The numbers n D nwor."; S; F;ƒ/ describe the information complexity of the

problem. That is, to solve the problem to within an error of ", we need n information
operations.

The total complexity

compwor."; S; F;ƒ/ D inf
AD'BN

ewor.A/�"

sup
f 2F

cost.';N; f / (4.25)
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describes the minimal total cost (including not only the cost of the information but also
the combinatory cost) needed to solve the problem to within ".

As already indicated, for many problems the major part of the cost is the information
cost, so that

compwor."; S; F;ƒ/ is almost the same as cinfon
wor."; S; F;ƒ/: (4.26)

Hence, one gets sharp bounds on the total complexity by studying only the information
complexity. Therefore in this book we mainly study the minimal numbers of informa-
tion operations needed to solve the problem to within ". In the worst case setting, this
means that we study nwor."; S; F;ƒ/.

We briefly mention why the name Information-Based Complexity is used. For
problems satisfying (4.26), the total complexity is approximately equal to the informa-
tion complexity. For other problems, the information complexity is a lower bound on
the total complexity. In any case, for all problems we need to study the information
complexity and this is usually the first step to establish bounds on the total complexity.
To stress this part of analysis the field is called information-based complexity.

We end this section by a brief discussion of proof techniques for getting lower
bounds on the complexity. Various lower bounds can be obtained depending on which
part of algorithms and their cost is studied:

a) information cost and the notion of the radius of information are used to obtain
lower bounds on the number of information operations needed;

b) combinatoric and/or arithmetic considerations are used to obtain lower bounds
on the number of arithmetic operations;

c) topological considerations are used to obtain lower bounds on the number of
branchings; the reader may consult the paper of Smale [220] where the concept of
topological complexity was introduced, as well as the papers of Hertling [92], Vas-
siliev [252] and [174] for specific results concerning topological complexity.

Which lower bound is best depends on the particular problem. In general we should,
of course, try to estimate the (suitably weighted) combination of all these costs to obtain
good lower bounds for the total complexity. For problems studied in this book, (4.26)
usually holds and that is why it is enough to have good estimates on the information
complexity.

4.1.5 Information Complexity and Total Complexity

As we have already mentioned, the total complexity for many IBC problems is roughly
equal to their information complexity. This is the case for most linear problems and
for some nonlinear problems for which an almost optimal error algorithm can be
implemented at cost proportional to the information complexity. There are, however,
some counterexamples. That is, we know a few problems for which the information
complexity is significantly smaller than the total complexity. There even exists a
linear problem with finite, and even reasonably small information complexity, and
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with infinite combinatory complexity, see [268]. This problem is a slight modification
of the linear problem studied in [279] for which the worst case error of any linear
algorithm is infinite whereas the worst case error of some nonlinear algorithms is finite
and may be sufficiently small if proper information is used. There is also a result of
Chu [28] which presents a problem whose total complexity is any increasing function
of its information complexity. Hence, in full generality, the information and total
complexities may be quite different. We must, however, admit that the problems cited
in this subsection are quite artificial, and we do not know if there exists a practically
important problem for which its combinatory complexity is provably much larger than
its information complexity.

There is also a very interesting result of Papadimitriou and Tsitsiklis [187] who
studied a nonlinear problem of decentralized control theory for the class of Lipschitz
functions of four variables. Assuming that only function values can be computed, they
proved that the information complexity is of order "�4. Using the Turing machine
model of computation and assuming that the famous conjecture P 6D NP holds, they
got a surprising result that the total complexity cannot be polynomial in "�1. That is,
it is very likely that the total number of bit operations needed to solve this problem to
within " is not polynomial in "�1, and therefore it is much larger than the information
complexity. It is open what is the total complexity of this problem if the real number
model of computation is used.

4.2 Basic Results for Linear Problems in the Worst Case Setting

We define linear problems by the following assumptions:

• S W zF ! G is a linear operator with zF and G being normed spaces;

• F 	 zF is non-empty, convex, i.e., if f1; f2 2 F then tf1 C .1 � t /f2 2 F for
all t 2 Œ0; 1�, and symmetric (balanced), i.e., if f 2 F then also �f 2 F ;

• ƒ 	 ƒall is a class of linear functionals.

The reader may ask what convexity and symmetry of F have to do with linearity
of the problem. It turns out, see [244, p. 32], that these two properties of being convex
and symmetric7 are equivalent to the existence of a linear operator T W zF ! X for
some normed space X such that

ff 2 zF j kTf k < 1g 	 F 	 ff 2 zF j kTf k � 1g:
This means that, modulo the boundary of the set ff 2 zF j kTf k � 1g, the set F is
generated by a linear operator T . Furthermore, in all estimates it does not matter if we

7Formally we also need to assume that F is absorbing, i.e., for every f 2 zF there exists a positive c
such that cf 2 F . However, this property can be always guaranteed if we take zF D span.F /.
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take or do not take the boundary of the set ff 2 zF j kTf k � 1g. Hence, linearity
of the problem is characterized by linearity of S and T and linearity of functionals
from ƒ. We stress that continuity of linear operators is not (yet) assumed.

We mainly restrict ourselves to the absolute error criterion with the worst case error
given by

ewor.A/ D sup
f 2F

kS.f / � A.f /k: (4.27)

Some of the following results are based on a useful formula for the diameter of
non-adaptive information.

Lemma 4.3. Consider a linear problem and linear non-adaptive information

N non.f / D ŒL1.f /; L2.f /; : : : ; Ln.f /�:

Then
d.N non/ D d.N non; 0/ D 2 sup

h2F;N non.h/D0
kS.h/k: (4.28)

Proof. Lety 2 N non.F / and assume thatf1; f2 2 F withN non.f1/ D N non.f2/ D y.
Then linearity of S andN non yields kS.f1/�S.f2/k D kS.f /k, where f D f1 �f2
andN non.f / D 0. Since F is symmetric, �f2 2 F and since F is convex h WD 1

2
f D

1
2
.f1 � f2/ 2 F and N non.h/ D 0. Thus,

kS.f1/ � S.f2/k D 2kS.h/k � a WD 2 sup
h2F;N non.h/D0

kS.h/k:

Hence, d.N non; y/ � d.N non/ � a. To prove that d.N non; 0/ � a, it is enough to take
f1 D �f2 D h 2 F with N non.fi / D 0 to obtain

d.N non; 0/ � kS.f1/ � S.f2/k D 2kS.h/k:
Taking the supremum with respect to h we get d.N non/ � d.N non; 0/ � a.

Lemma 4.3 states that for linear problems and non-adaptive information, as far
as the diameter of information is concerned, the least informative data in the worst
case setting is given by 0. This holds independently of the form of S , F and N non.
Furthermore, the lemma says that the diameter of information, which is (modulo a
factor of two) a sharp lower bound on the worst case error of algorithms that useN non,
is given by twice the largest solution for problem elements with zero information. This
means that zero information is (again modulo a factor of two) the least informative data
for linear problems. Many information and complexity bounds have been obtained by
using this lemma.

4.2.1 On the Power of Adaption

One of the more controversial issues in numerical analysis concerns adaption. By
adaptive/non-adaptive algorithms we mean algorithms that use adaptive/non-adaptive
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information. The use of adaptive algorithms is widespread and many people believe
that well-chosen adaptive algorithms are much better than non-adaptive ones in most
situations.8

Here we survey what is known theoretically on the power of adaption mostly for
linear problems, see also [165], [242]. We will present some results which state that
under natural assumptions adaptive algorithms are not much better than non-adaptive
ones. There are also other results, however, saying that adaptive algorithms can be
significantly superior to non-adaptive ones for some nonlinear problems. As we will
see, the power of adaption critically depends on our a priori knowledge concerning the
problem being studied; even a seemingly small change in the assumptions can lead to
a different answer.

Let us begin with some well-known examples. The Gauss formula for numerical
integration of univariate functions is non-adaptive since for all functions we compute
function values at the same points. The bisection algorithm and the Newton algorithm
for zero finding of a univariate function are adaptive, since for different functions we
use different information operations. For some nonlinear problems, adaption can be
exponentially better than non-adaption. For example, consider the zero finding problem
for the class

F D ff W Œ0; 1� ! R j f is continuous and f .0/ < 0; f .1/ > 0g.

Then the minimal worst case error of algorithms using non-adaptive information of
cardinality n is 1=.2nC 2/ whereas the minimal worst case error of algorithms using
adaptive information of cardinalityn is 1=2nC1, see [244, p. 166–170]. Hence, adaption
is indeed exponentially better than non-adaption for this problem. Adaption for other
nonlinear problems, such as optimization, is surveyed in [165].

We consider algorithms of the form A.f / D '.N.f // for some mapping ' that
transforms the informationN to the target spaceG andN is of the form (4.9) and built
from admissible information operations Li 2 ƒ.

One might hope that it is possible to learn about f during the computation of
L1.f /; L2.f; y1/; : : : ; Lk�1.f; y1; y2; : : : ; yk�2/ in such a way that one can choose
the next functional Lk to reduce the error more efficiently. Therefore one studies
adaptive information, where the choice ofLk may depend on the previously computed
values L1.f /; L2.f; y1/; : : : ; Lk�1.f; y1; y2; : : : ; yk�2/. For instance, in the case of
function values, Lk.f; y1; y2; : : : ; yk�1/ D f .xk/ and the point xk depends on the
known function values via

xk D  k.f .x1/; f .x2/; : : : ; f .xk�1//;

where  k may be an arbitrary function of .k� 1/ variables. In mathematical statistics,
adaptive information is known as sequential design and non-adaptive information is
known as non-sequential design.

8Unfortunately, different authors use the same word “adaption” for different things. What we discuss here
are algorithms that use adaptive information, see Section 4.1.1. In the numerical analysis community also
other numerical schemes are called adaptive, for example, if non-uniform meshes or nonlinear information
(such as a best n-term approximation) are involved. For a discussion see also [37] and Remark 4.6.



4.2 Basic Results for Linear Problems in the Worst Case Setting 111

Consider adaptive informationN ada of the form (4.9) defined on the setF . SinceF
is non-empty, convex and balanced, the zero element f D 0 belongs to F . We define
the non-adaptive information N non by

N non.f / D ŒL1.f /; L2.f; 0/; : : : ; Ln.0/.f; 0; : : : ; 0/�: (4.29)

Hence, N non has cardinality n D n.0/, i.e., the same number of functionals are used
as N ada uses for the zero element f D 0. Moreover, we also use the same (fixed)
functionals L1; L2; : : : ; Ln for N non as N ada uses for f D 0.

The first general result about adaption is due to Bakhvalov [8], who assumed that
S is a linear functional and the Lk are special linear functionals, for instance given by
function values, Lk.f / D f .xk/. In 1971 Bakhvalov proved that then adaption does
not help.

The adaption problem is a little more complicated if we consider arbitrary linear
operators S instead of linear functionals. It has been known since 1980 that non-
adaptive algorithms are optimal up to a factor 2, as proved by Gal and Micchelli in [60]
and in [244].

Theorem4.4. Consider a linear problem. For any adaptive informationN ada construct
non-adaptive information N non by (4.29). Then

d.N non/ � d.N ada/ and r.N non/ � 2r.N ada/.

Proof. Lemma 4.3 yields

d.N non/ D d.N non; 0/ D d.N ada; 0/ � d.N ada/;

whereas (4.7) gives

r.N non/ � d.N non/ � d.N ada/ � 2r.N ada/:

Hence adaption can be better than non-adaption by a factor of at most 2. There are
examples where adaption is (slightly) better than non-adaption, see [113], where it was
shown that for some linear problem, adaption is 1:074 times better than non-adaption.
Hence, the factor 2 in Theorem 4.4 cannot be replaced by 1 in general. But how much
adaption can help for linear problems is the subject of our next open problem.

Open Problem 16.

• Determine the smallest number a for which

inf
N nonW card.N non/�n

r.N non/ � a inf
N adaW card.N ada/�n

r.N ada/

holds for arbitrary linear problem. We know that a 2 Œ1:074; 2�.
In many cases, however, the factor 2 in Theorem 4.4 is not needed. This holds

if the radius of a set is equal to the half of its diameter. The last property holds for
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many spaces and then we actually have the sharper inequality r.N non/ � r.N ada/.
We already mentioned that this is the case for linear functionals, i.e., when the target
space G is R. More general conditions are given by the next result, with the following
notation.

By B.K/ we mean the set of bounded functions on a set K with the norm kf k D
supx2K jf .x/j, and by C.K/ we mean the set of continuous functions on a compact
Hausdorff space K with the same norm. By L1./ we denote the L1 space with
a measure . For a proof of all cases of the next result, we refer to Creutzig and
Wojtaszczyk [34].

Theorem 4.5. Consider a linear problem. Assume additionally that

• G 2 fR; L1./; B.K/g, or

• zF is a pre-Hilbert space, or

• S W zF ! G D C.K/, where S is compact.

For any adaptive informationN ada construct non-adaptive informationN non by (4.29).
Then

r.N non/ � r.N ada/:

Proof. The proof is based on the fact that under the given assumptions, instead of (4.7)
we have the equality r.N non/ D 1

2
d.N non/.

To understand intuitively Theorems 4.4 and 4.5 one might say that for zero in-
formation we do not have any chance to adjust the choice of the next functional Lk
to decrease the error. The reader may want to use this argument for the integration
example S.f / D R 1

0
f .x/ dx for Lipschitz functions,

F D ff 2 C.Œ0; 1�/ j jf .x/ � f .y/j � jx � yjg:
It turns out that the midpoint rule An,

An.f / D 1

n

nX
jD1

f

�
2j � 1
2n

�

has the minimal worst case error in the class of all adaptive algorithms using at most n
function values for this particular class of functions, and

ewor.An/ D 1

4n
:

Remark 4.6. a) The results so far have not shown any significant superiority of adap-
tive algorithms for linear problems. Nevertheless adaptive algorithms are often used
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in practice. An important application of adaptive algorithms is computation with fi-
nite elements and wavelets, see Babuška and Rheinboldt [6], Cohen, Dahmen and
DeVore [31], Dahlke, Dahmen and DeVore [35], Eriksson, Estep, Hansbo and John-
son [57] and Stevenson [225]. Remember, however, that the same word adaption is
used with different meanings. A thorough discussion of the above results and their
application to the solution of boundary value problems for elliptic partial differential
equations is given in the book of Werschulz [277], see also [37].

b) Of course, it should be stressed that these results on adaption assume that we
have a linear operator S and a convex and symmetric set F . The set F reflects the
a priori knowledge concerning the problem; often it is known that f has a certain
smoothness and this knowledge may be expressed by choosing an appropriate F . If
our a priori knowledge about the problem leads to a set F that is either non-symmetric
or non-convex (or both) then we certainly cannot apply Theorems 4.4 and 4.5 and it
is possible that adaption is significantly better. In fact, adaption can help significantly
for problems for which only one of the three linearity assumptions is violated and the
other two still hold. Examples of such problems can be found in [242, p. 57–63]. In
this sense, the assumptions of Theorems 4.4 and 4.5 are essential.

c) The idea behind Theorems 4.4 and 4.5 is that non-adaptive information that is
good for the zero function 0 2 F is also good for any other f 2 F . This is true for any
linear problem with any norm. However, this result does not automatically lead to good
non-adaptive algorithms. In particular, we do not claim that the optimal non-adaptive
functionals Li somehow correspond to a uniform mesh or grid. There are important
examples where regular grid points are very bad and the optimal (non-adaptive) points
are more complicated. We stress this fact because we noticed that some authors compare
poor non-adaptive algorithms based, for example, on a regular grid with sophisticated
adaptive algorithms and (wrongly) conclude that adaptive algorithms are superior.

We illustrate this point by an example related to the classical star-discrepancy, see
Section 3.1.5 of Chapter 3 for the definition. For k; d 2 N, consider the regular grid

Gdk D ˚
x D Œx1; x2; : : : ; xd � j xi 2 ˚2j�1

2k
j j D 1; 2; : : : ; k

��
:

The star-discrepancy of this set is

disc�1.Gdk / D 1 �
�
k � 1
k

�d
;

see the book of Niederreiter [158]. Putting k D d we obtain a set with dd points and

lim
d!1

disc�1.Gdd / D 1 � 1

e
� 0:63212:

This is very bad behavior showing that grid points are indeed a very poor choice. As
we know from Section 3.1.5 of Chapter 3, much better (still non-adaptive) points exist
since the star-discrepancy of dd optimal points is O.d�.d�1/=2/ with the factor in the
big O notation independent of d .
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d) So far, we studied the worst case error on symmetric convex sets F . This means
that f 2 F is used as our a priori knowledge about the specific problem. One wants
to use as much a priori information as possible. Often, one obtains a class F that is
convex, but not symmetric. This is the case, for example, if we know that f or S.f /
is positive or monotone or convex. Some problems, such as ill-posed problems, can
only be solved in a reasonable way if we use this extra information. Non-symmetric
classes and their widths are not so often studied in approximation theory, see, however,
the recent work of Gilewicz, Konovalov and Leviatan [63].

Hence, it is interesting to study how much adaption can help for linear problems
defined on a convex but non-symmetric set F . For examples and results see [165]. The
first result is due to Kiefer [110] and concerns the problem of numerical integration of
monotone functions. For the problem of Kiefer, as well as for some other problems,
adaption again does not help. For other problems adaption helps, in some cases quite
dramatically. Such problems were studied by Korneichuk [114], Rote [201] and Son-
nevend [223], see also [162]. Here we only give two examples and present an open
problem.

Recovery Problem of Korneichuk [114]. Consider the recovery (approximation)
problem S D id W F ! L1.Œ0; 1�/ for the class

F D ff W Œ0; 1� ! Œ0; 1� j f monotone and jf .x/ � f .y/j � jx � yj˛g,

where 0 < ˛ < 1 with the class ƒstd, i.e., we allow only function values, Li .f / D
f .xi /. Then the minimal worst case error of non-adaptive algorithms that usen function
values is ewor

n D ‚.n�˛/, while the worst case error of an adaptive (bisection-like)
algorithm is of order n�1 ln n. Hence, especially for small ˛, adaption is much more
powerful than non-adaption.

Power of Adaption for Convex Sets, see [163]. Assume that S W zF ! G is a
continuous linear operator andF 	 zF is convex. We compare non-adaptive algorithms
Anon
n and adaptive algorithms Aada

n based on n information operations from ƒall. Then

inf
Anon

n

ewor.Anon
n / � 4.nC 1/2 inf

Aada
n

ewor.Aada
n /: (4.30)

Hence, the error of adaptive algorithms can be at most 4.nC 1/2 times better than the
error of non-adaptive algorithms.

Open Problem 17.

• We know that (4.30) holds for the class ƒall. Is the same result also true for
subclasses of ƒall such as ƒstd?

• Verify if the factor 4.nC1/2 in (4.30) can be decreased to a factor linear inn. Note
that a further decrease ton�ˇ withˇ < 1 is impossible due to Korneichuk’s result.
This problem is related to estimates between Bernstein and Kolmogorov widths,
see [163]. These widths are, however, usually studied only in the symmetric
case.
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It is also of interest to study the power of adaption for problems defined on a non-
convex set F . Examples are classes of functions with certain singularities, see Huerta
[101], Wasilkowski and Gao [265], and Werschulz [278]. For non-convex but sym-
metric sets F , the advantage of adaptive algorithms can be very large. This follows
from Plaskota and Wasilkowski [196] who studied univariate integration of uniformly
bounded r smooth functions with at most one point of singularity. They proved that
the nth minimal error of non-adaptive information is of order n�1, and of adaptive
information is of order n�r . Since r can be arbitrarily large, adaption can be arbitrarily
better than non-adaption. It is interesting to add that if we have the class of uniformly
bounded r smooth functions with two or more singularity points then non-adaptive and
adaptive information are more or less of the same power since both the nth minimal
errors are of order n�1. However, adaption regains its power asymptotically even if we
permit functions with arbitrarily (but finitely) many singular points.

Similar results are obtained for univariate approximation defined on more or less the
same class of functions by Plaskota, Wasilkowski and Zhao [198]. The approximation
error is measured in the Lp-norm for p 2 Œ1;1/. Then for the class of functions
with at most one singularity point, the nth minimal error of non-adaptive information
is at best of order n�1=p and of adaptive information is of order n�r . The authors also
advocate that the L1-norm is not appropriate for studying singular functions, and that
the Skorohod metric should be used instead. The notion of the Skorohod metric can be
found also in, e.g., the books of Billingsley [11] and Partharasarathy [189].

4.2.2 Linear and Nonlinear Algorithms for Linear Problems

Smolyak’s result states that linear algorithms are optimal in the class of all non-adaptive
algorithms for linear functionalsS W zF ! R. Smolyak’s result was part of his Ph.D the-
sis and was not published in a journal; it is generally known only through Bakhvalov’s
paper [8]. We formulate the results of Smolyak and Bakhvalov as follows.

Theorem 4.7. Assume that S W zF ! R is a linear functional and F is a symmetric
convex subset of zF . Assume that A is an arbitrary algorithm A D ' B N ada, where
N ada is of the form (4.9). We denote the non-adaptive informationN non, see (4.29), by

N non.f / D ŒL1.f /; L2.f /; : : : ; Ln.f /�:

Then there is a linear algorithm using nonadaptive information

Anon.f / D
nX
kD1

akLk.f /

such that

ewor.Anon/ � ewor.A/:
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Proof. Let
M D ff 2 F j N non.f / D N ada.f / D 0g:

Since M is symmetric we have

jS.f /j � 1
2
jS.f / � A.0/j C 1

2
jS.�f / � A.0/j

and
sup
f 2M

jS.f /j � sup
f 2M

jS.f / � A.0/j � ewor.A/:

As a consequence we obtain the important fact that

ewor.A/ � supfS.f / j f 2 F; N non.f / D 0g DW r:
Note that r � 0, due to the symmetry of F . Without loss of generality we may assume
that r < 1.

We prove that there is a linear algorithm Anon D '0 B N non with ewor.Anon/ D r .
Define a convex set by

C D f.S.f /; L1.f /; L2.f /; : : : ; Ln.f // j f 2 F g 	 RnC1

and consider a supporting hyperplaneH through a boundary point y of C of the form

y D .r; 0; : : : ; 0/:

We obtain ak 2 R such that

S.f / �
nX
kD1

akLk.f / � r for all f 2 F .

Since S is symmetric, we also obtain that the last sum is at least �r . Hence we have
found that the linear algorithm

Anon.f / D
nX
kD1

akLk.f /

satisfies jS.f / � Anon.f /j � r for all f 2 F . Hence ewor.Anon/ D r � ewor.A/,
where Anon uses the same non-adaptive information N non that is used by A for the
function f D 0.

We add in passing that if only the convexity of F is assumed, but not the symmetry,
then for non-adaptive information an affine algorithm is optimal, see Sukharev [228].
This result was generalized to noisy information by Magaril-Ilyaev and Osipenko [139].

Many authors have studied the relation between general and linear algorithms for
linear problems. In particular we want to mention the work of Creutzig and Woj-
taszczyk [34], Mathé [140], Micchelli and Rivlin [146], Packel [184], Pietsch [191],
Pinkus [193], as well as the works [242], [244], [279]. We should stress that some of
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these authors use a different terminology and speak, for example, about s-numbers,
n-widths, and the extension problem for linear operators. Nevertheless, the essence
of their work addresses the relation mentioned above.

Actually, linear algorithms are optimal under the same conditions, see Theorem 4.5,
under which adaption does not help, see again Creutzig and Wojtaszczyk [34].

Theorem 4.8. Consider a linear problem. Assume additionally that

• G 2 fR; L1./; B.K/g or

• zF is a pre-Hilbert space or

• S W zF ! G D C.K/, where S is compact.

Assume that N W zF ! Rn is a non-adaptive information. Then

r.N / D inf
' linear

ewor.' BN/:

There are examples of linear problems for which linear algorithms are not optimal.
Probably the first such example was found by Micchelli, see [242, p. 87]. It is of the
form S W R3 ! R2 with an `4-norm in the target space. Other such examples are
related to Sobolev embeddings and will be discussed in Section 4.2.4. See also the
work of Donoho [49] and Candes and Tao [27] on compressed sensing.

An extreme example can be found in [279] or [242, p. 81–84]. Here, the error of
any linear algorithm is infinite for any non-adaptive information N while the radius
of a suitable non-adaptive information N is arbitrary small. This is not possible if the
linear problem is bounded in the following sense:

• zF and G are Banach spaces;

• S and N are bounded linear mappings;

• F is the unit ball of zF .

Under these conditions, Mathé [140] used an argument of Pietsch to prove the
following result, see again Creutzig and Wojtaszczyk [34].

Theorem4.9. Consider a linear problem that is boundedwith informationN W zF ! Rn.
Then

inf
' linear

ewor.' BN/ � .1C p
n/r.N /:

Remark 4.10. The numbers ewor.n;ƒall/ and ewor.n;ƒstd/ are inversely related to the
information complexity of a problem, see Section 4.1.4. We know from the results
above that linear algorithms are not always optimal. Nevertheless linear algorithms
might be much easier to realize on a computer.

Therefore we also study the linear widths ewor-lin.n;ƒall/, sometimes also called
approximation numbers, and the linear sampling numbers ewor-lin.n;ƒstd/, where we
only allow linear algorithms ' W Rn ! G.
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4.2.3 Linear Problems on Hilbert Spaces for ƒall

In this section we assume thatH D zF is a Hilbert space and S W H ! G is a bounded
linear operator. We choose F as the unit ball of H . Then we know from Theorem 4.5
that adaption does not help and we know from Theorem 4.8 that linear algorithms are
optimal. If we use the classƒall then there is a tight connection between minimal errors
and Gelfand numbers or Gelfandwidths that, in this case, are equal to the approximation
numbers or linear widths. For more details about s-numbers and n-widths we refer to
the books of Pietsch [191], [192] and Pinkus [193].

Theorem 4.11. Let S W H ! G be a bounded linear operator between a Hilbert
space H with dim.H/ � n and a normed space G. Then there exist orthonormal
e1; e2; : : : ; en inH such that the linear algorithm

An.f / D
nX
iD1

hf; ei iS.ei /

is optimal, i.e.,
ewor.n/ D ewor.An/ D �nC1:

Here �nC1 is the norm of S on the orthogonal complement of fe1; e2; : : : ; eng.
Proof. We know that there is an optimal subspace Un 	 H for the Gelfand widths
of S , see the book of Pinkus [193, p. 16 and 31]. This follows from the fact that the
unit ball ofH orH� is compact in the weak topology. It is also known that the optimal
algorithm is linear and given by the so-called spline algorithm, see again, e.g., the book
of Pinkus.

Spline algorithms and their properties are often described in the literature for
the case when G is also a Hilbert space and S W H ! G is compact, see [242],
[244]. Compactness of S is equivalent to the fact that the problem is solvable, i.e.,
limn!1 ewor.n/ D 0. Then there is a well known connection to the singular value
decomposition of S , which we now describe. The adjoint operator S� W G ! H is
defined by

hS.f /; giG D hf; S�.g/iH
for all f 2 H and g 2 G. Then the self-adjoint operator

W D S�S W H ! H

is also compact. Let f�i ; eig be the eigenpairs of the operatorW such thatW.ei / D �iei
and �1 � �2 � � � � � 0 and

˝
ei ; ej

˛ D ıij . In this case, the optimal information is
given by

Nn.f / D Œhf; e1i ; hf; e2i ; : : : ; hf; eni�:
More precisely, we have the following result.
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Corollary 4.12. Let S W H ! G be a bounded linear operator between a Hilbert
space H with dim.H/ � n and another Hilbert space G. Let �i D p

�i , where
�1 � �2 � � � � � 0 are the eigenvalues of W D S�S W H ! H with W.ei / D �iei
and orthonormal feig. Then the linear algorithm

An.f / D
nX
iD1

hf; ei iS.ei /

is n th optimal, i.e.,
ewor.n/ D ewor.An/ D �nC1:

Note that ˝
S.ei /; S.ej /

˛
G

D ˝
ei ; .S

�S/.ej /
˛ D ˝

ei ; W.ej /
˛ D �j ıij :

Hence the elements S.ei / are orthogonal in G and hS.ei /; S.ei /iG D �i .

4.2.4 Sobolev Embeddings

We discuss Sobolev embeddings, which correspond to approximation problems with
solution operators being the identity (or embedding) from one Sobolev space to another
(larger) Sobolev space. These embeddings are interesting for its own but also are basic
for the understanding of operator equations and the optimal approximation of their
solutions.

Sobolev spaces are just examples of more general Besov and Triebel–Lizorkin
spaces. Nevertheless, to simplify the presentation, we only discuss the classical Sobolev
spaces W k

p .
/ with an integer k, as well as the more general ( fractional ) Sobolev
spaces H s

p .
/ with an arbitrary real s.
In this section we only study results concerning the optimal order of convergence

for fixed spaces. These results do not change if we replace the norm of a space by an
equivalent norm. Hence it is not important to distinguish between different equivalent
norms. However, for the study of tractability, the choice of norm is crucial. We may
have tractability for one norm, and intractability for an equivalent norm.

We need the Fourier transform F and its inverse F �1 on the Schwartz space S and
on the space S 0 of tempered distributions. We now briefly define these notions, see any
book on distributions, e.g., Haroske and Triebel [77], for more detailed information.

For d 2 N, let

S.Rd / D ff 2 C1.Rd / j kf kk;` < 1 for all k; ` 2 N0g,

where
kf kk;` D sup

x2Rd

.1C kxk22/k=2
X

j˛j�`
jD˛f .x/j:
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Here D˛ denotes a partial derivative, ˛ 2 Nd
0 , and j˛j D Pd

iD1 ˛i . That is,

D˛f D @j˛j

@˛1x1@˛2x2 : : : @˛dxd
f:

The space S.Rd / is often called the Schwartz space of rapidly decreasing infinitely
differentiable functions in Rd . A sequence ffng in S.Rd / is said to converge in S.Rd /
to f 2 S.Rd / if kfn � f kk;` ! 0 for all k; ` 2 N0.

For a smooth function f 2 S.Rd /, the Fourier transform and its inverse are given
by

.F f /.x/ D .2�/�d=2
Z

Rd

e�ixyf .y/ dy

and

.F �1f /.x/ D .2�/�d=2
Z

Rd

eixyf .y/ dy

with xy D Pd
kD1 xkyk . Both mappings F and F �1 are bijective on S.Rd /.

The space S 0.Rd / of tempered distributions is the set of all linear continuous func-
tionals T over S.Rd /, i.e., T is linear and T .fn/ ! T .f / whenever ffng converges
to f in S.Rd /. If f 2 Lp.Rd / then Tf , given by

.Tf /.g/ D
Z

Rd

f .x/g.x/ dx;

belongs to S 0.Rd / and is called a regular distribution. Then we define kTf kLp.Rd / D
kf kLp.Rd / and we can identify f and Tf .

The Fourier transform F and its inverse F �1 on S 0.Rd / are given by

.F T /.f / D T .F f / and .F �1T /.f / D T .F �1f /;

where f 2 S.Rd /. Then F as well as F �1 are bijective on S 0.Rd /.
For s 2 R and 1 < p < 1, the space H s

p .R
d / can be defined by

H s
p .R

d / D ˚
T j T 2 S 0.Rd /; kT kH s

p
D 

F �1�.1C k � k2/s=2F T �



Lp.Rd /
< 1�

:

Hence T 2 H s
p .R

d / is a tempered distribution such that F �1 �.1C k � k2/s=2F T � is

a regular distribution Tg with g 2 Lp.Rd /. The Sobolev embedding theorem says
thatH s

p .R
d / is continuously embedded into the space Cb.Rd / of bounded continuous

functions if s > d=p. Then we can identify H s
p .R

d / with a space of continuous
functions and function values are well defined.

In particular, if s D k 2 N0, we obtain

H s
p .R

d /DW k
p .R

d /D ˚
f 2 Lp.Rd / j kf kW k

p
D �P

j˛j�k kD˛f kp
Lp.Rd /

�1=p
<1�

:

Hence the norms of H s
p .R

d / and W k
p .R

d / are equivalent if k D s 2 N0, see, e.g., the
book of Triebel [249]. For s D 0 and 1 < p < 1, we obtain the Lp-spaces.
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The spaces C k.Rd / of k times continuously differentiable functions and the clas-
sical Sobolev spaces W k

p .R
d / for k 2 N0 and p 2 f1;1g do not fit nicely into this

scale of functions but many results for 1 < p < 1 carry over to those spaces for
p 2 f1;1g.

Let 
 	 Rd be a bounded Lipschitz domain (with a nonempty interior). Then
the function spaces H s

p .
/ and W k
p .
/ are defined by restriction of functions from

H s
p .R

d /. More precisely,f 2 H s
p .
/ iff there exists Qf 2 H s

p .R
d / such that Qf ˇ̌

�
D f .

Then the norm of f is defined by

kf kH s
p.�/

D inffk Qf kH s
p

j Qfj� D f g:
If s D k 2 N0 then an equivalent norm can also be defined in the more traditional way
in terms of derivatives without the need to extend f to Rd by the classical Sobolev
norm

kf kW k
p .�/

D
� X

j˛j�k
kD˛f kp

Lp.�/

�1=p
:

Consider now the embedding, or the approximation problem, App.f / D f , where

App W H s1
p1
.
/ ! H s2

p2
.
/;

for a bounded Lipschitz domain
 	 Rd . This embedding is well defined and compact
iff

s1 � s2 > d
�
1

p1
� 1

p2

�
C
; (4.31)

see Haroske and Triebel [76]. From now on, we always assume that (4.31) holds.
Otherwise there is no chance that the worst case errors of algorithms usingn information
operations can converge to 0 as n tends to infinity.

We want to approximate f from the unit ball F of the space H s1
p1
.
/. We are

interested in the numbers ewor.n;ƒall/ and ewor.n;ƒstd/ for these embeddings, see
Sections 4.1.1 and 4.1.4 for the definitions. The numbers ewor.n;ƒall/ are, up to a
factor of two, the same as the Gelfand widths and they describe the error of the optimal
(in general nonlinear) algorithm that is based on n arbitrary linear functionals. The
respective error bounds for standard information, i.e., when we only allow algorithms
that are based on function evaluations, are ewor.n;ƒstd/ and are sometimes called
(nonlinear) sampling numbers.

Remark 4.13. Function values can only be used if they are well defined. This is why
the sampling numbers are usually only studied if

s1 > d=p1: (4.32)

Then H s1
p1
.
/ can be considered as a subset of C.x
/ and function values are well

defined and f 7! f .x/ is a continuous functional on this space.
If the embedding inequality (4.32) into the space C.x
/ is not fulfilled then one can

replace the spaceH s1
p1
.
/by the smaller spaceH s1

p1
.
/\C.x
/. This will be convenient
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later, when we also discuss randomized algorithms. We will do this replacement in the
following without further mentioning it. That is, when s1 � d=p1 and we consider the
class ƒstd, then the space H s1

p1
.
/ is to be replaced by H s1

p1
.
/\C.x
/. Observe that

this last space is not a Banach space since we take the norm of H s1
p1
.
/.

The numbers ewor.n;ƒall/ and ewor.n;ƒstd/ are inversely related to the information
complexity of the embedding, see again Section 4.1.4. We know from Section 4.2.2
that linear algorithms are not always optimal. Nevertheless linear algorithms might
be much easier to implement on a computer. Therefore we also study the linear
widths or approximation numbers ewor-lin.n;ƒall/ and the linear sampling numbers
ewor-lin.n;ƒstd/ that are defined as the minimal worst case errors of linear algorithms
using at most n information operations from the class ƒall or ƒstd, respectively.

The case p2 � p1 is much simpler than p1 < p2 and we start with this simpler
case.

Theorem 4.14. Consider the embedding

App W H s1
p1
.
/ ! H s2

p2
.
/;

where 
 	 Rd is a bounded Lipschitz domain, 1 < p2 � p1 < 1, and (4.31) holds.

• We have

ewor-lin.n;ƒall/ D ‚.ewor.n;ƒall// D ‚.n�.s1�s2/=d /:

• If s1 > d=p1 and s2 > 0 then

ewor.n;ƒstd/ D ‚.n�.s1�s2/=d /:

For
 D Œ0; 1�d , it is known that this order can be obtained by linear algorithms,
i.e.,

ewor-lin.n;ƒstd/ D ‚.n�.s1�s2/=d /:

• If s1 > d=p1 and s2 � 0 then

ewor-lin.n;ƒstd/ D ‚.ewor.n;ƒstd// D ‚.n�s1=d /:

• If s1 � d=p1 then
ewor.n;ƒstd/ D ‚.1/:

Remark 4.15. a) We stress that the constants in the ‚-notation are independent of n
but may depend on all the parameters of the function spaces.

b)Analogous error bounds hold for the classical Sobolev spacesW k
p .
/ forp D 1

(in this case, one may also consider the space C k.x
/) and for p D 1 (and in this case
the classical Sobolev space W k

1 .
/ is embedded into C.x
/ for d D k).
c) In particular, nonlinear algorithms are not essentially better than linear algorithms

if p2 � p1. Also the Kolmogorov widths (which are defined as the minimal error in
linear n-dimensional subspaces) are of the same order as the linear widths in this case.
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The results, and of course also the proofs, are much more complicated if p1 < p2.
We start with the linear and the nonlinear sampling numbers.

Theorem 4.16. Consider the embedding

App W H s1
p1
.
/ ! H s2

p2
.
/;

where 
 	 Rd is a bounded Lipschitz domain and (4.31) holds. We assume that
p1 < p2.

• Let s1 > d=p1. If s2 > 0 or d=p2 � d=p1 < s2 � 0 then

ewor.n;ƒstd/ D ‚.n�.s1�s2/=dC.1=p1�1=p2//:

The same order holds for the numbers ewor-lin.n;ƒstd/ if d=p2 �d=p1 < s2 � 0

or if s2 > 0 and 
 is a cube.

• Let s1 > d=p1. If s2 � d=p2 � d=p1 then

ewor-lin.n;ƒstd/ D ‚.ewor.n;ƒstd// D ‚.n�s1=d /:

• Let s1 � d=p1. Then
ewor.n;ƒstd/ D ‚.1/:

The results on sampling numbers presented in Theorems 4.14 and 4.16 are from
Triebel [248] and Vybíral [253]. The case s1 � d=p1 is much more interesting in the
randomized setting, see Heinrich [86].

Open Problem 18. 9

• We conjecture that

ewor-lin.n;ƒstd/ D ‚.ewor.n;ƒstd//

holds for all bounded Lipschitz domains 
, also if s2 > 0. Prove (or disprove)
this conjecture.

For the case 
 D Œ0; 1�d we refer to Vybíral [253]. It would be of interest to have
explicit constructions of linear sampling algorithms for arbitrary polyhedra.

Now we summarize the known results on the Gelfand numbers ewor.n;ƒall/ and the
approximation numbers ewor-lin.n;ƒall/ in the remaining case p1 < p2. In both cases,
the asymptotic behavior was studied in great detail and only few “limiting cases” are
open. We start with linear algorithms, see Edmunds and Triebel [54], Caetano [24],
and Triebel [249] for the final results.

9Recently solved by Heinrich [87].
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Theorem 4.17. Consider the embedding

App W H s1
p1
.
/ ! H s2

p2
.
/;

where 
 	 Rd is a bounded Lipschitz domain and (4.31) holds.

• If either
p1 � p2 � 2 or 2 � p1 � p2 or p2 � p1

then
ewor-lin.n;ƒall/ D ‚.n�.s1�s2/=dC.1=p1�1=p2/C/:

• If
p1 < 2 < p2 and s1 � s2 > d max.1 � 1=p2; 1=p1/

then
ewor-lin.n;ƒall/ D ‚.n��/;

where

� D s1 � s2
d

� max

�
1

2
� 1

p2
;
1

p1
� 1

2

�
>
1

2
:

• If
p1 < 2 < p2 and s1 � s2 < d max.1 � 1=p2; 1=p1/

then
ewor-lin.n;ƒall/ D ‚.n�..s1�s2/=d�1=p1C1=p2/�p0

1
=2/;

where 1=p1 C 1=p0
1 D 1.

Remark 4.18. Consider

App W H s1
p1
.
/ ! Lp2

.
/;

with s1 > d=p1. Then the classƒall is significantly better than the classƒstd for linear
algorithms iff p1 < 2 < p2. In all other cases, we have

ewor-lin.n;ƒall/ D ‚.ewor-lin.n;ƒstd//;

see [173].

The Gelfand numbers ewor.n;ƒall/ of Sobolev embeddings have been studied in
great detail. The Gelfand numbers of diagonal operators were studied by Gluskin [65]
and it is possible to apply his results to Sobolev embeddings, see Linde [137] and
Tikhomirov [238]. These works contain details about the Kolomogorov numbers that
might be more closely related to classical approximation theory – but not so much to
the study of optimal algorithms. Results on the Gelfand numbers can also be found in
the book of Lorentz, v. Golitschek and Makovoz [138]. Some basic ideas go back to
Kashin [106], [107]. The following result, mainly a summary of known facts, is from
Vybíral [254].
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Theorem 4.19. Consider the embedding

App W H s1
p1
.
/ ! H s2

p2
.
/;

where 
 	 Rd is a bounded Lipschitz domain and (4.31) holds.

• If either
2 � p1 � p2 or p2 � p1

then
ewor.n;ƒall/ D ‚.n�.s1�s2/=dC.1=p1�1=p2/C/:

• If

1 � p1 < p2 � 2 and .s1 � s2/=d > 1=p1 � 1=p2
2=p1 � 1

then
ewor.n;ƒall/ D ‚.n�.s1�s2/=d /:

• If

1 � p1 < p2 � 2 and .s1 � s2/=d < 1=p1 � 1=p2
2=p1 � 1

or if
1 � p1 � 2 < p2 � 1 and .s1 � s2/=d < 1=p0

2

then
ewor.n;ƒall/ D ‚.n.�.s1�s2/=dC1=p1�1=p2/�p0

1
=2/:

• If
1 � p1 � 2 < p2 and .s1 � s2/=d > 1=p0

2

then
ewor.n;ƒall/ D ‚.n�.s1�s2/=dC1=2�1=p2/;

where 1=pi C 1=p0
i D 1.

Remark 4.20. It is interesting that optimal nonlinear algorithms for the class ƒall are
sometimes significantly better than optimal linear algorithms. This can happen only if
p1 < 2 and p1 < p2.

Remark 4.21. a) We defined the spacesH s
p only for 1 < p < 1. However, the results

above also hold for p D 1 and p D 1, as well as for more general spaces. For p 2
f1;1g and s 2 N, we can also consider the classical Sobolev spaces. We recommend
the recent papers of Vybíral [253], [254] for further results on sampling numbers
and s-numbers (approximation numbers, Gelfand numbers, Kolmogorov numbers) of
Sobolev embeddings.

b) The spaces H s
p D H s

p .
/ with 1 < p < 1 and s 2 R are called Sobolev
spaces or fractional Sobolev spaces or Bessel potential spaces. They are special cases
of the more general Triebel–Lizorkin spaces, H s

p D F sp;2, see the recent book of
Triebel [249]. For simplicity we discuss here only the spacesH s

p although most results
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are valid also for the spaces F sp;q and the Besov spaces Bsp;q; see again Triebel [249],
where quasi-Banach spaces are also studied in great detail.

c) We do not even try to give historical remarks on the different widths and s-
numbers and refer the reader to the books of Lorentz, v. Golitschek and Makovoz [138],
Pietsch [191], [192], Pinkus [193], Tikhomirov [238], and Triebel [246].

However, we give a few remarks on sampling numbers. There is a vast literature
for 
 D Œ0; 1�d and also for the periodic case, i.e., when 
 is the torus. In these cases
it is well known (but we do not know who proved this first) that the (linear as well as
nonlinear) sampling numbers for the embedding I W W k

p1
! Lp2

are of the form

‚
�
n�k=dC.1=p1�1=p2/C

�
; (4.33)

see, e.g., the book Ciarlet [29] for upper bounds and Heinrich [80] for upper and lower
bounds. Special cases of this formula for 
 D Œ0; 1�d are also contained in [160]
and in the book of Temlyakov [232]. Besov spaces for 
 D Œ0; 1�d are studied by
Kudryavtsev [117].

More general domains were studied by Wendland [276], who basically studies the
embedding fromC k.x
/ intoL1.
/. A proof of (4.33) for bounded Lipschitz domains
(and more general spaces) is given in [173].

As remarked in Theorem 2.14 of Triebel [247], assertions for approximation num-
bers with respect to bounded C1 domains in Rd remain valid for bounded Lipschitz
domains. The reason is the following. If 
 	 Rd is a bounded Lipschitz domain then
there is a (even universal, i.e., simultaneously for many function spaces) linear exten-
sion operator, see Rychkov [205] and the recent book of Triebel [249, Section 1.11
and 4.3] for details. Using this extension operator, one can use the results for a cube
z
 containing
 to obtain algorithms for
. The same is true for other widths, such as
the Gelfand numbers. For the sampling numbers, however, it is not clear whether the
order of convergence depends on 
 or not. We believe that for most of the standard
function spaces the order of convergence does not depend on 
. But this conjecture
has to be proved, since we can only use function values of the function f W 
 ! R
itself, not of a suitable extension Qf W Rd ! R of f .

Triebel [250] studies sampling numbers for embeddings into Lp2
(with 0 < p2 �

1), where now 
 	 Rd is an arbitrary bounded domain. For suitably defined spaces
it turns out that again the order of convergence is given by (4.33).

Remark 4.22. The results that are presented in this section can be applied to the optimal
approximation of the solution of elliptic problems, see the book of Werschulz [277].
If we also want to include arbitrary (non-regular) elliptic problems then it is crucial to
discuss the embedding

I W H s1
p1
.
/ ! H s2

p2
.
/

with a negative s2, see [36], [37], [38], where the sampling numbers and approximation
numbers are also compared to best n-term approximation with respect to an optimal
Riesz bases or with respect to optimal frames. Sampling numbers for the optimal
approximation of elliptic PDEs are also studied by Vybíral [253].
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Remark 4.23. We will discuss Sobolev embeddings in the randomized setting later in
Remark 4.43.

Remark 4.24. Let us discuss the problem of numerical integration,

S.f / D
Z
�

f .x/ dx;

for the classes H s
p .
/ where 
 	 Rd is again a bounded Lipschitz domain.

For deterministic algorithms we have to assume that function evaluations are con-
tinuous, i.e., s > d=p, and then the optimal order of convergence is

ewor.n;ƒstd/ D ‚.n�s=d /;

as is also the case forL1-approximation. The upper bound follows from Theorem 4.14,
where we have the same bound for the L1-approximation. The lower bound is proved
(again as the lower bound for L1-approximation) via the familiar technique of bump
functions.

With randomized algorithms, the order n�s=d can be improved for all p > 1 and
now it is enough to assume thatH s

p .
/ is embedded intoL2.
/. Upper bounds can be
proved via variance reduction and so one obtains the order of L2-approximation plus
1/2. For p � 2 we obtain

eran.n;ƒstd/ D ‚.n�s=d�1=2/;

for 1 < p < 2 we obtain

eran.n;ƒstd/ D ‚.n�s=d�1C1=p/:

All these results can be found in the literature, at least for special cases. Bakhvalov
proved such results already in 1959, see Bakhvalov [7]. See also Heinrich [80], [81] and
[160], [242]. For the proof of the upper bounds for arbitrary bounded Lipschitz domains
the paper [173] can be used. There one can find also bounds for L1-approximation
(and hence upper bounds for integration) for more general function spaces.

4.3 Some Results for Different Settings

4.3.1 Average Case Setting

In this section we describe some results for the average case setting. Many more details
can be found in [242]. In the average case setting, the error and cost of algorithms
are defined by the average performance of an algorithm with respect to a probability
measure  defined on Borel sets of F . Here F is a subset of a separable Banach
space zF . Many problems treated in IBC are defined on subsets of infinite dimensional
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spaces and we believe that a Gaussian measure or a truncated Gaussian measure may
serve as a good candidate for the probability measure on the set F .

We mainly discuss results for linear problems S W zF ! G on separable Banach
spaces zF and G. Recall that for f 2 F we want to approximate S.f / knowing
y D N.f / 2 Rn, where S is a solution operator and N is an information operator
defined as in Section 4.1.1. Hence we assume that N is given by (4.9). In addition we
always assume that S and N are measurable, which is a rather weak assumption. We
assume that  is a probability measure on F . Then the probability measure � D S�1
is the a priori measure on the set of solution elements S.f / 2 G.

We also need the measure 1 D N�1 on the Borel sets of N.F /. If F 	
zF is closed, then there exists a unique (modulo sets of 1-measure zero) family of

conditional probability measures 2. � j y/ defined on Borel sets of F such that

• 2.N�1.y/ j y/ D 1 for almost all y 2 N.F /,
• 2.B j �/ is measurable for any Borel set B of F ,

• .B/ D R
N.F /

2.B j y/1.dy/ for any Borel set B of F .

Such a family is called a regular conditional probability distribution. It exists
since F is a Polish space, see the book of Parthasarathy [189, p. 147]. Then for any
measurable function Q W F ! RC we haveZ

F

Q.f /.df / D
Z
N.F /

�Z
N�1.y/

Q.f /2.df j y/
�
1.dy/:

The essence of the last formula is that we can first integrate over the set N�1.y/ of
elements from F that are indistinguishable with respect to the informationN , i.e., over
all f such that N.f / D y. This integration is done with respect to the conditional
measure 2. � j y/. Then we integrate over the set N.F / of values of N with respect
to the measure 1 that tells us about the distribution of information values.

Now we define the measure �. � j y/ on the set S.N�1.y// by

�.B j y/ D 2.S
�1.B/ j y/ D 2 .ff 2 F j S.f / 2 Bg j y/ ;

where B 	 G is measurable. Thus �. � j y/ is a probability measure on S.N�1.y//
and tells us about the distribution of solution elements S.f / that are indistinguishable
with respect to N .

The local average radius of the information N is defined by

ravg.N; y/ D inf
x2G

sZ
S.N�1.y//

kx � gk2�.dg j y/:

Of course we have ravg.N; y/ � rwor.N; y/, see Section 4.1. It can be checked that
for a separable normed space G the mapping y 7! ravg.N; y/ is measurable, see



4.3 Some Results for Different Settings 129

Wasilkowski [258] and also [242, p. 199]. Hence we also assume that G is separable,
so that we can now define the average radius of information N by

ravg.N / D
sZ

N.F /

ravg.N; y/21.dy/:

Again it is easy to see that
ravg.N / � rwor.N /;

see Section 4.1.
Assume now that the algorithm A D ' B N W F ! G is measurable. Then we

define the average case error of A by

eavg.A/ D
�Z

F

kS.f / � '.N.f //k2.df /
�1=2

: (4.34)

It is possible to modify this definition for non-measurable ', see [242, p. 205]. Since
measurability is only a weak assumption and, moreover, one can prove that measurable
algorithms are optimal, see [169], we skip the details. As in the worst case, the average
radius of information is equal to the average case error of an optimal algorithm. The
following result is from Wasilkowski [258], it can be also found in [242].

Theorem 4.25. Assume that S W F ! G and N are measurable, where zF and G are
separable Banach spaces and F 	 zF is closed. Then

ravg.N / D inf
'
eavg.';N /:

We add that the infimum is attained by a unique (up to sets of measure zero) ' if
ravg.N / < 1 and if G is a strictly convex dual space, see [169].

Remark 4.26. As in Section 4.1 for the worst case error, we also generalize the defini-
tion (4.34) for some nonlinear problems such as zero finding. If the error e.A; f / � 0

is defined for an algorithm A at f 2 F , for instance as in Remark 4.1, then, assuming
that e.A; � / is measurable, we define the average error of A by

eavg.A/ D
�Z

F

e.A; f /2.df /

�1=2
:

So far we have assumed that information N of the form of (4.9) is given and
fixed. As in (4.10), let n.f / denote the cardinality of N at f . We define the average
cardinality of N by

cardavg.N / D
Z
F

n.f /.df /:

Observe that although n.f / takes obviously integer values, the average cardinality
of N does not have to be an integer. In fact, it is easy to see that cardavg.N / can take
any non-negative real value.
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Since the cost of algorithms is often proportional to the cardinality of N , we take
the average cardinality ofN as a measure of the cost of an algorithm A D ' BN . This
is justified if the arithmetic cost ofN and ' is comparable or negligible to cardavg.N /.

We want to compare the efficiency of different algorithms with average cardinality
at most n. Define

eavg.n/ D inffeavg.' BN/ j cardavg.N / � ng:
Formally, one can now consider n to be any positive real number. Without much loss of
generality, we still assume, as in the worst case setting, that n is a non-negative integer.

We write eavg.n;ƒ/ if we want to stress the set ƒ of admissible linear functionals.
For n D 0, eavg.0/ is the average error of the optimal constant algorithm which is also
called the initial error in the average case setting.

For the absolute error criterion we define

navg-abs."; S/ D minfn j there exists A D ' BN with cardavg.N / � n, eavg.A/ � "g,

and for the normalized error criterion we define

navg-nor."; S/ D minfn j there exists A D ' BN with

cardavg.N / � n, eavg.A/ � "eavg.0/g.

In the average case setting, we want to achieve the minimal average error with an
average cardinality

R
F
n.f /.df / � n. This means that n.f / can be much larger

than n but this can only happen with a small probability. It is an interesting problem
to see how much we gain by using information having varying cardinality instead of
fixed cardinality. That is, how much do we gain when we allow n.f / to vary with f ?

We will report later how much varying cardinality can help for linear problems
and why it cannot change polynomial and weak tractability conditions. For nonlinear
problems, the situation may be quite different. More precisely, there exist nonlinear
problems where algorithms with average cardinality n are much better than algorithms
with a fixed cardinality n. Such a problem is discussed in the following remark,
see [171] for the proofs and more details.

Remark 4.27. We consider classes Fr of functions defined by

Fr D ff 2 C r Œ0; 1� j f .0/ < 0 < f .1/g;
where r 2 N0. The class Fr is equipped with a conditional r-fold Wiener measure r .
Such a Gaussian measure is derived from the classical Wiener measure by r-fold inte-
gration and translation by suitable polynomials.

We want to approximate a zero of the nonlinear equations f .x/ D 0 for f 2 Fr .
We use algorithms A that are based on function values f .xi / or derivatives f .ki /.xi /

at adaptively chosen knots xi . Of course, we assume that ki � r . The output of an
algorithm A is a real number and we use the root criterion,

e.A; f / D dist.f �1.0/; A.f //;
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as our error criterion. We consider the worst case and average case errors of A defined
as

ewor.A/ D sup
f 2Fr

e.A; f /;

eavg.A/ D
Z
Fr

e.A; f /r.df /:

In [171] we present an algorithm A" whose worst case error is at most " and which is
defined as follows. We set Œs0; t0� D Œ0; 1� as the initial interval with a zero of f . We
compute f .0/ and f .1/. For i D 1; 2; : : : , we compute f .xi / and the new enclosing
interval Œsi ; ti � of a zero of f . We stop if ti �si � 2". In that case we return .si C ti /=2.
The algorithm uses steps of the regula falsi (R), the secant method (S), and the bisection
method (B). In a bisection step we use xi D .si�1C ti�1/=2, in a step of the regula falsi
we definexi as the zero of the line through .si�1; f .si�1// and .ti�1; f .ti�1//, while the
secant method uses the zero of the line through .xi�1; f .xi�1// and .xi�2; f .xi�2//.
If a secant step fails, i.e., it does not give a xi 2 Œsi�1; ti�1� then we do a bisection step,
see [171] for the details and [166] for numerical results.

A typical pattern is R R S : : : S B R R S B R R S S S S S S and so on, i.e., from one
step on we use (with probability 1) only the secant method. We always have a length
reduction ti � si � .ti�4 � si�4/=2 of the interval with a zero of f . The worst case
error of the algorithm A" is bounded by " for each f 2 F0 	 Fr . The computational
cost is proportional to the number of function evaluations. For r � 2, the average
cardinality of function values of A" satisfies

cardavg.A"/ � 1

ln 1Cp
5

2

� ln ln.1="/C cr ;

where cr depends only on the measure r , and can be computed numerically.
The algorithmA" enjoys a number of optimality properties. One can prove a lower

bound for very general algorithms:

• instead of function evaluations we also allow the evaluation of derivatives at any
points,

• instead of enclosing algorithms with a guaranteed error " we consider arbitrary
algorithms with average error ".

Nevertheless, the average cardinality of any such algorithm cannot be much smaller
than the cardinality of the algorithm A". More precisely, if the average error of A is at
most " then

cardavg.A/ � 1

ln ˛
� ln ln.1="/C c˛;

for any ˛ with ˛ > r C 1=2 and r � 2.
The stopping rule “ti � si � 2"” in the algorithm A" is adaptive, since the number

n.f / of function evaluations depends on f 2 Fr . Such an adaptive stopping rule is
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crucial. It is known that with a non-adaptive stopping rule

n.f / D n for all f 2 Fr
one can only achieve a linear convergence, i.e., there exists a number ˇ 2 .0; 1/ such
that for any algorithm using n information operations we have

eavg.A/ � ˇn:

Hence to guarantee an average error " we must have

n � ln 1="

ln 1=ˇ
:

This means that with fixed cardinality the minimal cost is of order ln "�1, whereas
with varying cardinality the minimal cost is of order ln ln.1="/. Note the exponential
difference between the orders ln.1="/ and ln ln.1="/. This difference is due to the fact
that when we switch from the worst case cost to average cost, the difference between
worst case errors and average case errors turns out to be insignificant for this particular
nonlinear problem.

We add in passing that global optimization is another nonlinear problem where
adaptive algorithms are much better than nonadaptive algorithms, see the recent paper
of Calvin [26].

In this book we study the average case setting mainly for linear problems with a
Gaussian measure. In Appendix B, we list major properties of Gaussian measures.
We shall see that for such problems, algorithms with varying cardinality are not much
better in terms of polynomial or weak tractability than algorithms with fixed cardinality.
For simplicity, we restrict ourselves to spaces over the real field. In Appendix B it is
mentioned how to deal with the complex field as well.

We now assume that F D zF is a separable real Banach space that is equipped
with a zero-mean Gaussian probability measure. Let S W F ! G be a bounded linear
operator into a separable real Hilbert space G. We always assume that the set ƒ is a
set of continuous linear functionals, henceƒ 	 ƒall D F �. Then the a priori measure
� D S�1 of solution elements is also a Gaussian measure. Its mean is 0 and its
correlation operator C	 W G� D G ! G is given by

C	g D S.C�.LgS// for all g 2 G,

where Lg.h/ D hg; hi with the inner product in G. Note that LgS D Lg B S is an
element of F � and .LgS/.f / D hg; S.f /i. We have

trace.C	/ D
Z
F

kS.f /k2.df / < 1:

Consider first non-adaptive information N D ŒL1; L2; : : : ; Ln�, where Li 2 F �.
Without loss of generality we may assume that the Li are orthonormal with respect to
the scalar product given by , i.e.,˝

Li ; Lj
˛
�

WD Li .C�Lj / D ıi;j for all i; j 2 f1; 2; : : : ; ng.
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Let 1 D N�1 be the image measure on N.F / D Rn. Then 1 is Gaussian with
mean 0. The correlation operator of 1 is the identity, due to the -orthonormality of
the Li . Hence

1.A/ D 1

.2�/n=2

Z
A

exp
�

� 1
2

nX
jD1

t2j

�
dt1 dt2 : : : dtn:

Let y D N.f / 2 Rn. Then the conditional measure 2. � j y/ defined on the Borel
sets of F and concentrated on N�1.y/ is also Gaussian. Its mean is

m�;y D
nX

jD1
yjC�Lj

and its correlation operator C�;N W F � ! F is given by

C�;N .L/ D C�L �
nX

jD1

˝
L;Lj

˛
�
C�Lj for all L 2 F �.

Observe that C�;N does not depend on y, and therefore the local average error of an
optimal algorithm does not depend on y. As a consequence, we do not have “easy” or
“difficult” information y D N.f / 2 Rn in the average case setting. This should be
contrasted with the worst case setting in which zero information was the most difficult
and the local errors and local radii depend on y D N.f /,

Observe that C�;N .Li / D 0 for i D 1; 2; : : : ; n and C�;N .L/ D C�L for all
functionals L from F � which are -orthogonal to the Li , i.e., for which

hL;Li i� D L.C�Li / D 0 for all i D 1; 2; : : : ; n.

This means that the information y D N.f / changes the a priori measure  by shifting
the mean element from 0 to m�;y and by annihilating the correlation operator C� in
the linear subspace spanned by L1; L2; : : : ; Ln.

The a posteriori measure �. � j y/ D 2.S
�1 � j y/ is defined on the Borel sets

of G. It is also Gaussian with mean

m.y/ D Sm�;y D
nX

jD1
yjS.C�Lj /:

Its correlation operator does not depend on y and is given by

C	;N .g/ D S.C�;N .LgS// D C	g �
nX

jD1

˝
g; SC�Lj

˛
SC�Lj

for all g 2 G.
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To minimize the local average error we use the central algorithm 'cen that is the
mean of the conditional measure �. � j y/,

'cen.y/ D m.y/ D Sm�;y D
nX

jD1
yjS.C�Lj /:

The local average radius ravg.N; y/ does not depend on y and is equal to

ravg.N; y/2 D
Z
G

kgk2�.dg j 0/ D trace.C	;N / D trace.C	/ �
nX

jD1
kS.C�Lj /k2:

We summarize this in the following theorem.

Theorem 4.28. Let F be a separable real Banach space equipped with a zero-mean
Gaussian measure and a correlation operatorC�. Let S W F ! G be a bounded linear
operator into a separable real Hilbert spaceG and � D S�1 be a Gaussian measure
on solution elements. Consider non-adaptive informationN D ŒL1; L2; : : : ; Ln� with
Li 2 F � and Li .C�Lj / D ıi;j . Then the algorithm

'cen.y/ D
nX

jD1
yjS.C�Lj /

is central and optimal, with average case error

ravg.N / D
�

trace.C	/ �
nX

jD1
kS.C�Lj /k2

�1=2
:

We give the following interpretation of this result, see again [242] for more details.
Before the computation, we only know the measure  on F and the image measure
� D S�1 on G. The best approximation to solution elements g D S.f / is 0 as the
mean of the a priori measure �. The average radius of the zero information is then

ravg.0/ D eavg.0/ D
p

trace.C	/:

This is the initial error in the average case setting.
After computing y D N.f /, the best approximation is the mean of the a posteriori

measure �. � j y/ and its error is given by the trace of C	;N .
Assume now that S W F ! R is a linear functional. Then � and �. � j y/ are

1-dimensional Gaussian measures and ravg.N / D p
trace.C	;N/ is the standard devi-

ation of the conditional measure �. � j y/. The initial error can be written as

eavg.0/ D
q

trace.C	/ D
�Z

F

jS.f /j2.df /
�1=2

D
q
S.C�S/ D kSk�:
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Since
˝
Li ; Lj

˛ D ıi;j , we can rewrite the average radius of information as

ravg.N / D
vuutkSk2� �

nX
iD1

hS;Li i2� D



S �

nX
iD1

hS;Li i�Li




�

D inf
gi 2G




S �
nX
iD1

giLi





�
:

The same is true in the general case whenG is an arbitrary separable Hilbert space.
For a bounded linear operator Q W F ! G we define

kQk� ´
�Z

F

kQ.f /k2.df /
�1=2

:

Then the initial error can be expressed as

eavg.0/ D
�Z

F

kS.f /k2.df /
�1=2

D kSk�:

We denote by giLi the operator that is defined by .giLi /.f / D Li .f /gi and obtain
the following corollary.

Corollary 4.29. The average radius of a non-adaptive informationN equals the error
of the best approximation of S by linear combinations of theLi in the norm depending
on the measure , i.e.,

ravg.N / D inf
gi 2G




S �
nX
iD1

giLi





�
:

We now present the optimal non-adaptive information for ƒ D ƒall. Let

N D ŒL1; L2; : : : ; Ln�

with Li 2 ƒall and assume as before that Li .C�Lj / D ıi;j . Then Theorem 4.28
implies that we should maximize

Pn
jD1 kS.C�Lj /k2.

Let f��
i g be the orthonormal eigenelements of the correlation operatorC	 W G ! G,

where � D S�1 is the a priori measure of solution elements, i.e.,

C	�
�
i D ��

i �
�
i ;

where ��
1 � ��

2 � � � � � 0. Without loss of generality we assume that ��
i > 0. Define

L�
i by

L�
i .f / D .��

i /
�1=2 hS.f /; ��

i i :
Then the information

N �
n .f / D ŒL�

1.f /; L
�
2.f /; : : : ; L

�
n.f /�
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is an nth optimal non-adaptive information for the class ƒall with radius

ravg.N �
n / D

vuut 1X
jDnC1

��
i :

Moreover, the Li are -orthonormal, L�
i .C�L

�
j / D ıi;j .

It was proved by Wasilkowski [260] that adaptive information with fixed cardinality
does not help and that adaptive informationN with varying cardinality cardavg.N / � n

is not better than the nth optimal non-adaptive information for the class ƒall. We
summarize these results in the following theorem, see [242] for the details.

Theorem 4.30. Let the assumptions of Theorem 4.28 hold. Then

eavg.n;ƒall/ D
vuut 1X
jDnC1

��
i :

The n th optimal information in the class ƒall is non-adaptive, and is given by

N �
n .f / D ŒL�

1.f /; L
�
2.f /; : : : ; L

�
n.f /�;

with
L�
i .f / D .��

i /
�1=2 hS.f /; ��

i i for i D 1; 2; : : : ; n.

We briefly discuss information classes ƒ that are proper subsets of F �. We can
apply Corollary 4.29 to obtain the following result.

Corollary 4.31. The information N �
n D ŒL�

1; L
�
2; : : : ; L

�
n� is n th optimal in the class

ƒ iff L�
i 2 ƒ and

inf
gi 2G




S �
nX
iD1

giL
�
i





�

D inf
Li 2ƒ inf

gi 2G




S �
nX
iD1

giLi





�
:

In general, it is difficult to find L�
i satisfying the last corollary. For the class

ƒ D ƒstd, the functionals L�
i are known only in rare cases. However, we often know

linear functionals from ƒstd with the same order of convergence as L�
i .

Consider now adaptive information with linear functionals from ƒ. We can dis-
tinguish between information with fixed cardinality n and information with varying
cardinality cardavg.N / � n. We summarize some results of Wasilkowski [260] on
adaption, see [242] for the details.

Theorem 4.32. Let the assumptions of Theorem 4.28 hold.
a) Adaptive information with fixed cardinality n is not better than the n th non-

adaptive information.
b) Information with varying cardinality can be better than information with fixed

cardinality. If, however, the squared errors eavg.'n; Nn/
2 of optimal linear algorithms

'n BNn using the n th optimal non-adaptive information form a convex sequence, then
adaptive information of cardavg.N / � n is not better than then th optimal non-adaptive
information.
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Hence, the only case for which adaptive information with varying cardinality can
help for the class ƒ 	 ƒall is when the squares of the nth minimal radii ravg-non.n/

of non-adaptive information form a non-convex sequence. In this case, Plaskota [194]
showed there are linear problems and classes ƒ for which adaption with varying car-
dinality can significantly help for some ". More precisely, let navg-non."/ denote the
minimal number of nonadaptive information operations to guarantee that the average
case error is at most ", and navg-ada."/ denote the minimal expected number of varying
cardinality adaptive information operations to guarantee that the average case error is
at most ". Then there exists a linear problem and a classƒ such that for any arbitrarily
small positive number c there exists a positive " such that

navg-ada."/ � cnavg-non."/:

On the other hand, this gain for a specific " does not really help for tractability. Due
to Theorem 7.7.2 from [242] we know that for all positive " we have

sup
x>1

min
�
navg-non.x"/;

x2 � 1
x2

navg-non."/

�
� navg-ada."/ � navg-non."/:

In particular, take x D 2. Then

3
4
navg-non.2"/ � navg-ada."/ � navg-non."/ for all " > 0.

This implies essentially the same bounds for polynomial tractability if we use non-
adaptive information or adaptive information with varying cardinality. Clearly, weak
tractability is also equivalent for these two cases.

4.3.2 Probabilistic Setting

In this section we describe some results for the probabilistic setting; more details can
be found in [242]. We discuss results for bounded linear problems S W F ! G on a
separable real Banach space F that is equipped with a zero-mean Gaussian measure,
and G is a separable real Hilbert space.

Recall that we want to approximate S.f / knowing y D N.f / 2 Rn, whereN is a
measurable information operator defined as in Section 4.1.1. Hence we assume thatN
is given by (4.9). As discussed before, the probability measure � D S�1 is the a
priori measure of solution elements S.f / 2 G and is also Gaussian.

For a measurable approximation ' BN W F ! G, we define the error in the proba-
bilistic setting by

eprob.';N; ı/ D inf
M W�.M/�ı

sup
f 2F nM

kS.f / � '.N.f //k:

Here ı 2 Œ0; 1/ is a parameter that controls the measure of a set for which we ignore
the size of the error kS.f / � '.N.f //k. Clearly, the error in the probabilistic case is
a non-increasing function of ı.
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Let N be a non-adaptive information, N D ŒL1; L2; : : : ; Ln�, with -orthogonal
functionals Lj . We know from Section 4.3.1 that �. � j y/ is Gaussian with mean
m.y/ D Pn

jD1 S.C�Lj / and correlation operator

C	;N D C	 �
nX

jD1

˝ � ; S.C�Lj /˛S.C�Lj /;
where C	 is the correlation operator of � and h � ; � i stands for the inner product of G.
It turns out that the linear algorithm

'�.y/ D
nX

jD1
yjS.C�Lj /;

which is optimal in the average case setting, is also optimal in the probabilistic setting.
Its error is the same as the radius of information N in the probabilistic setting, with

rprob.N; ı/ D eprob.'�; N; ı/ D inffx j �N .B.0; x// � 1 � ıg: (4.35)

Here �N is Gaussian with mean 0 and correlation operator C	;N , and B.0; x/ denotes
the ball with center 0 and radius x of the space G, i.e., B.0; x/ D fg 2 G j kgk � xg.
Hence, the radius of information in the probabilistic setting is the smallest radius of
the ball whose measure is at least 1 � ı.

Before we start any computation, which formally corresponds to zero information
N D 0, the best approximation to solution elements g D S.f / is 0 as the mean of
� D S�1. Hence the initial error in the probabilistic setting is

rprob.0; ı/ D eprob.0/ D inffx j �.B.0; x// � 1 � ıg: (4.36)

After the computation of y D N.f /, the measure � has changed to the conditional
measure �. � j y/ and we obtain the new radius (4.35). Observe that both � and �N
are zero-mean Gaussian measures. They differ by their correlation operators and most
importantly, by their traces. We have

trace.C	;N / D trace.C�/ �
nX

jD1
kS.C�Lj /k2:

We explain in Appendix B that the Gaussian measure of the ball of radius x > 0 goes
to 1 if the trace of the Gaussian measure goes to 0. This means that the radius in the
probabilistic setting also goes to 0 as the trace approaches 0.

Assume now that S W F ! R is a bounded linear functional. Then the measure �N
is 1-dimensional Gaussian with mean 0 and variance

�.N / D inf
gj 2R




S �
nX

jD1
gjLj




2
�
:
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As we know from Section 4.3.1, the average radius of informationN with the absolute
error criterion is given by ravg.N / D p

�.N /. Note that

�N .B.0; x// D
s

2

��.N /

Z x

0

exp

� �t2
2�.N /

�
dt D  

�
x

ravg.N /

�
;

where

 .z/ D
r
2

�

Z x

0

exp.�t2=2/ dt

is the probability integral. This yields

Corollary 4.33. Let S W F ! R be a bounded linear functional and N W F ! Rn be
a non-adaptive information. Then

rprob.N; ı/ D  �1.1 � ı/ ravg.N /:

For ı ! 0 it follows that

rprob.N; ı/ D
p
2 ln.1=ı/ ravg.N / .1C o.1//:

We return to S being a bounded linear operator. There is a tight link between
the average case setting and the probabilistic setting for linear problems S W F ! G,
since the same non-adaptive information N � D ŒL�

1; L
�
2; : : : ; L

�
n� is optimal. In the

probabilistic setting adaption never helps, while in the average case setting adaption
may help through varying cardinality.

For the absolute error criterion, we want to find the minimal n for which we solve
the problem to within ". That is, this minimal number is now equal to

nprob-abs."; ı; S/ D minfn j there exists An with eprob.AnI ı/ � "g.

Let
navg-abs."; S/ D minfn j there exists An with eavg.An/ � "g (4.37)

be the corresponding minimal cardinality of information needed to solve the same
problem to within " with the absolute error criterion in the average case setting. In
both these definitions we consider information with fixed cardinality n. From the last
corollary we obtain the following one.

Corollary 4.34. Let S W F ! R be a bounded linear functional. Then

nprob-abs."; ı; S/ D navg-abs."= �1.1 � ı/; S/:
Thus, the minimal cardinality in the probabilistic setting is the same as the minimal

cardinality in the average case setting if we replace " by "= �1.1 � ı/. Note that
 .z/ D 1 �p

2=�z�1 exp.�z2=2/.1C o.1// as z goes to infinity. This implies that

 �1.1 � ı/ D
p
2 ln ı�1 .1C o.1// as ı ! 0.
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Hence, for small ı, we have

"= �1.1 � ı/ � "=
p
2 ln ı�1:

Assuming again that S is a bounded linear operator, we turn to the normalized error
criterion. We now want to find the minimal number n for which we reduce the initial
error by a factor ", so that

nprob-nor."; ı; S/ D minfn j there exists An with eprob.AnI ı/ � "eprob.0I ı/g.

Obviously,
nprob-nor."; ı; S/ D nprob-abs."eprob.0I ı/; ı; S/:

The essence of Corollary 4.34 is that for bounded linear functionals, the probabilistic
setting can be analyzed fully by the average case setting. In this volume we will study
only the classƒall, the study of the classƒstd is deferred toVolumes II and III. Obviously,
for the class ƒall, bounded linear functionals are trivial and can be solved exactly by
using at most one information operation. This means, in particular, that the study of the
probabilistic setting for the class ƒall makes sense only for bounded linear operators.
Not much is known about tractability in this setting. We are only aware of the papers
of Lifshits and Tulyakova [135] and Lifshits and Zani [136] on this subject. That is
why the reader will not find a tractability study in the probabilistic setting for bounded
linear operators and for the class ƒall in Volume II.

4.3.3 Randomized Algorithms

Many problems are difficult to solve with deterministic algorithms. One may hope
that randomized algorithms make many problems much easier. It is natural to ask
for which problems does randomization help. This question has been extensively
studied and there exist many positive as well as negative answers. The most classical
result is probably due to Bakhvalov [7]. The optimal rate of convergence for the
integration problem for C k-functions on Œ0; 1�d is n�k=d for deterministic algorithms
in the worst case setting and n�k=d�1=2 for randomized algorithms, see NR 4.3.3:1 for
more references.

In this section we consider the approximation of S W F ! G by randomized al-
gorithms. Again we assume that F is a subset of a normed space zF and also G is a
normed space.

The model of computation can be formalized in slightly different ways, see the
work of Heinrich [79], [80], [81], Mathé [141], Nemirovsky and Yudin [155], Wasil-
kowski [262] and [160], [164], [242]. We do not explain all the technical details of
these models and only give a reason why it makes sense to study different models for
upper and lower bounds, respectively.

• Assume that we want to construct and to analyze concrete algorithms that yield
upper bounds for the (total) complexity of given problems including the arith-
metic cost and the cost of the random number generator. Then it is reasonable
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to consider a more restrictive model of computation where, for example, only
the standard arithmetic operations are allowed. One may also restrict the use
of random numbers and study so-called restricted Monte Carlo methods, where
only random bits are allowed, see the Ph.D. thesis of H. Pfeiffer [190], Gao, Ye
and Wang [61], as well as see [90], [164], [168].

• For the proof of lower bounds we take the opposite view and allow general
randomized mappings of the form (4.12) and a very general kind of randomness.
This makes the lower bounds stronger.

It turns out that the results are often very robust with respect to changes of the
computational model. For the purpose of this book, we define randomized algorithms
as follows.

Definition 4.35. A randomized algorithm A is a pair consisting of a probability space
.
;†;/ and a family .N! ; '!/!2� of mappings such that the following holds:

1. For each fixed !, the mapping A! D '! B N! is a deterministic algorithm as
in Section 4.1, see (4.3), (4.4) and (4.9), based on adaptive information from the
class ƒ.

2. Let n.f; !/ be the cardinality of the information N! for f 2 F . Then the
function ! 7! n.f; !/ is measurable for each fixed f .

Let A be a randomized algorithm. Then

n.A/ D sup
f 2F

Z
�

n.f; !/.d!/

is called the cardinality of A and

eran.A/ D sup
f 2F

�Z �

�

kS.f / � '!.N!.f //k2 .d!/
�1=2

is called the error of A. By
R � we denote the upper integral. For n 2 N, define

eran.n/ D infferan.A/ j n.A/ � ng:

Remark 4.36. If A W F ! G is a deterministic algorithm then A can also be treated
as a randomized algorithm with respect to a Dirac (atomic) measure . In this sense
we can say that deterministic algorithms are special randomized algorithms. Hence
the inequality

eran.n/ � ewor.n/ (4.38)

is trivial.
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The number eran.0/ is called the initial error in the randomized setting. For n D 0,
we do not sample f , and '! is independent of f , but may depend on !. It is easy to
check that for a linear S , the best we can do is to take '! � 0 and then

r ran.0/ D ewor.0/:

This means that for linear problems the initial errors are the same in the worst case and
randomized settings.

For problems that are not linear, it may, however, happen that the initial error in
the randomized setting is smaller than in the worst case setting. For such problems
we can take F and G as not necessarily normed spaces. For instance, take F D G D
f�1

2
; 1
2
g 	 R as the two element set, and Sf D f . Since the values of '! must be

in G, we can only have '! D �1
2

or '! D 1
2

. This easily allows us to check that the
initial error in the worst case setting is just 1, whereas the initial error in the randomized
setting is 2�1=2 and is achieved by taking the uniform distribution, i.e., 
 D G and
both �1

2
and 1

2
occur with probability 1

2
.

It is also possible to make the initial error in the randomized setting arbitrarily small
whereas the initial error in the worst case is still 1. This holds if we agree to measure
the distance between different elements not by a norm. We give an artificial example.
Let F D G D ff1; f2; : : : ; fmg for distinct fi , and Sf D f . Define the local error
of an algorithm A W F ! F by e.A.fi /; fi / D 1 if A.fi / D fi and e.A.fi /; fi / D 0

otherwise. This corresponds to the problem where we want to compute an fj different
from the input fi . Then any constant deterministic algorithm has error 1, while the
initial error in the randomized setting is just m�1=2, and it is achieved for the uniform
distribution on F . Since m can be arbitrarily large, the initial error in the randomized
setting can be indeed arbitrarily small.

To prove lower bounds for randomized algorithms, there basically exists only one
proof technique which goes back to Bakhvalov [7]. The main point is to observe that
the errors in the randomized setting cannot be smaller than the errors in the average
case setting. For this technique one has to prove lower bounds on the average case
error (for deterministic algorithms) and for a “bad” probability measure % that leads to
large error bounds.

More specific, let % be a probability (Borel-) measure on F and let A D ' BN be
a deterministic algorithm. Then we define

eavg.A; %/ D
�Z �

F

kS.f / � A.f /k2 %.df /
�1=2

and
eavg.n; %/ D inf

AD'BN e
avg.A; %/;

where the infimum runs over all (deterministic) algorithms using information from the
given class ƒ with

navg.A; %/ D
Z �

F

n.f / %.df / � n:
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We assume that % is atomic in the sense that

%.M/ D
kX
iD1

ci1M .fi /; (4.39)

where f1; f2; : : : ; fk 2 F and ci > 0 with
Pk
iD1 ci D 1, for some k depending

on n. Here, 1M is the indicator (characteristic) function of M . Then one can use the
following lemma.

Lemma 4.37. Assume that S W F ! G is measurable and % is an atomic probability
measure on F as in (4.39). Then

eran.n/ �
p
2

2
eavg.2n; %/: (4.40)

Proof. Let A be a randomized algorithm with n.A/ � n. Hence

n � sup
f 2F

Z
�

n.f;w/.d!/ �
Z
F

Z �

�

n.f; !/.d!/ %.df /

�
Z �

�

Z
F

n.f; !/ %.df /.d!/ D
Z �

�

navg.N! ; %/ .d!/:

We set 
0 D f! 2 
 j navg.N! ; %/ � 2ng and conclude by Chebyshev’s inequality
that .
0/ � 1

2
. Now we have

e.A/2 D sup
f 2F

Z �

�

kS.f / � '!.N!.f //k2 .d!/

�
Z
F

Z �

�

kS.f / � '!.N!.f //k2 .d!/ %.df /

�
Z �

�

Z
F

kS.f / � '!.N!.f //k2 %.df /.d!/

D
Z
�

eavg.A! ; %/
2 .d!/ � .
0/ � inf

!2�0

eavg.A! ; %/
2 � 1

2
eavg.2n; %/2:

This proves the lemma.

We want to prove lower bounds for eran.n/ for the case where S W zF ! G is
a bounded linear operator between Hilbert spaces and ƒ D ƒall. Unfortunately,
Lemma 4.37 in its present form cannot be used, since it would only yield the triv-
ial lower bound eran.n/ � 0. For technical reasons we define measurable randomized
algorithms as follows. Here we assume that also S W zF ! G is measurable.

Definition 4.38. A measurable randomized algorithm A is a pair consisting of a
probability space .
;†;/ and a family .N! ; '!/!2� of mappings such that the
following hold:
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1. For each fixed !, the mapping A! D '! B N! is a deterministic algorithm as
in Section 4.1, see (4.3), (4.4) and (4.9), based on adaptive information from the
class ƒ.

2. Let n.f; !/ be the cardinality of the information N! for f 2 F . Then the
function n is measurable.

3. The mapping .f; !/ 7! '!.N!.f // 2 G is measurable.

Remark 4.39. If  is a Dirac measure then we obtain a deterministic algorithm with
two properties:

1. The function n W F ! N [ f1g is measurable.

2. The mapping A D ' BN is measurable.

If, on the other hand, A W F ! G is a deterministic algorithm with these two
properties then A can also be considered as a measurable randomized algorithm. This
leads to an open problem, although this is a problem concerning only deterministic
algorithms.

Open Problem 19.

• Assume thatS W F ! G is measurable andƒ is a class of admissible information
functionals. Define

ewor.n/ D inf
An

ewor.An/ (4.41)

as in Section 4.1.4. Under which assumptions can we replace the set of all
(also non-measurable) algorithms An by the set of Borel measurable algorithms
without changing the infimum?

To solve the last open problem one can probably apply measurable selection theo-
rems, see the survey of Wagner [255] and [169]. A partial solution to Open Problem 19
can be obtained if S W zF ! G is linear and continuous and F is the unit ball of zF , both
zF and G are Banach spaces. The quantity ewor.n/ increases at most by a factor of 2 if

we only allow non-adaptive informationNn and by another factor of 2 if we only allow
continuous algorithms 'n. The last relation is a result of Mathé [140, Theorem 11 (v)].
Hence we obtain at least the inequality

ewor.n/ � 1

4
inf

An continuous
ewor.An/:

Hence (4.41) holds modulo a factor of 1=4. We believe that this factor is not needed
and measurable algorithms are always optimal, at least if zF and G are separable.

Definition 4.40. We define

eran-meas.n/ D infferan.A/ j n.A/ � ng;
where A is a measurable randomized algorithm.
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Remark 4.41. If we restrict ourselves to measurable randomized algorithms, then it
is easy to extend the inequality of Lemma 4.37, i.e.,

eran-meas.n/ �
p
2

2
eavg.2n; %/; (4.42)

for arbitrary (Borel) probability measures on F . The proof is the same as the proof of
Lemma 4.37.

Now we assume in addition that S W zF ! G is a bounded linear operator and F
is the unit ball of zF . We also assume that ƒ D ƒall. Then Heinrich [79] proved the
lower bound

eran-meas.n/ � c � a2n.S; %/R
F

kxk %.dx/ :

Here c > 0 is an absolute constant and % is a (centered) Gaussian measure on zF , while
a2n.S; %/ is the average case error of an optimal linear algorithm with cardinality 2n.

We can say a little more when zF and G are Hilbert spaces, see [161], where only
the case with n.f; !/ D n 2 N was studied. For the sake of simplicity we assume that
the problem is solvable, i.e., limn!1 ewor.n/ D 0. Solvability holds iff S is compact.

Theorem 4.42. Assume that S W zF ! G is a compact linear operator between Hilbert
spaces zF and G with ƒ D ƒall. Then

eran-meas.n/ � 1
2
ewor.4n � 1/: (4.43)

Proof. We know that S.ei / D �i Qei with orthonormal feig in zF and f Qeig in G, see
Section 4.2.3. From Theorem 4.11 we also know that ewor.n/ D �nC1.

For m > n, consider the normed .m � 1/-dimensional Lebesgue measure %m on
the unit sphere Em D ˚Pm

iD1 ˛iei j ˛i 2 R;
Pm
iD1 ˛2i D 1

�
. Then

S�
n

� 1X
iD1

˛iei

�
D

nX
iD1

�i˛i Qei

is the optimal algorithm using linear information of cardinality n. This is true for the
worst case, with error �nC1, as well as for the average error with respect to %m, as
follows from the results of [241], [266]. Hence

eavg.n; %m/
2 D

Z
Em

mX
iDnC1

�2i ˛
2
i %m.d˛/:

Since
R
Em

˛2i %m.d˛/ D 1=m we obtain

eavg.n; %m/
2 D 1

m

mX
iDnC1

�2i : (4.44)
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If we put m D 2n then we obtain

eavg.n; %2n/ � 1
2

p
2�2n:

Together with (4.42), we obtain

eran-meas.n/ � 1
2

p
2eavg.2n; %4n/ � 1

2
�4n D 1

2
ewor.4n � 1/:

Remark 4.43. Here we discuss the approximation of Sobolev embeddings in the ran-
domized setting, see Section 4.2.4 for the worst case setting. So far, mainly the case

I W W k
p1
.Œ0; 1�d / ! Lp2

.Œ0; 1�d / (4.45)

has been studied. More general Lipschitz domains are not a problem for the classƒall.
For ƒstd it is not clear whether the order of convergence depends on 
 or not, see the
remarks in Section 4.2.4.

We start with the class ƒstd. If W k
p1
.Œ0; 1�d / is embedded into C.Œ0; 1�d /, then the

optimal rate is the same as for deterministic algorithms, namely

n�k=dC.1=p1�1=p2/C : (4.46)

This holds for linear and nonlinear algorithms. This result is due to Mathé [141], partial
results were proved earlier, see [160], [242].

If W k
p1
.Œ0; 1�d / is not embedded into C.Œ0; 1�d /, but still into Lp2

.Œ0; 1�d /, then
deterministic algorithms withƒstd cannot converge. Randomized algorithms still con-
verge and optimal error bounds were recently proved by Heinrich [86].

Now we turn to the case ƒall. The main results of Mathé [141] and Heinrich [79]
can be summarized as follows. Let 1 � p1; p2 � 1 and k; d 2 N with k > d . If
max.p1; p2/ < 1 or if p1 D p2 D 1 then the optimal rate is n�k=d . If 1 � p1 < 1
and p2 D 1 then the rate is n�k=d .ln n/1=2. Finally, if p1 D 1 and 1 � p2 < 1
then the rate is between n�k=d .ln n/�1=2 and n�k=d . Observe that the optimal rate for
k � d is unknown.

We end this section with some open problems. These problems show that certain
fundamental questions, all settled for a long time for deterministic algorithms, are still
open for randomized algorithms.

Open Problem 20.

• Due to Theorem 4.4, we know that adaption can only help by a factor of at most 2
in the worst case setting for linear problems. Prove or disprove a similar result
for randomized algorithms.

It would be also very interesting to study the power of adaption for linear operators
on convex sets, see (4.30) and Open Problem 17.
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Open Problem 21.

• In Theorem 4.8 we state that linear algorithms are optimal for linear problems
in the worst case setting. It is tempting to suggest that under the same condi-
tions general randomized algorithms are only slightly better than optimal linear
randomized algorithms of the form

A!n .f / D
nX
iD1

L!i .f /g
!
i ;

where the random variables Li and gi do not depend on f . Give a precise form
of this conjecture and prove or disprove it.

Open Problem 22.

• Is there a form of Theorem 4.9 for randomized algorithms?

Open Problem 23.

• We know that if the assumptions of Theorem 4.42 hold, then randomized al-
gorithms are only slightly better than deterministic algorithms. Nevertheless it
would be interesting to characterize optimal randomized algorithms and to com-
pute the values of eran.n/ exactly. If we restrict ourselves to linear algorithms
then the nth minimal error is given by

max
m>n

s
m � nPm
iD1 ��2

i

; (4.47)

where �1 � �2 � �3 � � � � are the singular values of S W zF ! G, see [161]. It
is worthwhile to mention that the numbers in (4.47) appear in different extremal
problems for different computational settings, see the work of Fang and Qian [58].

Open Problem 24.

• Assume that S W zF ! G is a compact linear operator between Hilbert spaces zF
and G with ƒ D ƒall. We believe that

eran.n/ � 1
2
ewor.4n � 1/; (4.48)

but could only prove such an inequality for measurable randomized algorithms,
see Theorem 4.42. Prove (4.48) in full generality.

More generally, find conditions under which eran.n/ D eran-meas.n/.

Open Problem 25.10

• Study Sobolev embeddings

I W H s1
p1
.
/ ! H s2

p2
.
/

10Partly solved recently by Heinrich [87], [88].
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in the randomized setting. As Remark 4.43 indicates, the known results mainly
concern the caseI W W k

p .Œ0; 1�
d /!Lq.Œ0; 1�

d /; other domains and other smooth-
ness classes were not much studied.

For the study of elliptic boundary value problems, the case s2 < 0 and p2 D 2

is especially important, see Remark 4.22 for the worst case setting.

4.4 Multivariate Problems and Tractability

In this section we assume that a whole sequence of problems

Sd W Fd ! Gd ; d 2 N;

is given. The setsFd are subsets of normed spaces zFd , such as the unit ball, and usually
the problem elements of zFd are functions defined on a set Dd 	 Rd . The set Gd is a
normed space. Similarly, ƒd 	 zF � is a set of admissible information functionals.

As in Section 4.1.4 we define certain optimal error bounds and information com-
plexities and, of course, these numbers now also depend on d . We start with the
absolute error in the worst case setting. We want to find the smallest n for which the
error is at most " and define

nwor."; Sd ; ƒd / D minfn j there exists An with ewor.An/ � "g. (4.49)

Here An is any algorithm that approximates Sd and is of the form An D ' BN , where
N uses at most n functionals from ƒd . For the normalized (by the initial error) error
we obtain instead the definition

nwor."; Sd ; ƒd / D minfn j there exists An with ewor.An/ � " � ewor
0 g. (4.50)

It should be always clear from the context whether we mean the absolute error, the nor-
malized error, or another type of error. The numbers n D nwor."; Sd ; ƒd / describe the
information complexity of the problem and in many cases also the complete complexity
of the problem. Sometimes it is more convenient to consider the numbers

ewor.n; Sd / D ewor.n; Sd ; Fd / D inf
An

ewor.An/ (4.51)

or their normalized counterparts ewor.n; Sd /=e
wor.0; Sd /. Again, if we want to stress

the role of ƒd we write ewor.n; Sd ; ƒd /. It is obvious that nwor."; Sd ; ƒd / and
ewor.n; Sd ; ƒd / are inversely related.

In other settings, we proceed analogously. For example, in the average case setting,
we have for the absolute error,

navg."; Sd ; ƒd / D minfn j there exists An with eavg.An/ � "g, (4.52)

and for the normalized error,

navg."; Sd ; ƒd / D minfn j there exists An with eavg.An/ � " � eavg
0 g. (4.53)
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In the probabilistic and randomized settings we have similar definitions
A traditional way to measure the complexity of multivariate problems is to study the

optimal order of convergence and one might believe that a problem is “well behaved”
if the order of convergence does not depend on d . We have seen in Chapter 3 that this
intuition is quite often misleading and therefore we need to study more carefully which
problems are tractable and which are not.

4.4.1 Polynomial Tractability

Most papers on tractability of continuous multivariate problems study what we call in
this book polynomial tractability. We already introduced this notion in Chapter 3 for
a number of examples. We now give the formal definition of polynomial tractability.
Let n."; Sd ; ƒd / be the information complexity in the worst case, average case or
randomized setting for the absolute or normalized error for approximating Sd .11

Definition 4.44. A problem S D fSd g is polynomially tractable (for the class ƒd ), if
there exist non-negative numbers C , q, and p such that

n."; Sd ; ƒd / � Cdq"�p for all d 2 N, " 2 .0; 1/. (4.54)

The problem is strongly polynomially tractable if (4.54) holds with q D 0. In this
case, the exponent of strong polynomial tractability is defined as the infimum of all p
satisfying (4.54) with q D 0.

Finally, if (4.54) does not hold then S is said to be polynomially intractable.

Let n."; d/ D n."; Sd ; ƒd /. Assume, for example, that

n."; d/ � 2d"�p:

Then the order of the error of optimal algorithms An is n�1=p independently of the
dimension d but the problem is not polynomially tractable since it is impossible to
have (4.54) with C independent of d .

Of course, intuitively we may think that polynomially tractable problems are “easy”,
and that polynomially intractable problems are “difficult”. This is not always correct.
Assume, for example, that for a specific problem we have

n."; d/ � 10d10"�10:

Then the problem is polynomially tractable although n."; d/ might be too large for d
and " arising in computational practice. For example, take " D 10�1 and d D 10.
Then n."; d/ � 1021 is huge. On the other hand, take another problem for which

n."; d/ � 1:01d"�1:
11For simplicity, we omit here the probabilistic setting which requires one more parameter ı . In Volume II

we provide a proper generalization of polynomial tractability in the probabilistic setting.
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Then the problem is polynomially intractable but for the same " D 10�1 and d D 100,
we obtain n."; d/ � 10e, which is not large.

Hence (4.54) is a theoretical condition that is often (but not always) useful for
applications. Obviously, the smaller C; q and p in (4.54) the more useful is the notion
of polynomial tractability. This is very similar to the study of polynomial complexity
for discrete problems, see, e.g., the discussion in Arora and Barak [3].

Assume that two sequences

Sd;i W Fd ! Gd ; d 2 N;

of multivariate continuous problems are given, i 2 f1; 2g. If both problems fSd;1g and
fSd;2g are polynomially tractable then intuitively the sum fSd;1 C Sd;2g should also
be polynomially tractable. This is true, and easy to prove, for the absolute error. It is
not true, however, for the normalized error which is shown in the following example
from [287].

Example 4.45. Assume that Fd D Gd are Hilbert spaces and all the operators Sd;i are
compact and self-adjoint. We assume that Sd;1 and Sd;2 have the same eigenvectors
with corresponding eigenvalues are�j;d D 1=j for all j 2 N forSd;1 and ǰ;d D �1=j
for j � 2d � 1 and ǰ;d D �1=.2j / for j � 2d for Sd;2.

Then clearly both problems are properly normalized, kSd;ik D 1. They are strongly
polynomially tractable with exponent one. However, their sum Sd;1 C Sd;2 has non-
zero eigenvalues ǰ D 1=.2j / for j � 2d and norm 2�d�1. The normalized operator

Sd;1 C Sd;2

kSd;1 C Sd;2k
has non-zero eigenvalues 2d=j for j � 2d . Then for the normalized error we have

nwor."; Sd ; ƒ
all/ D ˙

2d ."�1 � 1/�:
Clearly, this problem is intractable. The normalization introduced an exponential factor
in d which caused intractability.

We add in passing that we obtain a somewhat similar result if we compare the L2-
discrepancy with the L1-discrepancy, see Section 3.1.5 of Chapter 3. The numbers
ewor.n; d/ are smaller for the L2-discrepancy, so that one might think that this is the
“easier” problem. However, this problem is intractable with respect to the normalized
error, while the “more difficult” problem of L1-discrepancy is tractable. Again this is
a consequence of normalization.

4.4.2 Weak Tractability

The essence of tractability is that the minimal number of information operations
n."; Sd ; ƒd / needed to solve the problem to within " is not exponential in "�1 and d
for the absolute or normalized error criterion.
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Hence, we want to guarantee that n."; d/ is asymptotically much smaller than
a"

�1Cd for any a > 1. This means that a necessary condition on tractability is

lim
"�1Cd!1

ln n."; d/

"�1 C d
D 0: (4.55)

If condition (4.55) holds then we say that the problem S D fSd g is weakly tractable,
whereas if (4.55) is not satisfied then we say that the problem S D fSd g is intractable.

4.4.3 Generalized Tractability

Generalized tractability may differ from polynomial tractability in two ways. The
first is the domain of ."; d/. For polynomial tractability, " and d are independent,
and ."�1; d / 2 Œ1;1/ � N. For some applications, as in mathematical finance, d is
huge but we are only interested in a rough approximation, so that " is not too small.
There may be also problems for which d is relatively small and we are interested in
a very accurate approximation which corresponds to a very small ". For generalized
tractability, we assume that ."�1; d / 2 
, where

Œ1;1/ � f1; 2; : : : ; d�g [ Œ1; "�1
0 / � N 	 
 	 Œ1;1/ � N (4.56)

for some non-negative integer d� and some "0 2 Œ0; 1� such that

d� C .1 � "0/ > 0:
The essence of (4.56) is that for all such 
, we know that at least one of the

parameters ."�1; d / may go to infinity but not necessarily both of them. Indeed, if
d� > 0 then " may go to 0, so that we are considering multivariate problems with
d � d�, whereas if "0 < 1 then d may go to infinity, so that we are considering
multivariate problems with " � "0.

Hence, for generalized tractability we assume that ."�1; d / 2 
, and we may
choose 
 satisfying (4.56) for some d� and "0. Obviously, the choice of 
 should
reflect what is needed in computational practice.

The second way in which generalized tractability may differ from polynomial
tractability is how we measure the lack of exponential dependence. We define a
tractability function

T W Œ1;1/ � Œ1;1/ ! Œ1;1/;

which is non-decreasing in both variables and which grows to infinity slower than an
exponential function ax when x tends to infinity for any a > 1. More precisely, for a
given 
 satisfying (4.56), we assume that for any a > 1, T .x; y/=axCy tends to 0 for
.x; y/ 2 
 as x C y approaches infinity. This is equivalent to assuming that

lim
.x;y/2�;xCy!1

ln T .x; y/

x C y
D 0: (4.57)
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With
 satisfying (4.56) and T satisfying (4.57), we study generalized tractability.
We say that S D fSd g is .T;
/-tractable if there are non-negative numbers C and t

such that
n."; Sd ; ƒd / � CT ."�1; d /t for all ."�1; d / 2 
.

We also have generalized strong tractability if we replace T ."�1; d / by T ."; 1/. More
precisely, we say that S D fSd g is strongly .T;
/-tractable if there is a non-negative
number t such that

n."; Sd ; ƒd / � CT ."�1; 1/t for all ."�1; d / 2 
.

In both cases, we are interested in the smallest exponents t ; these are called the ex-
ponents of (generalized) tractability and strong tractability. Note that generalized
tractability coincides with polynomial tractability if we take 
 D Œ1;1/ � N and
T .x; y/ D xy. Chapter 8 of this book is devoted to the study of generalized tractabil-
ity and contains more motivations and examples of interesting T and 
.

4.5 Notes and Remarks

NR 4:1. In this chapter we survey results from information-based complexity, as they
are needed for tractability studies. Many of the results can be found in much greater
detail and with proofs in the IBC book [242]. We also survey, however, some more
recent results.

NR 4.1:1. The study of the worst case setting for problems with partial information
has a relatively long history. The first paper in this area we could trace down12 is the
paper of von Mises [149] from 1933 who proposed to study optimal linear algorithms
for univariate integration and the class of functions whose mth derivatives exist and
are uniformly bounded. Around 1950, Bückner [22], Nikolskij [159] and Sard [207]
studied optimal linear algorithms for integration and approximation. Kiefer [109]
studied the nonlinear problem of searching for the maximum of a unimodal function
and proved that Fibonacci search is optimal. His results are based on his MIT Master’s
degree thesis in 1948 and were published in 1953. It seems to us that Kiefer was the first
one to find the complexity of a problem with no restriction on the class of algorithms
and sample points of function values.

Today there are literally thousands of papers analyzing various problems in the
worst case setting.

NR 4.1.3:1. This section is based on [290].

NR 4.2.1:1. This section is based on Creutzig, Wojtaszczyk [34] and on [165], [242].

12We are grateful to Knut Petras who informed us about the paper of von Mises.
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NR 4.2.2:1. Our survey is again based on Creutzig, Wojtaszczyk [34] and on [242].

NR 4.2.3:1. Theorem 4.11 is often stated and proved in the literature for the case when
S W H ! G is compact. The more general result can be found in Pinkus [193].

NR 4.2.4:1. There are hundreds of papers on n-widths, s-numbers, and sampling
numbers for Sobolev embeddings, starting with the paper of Kolmogorov [112] from
1936. These papers are surveyed and some of the results are extended in the recent
papers of Vybíral [253], [254]. We give more references in the text.

NR 4.3.1:1. Much more details on the average case setting and its history can be found
in [242]. In particular, we want to mention that the first papers dealing with the average
case setting for problems with partial information are due to Suldin [229], [230] from
1959 and 1960, and Larkin [130] from 1972. The results reported in this section are
based on the results originally obtained in Lee and Wasilkowski [131], Papageorgiou
and Wasilkowski [188], Wasilkowski [261], and [267] as well as in the works already
mentioned in this section.

NR 4.3.2:1. Much more details on the probabilistic setting can be found in [242]. The
results reported in this section are based on the results originally obtained in Lee and
Wasilkowski [131], Wasilkowski [260], [261], and [289].

NR 4.3.3:1. The complexity of randomized algorithms were studied and surveyed in
Heinrich [80], [81], Wasilkowski [262], and in [160], [165], [242]. The reader can find
many references there. Here we only mention a few important works.

Nemirovsky, Yudin [155] studied the problem of global optimization. Integral
equations were studied by Emelyanov and Ilin [56], Heinrich [82], [84], Heinrich and
Mathé [89], Pfeiffer [190], and in [168]. The randomized complexity of elliptic PDEs
was studied by Heinrich [85].

The computation of high dimensional integrals is often performed with randomized
algorithms, see Heinrich [80] as well as [160], [165], [242], [262] for “classical”
results. Tractability of high dimensional integration in the randomized setting was
studied in [219] and by Wasilkowski [264]. Numerical integration with respect to an
unknown density was studied in [142] and in Rudolf [203].

NR 4.3.3:2. Concerning Lemma 4.37: Bakhvalov [7] considered the case n.f; !/ D
n 2 N of fixed cardinality. Randomized algorithms with varying cardinality were
studied by Wasilkowski [262], in [160], [242], and in many more recent papers. A less
explicit form of the lemma is contained in [160, p. 64]. Similar results are contained
in Heinrich [81], [82]. With almost the same proof one obtains the inequality

eran.n/ �
r
˛ � 1
˛

eavg.˛n; %/; (4.58)

which holds for ˛ > 1, see Pfeiffer [190].
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NR 4.3.3:3. Concerning Theorem 4.42: For simplicity we have only used (4.40) and
(4.44) form D 2n. Of course one may use (4.58) and (4.44) for a differentm to obtain
a more general result.

NR 4.4:1. The concept of polynomial tractability was introduced in [287], the concept
of generalized tractability in [69].



Chapter 5

Worst Case Setting

This is the first chapter in which we study polynomial and weak tractability for general
linear multivariate problems. In this chapter we define multivariate problems over
Hilbert spaces, and consider the absolute and normalized error criterion in the worst
case setting for the class ƒall of all linear continuous functionals. The class ƒstd of
function values will be studied in Volumes II and III.

In Section 5.1, we study a sequence of linear multivariate problems fSd g for which
SdC1 is not necessarily related to Sd . Polynomial and weak tractability conditions
are expressed in terms of their singular values. The essence of these conditions is
that the singular values must decay sufficiently quickly and have polynomial or non-
exponential bounds in terms of d . It is also shown that polynomial and weak tractability
for the absolute and normalized error criteria are not related. That is, it may happen
that polynomial or weak tractability holds for one of the error criteria and does not for
the other.

In Section 5.2, we assume that a sequence of linear multivariate problems is defined
by a univariate linear problem and that d -variate problems are obtained by tensor
products of the univariate problem. Hence, we now study problems for which all
variables and groups of variables play the same role. To omit a trivial case we assume
that the univariate problem has at least two non-zero singular values. Polynomial and
weak tractability conditions are now expressed only in terms of the singular values of
the univariate problem. In this case, we have a number of negative results establishing
the curse of dimensionality or polynomial intractability. For example, any linear tensor
product problem suffers from the curse of dimensionality for the absolute error criterion
if the largest singular value is larger than one, and in the normalized error criterion if the
two largest singular values are the same. Any such problem is polynomially intractable
for the absolute error criterion if the largest singular value is at least 1 and for the
normalized error criteria independently on the largest singular value. There are also a
few positive results. In particular, polynomial tractability holds for the absolute error
criterion if the largest singular value is less than 1 and if the singular values enjoy a
polynomial decay. In fact, polynomial tractability is equivalent to strong polynomial
tractability in this case. For the normalized error we can have only weak tractability,
which holds if the two largest singular values are different and if the singular values
enjoy a logarithmic decay.

In Section 5.3, we study linear weighted tensor product problems. We define such
problems and introduce the formal definitions of product, order-dependent, finite-order
and finite-diameter weights. The essence of all these definitions is to model multivari-
ate problems for which successive variables or groups of variables play different roles.
In particular, we may have d -variate functions that are the sum of functions of a few,
say !�, variables (finite-order weights) or d -variate functions with decaying depen-
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dence on successive variables (product weights). To keep the number of pages in this
book relatively small, we do not study tractability of weighted problems for the abso-
lute error criterion. We leave it as an open problem and we believe that the existing
proof technique will allow our readers to solve this problem in the near future.

We restrict ourselves to the normalized error criterion and present polynomial and
weak tractability conditions in terms of the weights and the singular values of the
univariate problem. We now have many positive tractability results, as long as the
weights decay sufficiently fast. For example, we have polynomial tractability for
product weights iff the sum of some powers of the weights in the d -dimensional case
grows at most proportionally to ln d , and strong polynomial tractability iff the latter
sum is uniformly bounded in d . For finite-order weights, we always have polynomial
tractability, and the degree of d in the estimate of the information complexity is at
most !�. For finite-diameter weights, where a d -variate function is a sum of functions
depending on at most q� successive variables, this degree is just one.

We also study weak tractability. As we already mentioned, if the two largest sin-
gular values are different and the singular values decay logarithmically then even the
unweighted problem is weakly tractable. So, the natural question is to verify how much
weights can help if the largest singular value is of multiplicity p � 2. Then indeed
we have weak tractability under a suitable assumption on the weights. In particular,
for p D 2, this assumption says that the number of weights larger than "2 cannot be
exponential in "�1 C d .

The results of this chapter are illustrated by three linear multivariate problems. We
consider the linear Schrödinger equation, and multivariate approximation for weighted
Korobov and Sobolev spaces.

The example of multivariate approximation for the weighted Sobolev space of
Section 5.4.1 is based on [280], and shows that there are various ways of obtaining
weighted problems leading to different tractability results. This example also illustrates
an intriguing relationship between smoothness and tractability that we have already
discussed in the initial chapters. It turns out that smoothness hurts tractability for
this example, and tractability is only possible for the smallest value of the smoothness
parameter. Even when the problem is tractable, then the conditions on the weights
are a little different than before. For example, we have polynomial tractability for
finite-order weights. However, we must assume that they are bounded, as opposed to
the previous case.

5.1 Linear Problems Defined over Hilbert Spaces

In this section we consider linear multivariate problems defined over Hilbert spaces.
We study their polynomial and weak tractability for the absolute and normalized error
criteria in the worst case setting and for the class ƒall.

As in Section 4.4 of Chapter 2, we consider the problem S D fSd g, where
Sd W Hd ! Gd is a compact linear operator and Hd and Gd are Hilbert spaces.
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We know from Section 4.2 of Chapter 2 that the nth minimal error of the compact
operator Sd in the worst case setting for the class ƒall is the .nC 1/st singular value
of Sd which, in turn, is the square root of the .nC1/st largest eigenvalue �d;nC1 of the
compact self-adjoint and positive semi-definite operator Wd D S�

d
Sd W Hd ! Hd .

We first consider tractability of S for the absolute error criterion. Then the infor-
mation complexity n."; d/ ´ nwor."; Sd ; ƒ

all/ of the multivariate problem Sd for the
class ƒall is

n."; d/ D minfn j �d;nC1 � "2g:
The eigenvalues f�d;j g1

jD1 can be any non-increasing sequence converging to 0 and
hence any function n W R � N ! N0 that is non-increasing in the first variable is
possible as n."; d/.

It is clear that tractability of S depends on the behavior of the sequence of eigenval-
ues f�d;j g1

j;dD1. To omit the trivial case, we assume that S is not 0, i.e., no Sd is the
zero operator, which implies that �d;1 > 0 for all d 2 N. We first study polynomial
tractability.

Theorem 5.1. Consider the non-zero problemS D fSd g for compact linearSd defined
over Hilbert spaces. We study the problem S for the absolute error criterion in the
worst case setting and for the class ƒall.

• S is polynomially tractable iff there exist C1 > 0, q1 � 0, q2 � 0 and � > 0

such that

C2 ´ sup
d

� 1X
jDdC1d

q1 e
��d;j

�1=�
d�q2 < 1: (5.1)

• If (5.1) holds then

n."; d/ � �
C1 C C �2

�
dmax.q1;q2�/"�2� for all " 2 .0; 1� and d D 1; 2; : : : .

• If S is polynomially tractable, so that n."; d/ � Cdq"�p for some positive C
and p with q � 0, then (5.1) holds with

C1 D C C 2; q1 D q; q2 D 2qp�1;

and for any � such that � > p=2. Then

C2 � C 2=p� .2�=p/1=� ;

where � is the Riemann zeta function.

• S is strongly polynomially tractable iff (5.1) holds with q1 D q2 D 0. The
exponent of strong polynomial tractability is

pstr-wor D inff2� j � satisfies (5.1) with q1 D q2 D 0g.
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Proof. Assume first that we have polynomial tractability with n."; d/ � Cdq"�p for
some positive C and p, and q � 0. This means that �d;n.";d/C1 � "2. Since the
eigenvalues �d;j are non-increasing, we have

�d;bCdq"�pcC1 � "2:

Suppose that j D bCdq"�pc C 1. If we vary " 2 .0; 1� then j takes the values
j D bCdqc C 1; bCdqc C 2; : : : . We also have j � Cdq"�p C 1 which is equivalent
to "2 � .Cdq=.j � 1//2=p . Hence

�d;j �
�
Cdq

j � 1
�2=p

for all j � bCdqc C 1.

We will be using this inequality for

j D d.C C 2/dqe; d.C C 2/dqe C 1; : : : :

This is valid since d.C C 2/dqe � .C C 2/dq � bCdqc C 2 � bCdqc C 1. We also
have j � 2.

For � > p=2, we get

� 1X
jDd.CC2/dqe

��d;j

�1=� � .Cdq/2=p
� 1X
jDd.CC2/dqe

.j � 1/�2�=p
�1=�

� .Cdq/2=p
� 1X
jD1

j�2�=p�1=�
D .Cdq/2=p�.2�=p/1=� :

Thus

C2 ´ sup
d

� 1X
jDd.CC2/dqe

��d;j

�1=�
d�2q=p � C 2=p�.2�=p/1=� < 1:

Hence, (5.1) holds withC1 D CC2, q1 D q, q2 D 2q=p, and any � such that � > p=2
and C2 � C 2=p�.2�=p/1=� . This also proves the third point of the theorem.

Assume now that (5.1) holds. Since �d;j are ordered, �d;jC1 � �d;j , we have

�
n � dC1dq1e C 1

�1=�
�d;n �

� 1X
jDdC1d

q1 e
��d;j

�1=� � C2d
q2 (5.2)

for n D dC1dq1e; dC1dq1e C 1; : : : .
Choose the smallest n such that�

n � dC1dq1e C 2
��1=�

C2d
q2 � "2:
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Then �d;nC1 � "2 and

n D
�
C2d

q2

"2

���
C dC1dq1e � 2 � C �2 d

q2�

"2�
C C1d

q1

� C1"
2� C C �2
"2�

dmax.q1;q2�/ � �
C1 C C �2

�
dmax.q1;q2�/"�2� :

Hence, S is polynomially tractable and n."; d/ � Cdq"�p with C D C1 C C �2 ,
q D max.q1; q2�/ and p D 2� . This also proves the second point of the theorem.

Strong polynomial tractability of S is proven similarly by taking q D 0 in the first
part of the proof, and q1 D q2 D 0 in the second part. The formula for the exponent of
strong polynomial tractability follows from the second and third points of the theorem.
This completes the proof.

The essence of Theorem 5.1 is that polynomial tractability of S fully depends
on the behavior of the eigenvalues �d;j modulo the first polynomially-many largest
eigenvalues. That is, as long as j < dC1dq1e for some C1 and q1, then there is
no condition on the eigenvalues �d;j . This is quite natural since with polynomially-
many information operations we can eliminate the effect of the first polynomially-
many largest eigenvalues. However, for j � dC1dq1e the behavior of the remaining
eigenvalues is essential. A necessary and sufficient condition for polynomial tractability
of S is that the sum of their powers must be at most polynomial in d . To obtain strong
polynomial tractability of S , we may ignore only finitely-many largest eigenvalues and
the sum of the rest of eigenvalues raised to some power must be uniformly bounded
in d .

It is easy to check that (5.1) holds iff there exist positive C1; C2 and non-negative
q1, q2 and positive r such that

�d;n � C2d
q2
�
n � dC1dq1e C 1

��r
for all n � dC1dq1e. (5.3)

Indeed, if (5.1) holds then (5.2) implies (5.3) with the sameC1; C2; q1; q2 and r D 1=� .
On the other hand, if (5.3) holds then for any � > 1=r we have

� 1X
jDdC1d

q1 e
��d;j

�1=� � C2d
q2�.� r/1=� ;

and (5.1) holds.
The essence of (5.3) is that polynomial tractability ofS holds iff, modulo polynomi-

ally-many largest eigenvalues, the remaining eigenvalues �d;n are bounded polynomi-
ally in d and .n � dC1dq1e C 1/�1.

As an example observe that for �d;j D e˛
p
dj�ˇ we do not have polynomial

tractability for ˛ > 0, whereas strong polynomial tractability holds for ˛ � 0 and
ˇ > 0. In the latter case, the exponent of strong polynomial tractability is 2=ˇ.
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We now turn to the normalized error criterion for the same class ƒall and prove an
analogous theorem characterizing polynomial tractability in terms of the behavior of
the eigenvalues f�d;j g. We now have

n."; d/ D minfn j �d;nC1 � "2�d;1g:
Theorem 5.2. Consider the non-zero problemS D fSd g for compact linearSd defined
over Hilbert spaces. We study the problem S for the normalized error criterion in the
worst case setting and for the class ƒall.

• S is polynomially tractable iff there exist q2 � 0 and � > 0 such that

C2 ´ sup
d

� 1X
jD1

�
�d;j

�d;1

���1=�
d�q2 < 1: (5.4)

• If (5.4) holds then

n."; d/ � C �2 d
q2�"�2� for all " 2 .0; 1� and d D 1; 2; : : : .

• If S is polynomially tractable, so that n."; d/ � Cdq"�p for some positive C
andp with q � 0, then (5.4) holds with q2 D 2q=p and any � such that � > p=2.
Then

C2 � 21=� .C C 2/2=p�.2�=p/1=� :

• S is strongly polynomially tractable iff (5.4) holds with q2 D 0. The exponent
of strong polynomial tractability is

pstr-wor D inff2� j � satisfies (5.4) with q2 D 0g.

Proof. Since the proof is similar to the previous one, we only sketch the differences
between them. Assuming that n."; d/ � Cdq"�p we now know that

�d;n.";d/C1 � "2�d;1:

This yields as before that

�d;j

�d;1
�
�
Cdq

j � 1
�2=p

for j D bCdqc C 1; bCdqc C 1; : : : :

Obviously, �d;j =�d;1 � 1 for all j .
For � > p=2, we now obtain

� 1X
jD1

�
�d;j

�d;1

�� �1=�
D
� d.CC2/dqe�1X

jD1

�
�d;j

�d;1

��
C

1X
jDd.CC2/dqe

�
�d;j

�d;1

�� �1=�

� �
.C C 2/dq C .Cdq/2�=p�.2�=p/

	1=�
:
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Since 2�=p > 1 and �.2�=p/ > 1, the second term with C replaced by C C 2 in the
last inequality is larger than the first one. Therefore

� 1X
jD1

�
�d;j

�d;1

�� �1=�
� 21=� .C C 2/2=p�.2�=p/1=�d2q=p:

This proves (5.4) as well as the third point of the theorem.
Assuming (5.4) we conclude that

n1=��d;n � C2d
q2�d;1 for all n D 1; 2; : : : .

Then �d;nC1 � "2�d;1 holds for

n D
�
C2d

q2

"2

���
� 1 � C �2 d

q2�"�2� :

This proves polynomial tractability of S and the second point of the theorem. Strong
polynomial tractability follows as before.

The main difference between Theorems 5.1 and 5.2 is that for the absolute error cri-
terion the polynomially many largest eigenvalues of f�d;j g do not count, whereas for the
normalized error criterion the whole sequence of normalized eigenvalues f�d;j =�d;1g
counts. The reason is that although polynomially-many initial eigenvalues can be arbi-
trarily large, for the normalized error criterion we consider the ratios �d;j =�d;1 which
are always at most one. Hence, for the normalized error criterion there is no need to
drop the initial polynomial part of the sequence, which was necessary for the absolute
error criterion.

It is natural to ask whether polynomial tractabilities for the absolute and normalized
error criteria are related. It is easy to see that they are not. That is, it may happen that
we have, say, polynomial tractability for the absolute error criterion but not for the
normalized error criterion or vice versa. Indeed, assume that we have the eigenvalues
f�d;j g such that

f�d;j g D ˚
.j1 C ˛/�ˇ .j2 C ˛/�ˇ � � � .jd C ˛/�ˇ

�1
j1;j2;:::;jd D1

for some ˛ � 0 and ˇ > 0. As we shall see in the next section, such eigenvalues may
occur for linear tensor product problems.

Observe that �d;j � 1 and

1X
jD1

��d;j D
� 1X
jD1

.j C ˛/�ˇ�
�d
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which is finite iff ˇ� > 1. Assuming that � > 1=ˇ we have

� 1X
jDdC1d

q1 e
��d;j

�1=� D
� 1X
jD1

��d;j �
dC1d

q1 e�1X
jD1

��d;j

�1=�

�
�� 1X

jD1
.j C ˛/�ˇ�

�d � C1dq1

�1=�
C :

We now show that we have polynomial tractability for the absolute error criterion iff

A ´
1X
jD1

.j C ˛/�ˇ� � 1:

Indeed, if A > 1 then

� 1X
jDdC1d

q1 e
��d;j

�1=� � �
Ad � C1dq1

��
C

goes exponentially fast to infinity withd for anyC1; q1 and � . Then (5.1) is not satisfied
for any q2, and Theorem 5.1 implies polynomial intractability of S . On the other hand
if A � 1 then � 1X

jDdC1d
q1 e
��d;j

�1=� � Ad=� � 1:

By Theorem 5.1, we see that S is strongly polynomially tractable, since (5.1) holds
with q1 D q2 D 0.

Observe that A � 1 iff ˛ > 0 and � is sufficiently large. Indeed, if ˛ D 0 then the
first term in A is 1 and the rest of terms are positive. Therefore A > 1 for any � . For
˛ > 0 and � > 1=ˇ we have

A D .1C ˛/�ˇ� C .2C ˛/�ˇ� C
1X
jD3

.j C ˛/�ˇ�

� .1C ˛/�ˇ� C .2C ˛/�ˇ� C
Z 1

2

.x C ˛/�ˇ� dx

D .1C ˛/�ˇ� C .2C ˛/�ˇ� C 1

ˇ� � 1
1

.2C ˛/ˇ��1 :

If � goes to infinity then the upper bound of A goes to 0. Hence, for sufficiently large
� we have A � 1, so that S is strongly polynomially tractable. From the last point
of Theorem 5.1 we conclude that the exponent of strong polynomial tractability is
pstr-wor D 2��=ˇ, where �� is defined by the condition

1X
jD1

.j C ˛/��� D 1:
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We now turn to the normalized error criterion for the same sequence of eigenvalues.
We have � 1X

jD1

�
�d;j

�d;1

���1=�
D
� 1X
jD1

�
1C ˛

j C ˛

�ˇ��d=�
:

Since the first term of the last sum is 1 independently of ˛ and � and the remaining
terms are positive, the left hand side goes exponentially fast to infinity with d no matter
whether ˛ D 0 or ˛ > 0 and what the value of � . Due to Theorem 5.1, this implies
that the problem S is polynomially intractable for arbitrary ˛ � 0 and ˇ > 0.

In summary, for ˛ > 0 we have polynomial tractability for the absolute error
criterion and polynomial intractability for the normalized error criterion.

The opposite case, polynomial intractability for the absolute error criterion and
polynomial tractability for the normalized error criterion, can be obtained for the se-
quence of eigenvalues that we considered before, namely for �d;j D e˛

p
dj�ˇ for

positive ˛ and ˇ. The lack of polynomial tractability for the absolute error criterion
was already discussed, whereas for the normalized error criterion �d;j =�d;1 D j�ˇ ,
and we even obtain strong polynomial tractability with the exponent 2=ˇ.

We now analyze weak tractability of S in terms of the behavior of the eigenvalues
f�d;j g. The conditions on weak tractability can be presented simultaneously for both
the absolute and normalized error criteria by defining

CRId D 1 for the absolute error criterion,

CRId D �d;1 for the normalized error criterion:

We are ready to prove the following theorem.

Theorem 5.3. Consider the non-zero problemS D fSd g for compact linearSd defined
over Hilbert spaces. We study the problem S for the absolute or normalized error
criterion in the worst case setting and for the class ƒall.

S is weakly tractable iff

• we have

lim
j!1

�d;j

CRId
ln2 j D 0 for all d , and

• there exists a function f W .0; 1
2
� ! N such that

M ´ sup
ˇ2.0; 1

2
�

1

ˇ2
sup

d�f .ˇ/
sup

j�dexp.d
p
ˇ/eC1

�d;j

CRId
ln2 j < 1:

Proof. Assume first that S is weakly tractable. Then for any ˇ 2 .0; 1
2
� there exists a

positive integer Mˇ such that for all pairs ."�1; d / with ."�1 C d/ � Mˇ , we have
n."; d/ � exp.ˇ."�1 C d//. Hence, �d;n.";d/C1 � "2CRId which implies that

�d;j � "2CRId for j D bexp
�
ˇ."�1 C d/

�c C 1.
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For this index j we have ln.j � 1/ � ˇ."�1 C d/ and "2 � ˇ2=.ln.j � 1/ � ˇd/2C.
Hence, �d;j =CRId � ˇ2=.ln.j � 1/ � ˇd/2C for j D bexp

�
ˇ."�1 C d/

�c C 1 and
for all pairs ."�1; d / for which ."�1 C d/ � Mˇ . By varying " in the interval .0; 1�
we obtain

�d;j

CRId
� ˇ2

.ln.j � 1/ � ˇd/2C
for all j D beˇMˇ c C 1, beˇMˇ c C 2; : : : .

For fixed d and for sufficiently large j , we obtain that �d;j =CRId is of order ˇ2= ln2 j .
Since ˇ can be arbitrarily small, this proves that

lim
j!1

�d;j

CRId
ln2 j D 0 for all d

which is the first condition presented in the theorem.
To prove the second condition, we define f .ˇ/ D Mˇ . Then for d � f .ˇ/ and

j � dexp.d
p
ˇ/e C 1 we have j � bexp.ˇMˇ /c C 1, and ln.j � 1/ � d

p
ˇ, which

yields ln.j � 1/ � ˇd � ln.j � 1/.1 �p
ˇ/ > 0. Since j � 3, we finally conclude

that
1

ˇ2
�d;j

CRId
ln2 j � ln2 j

ln2.j � 1/
1

1 �p
ˇ

�
�

ln 3

ln 2

�2
.2C p

2/;

which proves that M < 1, and completes the first part of the proof.
Assume now that the two conditions presented in the theorem hold. Take an arbitrary

ˇ 2 .0; 1
2
�. Then the first condition implies that there exists an integer Cˇ > 2 such

that for all j � Cˇ and all d D 1; 2; : : : ; f .ˇ/ � 1 we have �d;j =CRId ln2 j � ˇ.
Hence,

�d;j

CRId
� ˇ

ln2 j
� "2 for j D

l
e

p
ˇ="
m

� 2e
p
ˇ=",

since dxe � 2x for x � 1.
This means that for all d D 1; 2; : : : ; f .ˇ/ � 1, and all " 2 .0; 1� we have

ln n."; d/ � max

�
lnCˇ ;

p
ˇ

"
C ln 2

�
: (5.5)

Consider now the case d � f .ˇ/. Then for j � dexp.d
p
.ˇ//e C 1, the second

condition yields

�d;j

CRId
� Mˇ2

ln2 j
� "2 for j D max

�l
e

p
Mˇ="

m
;
l
e.d

p
ˇ/
m

C 1
�

.

Since ln.x C 1/ � ln x C ln 2 for x � 1, we now obtain

ln n."; d/ � max

�p
Mˇ

"
C ln 2; d

p
ˇ C 2 ln 2

�
: (5.6)
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From (5.5) and (5.6) we conclude that for all " 2 .0; 1� and all d 2 NC we have

ln n."; d/

"�1 C d
� max

�
lnCˇ
"�1 C d

;
p
ˇ C ln 2

"�1 C d
;
p
Mˇ C ln 2

"�1 C d
;
p
ˇ C 2 ln 2

"�1 C d

�
:

For sufficiently large "�1 C d , the right hand side is less than 2max.
p
ˇ;

p
Mˇ/.

Since ˇ can be arbitrarily small, this proves that

lim
"�1Cd!1

ln n."; d/

"�1 C d
D 0;

which means that S is weakly tractable. This completes the proof.

Theorem 5.3 states that weak tractability of S is equivalent to the two conditions
on the eigenvalues �d;j . The first condition simply states that �d;j must go to 0 faster
than ln�2 j as j goes to infinity, and this must hold for all d . This condition is quite
natural since otherwise n."; d/would be exponential in "�1. Clearly, the first condition
is not enough for weak tractability, since it does not address the dependence on d . The
second condition addresses this dependence and is quite complicated. It says that for
all ˇ 2 .0; 1

2
�, large d � f .ˇ/, and large j � dexp.d

p
ˇ/e C 1, we must have

�d;j ln2 j=.ˇ2CRId / uniformly bounded in ˇ; d and j .
We now check these conditions for �d;j D exp.˛1d˛2/j�˛3 , for positive ˛1; ˛2,

and ˛3. Obviously for such a simple sequence of eigenvalues, we may directly check
that for the absolute error criterion we have

n."; d/ D


exp .˛1d˛2=˛3/

"2=˛3

�
;

so that weak tractability holds iff ˛2 < 1, whereas for the normalized error criterion
we have

n."; d/ D


1

"2=˛3

�
;

and we even have strong polynomial tractability independently of ˛1 and ˛2, with the
exponent 2=˛3.

We now check the two conditions presented in Theorem 5.3 just for illustration.
We begin with the absolute error criterion, CRId D 1. The first condition is obvious
since j�˛3 ln2 j indeed goes to 0. To check the second condition we note that

�d;j ln2 j D e˛1d
˛2
j�˛3 ln2 j:

For j � dexp.d
p
ˇ/e C 1 we have j D x exp.d

p
ˇ/ for some x � 1, and then

sup
j�dexp.d

p
ˇ/eC1

j�˛3 ln2 j � e�d˛3

p
ˇ sup
x�1

x�˛3
�
d
p
ˇ C ln x

�2
� e�d˛3

p
ˇ .2d2ˇ C C/
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for some absolute constantC , where the last estimate is sharp with respect to d . Hence,

sup
j�dexp.d

p
ˇ/eC1

�d;j ln2 j � e˛1d
˛2 �d˛3

p
ˇ .2d2ˇ C C/;

and again this bound is sharp in d . Clearly, if ˛2 � 1, then for small ˇ we obtain
an exponential function in d ; by taking the supremum over large d we obtain infinity
independently of the definition of f .ˇ/. Hence, ˛2 � 1 implies the lack of weak
tractability, or equivalently, intractability. Assume then that ˛2 < 1. Choose ˛4 2
.˛2; 1/. Then for any positive ˇ we can define a positive integer f .ˇ/ such that for all
d � f .ˇ/ we have

˛1d
˛2 C 1

ˇ
d˛4 � d˛3

p
ˇ;

2 ln
1

ˇ
C ln.2d2ˇ C C/ � 1

ˇ
d˛4 :

Then

1

ˇ2
sup

d�f .ˇ/
sup

j�dexp.d
p
ˇ/eC1

�d;j ln2 j � 1

ˇ2
e�d˛4=ˇ .2d2ˇ C C/

D exp
�
2 ln

1

ˇ
C ln.2d2ˇ C C/ � 1

ˇ
d˛4

�

� 1:

This implies that M < 1 and the second condition holds.
For the normalized error criterion, CRId D exp.˛1d˛2/, and

�d;j

CRId
ln2 j D j�˛3 ln2 j

is independent of d . The first condition holds as before, whereas the second condition
holds if we define a positive Cˇ such that

j�˛3 ln2 j � ˇ2 for all j � Cˇ ,

and take

f .ˇ/ D
&

lnCˇp
ˇ

'
:

We now show that weak tractabilities for the absolute and normalized error criteria
are not related. For the previous example,

�d;j D exp.˛1d
˛2/j�˛3

with positive ˛i , and ˛2 � 1, we do not have weak tractability for the absolute error
criterion and we do have weak tractability for the normalized error criterion. Now
consider

�d;j D 1

ed ln2C1=d .j C 1/
for all d; j 2 N.
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Then for the absolute error we have

ln n."; d/ � e�d=.2C1=d/"�2=.2C1=d/:

Let "�1 C d go to infinity. Then "�1 or d go to infinity. Assume that only "�1 goes to
infinity. Then .ln n."; d//=."�1 C d/ goes to 0 since the exponent 2=.2C 1=d/ < 1.
Assume then that d goes to infinity. Now .ln n."; d//=."�1Cd/ � e�d=2 clearly goes
to 0. Hence, weak tractability holds for the absolute error criterion.

For the normalized error criterion we have

ln .n."; d/C 1/ � "�2=.2C1=d/ ln 2:

Taking "�1 D d we conclude that

ln n.1=d; d/

2d
� ln 2

2
d�1=.2dC1/ ! ln 2

2
> 0:

Hence weak tractability does not hold for the normalized error criterion.
For some eigenvalues it may be difficult to check the second condition of Theo-

rem 5.3 to establish weak tractability. We now provide an easier condition which is,
however, only sufficient for weak tractability.

Lemma 5.4. Consider the non-zero problem S D fSd g for compact linear Sd defined
over Hilbert spaces. We study the problem S for the absolute or normalized error
criterion in the worst case setting and for the class ƒall.

If there exists a positive � such that

lim
d!1

ln
��P1

jD1 ��d;j
�1=�

= CRId
�

d
D 0 (5.7)

then S is weakly tractable.

Proof. Since

n1=��d;n �
� 1X
jD1

��d;j

�1=�
then �d;n � "2CRId holds for

n D
& �P1

jD1 ��d;j
�1=�

CRId

!�
"�2�

'
:

Since dxe � x C 1 � 2max.x; 1/ and ln max.x; 1/ � max.0; ln x/ D .ln x/C for all
x 2 Œ0;1/ we have

ln n."; d/

"�1 C d
� ln 2 C �

2� ln "�1 C � ln
�P1

jD1 ��d;j
�1=�

= CRId
�

C
"�1 C d

which goes to 0 as "�1 C d tends to infinity. Hence S is weakly tractable.
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Clearly, (5.7) is only a sufficient condition for weak tractability. Indeed, (5.7)
implies that �d;j as a function of j goes polynomially to 0, whereas weak tractability
only requires that �d;j D o.ln�2 j /. For example, take

�d;j D ln�3.j C 1/ for all j; d 2 N.

Then
�P1

jD1 ��d;j
�1=� D 1 for any positive � and Lemma 5.4 does not apply, however,

the problem is weakly tractable.

Example: Trade-offs of the Exponents

Theorems 5.1 and 5.2 state necessary and sufficient conditions on strong polynomial
and polynomial tractability. If strong tractability holds then we have the formula for
its exponent. However, if only polynomial tractability holds then the exponents of d
and "�1 are not uniquely defined since � satisfying (5.1) or (5.4) may vary.

We now show that, in general, the exponents ofd and "�1 may indeed vastly change.
Furthermore, the minimization of one of them may result in the maximization of the
other. This means that there is a trade-off between them.

We illustrate this point for the following sequence of the eigenvalues

�d;j D
min.d;d ln.dC1/es/Y

kD1
j�˛
k for all j 2 Nd

for some positive s and ˛.
Note that the largest eigenvalue is 1, and there is no difference between the absolute

and normalized error criteria. For � > 1=˛ we have

� 1X
jD1

��d;j

�1=� D
� X
j2Nd

��d;j

�1=� D .�.˛�//
min.d;d ln.dC1/es/

�

D .d C 1/
ln �.˛�/
�

min.d;d ln.dC1/es/
ln.dC1/ :

Since �.˛�/ > 1, from Theorem 5.2 we see that strong tractability does not hold for
any positive s and ˛.

We now turn to polynomial tractability. Clearly, for s > 1 the exponent of d C 1

goes to infinity and therefore also polynomial tractability does not hold. For s � 1,
the exponent of d C 1 is uniformly bounded in d and we have polynomial tractability.
Furthermore we can take q2 in Theorem 5.2 such that

q2 >
ln �.˛�/

�
lim sup
d!1

d ln.d C 1/es
ln.d C 1/

:

For s < 1, the last limit superior is 0 and we can take an arbitrarily small q2.
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The most interesting case is when s D 1. Then we can take

q2 D ln �.˛�/

�

and Theorem 5.2 states that

n."; d/ D O
�
d ln �.˛�/"�2��; (5.8)

where the factor in the big O notation is independent of d and "�1, and depends only
on � > 1=˛.

We now show that the exponents in (5.8) are sharp in the following sense. First of
all, note that the exponent 2� of "�1 must be larger than 2=˛. Indeed for d D 1 we
have n."; 1/ D ‚."�2=˛/, and for d D 2 we have n."; 2/ D ‚."�2=˛ ln "�1/. Hence,
2� > 2=˛, or � > 1=˛. We turn to the exponent of d and show that for the fixed
exponent 2� of "�1, the minimal exponent of d is ln �.˛�/. That is, if

n."; d/ D O
�
dq"�2�� then q � ln �.˛�/.

Indeed, n."; d/ D O.dq"�2� / implies that

�d;j D O
�
dq=�j�1=��:

For � > � , we have

� 1X
jD1

�
�

d;j

�1=� D O
�
dq=��.�=�/1=�

�
:

We also know that the left hand side is equal to .d C 1/�
�1 ln �.˛�/. This implies that

q=� � .ln.�.˛�///=� for all � > � . Letting � tend to � , we conclude that q � ln �.˛�/,
as claimed.

For � tending to infinity in (5.8), the exponent of d goes to 0 since �.˛�/ goes
to 1, whereas the exponent of "�1 goes to infinity. On the other hand, if � goes to 1=˛
then the exponent of d goes to infinity since �.˛�/ approaches infinity, whereas the
exponent of "�1 takes its minimal value 2=˛.

This means we have a trade-off between the exponents of d and "�1. So how should
we choose �? It depends on how d and "�1 are related for a specific application. For
instance, assume that d D d" D "�ˇ for some positive ˇ. Then

n."; d"/ D O
�
"�.2�Cˇ ln �.˛�//

�
:

In this case it seems reasonable to minimize the exponent of "�1. This means that �
should be the solution of

2C ˛ˇ
�0.˛�/
�.˛�/

D 0;
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or equivalently

2

˛ˇ

1X
jD1

1

j ˛�
D

1X
jD1

ln j

j ˛�
:

For instance, if we have ˛ D ˇ D 1 then � D 1:39843 : : : , and if we have ˛ D 1 and
ˇ D 2 then � D 1:68042 : : : .

We end this example by noting that weak tractability holds for any positive s and ˛.
Indeed, in this case we may apply Lemma 5.4 since for � > 1=˛ we have

ln
�P

j2Nd ��d;j
�1=�

d
D ‚

�d ln.d C 1/es
d

�

and it goes to 0 as d approaches infinity.
Much more can be said about trade-offs between the exponents of d and "�1 for

general multivariate problems along the lines indicated in this example. We leave,
however, this subject to the reader.

Example: Schrödinger Equation

We illustrate the approach of this section for the Schrödinger equation1

i
@u

@t
.x; t/ D ��u.x; t/C q.x/u.x; t/ for x 2 I d ´ .0; 1/d , and t > 0,

subject to boundary conditions

u.x; t/ D 0 for all x 2 @I d , and t > 0,

and the initial condition

u.x; 0/ D f .x/ for all x 2 I d .

Here q is a non-negative continuous function. For this example we assume that q is
fixed and consider real functions f from a classHd 	 L2.I

d /. The operator� is the
Laplacian,

�u D
dX
jD1

@2u

@x2j
:

It is known that the solution u can be represented as a linear combination of
the eigenfunctions of the operator �� C q. To be more precise, since the operator

1For simplicity, we assume that all masses and the normalized Planck constant are one, and boundary
conditions are for particles in a box.
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.��C q/�1 W L2.I d / ! L2.I
d / is self-adjoint and compact, its eigenfunctions �d;j ,

which satisfy

.��C q/�1�d;j .x/ D ˇd;j�d;j .x/ for all x 2 I d ;
�d;j .x/ D 0 for all x 2 @I d ;

form an orthonormal basis of L2.Œ0; 1�d /. Here, ˇd;j are ordered, ˇd;1 � ˇd;2 �
� � � > 0. Clearly, ˇd;j goes to 0 as j approaches infinity.

The function f 2 L2.I d / can be then represented as

f .x/ D
1X
jD1

fj�d;j .x/ with fj D ˝
f; �d;j

˛
L2

.

The solution u of the Schrödinger equation is given by

u.x; t/ D
1X
jD1

e
�itˇ�1

d;j fj�d;j .x/

for x 2 I d and t > 0, if we assume that

1X
jD1

ˇ�2
d;j jfj j2 < 1:

Clearly, ku. � ; t /kL2
D kf kL2

for all t > 0.
For a general function q, it is difficult to find the eigenpairs .ˇd;j ; �d;j /. However,

if q � q0 is a constant function then it is easy to check that the eigenpairs are given
for j D Œj1; j2; : : : ; jd � with positive integers jk by

ˇd;j D
�
q0 C

dX
kD1

�2j 2k

��1
and �d;j .x/ D 2d=2

dY
kD1

sin .�jkxk/ : (5.9)

We now describe the Schrödinger equation as a linear multivariate problem defined
over Hilbert spaces and apply the tractability results of the current section. We first
define the Schrödinger problem for the largest possible Hilbert space,

Hd D ˚
f 2 L2.I d / j Pj2Nd ˇ�2

d;j
jfj j2 < 1�

; (5.10)

with the inner product hf; giHd
D P

j2Nd ˇ�2
d;j
fjgj for f; g 2 Hd .

The operator Sd W Hd ! L2.Œ0; 1�
d / is defined by

Sdf D u. � ; T / D
X
j2Nd

e
�iTˇ�1

d;j fj�d;j
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i.e., as the solution of the Schrödinger equation for time T . Clearly, Sd is a linear
isometry since

kSdf kL2.Œ0;1�d /
D kf kL2.Œ0;1�d /

:

We call Slinear D fSd g the linear Schrödinger problem for a fixed q � q0 � 0 and T , or
for brevity, the linear Schrödinger problem. We can consider this problem for the class
ƒall or ƒstd and for the absolute or normalized error criterion. We restrict ourselves in
this chapter to the class ƒall.

The operatorSd is compact since theˇd;j ’s approach 0 as jj j goes to infinity. More
precisely, if we order the eigenvalues fˇd;kgk2N D fˇd;j gj2Nd then it is possible to
check, see (8.16) of Chapter 8, that ˇd;k D ‚.k�2=d / for k 2 N with the factor in the
Theta notation dependent on d . It is easy to check that

S�
df D

X
j2Nd

e
iTˇ�1

d;jˇ2d;jfj�d;j ;

Wdf D
X
j2Nd

ˇ2d;jfj�d;j :

Hence, Wd does not depend on T , and its eigenpairs are f�d;j ; �d;j gj2Nd with

�d;j D ˇ2d;j and �d;j D
�
q0 C

dX
kD1

�2j 2k

��2
:

Since
p
�d;j D ‚.jj j�2=d / we conclude that we conclude that for both error criteria

we have
n."; d/ D O."�d=2/

with the factor in the big O notation depending on d . This shows that the linear
Schrödinger equation is not polynomially tractable but the last bound is too weak to
verify whether the linear Schrödinger equation is weakly tractable.

We now check weak tractability. The largest eigenvalue is obtained for jk D 1,
which implies that the initial error is

kSdk D kWdk1=2 D 1

q0 C �2d
:

Observe that if we take j 2 f1; 2gd then we obtain 2d eigenvalues �d;j that are
greater or equal to .q0 C 4�2d/�2. This implies intractability for both the absolute
and normalized error criteria. Indeed, for the absolute error criteria we take "d D
1
2
.q0 C 4�2d/�1 and conclude that

n."d ; d / � 2d :

This yields

lim inf
"�1

d
Cd!1

ln n."d ; d /

"�1
d

C d
� ln 2

1C 8�2
> 0:
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For the normalized error criterion, we take "d D 1
2
.q0 C �2d/=.q0 C 4�2d/, and

then n."; d/ is again at least 2d , which implies that

lim inf
"�1

d
Cd!1

ln n."d ; d /

"�1
d

C d
� ln 2 > 0:

So we have intractability for both error criteria, as claimed.
The intractability of the linear Schrödinger problem means that the spaceHd is too

large. This space guarantees that the solution of the Schrödinger equation exists, and
the information complexity of the problem is O."�d=2/, but it is not not enough for
tractability. To obtain weak or polynomial tractability we must put more restrictions
on functions f , and switch to some subspace zHd of Hd .

In fact, it is easy to see that the linear Schrödinger problem is weakly or polynomially
tractable iff the approximation problem APPd W zHd ! L2.Œ0; 1�

d /, with APPdf D f ,
is weakly or polynomially tractable. Indeed, this follows from the fact that if we have
an algorithm An;df for approximating f then we can take SdAn;df as an algorithm
for approximating Sdf , so that isometry of Sd yields that

kSdf � SdAn;df kL2.Œ0;1�d /
D kf � An;df kL2.Œ0;1�d /

:

On the other hand, if we have an algorithmBn;df for approximatingSdf then, without
loss of generality we can assume thatBn;d is interpolatory,Bn;df D Sd Qf with Qf from
the unit ball of zHd sharing the same information as f , and treat Qf as an approximation
of f . Then

kf � Qf kL2.Œ0;1�d /
D kSdf � Sd Qf kL2.Œ0;1�d /

D kSdf � Bn;df kL2.Œ0;1�d /
:

As we shall see later in the course of the book, we identify many spaces zHd for which
approximation is weakly or polynomially tractable. If zHd 	 Hd then we can also
claim weak or polynomial tractability of the linear Schrödinger problem.

5.2 Linear Tensor Product Problems

In the previous section, we studied linear compact operators Sd without assuming any
relations between them. In this section we assume that Sd is a d -fold tensor product
of a given linear compact operator S1. We study polynomial and weak tractability of
such problems for the absolute and normalized error criteria in the worst case setting
and for the class ƒall.

We now explain the tensor product construction. For d D 1, let D1 be a Borel
measurable subset of R, and letH1 be a separable Hilbert space of real valued functions
defined onD1 with the inner product denoted by h � ; � iH1

. LetG1 be an arbitrary Hilbert
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space, and let S1 W H1 ! G1 be a compact linear operator2. Then the positive semi-
definite self-adjoint operator

W1 WD S�
1 S1 W H1 ! H1

is also compact. Let f�ig denote the sequence of non-increasing eigenvalues of W1,
or equivalently, the sequence of squares of the singular values of S1. If k D dim.H1/
is finite, then W1 has finitely many eigenvalues �1; �2; : : : ; �k . Then we formally put
�i D 0 for i > k. In any case, the eigenvalues �i converge to 0. As in Section 4.2.3,
let f.�i ; ei /g be the eigenpairs of the operator W1, so that

W1ei D �iei with �i � �iC1 and hei ; ej iH1
D ıi;j

for all i; j D 1; 2; : : : ; dim.H1/.
Then for n � dim.H1/, the algorithm

An.f / D
nX
iD1

hf; ei iH1
S1ei

is the nth optimal worst case algorithm and

ewor.n/ D ewor.An/ D
p
�nC1:

Without loss of generality, we assume that S1 is not the zero operator, i.e., kS1k Dp
�1 > 0. Recall that the initial error is also

p
�1.

For d � 2, let
Hd D H1 ˝ � � � ˝H1

be thed -fold tensor product Hilbert space ofH1. This is a space of real valued functions
defined on Dd D D1 � � � � �D1 	 Rd . Similarly, let Gd D G1 ˝ � � � ˝G1, d times.

We want to cover simultaneously the cases where H1 has finite and infinite di-
mension. We write j 2 Œ1; dim.H1/C 1/ which for the finite dimensional space H1
means that j 2 Œ1; dim.H1/�, whereas for the infinite dimensional space H1, it means
that j 2 Œ1;1/. With this notation in mind, suppose that f�j gj2Œ1;dim.H1/C1/ is an
orthonormal basis of H1. For j D Œj1; j2; : : : ; jd � with jk 2 Œ1; dim.H1/ C 1/ and
x D Œx1; x2; : : : ; xd � with xk 2 D1, define

�j .x/ D
dY
kD1

�jk
.xk/:

For brevity, we sometimes write �j D �j1
�j2

� � � �jd
.

2It would be possible to start with a compact operatorS1 W H1 ! G1 between arbitrary separable Hilbert
spaces. For example,H1 could be a space ofm-variate functions, and the tensor product construction will
give us spacesHd ofdm-variate functions. This approach has been taken in a number of tractability papers,
see e.g., [93], [273]. We prefer to takem D 1 for simplicity and to always keepd as the number of variables.
More on this point can be also found in NR 5.2:1.
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For i; j 2 Œ1; dim.H1/C 1/d , we have

h�i ; �j iHd
D

dY
kD1

h�ik ; �jk
iH1

D
dY
kD1

ıik ;jk
D ıi;j :

Hence, f�j gj2Œ1;dim.H1/C1/d is an orthonormal basis of Hd .
The linear operator Sd is defined as the tensor product operator

Sd D S1 ˝ � � � ˝ S1 W Hd ! Gd :

We have
Sd�j D S1�j1

˝ S1�j2
˝ � � � ˝ S1�jd

2 Gd ;
and for f D P

j2Œ1;dim.H1/C1/d
˝
f; �j

˛
Hd

�j 2 Hd , we have

Sdf D
X

j2Œ1;dim.H1/C1/d

˝
f; �j

˛
Hd

Sd�j :

Note that Sd is compact and that kSdk D kS1kd D �
d=2
1 . So the initial error is �d=21 ,

which is exponentially small in d if �1 < 1, is 1 if �1 D 1, and is exponentially large
in d if �1 > 1.

We call the multivariate problem S D fSd g a linear tensor product problem in the
worst case setting. Let

Wd ´ S�
dSd W Hd ! Hd :

ThenWd is positive semi-definite, self-adjoint and compact. It is easy to check that its
eigenpairs f.�d;j ; ed;j /g are given by products of the univariate eigenpairs, i.e.,˚

�d;j
�
j2Nd D ˚

�j1
�j2

� � ��jd

�
j1;j2;:::;jd 2Œ1;1/

;˚
ed;j

�
j2Œ1;dim.H1/C1/d D ˚

ej1
ej2

� � � ejd

�
j1;j2;:::;jd 2Œ1;dim.H1/C1/d ;

where we use the short notation ed;j D ej1
ej2

� � � ejd
WD ej1

˝ ej2
˝ � � � ˝ ejd

, and

obviously ed;j .x/ D Qd
kD1 ejk

.xk/.
We now consider the information complexity for the absolute error criterion in

which CRId D 1, and for the normalized error criterion in which CRId D �d1 . We
have

n."; d/ WD nwor."; Sd ; ƒ
all/ D ˇ̌˚

Œj1; j2; : : : ; jd � 2 Nd j �j1
�j2

� � ��jd
> "2CRId

�ˇ̌
;

with the convention that the cardinality of the empty set is 0. Hence, n."; d/ D 0 for
"2 � �d1 =CRId .

Let n D n."; d/. The nth optimal worst case error algorithm for the class ƒall is
given by

An.f / D
X

Œj1;j2;:::;jd �W �j1
�j2

����jd
>"2CRId

hf; ej1
ej2

� � � ejd
iHd

Sd
�
ej1
ej2

� � � ejd

�
:
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Note that n."; d/ is finite for all " 2 .0; 1� and all d since limj!1 �j D 0. For
d � 1, we have

n."; d C 1/ D
1X
jD1

n

 
"
p

CRIdC1p
�j

p
CRId

; d

!

D
maxfi j�i>

�
"
p

CRIdC1=.�
d=2
1

/
	2gX

jD1
n

 
"
p

CRIdC1p
�j

p
CRId

; d

!

D
n
�
"
p

CRIdC1=CRI1=�
d=2
1

;1
�X

jD1
n

 
"
p

CRIdC1p
�j

p
CRId

; d

!
:

Note that for �2 D 0 the operator Sd is equivalent to a continuous linear functional
and can be solved exactly with one information operation. Therefore n."; d/ � 1 for
all ", and the problem S is trivial. Hence we will always assume that �2 > 0, so that
the operator Wd has at least 2d positive eigenvalues. This indicates that the study of
tractability is meaningful even if the rest of the eigenvalues �j D 0.

We are ready to study polynomial and weak tractability of linear tensor product
problems. We begin with the absolute error criterion.

Theorem 5.5. Consider the linear tensor product problem in the worst case setting
S D fSd g with �2 > 0. We study this problem for the absolute error criterion and for
the class ƒall.

• Let �1 > 1. Then S is intractable.

More precisely, if �2 � 1 then for all " 2 .0; 1/ we have

n."; d/ � 2d :

If �2 < 1 then define

˛ D ln �1
ln �1=�2

2 .0; 1/:

If ˛ � 1
2
, or equivalently �1�2 � 1, then for all " 2 .0; 1/ we have

n."; d/ � 2d�1:

If ˛ < 1
2
, or equivalently �1�2 < 1, then for all " 2 .0; 1/ we have

n."; d/ � exp
��
˛ ln ˛�1 C .1 � ˛/ ln.1 � ˛/�1	 d � 1

2
ln d C
.1/

�
as d ! 1.

• Let �1 D �2 D 1. Then S is intractable and for all " 2 .0; 1/ we have

n."; d/ � 2d :
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• Let �1 D 1 and �2 < 1. Then S is polynomially intractable.

• Let �1 D 1.

If S is weakly tractable then

�2 < 1 and �n D o
�
.ln n/�2

�
as n ! 1.

If
�2 < 1 and �n D o

�
.ln n/�2.ln ln n/�2

�
as n ! 1

then S is weakly tractable.

• Let �1 < 1.

If S is weakly tractable then �n D o
�
.ln n/�2

�
as n ! 1.

If �n D o
�
.ln n/�2.ln ln n/�2

�
as n ! 1 then S is weakly tractable.

• Let �1 < 1. Then S is polynomially tractable iff S is strongly polynomially
tractable iff there exists a positive r such that

�n D O .n�r/ as n ! 1.

If this holds then the exponent of strong polynomial tractability is

pstr-wor D inf
˚
2� j P1

jD1 ��j � 1
�
:

Proof. Assume first that �1 > 1. For the d -dimensional case, we want to estimate
the number of eigenvalues �j1

�j2
� � ��jd

that are at least equal to one. For k � d , we
take k indices of ji ’s equal to two, and the remaining .d � k/ indices equal to one.
We have

�
d
k

�
eigenvalues equal to �d�k

1 �k2 D �d1 .�2=�1/
k , which is a non-increasing

function of k. Let kd be the largest integer k from Œ0; d � for which �d�k
1 �k2 � 1. Then

the number of eigenvalues greater or equal to 1 is at least equal to the sum of binomial
coefficients for k D 0; 1; : : : ; kd . That is, for all " 2 .0; 1/ we have

n."; d/ �
kdX
kD0

�
d

k

�
:

If �2 � 1 then kd D d and the sum of the binomial coefficients is obviously 2d .
Therefore n."; d/ � 2d , as claimed in the first sub-point of the theorem.

For �2 < 1, we have
kd D b˛dc:

If ˛ � 1
2

then kd � bd=2c, and the sum of the binomial coefficients is at least 2d�1.
Therefore n."; d/ � 2d�1, as claimed in the second sub-point of the theorem.

If ˛ < 1
2

, we estimate the sum of the binomial coefficients simply by the last term
and use the estimate

n."; d/ �
�

d

b˛dc
�
:
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Using Stirling’s formula, mŠ D m
mC1

2 e�mp
2�.1 C o.1//, for factorials and using

the fact that kd D b˛dc D ˛d � ˛d with ˛d 2 Œ0; 1/, we conclude for large d that

ln n."; d/ � ln dŠ � ln kd Š � ln.d � kd /Š
D .d C 1

2
/ ln d � .kd C 1

2
/ ln kd � �

d � kd C 1
2

�
ln.d � kd /

� d C kd C d � kd � ln
p
2� C o.1/

D .d C 1
2
/ ln d

� �
˛d C 1

2
� ˛d

� �
ln d C ln ˛ C ln

�
1 � ˛d

˛d

��
C O.1/

� �
.1 � ˛/d C 1

2
C ˛d

� �
ln d C ln.1 � ˛/C ln

�
1C ˛d

.1 � ˛/d
��

D �
d C 1

2
� ˛d � 1

2
C ˛d � .1 � ˛/d � 1

2
� ˛d

	
ln d C O.1/

� .˛d C 1
2

� ˛d /
�
ln ˛ C O.d�1/

�
� �
.1 � ˛/d C 1

2
C ˛d

� �
ln.1 � ˛/C O.d�1/

�
D �1

2
ln d C �

˛ ln ˛�1 C .1 � ˛/ ln.1 � ˛/�1	 d C O.1/;

which proves the estimate of the last sub-point of the first part of the theorem. Note
that all these estimates state that n."; d/ is exponential in d and therefore

lim sup
"�1Cd!1

n."; d/

"�1 C d
> 0:

Therefore the problem S is intractable, as claimed.
Assume now that �1 D �2 D 1. By the previous argument we have 2d eigenvalues

equal to one, and n."; d/ � 2d for all " 2 .0; 1/, which yields intractability.
Assume then that �1 D 1 and �2 < 1. For any integer k and any d � k, by the

previous argument we have
�
d
k

�
eigenvalues equal to �k2 . Choosing "k D .�k2=2/

1=2

we conclude that

n."k; d / �
�
d

k

�
D ‚.dk/ as d ! 1.

Since k can be arbitrarily large, this contradicts polynomial tractability of S .
We now study weak tractability for �1 D 1. Assume that S is weakly tractable.

For d D 1 we have

lim
"�1C1!1

n."; 1/

"�1 C 1
D 0 iff n."; 1/ D exp

�
o."�1/

�
as " ! 0.

Since n."; 1/ D minfn j �nC1 � "2g then

n."; 1/ D exp
�
o."�1/

�
iff "2 D o

�
ln�2 n."; 1/

�
iff �n D o

�
ln�2 n

�
as n ! 1. Clearly, �2 must be smaller than 1 since �2 D 1 contradicts weak
tractability of S , due to the previous point.
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It remains to show that �2 < 1 and �n D o
�
.ln n/�2.ln ln n/�2

�
imply weak

tractability of S . It is easy to see that

ln n."; 1/ D o
�
"�1= ln "�1� :

Indeed,

n."; 1/ D minfn j �nC1 < "2g � minfn j .ln n/.ln ln n/ D o."�1/g:
Let x D ln n."; 1/. Then x ln x D o."�1/ implies that x D o."�1= ln "�1/, as claimed.

Note that for "2 � �2 we haven."; d/ D 1. Therefore we may assume that "2 < �2.
We need an estimate from [288] which was already used in Section 3.1.4. For

completeness we derive this estimate here. Let

�j1
�j2

� � ��jd
> "2:

Let k D k.j / � d be the number of indices ji that are at least two. Then d �k indices
ji are equal to one, and �k2 > "

2. The last inequality implies that k � ad ."/ with

ad ."/ D min

�
d;


2

ln "�1

ln ��1
2

�
� 1

�
:

Since "2 < �2 we have ad ."/ � 1. Observe also that �1 D 1 implies that

�ji
� �j1

�j2
� � ��jd

> "2;

and therefore ji � n."; 1/. Hence,

n."; d/ �
�

d

ad ."/

�
n."; 1/ad ."/ � dad ."/

ad ."/Š
n."; 1/ad ."/: (5.11)

By taking logarithms we obtain

ln n."; d/ � ad ."/ ln.d/ � ln ad ."/ŠC ad ."/ ln n."; 1/:

Since ad ."/ D ‚.min.d; ln "�1// we have

ln n."; d/

"�1 C d
D O

�
min.d; ln "�1/ ln d

"�1 C d
C min.d; ln "�1/o."�1= ln "�1

"�1 C d

�
: (5.12)

Let x D max.d; "�1/. We claim that min.d; ln "�1/ � ln x. Indeed, if

min.d; ln "�1/ D d

then x D "�1 and d � ln "�1 � ln x. On the other hand, if

min.d; ln "�1/ D ln "�1

then since "�1 � x we have min.d; ln "�1/ � ln x, as claimed.
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From this and the fact that the function "�1= ln "�1 is increasing for small ", we
conclude

ln n."; d/

"�1 C d
D O

�
ln2 x

x
C o.1/

�
D o.1/ (5.13)

which goes to 0 as x goes to infinity. This means that S is weakly tractable.
We now consider the case �1 < 1. Then clearly �2 � �1 < 1. If S is weakly

tractable, then �n D o
�
ln�2 n

�
, as before. On the other hand, if

�n D o
�
.ln n/�2.ln ln n/�2

�
;

and �2 < 1, we get weak tractability from the previous point, since the problem with
�1 D 1 is harder than the problem with �1 < 1.

We now consider polynomial tractability for �1 < 1. Assume first that S is poly-
nomially tractable. Due to Theorem 5.1, (5.3) holds, which for d D 1 says that

�n D O .n�r/

for some positive r .
We also need to show that polynomial tractability of S implies strong polynomial

tractability of S . We will use Theorem 5.1, which says that polynomial tractability
holds iff

P1
jDdC1d

q1 e ��d;j is bounded by a multiple of dq2� for some positive C1; �
and non-negative q1; q2. Observe that

1X
jDdC1d

q1 e
��d;j D

1X
jD1

��d;j �
dC1d

q1 e�1X
jD1

��d;j

D
� 1X
jD1

��j

�d �
dC1d

q1 e�1X
jD1

��d;j

�
� 1X
jD1

��j

�d � �d1C1dq1 :

Since
P1
jDdC1d

q1 e ��d;j can be bounded by a multiple of dq2� , then
P1
jD1 ��j � 1.

Note that C1, q1 and q2 are irrelevant for this property. That is, if this bound holds for
some appropriate C1; q1 and q2 then it also holds for C1 D 1 and q1 D q2 D 0. By
Theorem 5.1, this implies that S is strongly polynomially tractable.

Finally assume that �n D O.n�r/ for some positive r . We show that there exists a
positive � such that

f .�/ ´
1X
jD1

��j � 1:

Indeed, there is a positiveC such that �n � Cn�r for all n. For any p � 2 and � r > 1,
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we have

f .�/ � ��1 C ��2 C � � � C ��p C C

1X
jDpC1

n�� r

� p��1 C C

Z 1

p

x�� r dx

D p��1 C C

� r � 1
1

p� r�1 :

Since �1 < 1, this last upper bound tends to 0 as � goes to infinity. Hence, for large � ,
we have f .�/ � 1, as claimed. Then (5.1) holds with C1 D 1 and q1 D q2 D 0, and
Theorem 5.1 yields strong polynomial tractability. The formula for the exponent of
strong tractability also follows from Theorem 5.1. This completes the proof.

We now comment on Theorem 5.5. For �1 > 1, we get intractability of S since
n."; d/ depends exponentially on d . If �1�2 � 1, then n."; d/ � 2d�1, whereas for
�1�2 < 1, we have

n."; d/ � exp
�
f .˛/d � 1

2
ln d C
.1/

�
;

where ˛ D ln.�1/= ln.�1=�2/ < 1
2

and

f .˛/ D ˛ ln ˛�1 C .1 � ˛/ ln.1 � ˛/�1:
Clearly, if �2 is small or tends to 0 then Sd tends to a continuous linear functional
which (as we know) is a trivial problem for the class ƒall. This corresponds to small
values of f .˛/ since for small �2, the value of ˛ is also small and f .0/ D 0. It is
helpful to see the graph of the function f in Figure 5.1, and observe how ˛ affects the
factor of the exponential dependence on d .

For �1 D 1, the problem S is polynomially intractable, but can be weakly tractable
if �2 < 1 and �n D o..ln n/�2.ln ln n/�2/. We also know that weak tractability
requires that �n D o.ln�2 n/. Note that we showed these conditions directly without
checking the assumptions of Theorems 5.1 and 5.3.

Note that there is not much difference between the necessary and sufficient condi-
tions presented for weak tractability. Nevertheless, it is not clear whether
�n D o.ln�2 n/ is also sufficient for weak tractability. For such eigenvalues we have
ln n."; 1/ D o."�1/. If we now return to (5.12) and take d D "�1 then the last term is
o.1/ ln "�1, which is why we cannot claim that the corresponding limit is 0. We leave
this as the next open problem.

Open Problem 26.

• Consider the linear tensor product problem in the worst case setting S D fSd g
with �1 D 1 and �2 < 1. Study this problem for the absolute error criterion and
for the class ƒall. Verify whether

�n D o.ln�2 n/
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Figure 5.1. Graph of f .x/ D x ln x�1 C .1 � x/ ln.1 � x/�1.

is a sufficient condition for weak tractability of S . If not, find a necessary and
sufficient condition on f�ng for weak tractability.

For �1 < 1, we show that there is no difference between strong polynomial and
polynomial tractability of S and that they both hold iff the univariate eigenvalues are
polynomial in n�1, i.e., �n D O.n�r/ for some positive r . We want to stress that the
exponent of strong polynomial tractability given by the formula

pstr-wor D inf
˚
2� j P1

jD1 ��j � 1
�

is, in general, not related to the speed of convergence of f�j g. Indeed, assume that
�j D Cn�r for r > 0. Then �1 < 1 holds iff C < 1, and it is easy to see that

pstr-wor D 2xC

r
where �.xC / D C�xC =r ,

where, as always, � denotes the Riemann zeta function. Clearly, if C goes to 1 then
xC and pstr-wor both go to infinity independently of r . On the other hand, if C goes to
0 then xC goes to 1 and pstr-wor goes to 2=r .

It would be tempting to simplify the formula for the exponent of strong polynomial
tractability by pstr-wor D 2� , where � is given by the condition

1X
jD1

��j D 1:

Indeed, this simplified formula is true if such � exists. However, in general, the exis-
tence of such � cannot be guaranteed. Indeed, take �n D Cn�1 ln�2.n C 1/ with a
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positive C such that

C

1X
nD1

1

n ln2.nC 1/
< 1:

For small C , the last inequality is satisfied since the series is convergent.
Then �1 < 1 and the original formula for pstr-wor gives pstr-wor � 2 since we can

take � D 1. However, if we take � < 1 then

f .�/ ´
1X
nD1

��j D C �
1X
nD1

1

j � ln2� .nC 1/
D 1;

independently of C . In this case, the function f is well defined only for Œ1;1/ and
there is no � for which f .�/ D 1. In this case, pstr-wor D 2.

We can summarize Theorem 5.5 by saying that for �1 > 1 we have negative
tractability results, whereas for �1 � 1 we may have positive tractability results. The
negative tractability results are easy to explain intuitively. Since we want to approximate
the operator Sd whose norm kSdk D �

d=2
1 is now exponentially large in d , there is no

surprise that the problem is exponentially hard. On the other hand, if we take �1 < 1
then we approximate the operator Sd whose norm is exponentially small in d , and the
positive results are perhaps not so surprising. After all, for " � �

d=2
1 , we can solve the

problem even by the zero algorithm. As we will see later, for some classical problems
related to L2 discrepancy, we have �1 D 3�1=2 and then for, say, d D 360, the zero
algorithm has the worst case error 3�180 � 10�85:9. It is then really hard to imagine
that someone could be interested in solving such a problem with " < 3�180.

This discussion suggests that linear tensor product problems are properly normal-
ized only when �1 D 1. If we have at least a double largest eigenvalue, that is
�1 D �2 D 1, the problem S is intractable. However, if the largest eigenvalue is
simple, �2 < 1, then we still do not have polynomial tractability, but we may have
weak tractability, which holds iff �n goes to 0 faster than .ln n/�2.ln ln n/�2. We will
return to this example in Chapter 8 when generalized tractability is studied and present
more estimates of n."; d/ depending on the speed of convergence of f�ng.

We now turn to the normalized error criterion. The information complexity in this
case is

n."; d/ D ˇ̌˚
Œj1; j2; : : : ; jd � 2 Nd j �j1

�j2
� � ��jd

> "2�d1
�ˇ̌
:

If we define �0
j D �j =�1 then

n."; d/ D ˇ̌˚
Œj1; j2; : : : ; jd � 2 Nd j �0

j1
�0
j2

� � ��0
jd
> "2

�ˇ̌
:

This corresponds to the absolute error criterion for the univariate eigenvalues �0
j with

�0
1 D 1, Hence, we obtain tractability conditions analogous to those for the absolute

error criterion for the case �1 D 1. For completeness we summarize these conditions
in the next theorem.

Theorem 5.6. Consider the linear tensor product problem S D fSd g for the normal-
ized error criterion in the worst case setting and for the class ƒall with �2 > 0.
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• Let �1 D �2. Then S is intractable and for all " 2 .0; 1/ we have

n."; d/ � 2d :

• Let �2 < �1. Then S is polynomially intractable.

• If S is weakly tractable then

�2 < �1 and �n D o
�
.ln n/�2

�
as n ! 1.

If
�2 < �1 and �n D o

�
.ln n/�2.ln ln n/�2

�
as n ! 1

then S is weakly tractable.

The main difference between the absolute and normalized error criteria is that we
may have strong polynomial tractability for the absolute error criterion but not for the
normalized error criterion. For the latter criterion we may have only weak tractability.
To regain polynomial tractability for the normalized error criterion we must introduce
weights of the underlying spaces; this is the subject of the next section.

Example: Approximation for Korobov Spaces

We illustrate the results of this section for the multivariate approximation problem
Sd D APPd W Hd ! Gd , where APPdf D f . We take Hd D H kor

d
D Hd;˛ as

the Korobov space introduced in Appendix A, and Gd D L2.Œ0; 1�
d /. SinceHd;˛ and

L2.Œ0; 1�
d / are both tensor product Hilbert spaces and Appd is a linear tensor product

operator, this approximation problem is an example of a linear tensor product problem
in the worst case setting.

It is easy to find the operator W1 D APP�
1APP1 W H1;˛ ! H1;˛ . We have

.W1f /.x/ D
X
h2Z

%�1
1;˛.h/

Of .h/eh.x/;

where, as in Appendix A, the coefficients Of .h/’s denote the Fourier coefficients of
f 2 H1;˛ , and fehg, where eh.x/ D %1;˛.h/

�1=2 exp.2� ihx/, is an orthonormal basis
of H1;˛ , and

%1;˛.h/ D ˇ�1
1 ı0;h C ˇ�1

2 .1 � ı0;h/jhj2˛
with positive ˇ1 and ˇ2.

The eigenpairs of W1 are f�h; ehgh2Z with �h D %�1
1;˛.h/. We have

f�hgh2Z D
�
ˇ1; ˇ2; ˇ2;

ˇ2

22˛
;
ˇ2

22˛
; : : : ;

ˇ2

j 2˛
;
ˇ2

j 2˛
; : : :

�
:

It is easy to see that the largest eigenvalue is �1 D max.ˇ1; ˇ2/, and the second largest
eigenvalue is �2 D ˇ2. Furthermore, �1 D �2 iff ˇ1 � ˇ2.
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For d > 1, the eigenpairs ofWd D APP�
dAPPd W Hd;˛ ! Hd;˛ are f�h; ehgh2Zd .

As always for linear tensor product problems, the eigenvalues are of product form and

f�hgh2Zd D ˚
�h1

�h2
� � ��hd

�
hj 2Z

:

Assume for a moment that ˛ D 0. For d D 1, we then have at most two distinct
eigenvalues ˇ1 and ˇ2, and the eigenvalue ˇ2 has infinite multiplicity. This means
that W1 is not compact. For d � 1, we have eigenvalues ˇk1ˇ

d�k
2 for k D 0; 1; : : : ; d

and each eigenvalue ˇk1ˇ
d�k
2 for k D 0; 1; : : : ; d � 1 has infinite multiplicity. Hence

Wd is not compact and kWdk D max.ˇ1; ˇ2/d . For "2 < max.ˇ1; ˇ2/d�1ˇ2, the
information complexity n."; d/ D 1, and therefore the approximation problem is
intractable for both the absolute and normalized error criteria.

For˛ > 0, the eigenvalues converge to 0 and the operatorsWd are compact. We now
apply Theorem 5.5 for the approximation problem APP D fAPPd g and the absolute
error criterion, and conclude:

• APP is intractable iff max.ˇ1; ˇ2/ > 1 or ˇ1 � ˇ2 D 1.

• APP is weakly tractable iff ˇ2 < ˇ1 D 1 or max.ˇ1; ˇ2/ < 1.

• APP is strongly polynomially tractable iff APP is polynomially tractable iff
max.ˇ1; ˇ2/ < 1. If this holds then the exponent of strong polynomial tractability
is pstr-wor D 2� with � > .2˛/�1 being the unique solution of

ˇ�1 C 2ˇ�2�.2�˛/ D 1: (5.14)

We now switch to the normalized error criterion. From Theorem 5.6 we conclude:

• APP is intractable iff ˇ1 � ˇ2.

• APP is weakly tractable iff ˇ2 < ˇ1.

• APP is polynomially intractable independently of ˇ1 and ˇ2.

We stress that weak and polynomial tractability for both the absolute and normalized
criteria depends only on ˇ1 and ˇ2 as long as ˛ > 0. We can achieve polynomial
tractability only for the absolute error criterion iff both ˇ1 and ˇ2 are smaller than one.
In this case, we even obtain strong polynomial tractability, and the exponent pstr-wor

also depends on ˛. Clearly, if ˛ goes to infinity then pstr-wor tends to 2�� with ��
satisfying the equation

ˇ�
�

1 C 2ˇ�
�

2 D 1:

For ˇ1 D ˇ2 D ˇ < 1 we have �� D ln.3/= ln.ˇ�1/.
If ˛ goes to 0 then pstr-wor tends to infinity. On the other hand, if ˛ is fixed and

max.ˇ1; ˇ2/ tends to 0 then the exponent pstr-wor tends to .2˛/�1.
We indicated in Appendix A that for ˛ D r � 1 being an integer, the choice ˇ1 D 1

and ˇ2 D .2�/�r leads to the norm involving only derivatives of functions. Note that
the absolute and normalized errors are now the same, and we have weak tractability
and polynomial intractability for such ˇi .
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Example: Schrödinger Equation (Continued)

We know that the linear Schrödinger problem is weakly or polynomially tractable if
the initial condition functions f belong to a space zHd that is a subset of the spaceHd
defined by (5.10) and the approximation problem for zHd is weakly or polynomially
tractable. Could we choose zHd as the Korobov space H kor

d
D Hd;˛? The answer is

no since the constant function f .x/ � 1 belongs to the Korobov space but not to the
space Hd .

For simplicity we restrict the Korobov space to functions which are orthogonal
to all �d;j with odd components. More precisely, for j D Œj1; j2; : : : ; jd � 2 Nd ,
let 2j D Œ2j1; 2j2; : : : ; 2jd � and consider the function �d;2j given by (5.9). We first
compute the Fourier coefficients of this function. Let h D Œh1; h2; : : : ; hd � 2 Zd and
let jhj D Œjh1j; jh2j; : : : ; jhd j�. Then for jhj 6D 2j we have1�d;2j .h/ D 0;

whereas for jhj D 2j , i.e., hk D ˙2jk , we have1�d;2j .h/ D id ;

and 2d Fourier coefficients of �d;2j are non-zero. Hence �d;2j 2 Hd;˛ . Since

%d;˛.h/ D %d;˛.jhj/ we obtain k�d;2j kHd;˛
D 2d=2%

1=2

d;˛
.2j /. Therefore

Q�d;2j D 2�d=2%�1=2
d;˛

.2j /�d;2j for all j 2 Nd

are orthonormal in Hd;˛ and orthogonal in L2 D L2.Œ0; 1�
d /. We define

zHd D ˚
f 2 L2 j f DP

j2Nd

˝
f; Q�d;2j

˛
L2

Q�d;2j with
P
j2Nd

ˇ̌ ˝
f; Q�d;2j

˛
L2

ˇ̌2
< 1�

.

Note that for f 2 zHd we have

kf k2Hd;˛
D

X
h2Zd

%d;˛.h/j Of .h/j2

D
X
h2Zd

%d;˛.h/
ˇ̌̌ X
j2Nd

˝
f; Q�d;2j

˛
L2
2�d=2%�1=2

d;˛
.2j /1�d;2j .h/ˇ̌̌2

D
X

h2Zd ;j2Nd

ˇ̌ ˝
f; Q�d;2j

˛
L2

ˇ̌2
ıjhj;2j 2�d

D
X
j2Nd

ˇ̌ ˝
f; Q�d;2j

˛
L2

ˇ̌2
< 1:

This means that zHd 	 Hd;˛ .
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We now show that for ˛ � 2, we have zHd 	 Hd . For j 2 Nd and f 2 L2, we
obtain

f2j D ˝
f; �d;2j

˛
L2

D 2d=2
X
h2Zd

Of .h/
dY
kD1

Z 1

0

exp .2� ihkx/ sin .2�jkx/ dx

D id

2d=2

X
"j 2f�1;1g

.�1/"1C"2C���C"d Of .2"1j1; 2"2j2; : : : ; 2"djd /:

Therefore, for f 2 zHd we haveX
j2Nd

ˇ�2
d;j jfj j2 D

X
j2Nd

ˇ�2
d;2j jf2j j2

�
X
j2Nd

X
"j 2f�1;1g

�
q0 C 4�2

dX
kD1

j 2k

�2j Of .2"1j1; 2"2j2; : : : ; 2"djd /j2

D
X
j2Nd

X
"j 2f�1;1g

�
q0 C 4�2

Pd
kD1 j 2k

�2
%˛.2j /

%˛.2j /j Of .2"1j1; 2"2j2; : : : ; 2"djd /j2

� kf k2Hd;˛
sup
j2Nd

�
q0 C 4�2

Pd
kD1 j 2k

�2
%˛.2j /

:

Hence, we conclude that zHd 	 Hd iff

A ´ sup
j2Nd

�
q0 C 4�2

Pd
kD1 j 2k

�2
%˛.2j /

D
�
ˇ2

22˛

�d
sup
j2Nd

�
q0 C 4�2

Pd
kD1 j 2k

�2
Qd
kD1 j 2˛k

< 1:

It is easy to check that A < 1 iff ˛ � 2. Indeed, if A < 1 then we can take jk D 1

for all k except, say, p and go with jp to infinity. Then 2˛ must be at least 4, i.e.,
˛ � 2. On the other hand, if ˛ � 2 then

A �
�
ˇ2

22˛

�d
sup
j2Nd

�
q0 C 4d maxk2Œd� j 2k

�2
.maxk2Œd� jk/2˛

< 1;

as claimed.
Hence, for ˛ � 2 we can apply the previous result that tractability of the linear

Schrödinger problem for zHd is equivalent to tractability of the approximation problem
for zHd . Consider then the approximation problem APPdf D f with APPd W zHd !
L2. It is easy to check that Wd D APP�

dAPPd W zHd ! zHd has the eigenpairs

Wd Q�d;2j D %�1
d;˛ Q�d;2j for all j 2 Nd .
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Hence, the eigenvalues are

�d;j D %�1
d;˛ D

dY
kD1

ˇ2

22˛j 2˛
k

for all j 2 Nd .

They are of product form and for d D 1 the largest eigenvalue

�1 D ˇ2

22˛

has multiplicity 1 since the second largest eigenvalue is

�2 D ˇ2

24˛
:

We now apply Theorem 5.5 for the approximation problem APP D fAPPd g and
the absolute error criterion, and conclude:

• the linear Schrödinger problem for zHd is intractable iff ˇ2 > 22˛ .

• the linear Schrödinger problem for zHd is weakly tractable iff ˇ2 � 22˛ .

• the linear Schrödinger problem for zHd is strongly polynomially tractable iff the
linear Schrödinger problem for zHd is polynomially tractable iff ˇ2 < 22˛ . If
this holds then the exponent of strong polynomial tractability is pstr-wor D 2�

with � > .2˛/�1 being the unique solution of�
ˇ2

22˛

��
�.2�˛/ D 1:

We now switch to the normalized error criterion. Clearly, the initial error is �1=2
d;E1

where E1 D Œ1; 1; : : : ; 1�, and �d;j =�d;E1 D Qd
kD1 j�2˛

k
is independent of ˇ2 for all

j 2 Nd . From Theorem 5.6 we conclude:

• the linear Schrödinger problem for zHd is weakly tractable.

• the linear Schrödinger problem for zHd is polynomially intractable.

5.3 Linear Weighted Tensor Product Problems

In this section we introduce weights which play a major role in tractability studies.
We first introduce weighted Hilbert spaces of d -variate functions, with each group
of variables controlled by its corresponding weight. Since we have 2d groups of
variables indexed by subsets u of the set f1; 2; : : : ; dg, we have 2d weights each
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denoted by �d;u. The definition of weighted Hilbert space is similar to the ANOVA
decomposition presented in Chapter 3.

Then we discuss different types of weights such as product weights, order-dependent
weights, finite-order weights, and finite-diameter weights. Our special emphasis is on
product weights, where the j th variable is controlled by the weight �d;j and the groups
of variables in u are controlled by

Q
j2u �d;j , and on finite-order weights where the

weights �d;u are 0 if the cardinality of the subset u is larger than, say, juj > !� for
some !� independent of d .

Having weighted Hilbert spaces, it is easy to obtain linear weighted tensor prod-
uct operators and to study their polynomial and weak tractability. The main point
is to find necessary and sufficient conditions on the weights such that polynomial or
weak tractability holds. By now, it should be intuitively clear that for sufficiently
quickly decaying weights we should obtain positive tractability results. In this way,
we may change many negative results on the curse of dimensionality or polynomial
intractability for the unweighted linear problems by shrinking the classes of functions
to corresponding weighted classes.

5.3.1 Weighted Hilbert Spaces

We now show how the ANOVA decomposition presented in Section 3.1.6 of Chapter 3
can be generalized to an arbitrary tensor product Hilbert space. This will allow us
to introduce weights measuring the influence of each groups of variables and obtain
weighted Hilbert spaces.

As in the previous section, let Hd D H1 ˝ H1 ˝ � � � ˝ H1 be the d -fold tensor
product space of real valued functions defined onDd

1 , whereH1 is a separable Hilbert
space of univariate real functions defined on D1 	 R.

To simplify notation, we assume that dim.H1/ D 1. Let f�j gj2N be an orthonor-
mal basis ofH1, i.e., h�i ; �j iH1

D ıi;j . In general, �1 can be chosen as any normalized
element ofH1. However, it will be simpler if we take �1 � 1, which obviously can be
done as long as 1 2 H1 and k1kH1

D 1.
For d � 2, let j D Œj1; j2; : : : ; jd � 2 Nd and x D Œx1; x2; : : : ; xd � 2 Dd

1 . Define

�j .x/ D
dY
kD1

�jk
.xk/:

Then f�j gj2Nd is an orthonormal basis of Hd and for any function f from Hd we
have

f .x/ D
X
j2Nd

cj�j .x/;

where cj D hf; �j iHd
. Note that kf k2Hd

D P
j2Nd c2j < 1.

It will be convenient to use the notation

Œd � ´ f1; 2; : : : ; dg for all d 2 N.
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For each j 2 Nd define
u.j / D fk j jk � 2g:

Clearly, u.j / 	 Œd � and by varying j we can obtain any of the 2d subsets of Œd �. For
example, for j D Œ1; 1; : : : ; 1� we have u.j / D ;, and for any j D Œj1; j2; : : : ; jd �

with all jk � 2 we have u.j / D Œd �. For u 	 Œd �, by xu we denote the complement
of u, i.e, xu D Œd � n u.

We can rewrite the function �j as

�j .x/ D
Y

k2u.j /

�jk
.xk/

Y
k2u.j /

�1.xk/:

Hence, if �1 � 1 the second product is one, and the function �j depends only on
variables from u.j /. For general �1, the function �j depends on variables not in u.j /
in a preassigned way through the function �1.

The series for the function f can be also rewritten as

f .x/ D
X
j2Nd

cj
Y

k2u.j /

�jk
.xk/

Y
k2u.j /

�1.xk/

D
X

u�Œd�

� X
j2Nd Wu.j /Du

cj
Y
k2u

�jk
.xk/

� Y
k2xu

�1.xk/:

For any subset u of Œd �, let fu W Dd
1 ! R be defined by

fu.x/ D
X

j2Nd Wu.j /Du

cj�j .x/ D
� X
j2Nd Wu.j /Du

cj
Y
k2u

�jk
.xk/

� Y
k2xu

�1.xk/:

Hence, fu is represented as the product of two factors

fu.x/ D fu;1.xu/hxu;2.xxu/;

where

fu;1.xu/ ´
X

j2Nd Wu.j /Du

cj
Y
k2u

�jk
.xk/ and hxu;2.xxu/ ´

Y
k2xu

�1.xk/:

For example, take u D ;. Thenf;;1.x;/D hf; �1;1;:::;1iHd
andhx;;2.xx;/D hŒd�;2.x/ DQd

kD1 �1.xk/. For u D Œd � we have fŒd�;1.x/ D fŒd�.x/ and h;;2.x;/ D 1.
For an arbitrary u, the first factor fu;1 is a function that depends only on variables

in u and belongs to the tensor product Hilbert space Hu of juj copies of zH1. Here

zH1 D ˚
f 2 H1 j hf; �1iH1

D 0
�

is a closed subspace of H1, and f�j gj2Nnf1g is its orthonormal basis.
The second factor hxu;2 is a function that depends only on variables not in u through

the function �1. If �1 � 1, then the second factor hxu;2 is always one. For general �1,
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the function fu has a preassigned dependence on variables not in u and may have
arbitrary dependence on variables in u as long as the first factor fu;1 belongs to Hu.
In this sense we say that fu depends only on variables in u.

For u; v 	 Œd � and u 6D v we have

hfu; fviHd
D

X
j2Nd Wu.j /Du

X
k2Nd Wu.k/Dv

cj ckh�j ; �kiHd
D 0

since j 6D k. By the same argument, we have for f; g 2 Hd and u 6D v,

hfu; gviHd
D 0:

Hence, the ffug are orthogonal. For u D v, we have

kfuk2Hd
D hfu; fuiHd

D
X

j2Nd Wu.j /Du

c2j D
X

j2Nd Wu.j /Du

hfu; �j i2Hd
:

Going back to the series of f , we conclude that

f D
X

u�Œd�
fu:

Hence, we have decomposed an arbitrary function f from Hd as the sum of mutu-
ally orthogonal functions fu, each of which depends only on variables from u. This
resembles the ANOVA decomposition (3.9) presented in Section 3.1.6 of Chapter 3,
especially if we can take �1 � 1.

For f; g 2 Hd , note that

hfu; guiHd
D hfu;1hxu;2; gu;1hxu;2iHd

D hfu;1; gu;1iHu hhxu;2; hxu;2iHxu

D hfu;1; gu;1iHu :

Hence we have

hf; giHd
D

X
u�Œd�

hfu; guiHd
D

X
u�Œd�

hfu;1; gu;1iHu ;

and
kf k2Hd

D
X

u�Œd�
kfuk2Hd

D
X

u�Œd�
kfu;1k2Hu

:

The formula for the norm of f tells us that the contribution of each fu is the same.
This means that any group of variables is equally important in their contribution to the
norm of f .

Suppose that we know a priori that some groups of variables are more important
than the others or that the function f does not depend on some groups of variables.
Such situations can be modeled by introducing a sequence of weights � D f�d;ug,
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where d 2 N and u is an arbitrary subset of Œd �. We assume first that all �d;u are
positive. The zero weight �d;u can be obtained by the limiting process and by adopting
the convention that 0=0 D 0.

For positive weights, we define the weighted Hilbert space Hd;� as a separable
Hilbert space that is algebraically the same as the space Hd , and whose inner product
for f; g 2 Hd is given by

hf; giHd;�
´

X
u�Œd�

��1
d;u hfu; guiHd

D
X

u�Œd�
��1
d;u hfu;1; gu;1iHu :

Note that the norms of Hd and Hd;� are equivalent, with

1

maxu �
1=2

d;u

kf kHd
� kf kHd;�

� 1

minu �
1=2

d;u

kf kHd
;

although the equivalence factors may arbitrarily depend on d . We also have

kf k2Hd;�
D

X
u�Œd�

��1
d;u kfuk2Hd

D
X

u�Œd�
��1
d;u

X
j2Nd Wu.j /Du

hfu; �j i2Hd
:

For all j 2 Nd and u 	 Œd �, define

�j;� D �
1=2

d;u.j /
�j :

It is easy to check that f�j;�gj2Nd is an orthonormal basis of Hd;� . It is also easy to
verify that for all f 2 Hd and j 2 Nd , we have

hf; �j iHd
D �

1=2

d;u.j /
hf; �j;� iHd;�

D �d;u.j / hf; �j iHd;�
:

We now consider general weights for which some �d;u may be 0. If �d;u D 0 then
we assume thatfu D 0, and the term for u is absent in the inner product formula. In this
case, the space Hd;� is a proper subspace of Hd and consists of linear combinations
of functions fu corresponding to non-zero weights �d;u. Define

Nd
� D ˚

j 2 Nd j �d;u.j / > 0
�

as the set of indices j for which the corresponding weight �d;u.j / is positive. Then
f�j;�gj2Nd

�
is an orthonormal basis ofHd;� . We always assume that for each d at least

one weight �d;u.j / is positive, and therefore the set Nd
� is never empty. In fact, if the

only non-zero weight is �d;; then Nd
� D fŒ1; 1; : : : ; 1�g; otherwise Nd

� has infinitely
many elements.

Consider the unit ball of the space Hd;� . From the first formula for the norm
of f , it is clear that we can change the influence of each fu by a proper choice of the
weight �d;u. For small �d;u, the functions in the unit ball ofHd;� must have small fu,
and if �d;u D 0 then we know a priori that all fu D 0, which means that we consider
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functions that do not depend on the group u of variables. For example, if �d;u D 0

for all u for which juj � 3, then we know a priori that functions can depend only on
groups of two variables. In the sequel, we will specify different conditions on weights
that control the behavior of functions in a more qualitative way.

We stress that for general weights the space Hd;� is not a tensor product space,
although its construction is based on the tensor product spaces Hu. For example,
consider the weights �d;u D 1 for all u for which juj � ! for some integer !
independent of d , and �d;u D 0 for all u for which juj > !. Then Hd;� is the direct
sum of the tensor product spaces Hu for all u with juj � !. On the other hand, if
�d;u D Q

k2u �d;k for some positive �d;k , then the space Hd;� is the tensor product
space H1;�d;1

˝H1;�d;2
˝ � � � ˝Hd;�d;d

. In particular, if �d;k D 1 for all k then we
obviously get Hd;� D Hd .

We finally comment on the case when the Hilbert space H1 has a reproducing
kernel K1 W D1 � D1 ! R. This property is not needed for the class ƒall; however,
it is necessary for the class ƒstd that will be extensively studied later in Volumes II
and III. For an arbitrary point x 2 D1, define the linear functional Lx.f / D f .x/ for
all f 2 H1. It is well known, see the book of Aronszajn [2], that a Hilbert space has a
reproducing kernel iff the Lx’s are continuous. Hence, we must assume that H1 has a
reproducing kernel when we study the class ƒstd.

The basic properties of reproducing kernel Hilbert spaces are collected in Appen-
dixA. Here we only mention thatK.x; y/ D K.y; x/ for all x; y 2 D1,K1. � ; x/ 2 H1
for any x 2 D1, and

f .x/ D hf;K1. � ; x/iH1
for all f 2 H1 and x 2 D1.

This is the main property of a reproducing kernel Hilbert space, which makes it possible
to deduce many important properties of the whole Hilbert space from the reproducing
kernel alone.

It is easy to see that if H1 is a reproducing kernel Hilbert space, then the weighted
Hilbert space Hd;� is also a reproducing kernel Hilbert space for any choice of the
weight sequence � D f�d;ug. Furthermore, the reproducing kernel Kd;� of the space
Hd;� is fully determined by the kernel K1, the function �1 and the weights �d;u. We
have

Kd;� .x; y/ D
X

u�Œd�
�d;uKu.xu; yu/hxu;2.xxu/hxu;2.yxu/ for all x; y 2 Dd

1 ,

where the reproducing kernel Ku of the space Hu has the form

Ku.xu; yu/ D
Y
k2u

K1.xk; yk/:

Indeed, observe first that�
Kd;� . � ; x/�

u;1
D �d;uhxu;2.xxu/Ku. � ; xu/:
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Since f D P
u fu with fu;1 2 Hu and fu;1.xu/ D hfu;1; Ku. � ; xu/iHu , we have

f .x/ D
X

u�Œd�
fu;1.xu/h Nu;2.x Nu/

D
X

u�Œd�
hfu;1; Ku. � ; xu/iHuh Nu;2.x Nu/

D
X

u�Œd�
��1
d;uhfu;1; �d;uh Nu;2.x Nu/Ku. � ; xu/iHu

D
X

u�Œd�
��1
d;uhfu;1;

�
Kd;� . � ; x/�

u;1
iHu D hf;Kd;� . � ; x/iHd

;

as claimed.
For general weights, the reproducing kernel Kd;� cannot be represented as the

product of univariate reproducing kernels. However, if �d;u D cd
Q
j2u �d;j then

Kd;� .x; y/ D cd

dY
jD1

�
�1.xj /�1.yj /C �d;jK1.xj ; yj /

�
:

5.3.2 Types of Weights

So far we considered an arbitrary sequence of weights � D f�d;ug with �d;u � 0. In
this section we specify some assumptions on the weights �d;u. We obtain different
types of weights for which we later prove tractability results.

The first type of weights studied for tractability of multivariate problems was prod-
uct weights, see [216] where such weights were introduced with no dependence on d ,
and [271] where the dependence of the product weights on d was allowed. The first
use of general weights �d;u can be found in Example 1 of [94] and was suggested by
Art Owen. The reader is referred to [177] for a survey of tractability results for product
weights mostly for multivariate integration.

We say that � D f�d;ug is a sequence of product weights iff for all d 2 N and for
all u 	 Œd � we have

�d;u D cd
Y
j2u

�d;j

for some positive cd and some arbitrary non-negative sequence f�d;j g such that

�d;d � �d;d�1 � � � � � �d;2 � �d;1:

If additionally �d;j D �j then � is called a sequence of product weights independent
of dimension. Here, we use the convention that the product over the empty set is one.
That is, �d;; D cd . In many cases, cd D 1 has been studied but, as we shall see later,
it is sometimes convenient to allow an arbitrary positive cd . For product weights, all
2d weights �d;u are specified by d C 1 numbers.
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The essence of product weights is that we monitor the influence of the j th variable
for the d -dimensional case through the weight �d;j . The ordering of �d;j means that
the first variable is the most important one, followed by the second variable, and so
on. Obviously, if all �d;j are the same, say �d;j � ˇd , then all variables are equally
important. For product weights, the group of variables xu is monitored by the weight
cd
Q
j2u �d;j . If all �d;j ’s are equal to ˇd then the group of variables xu is monitored

by the weight cdˇ
juj
d

. Observe that all groups of variables are equally important only
for ˇd D 1. The unweighted case corresponds to cd D �d;j D 1.

As we shall see in Volume II, strong polynomial tractability of problems such as
multivariate integration for the normalized error criterion holds if cd is arbitrary andPd
jD1 �d;j is uniformly bounded in d . For product weights independent of dimension

this holds if
P1
jD1 �j < 1. For equal product weights �d;j D ˇd , it is enough to

guarantee that dˇd is uniformly bounded in d which holds, for example, if ˇd D
d�1. Hence, even if all variables are equally important, the problem will be strongly
polynomially tractable if the groups of k variables are monitored with the weight
cdd

�k .
For product weights, the Hilbert space Hd;� is the tensor product space of the

H1;�d;j
, and if H1 has a reproducing kernel K1 then Hd;� has the reproducing kernel

Kd;� of product form given in the previous subsection.
We now turn to order-dependent weights introduced in [45]. We say that � D

f�d;ug is a sequence of order-dependent weights iff for all d 2 N and for all u 	 Œd �

we have
�d;u D 	d;juj

for some arbitrary non-negative sequence f	d;j gj2Œd�;d2N.
If the weights are order-dependent, then for any k 2 Œd �, each group of k variables

is equally important and is monitored by the weight 	d;k . Equivalently, if we consider
the decomposition of the function f D P

u fu from the weighted space Hd;� then
all terms fu corresponding to the same cardinality of u are equally important. For
order-dependent weights, all 2d weights are specified by d C 1 numbers. Note that
the order-dependent weights are product weights iff 	d;k D cda

k
d

for some positive
cd and non-negative ad . If all 	d;k D 1 then, as before, all groups of variables are
equally important and we are back to the unweighted case.

As we shall see later, polynomial tractability of some multivariate problems for the
classƒall requires that

P
u �

�
d;u

is polynomially bounded in d for some positive � . For
order-dependent weights, this is equivalent to requiring that

dX
kD0

�
d

k

�
	�d;k

is polynomially bounded in d . For instance, this holds for 	d;k D cd iff 2dc�
d

is
polynomially bounded in d , i.e., when cd D O.2�d=ˇdq/ for some positive ˇ and
non-negative q.
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We now turn to finite-order weights introduced in [45]. We believe that this
type of weights is probably the most important one and captures the behavior of many
computational multivariate problems for large d .

We say that � D f�d;ug is a sequence of finite-order weights iff there exists an
integer ! such that

�d;u D 0 for all d and for all u with juj > !: (5.15)

The finite-order weights are of order !� if !� is the smallest integer with the property
(5.15).

The essence of finite-order weights is that an arbitrary function f D P
u fu from

the weighted space Hd;� is the sum of functions fu, each depending on at most !�
variables. This is a very powerful property that will enable us to obtain many polynomial
tractability results for linear and some non-linear multivariate problems.

For finite-order weights, we have at most
P!�

kD0
�
d
k

� D O
�
d!

��
non-zero weights.

In fact, it is easy to show, see also [273], that

!�X
kD0

�
d

k

�
� 2d!

�
:

The inequality is obvious for d D 1 or for !� D 0. For d � 2 and !� � 1, we use
induction on !�. For !� D 1 it is again obvious, whereas for !� C 1 we have

!�C1X
kD0

�
d

k

�
� 2d!

� C
�

d

!� C 1

�
� 2d!

� C d!
�C1

.!� C 1/Š

� d!
�C1

�
2

d
C 1

.!� C 1/Š

�
� 2d!

�C1;

as claimed. Obviously, for large d we have
P!�

kD0
�
d
k

� D d!
�
.1C o.1//=!�Š.

We stress that the total number of non-zero finite-order weights !� is sometimes
significantly less than d!

�
. For example, consider functions often studied in physics

which are given as a sum of Coulomb pair potentials,

f .x/ D
X

1�i<j�m

1

kExi � Exj k ;

where x D �Ex1; Ex2; : : : ; Exm
	

with Exj 2 R3, and the Euclidean norm k � k of vectors,
see for instance the book of Glimm and Jaffe [64]. In this case d D 3m. Since f
is not defined for Exi D Exj , usually f is modified by taking a small positive � and by
considering

f�.x/ D
X

1�i<j�m

1�kExi � Exj k2 C �
�1=2 :
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Hence, the terms of f and f� depend on groups of two 3-dimensional vectors, i.e.,
each term depends on six variables. In this case we thus have !� D 6 although the
total number of non-zero terms is only of order d2 not d6.

Another subclass of finite-order weights with only a few non-zero weights was
recently pointed to us by Creutzig [33]. He proposed to call them finite-diameter
weights. That is, � D f�d;ug is a sequence of finite-diameter weights if there exists an
integer q � 1 such that

�d;u D 0 for all d and for all u with diam.u/ � q: (5.16)

Here, the diameter of u is diam.u/ WD maxi;j2u ji � j j, and we take diam.;/ D 0 by
convention.

The essence of finite-diameter weights is that f D P
u fu may have non-zero fu

only for functions depending on at most q successive components. Examples of finan-
cial mathematics seem to correspond, at least approximately, to finite-diameter weights
since they correspond to time dependent phenomena that are given as sums of terms
depending mostly on what has occurred in the recent past.

The finite-diameter weights are of order q�, withq� � 1, ifq� is the smallest integer
with the property (5.16). It is easy to see that finite-diameter weights of order q� are
also finite-order weights of order q�, since juj > q� implies that diam.u/ � q�.

The important property of finite-diameter weights is that the total number of non-
zero weights is only linear in d , independently of their order q�. More precisely, for
finite-diameter weights of order q�, the total number of non-zero weights is at most 2d

for d � q� and
2q

��1d � .q� � 2/2q��1 for q� < d .

The case q� < d is obviously more interesting.
This formula can be proven as follows. Ford � q� we have diam.u/ � d�1 < q�.

Since there is no restriction on non-zero weights �d;u, we have at most 2d non-zero
weights. For q� < d , we count for k D 0; 1; : : : ; q� � 1 how many weights �d;u
can be non-zero for diam.u/ D k. For k D 0 we have clearly d C 1 such sets,
f;g; f1g; : : : ; fdg. For k > 0, the smallest and largest elements of u with diam.u/ D k

are i and i C k with i 2 f1; 2; : : : ; d � kg. So we have d � k choices for the
smallest element. Note that all u D fi; i2; i3; : : : ; ik�1; iCkg with fi2; i3; : : : ; ik�1g 	
fiC1; iC2; : : : ; iCk�1g have diameter k and we have 2k�1 such u. Hence, the total
number of u with diam.u/ D k is .d � k/2k�1, so that the total number of non-zero
finite-diameter weights of order q� < d is

1C d C
q��1X
kD1

.d � k/2k�1 D 2q
��1.d � q� C 2/;

as claimed. Note that for the both cases, d � q� and q� < d , the total number of
non-zero finite-diameter weights is at most

2min.q�;d/�1d � .min.q�; d / � 2/2min.q�;d/�1:
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From one point of view, positive polynomial tractability results for finite-order
weights may seem to be not surprising, at least for linear multivariate problems Sd .
Indeed, instead of approximating Sdf one can switch, due to linearity of Sd , to ap-
proximation of Suf WD Sdfu, which is an instance of at most an !�-dimensional
problem. So instead of solving one d -dimensional linear problem, we have to solve
at most 2d! linear problems, each of which is at most !�-dimensional. So, if even
the information complexity of each !�-dimensional problem is exponential in !� but
polynomial in "�1, we will get polynomial tractability for Sd . There is, however, a
problem with this reasoning. First of all, we may get information only about f , and
the previous approach requires the information about each fu. But if we use the class
ƒall as in this chapter we still can use information on all fu since any continuous linear
functional on fu can be treated as a linear continuous functional on f . Hence, the
previous reasoning is at least so far well founded for the classƒall. What then happens
if we use function values, that is the class ƒstd? There is some hope also in this case,
as shown in [126], which we will not pursue here.

There is also a potential problem related to scaling. Namely, the problems Sd
and Su may have very different initial errors. So as long as we use the normalized error
criterion we would need to solve all problemsSu to within "kSdk=.2d!�

/. The division
by 2d!

�
is indeed needed since the individual errors of approximating Sufu may add

up when we approximate Sdf . Hence, still assuming that we have a polynomial
dependence of the information complexity for the problem Su under the absolute error
criterion on "�1, say, n."; Su/ D O."�pu/ with an unspecified dependence on !� in
the big O notation, we will obtain a total cost of the formX

uWjuj�!�

O
�
d!"�1kSdk�pu

:

Is this cost really polynomial in d ? It is not clear how kSdk depends on d and that is
why we cannot be sure that we have polynomial tractability for the normalized error
criterion. Well, let us make one more concession and switch to the absolute error
criterion. Then kSdk disappears from the last formula, and the total cost is

O
�
d!

�.1CmaxuWjuj�!� pu/"� maxuWjuj�!� pu
�
:

This is polynomial in d and "�1 but the degrees of these polynomials can be quite high,
and, in particular, never less than !� for d .

There is one more point of criticism of this ad-hoc analysis. Namely, we did not
consider the influence of finite-order weights. Obviously if all non-zero weights are
large the problem becomes harder. On the other hand, if one of the non-zero weights
is small, say �d;u, then the problem Su is less important than problems with larger
weights.

In any case, it should be clear by now to the reader that, although there is some-
thing valid in this intuitive statement that finite-order weights should imply polynomial
tractability, we need a rigorous analysis, especially when Sd is non-linear or when the
class ƒstd is used or when the normalized error criterion is chosen. We shall see in
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the course of this book that polynomial and sometimes strong polynomial tractability
indeed hold for finite-order weights even for the class ƒstd, for the normalized error
criterion and for linear and selected non-linear multivariate problems.

5.3.3 Weighted Operators

In Section 5.2 we considered linear tensor product operators Sd W Hd ! Gd . We now
extend their definition to the weighted Hilbert spaces Hd;� .

We define Sd;� W Hd;� ! Gd as Sd;�f D Sdf which makes sense since Hd;� 	
Hd . The information complexity of Sd;� for the classƒall depends on the eigenvalues
of the operator

Wd;� ´ S�
d;�Sd;� W Hd;� ! Hd;� :

Although Sd;� D Sd , we cannot claim that Wd;� D Wd since the inner product of
Hd;� is, in general, different than the inner product of Hd , and therefore S�

d;�
may

be different than S�
d

. We now find the eigenpairs of Wd;� in terms of the eigenpairs
.�d;j ; ed;j / of Wd , the latter given in Section 5.2.

We assume that the functions �j from the previous section are chosen as the eigen-
functions of the operator Wd , so that

�j D ej for all j 2 Nd . (5.17)

We comment on this assumption. As we shall see in a moment, this assumption will
easily allow us to find all eigenpairs of Wd;� which, in turn, will allow us to find
necessary and sufficient conditions on tractability. If this assumption is not satisfied
then tractability analysis may be harder. We will encounter this problem for Sd being a
linear functional for which only the classƒstd makes sense. As we shall see a different
proof technique is then needed.

Assuming (5.17) and remembering that f�j;� D �
1=2

d;u.j /
�j gj2Nd

�
is an orthonormal

basis of Hd;� , we have

h�i;� ; Wd;��j;� iHd;�
D hSd;��i;� ; Sd;��j;� iGd

D hSd�i;� ; Sd�j;� iGd

D �
�d;u.i/�d;u.j /

�1=2 hSd�i ; Sd�j iGd

D �
�d;u.i/�d;u.j /

�1=2 h�i ; Wd�j iHd
D �d;u.j /�d;j ıi;j :

This proves that Wd;��j;� is orthogonal to all �i;� with i 6D j . Hence Wd;��j;� must
be parallel to �j;� and then

Wd;��j;� D �d;�;j�j;� for all j 2 Nd
� ,

where
�d;�;j D �d;u.j /�d;j :
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Hence, the eigenfunctions of Wd;� are the same as Wd , however, they are differently
normalized, whereas the eigenvalues of Wd;� are the eigenvalues of Wd multiplied by
the weights �d;u.j /.

It is clear that the operator Wd;� is compact for any weights � , since the �d;j are
products of the eigenvalues for the univariate problem and they tend to 0. Observe that

�d;j D
� Y
k2u.j /

�jk

�
�
d�ju.j /j
1 � �

ju.j /j
2 �

d�ju.j /j
1 ;

since the eigenvalues f�j g are ordered. This proves that the initial error is

kSd;�kHd;� !Gd
D max
j2Nd

�
�d;u.j /�d;j

�1=2 D max
u�Œd�

�
�d;u�

juj
2 �

d�juj
1

�1=2
:

We callS� D fSd;�g a linearweighted tensor product problem in theworst case setting,
or simply a weighted problem.

5.3.4 Tractability of Weighted Problems

We are ready to study polynomial and weak tractability of the weighted problem
S� D fSd;�g for the class ƒall.

To keep the number of pages in this book relatively reasonable, we leave the case
of tractability of S� for the absolute error criterion as an open problem for the reader.

Open Problem 27.

• Consider the weighted problem S� D fSd;�g as defined in this section with
�2 > 0. Find necessary and sufficient conditions for polynomial and weak
tractability of S� for the absolute error criterion in the worst case setting and for
the class ƒall.

We now address tractability of S� for the normalized error criterion. Let f�d;�;j g
be the ordered sequence of the eigenvalues of Wd;� . We know that

˚
�d;�;j

�
j2N

D
�
�d;u.j /�

d�ju.j /j
1

Y
k2u.j /

�jk

�
j2Nd

�

D
�
�d;u.j /�

d�ju.j /j
1 �

ju.j /j
2

Y
k2u.j /

�jk

�2

�
j2Nd

�

:

The largest eigenvalue is given if we take j D Œj1; j2; : : : ; jd � with jk 2 f1; 2g such
that jk D 2 iff k 2 u. Then u.j / D u and

�d;�;1 D max
u�Œd�

�d;u�
d�juj
1 �

juj
2 D �d1 max

u�Œd�
�d;u

�
�2

�1

�juj
:
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Note that for �2 D 0, we have �d;�;1 D �d;;�d1 and �d;�;j D 0 for all j � 2. Then
n."; d/ � 1 and the problem S� is trivial in the class ƒall. Hence we assume �2 > 0

in what follows.
For the normalized error criterion, tractability depends on f�d;�;j =�d;�;1g. We first

introduce the normalized weights �� D f��
d;u

gu�Œd�;d2N as

��
d;u D �d;u.�2=�1/

juj

maxv�Œd� �d;v.�2=�1/jvj ;

and the normalized eigenvalues �� D f��
j gj2N as

��
j D �jC1

�2
:

Clearly, ��
d;u
; ��
j 2 Œ0; 1�. Then

�
�d;�;j

�d;�;1

�
j2N

D
n
��
d;u.j /

Y
k2u.j /

��
jk�1

o
j2Nd

�

: (5.18)

Note that if � is a sequence of order-dependent or finite-order weights, then �� is
also a sequence of order-dependent or finite-order weights.

For product weights �d;u D cd
Q
j2u �d;j , we have

��
d;u D c�

d

Y
j2u

��
d;j for c�

d
D 1

maxv�Œd�

Q
j 2v �

�
d;v

; ��
d;j

D �d;j .�2=�1/,

and so �� is also a set of product weights. Note, however, that this point requires
an arbitrary cd . Indeed, assume that we adopt the definition of product weights with
cd D 1 always. Then c�

d
D 1 iff maxv�Œd� �d;v.�2=�1/jvj D 1. We have

max
v�Œd�

�d;v.�2=�1/
jvj D max

v

Y
j2v

�d;j�2=�1 D max
kD0;k2Œd�

kY
jD1

�d;j�2=�1:

Since �d;; D 1, the last maximum is at least 1, and it is 1 iff �d;1�2=�1 � 1 for all d ,
which obviously does not have to hold in general. That explains why we decided to
allow to have an arbitrary positive cd in the definition of product weights.

We will be using the concept of the so-called sum-exponent p of a sequence
 D f d;kgk2Œd�;d2N for  d;k 2 Œ0; 1� which was defined in [271] as

p D inf
˚
� � 0 j lim sup

d!1
Pd
kD1  �d;k < 1�

; (5.19)

with the convention that inf ; D 1.
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Without loss of generality assume that f d;kg are ordered, d;d �  d;d�1 � � � � �
 d;1. Then p < 1 iff  d;k D O.k�ˇ / for some positive ˇ, and with the big O

factor independent of d . Indeed, let p < 1. Then

lim sup
d

dX
kD1

 sd;k < 1 implies lim sup
d

dX
kD1

 �d;k < 1 for any � � s.

Hence, for � > p there exists a positive C such that for all d and all k � d , we have

k �d;k �
dX
jD1

 �d;j � C:

This means that  d;k � C ˇk�ˇ with ˇ D 1=� , as claimed. On the other hand, if
 d;k � Ck�ˇ then clearly p � 1=ˇ.

Hence, p < 1 means that the numbers  d;k decay polynomially in k�1 and
uniformly in d .

Now set  d;k D ��
k

, so that there is no dependence on d . Then

p�� D inf
˚
� � 0 j P1

kD1
�
��
k

	�
< 1�

:

We are ready to present a theorem characterizing polynomial tractability for the
weighted case.

Theorem 5.7. Consider the linear weighted tensor product problem in the worst case
setting S� D fSd;�g for compact linear Sd;� W Hd;� ! Gd defined over Hilbert spaces
Hd;� andGd with �2 > 0. We assume that for each d , the weight �d;u > 0 for at least
one non-empty u. We study the problem S� for the normalized error criterion and for
the class ƒall.

• S� is polynomially tractable iff p�� < 1 and there exist q2 � 0 and � > p��

such that

C2 ´ sup
d

� X
u�Œd�

�
��
d;u

	�� 1X
jD1

�
��
j

	��juj�1=�
d�q2 < 1: (5.20)

• If (5.20) holds then

n."; d/ � C �2 d
q2�"�2� for all " 2 .0; 1� and d D 1; 2; : : : .

• If S� is polynomially tractable, so that n."; d/ � Cdq"�p for some positive
C and p with q � 0, then (5.20) holds with q2 D 2q=p and any � such that
� > p=2. Then

C2 � 21=� .C C 2/2=p�.2�=p/1=� :



5.3 Linear Weighted Tensor Product Problems 203

• S� is strongly polynomially tractable iff (5.20) holds with q2 D 0. The exponent
of strong polynomial tractability is

pstr-wor D inff2� j � > p�� and satisfies (5.20) with q2 D 0g.
• For productweights�d;u DQ

j2u �d;j with�d;jC1 � �d;j , let��
d;j

D�d;j�2=�1.
– Let �3 > 0. Then S� is polynomially tractable iff p�� < 1 and there exists
� > p�� such that

lim sup
d!1

Pd
jD1 min

�
1;
�
��
d;j

	��
ln d

< 1: (5.21)

If (5.21) holds then for any

q >
1

�

� 1X
jD1

�
�jC1
�1

�� �
lim sup
d!1

Pd
jD1 min

�
1;
�
��
d;j

	��
ln d

;

there exists a positive C such that

n."; d/ � Cdq
�

"�2� for all " 2 .0; 1� and d D 1; 2; : : : .

– Let �3 D 0. Define ˇ D fˇd;j gj2Œd�;d2N as

ˇd;j D min
�
Œ��
d;j �

�1; ��
d;j

� 2 Œ0; 1�:
Then S� is polynomially tractable iff there exists � > 0 such that

lim sup
d!1

Pd
jD1 ˇ�d;j
ln d

< 1: (5.22)

If (5.22) holds then for any

q >
1

�
lim sup
d!1

Pd
jD1 ˇ�d;j
ln d

there exists a positive C such that

n."; d/ � Cdq
�

"�2� for all " 2 .0; 1� and d D 1; 2; : : : .

– Let �3 > 0. Then S� is strongly polynomially tractable iff p�� < 1 and
p��� < 1, where ��� D fmin.1; ��

d;k
/g. If this holds, the exponent of

strong polynomial tractability is

pstr-wor D 2max
�
p�� ; p���

�
:
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– Let �3 D 0. Then S� is strongly polynomially tractable iff pˇ < 1. If this
holds, the exponent of strong polynomial tractability is

pstr-wor D 2pˇ :

• For order-dependent weights �d;u D 	d;juj, we have

– S� is polynomially tractable iff p�� < 1 and there exist q2 � 0 and
� > p�� such that

C2 ´ sup
d

� dX
kD0

�
d

k

��
	�
d;k

	�� 1X
jD1

�
��
j

	��k�1=�
d�q2 < 1; (5.23)

where

	�
d;k D 	d;k.�2=�1/

k

maxjD0;1;:::;d 	d;j .�2=�1/j

are the normalized order-dependent weights.

– If (5.23) holds then

n."; d/ � C2d
q2�"�2� for all " 2 .0; 1� and d D 1; 2; : : : .

– S� is strongly polynomially tractable iff p�� < 1 and (5.23) holds with
q2 D 0. Then the exponent of strong polynomial tractability is

pstr-wor D inff2� j � > p�� and satisfies (5.23) with q2 D 0g:
• For finite-order weights �d;u D 0 for juj > !� with order !�, we have

– S� is polynomially tractable iff p�� < 1. Then for any � > p�� ,

n."; d/ �
� 1X
jD1

�
��
j

	� �!� ˇ̌˚
u j �d;u 6D 0

�ˇ̌
"�2�

� 2
� 1X
jD1

�
��
j

	� �!�

d!
�
"�2� :

(5.24)

Obviously, for finite-diameter weights of order q� with q� < d we may
replace 2d!

�
in the last estimate by 2q

��1.d � q� C 2/.

– S� is strongly polynomially tractable iff p�� < 1 and there exists � > p��

such that

sup
d

� X
u�Œd�juj�!�

�
��
d;u

	�� 1X
jD1

��
j

�juj�1=�
< 1: (5.25)

The exponent of strong tractability is

pstr-wor D inff2� j � > p�� and satisfies (5.25)g:
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Proof. From Theorem 5.2 we know that polynomial tractability for the normalized
error criteria requires that some powers of the eigenvalues are summable. In our case
we have

Md;� ´
� 1X
jD1

�
�d;�;j

�d;�;1

�� �1=�
D
� X

u�Œd�

�
��
d;u

	�� 1X
jD1

�
��
j

	��juj�1=�
:

Since �d;u > 0 for at least one non-empty u, we conclude that Md;� is finite iff
p�� < 1 and if we take � > p�� or � D p� if the corresponding infimum in the
definition ofp� is attained. ThenC2 in (5.20) is the same asC2 in (5.4) and the first four
points of Theorem 5.7 coincide with the four points of Theorem 5.2 and are presented
for completeness.

Assume now that we have product weights. We now have ��
d;j

D �d;j�2=�1, and

�� D f�d;ug is also the sequence of product weights ��
d;u

D c�
d

Q
j2u �

�
d;j

, where

c�
d D 1

maxv�Œd�
Q
j2v �

�
d;j

:

Let
rd;�� D ˇ̌˚

j 2 Œd � j ��
d;j � 1

�ˇ̌
be the number of the normalized weights ��

d;j
that are at least one. Then

c�
d D 1Qrd;��

jD1 ��
d;j

D 1Qd
jD1 max

�
1; ��

d;j

� :
Therefore

M �
d;� D Œc�

d �
�
X

u�Œd�

Y
k2u

��
��
d;k

	�� 1X
jD1

�
��
j

	���

D �
c�
d

	� dY
kD1

�
1C �

��
d;k

	� 1X
jD1

�
��
j

	��

D
dY
kD1

 
1C �

��
d;k

	�P1
jD1

�
�jC1=�2

���
1;
�
��
d;k

	��
!
:

Assume first that �3 > 0. Note that p� D p�� , so that the last series is convergent
for � > p�� . Let

˛� D
1X
jD1

�
�jC1
�2

��
� 1C

�
�3

�2

��
> 1:

Then

Md;� D
rd;��Y
kD1

 
1�

��
d;k

	� C ˛�

!1=� dY
kDrd;�� C1

�
1C �

��
d;k

	�
˛�
�1=�

:
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Observe that
Md;� � ˛

rd;��=�
� :

S� is polynomially tractable iff fMd;�d
�q2g is uniformly bounded in d for some q2.

Since ˛� > 1 this implies that if S� is polynomially tractable then

r�� ´ lim sup
d

rd;��

ln d
< 1:

If r�� D 1 then Md;� goes to infinity faster than any power of d and therefore S� is
not polynomially tractable. Note that r�� D 1 implies that

lim sup
d

Pd
jD1 min

�
1;
�
��
d;j

	��
ln d

D 1:

Hence, polynomial tractability of S� implies that r�� < 1, and if (5.21) holds then
r�� < 1. This means that we can assume without loss of generality that r�� is finite
or equivalently that rd;�� D O.ln d/.

For r�� finite, the first product for k 2 Œ1; rd;�� � in the definition of Md;� is
polynomially bounded. So to guarantee polynomial tractability of S� we must check
that the second product for k 2 Œrd;�� C 1; d � is also polynomially bounded. Note that

d�q2

dY
kDrd;�� C1

�
1C �

��
d;k

	�
˛�
�1=�

D exp
�

� ln.d/
h
q2 � 1

� ln d

dX
kDrd;�� C1

ln
�
1C �

��
d;k

	�
˛�
�i�

:

So it is uniformly bounded in d iff

q2 >
1

�
lim sup
d!1

Pd
kDrd;�� C1 ln

�
1C xd;k

�
ln d

for xd;k D �
��
d;k

	�
˛� .

We have xd;k � ˛� . For x 2 Œ0; ˛� � it is easy to check that

1

1C ˛�
x � ln.1C x/ � x: (5.26)

Therefore

limd

Pd
kDrd;�� C1 ln

�
1C xd;k

�
ln d

< 1 iff limd

Pd
kDrd;�� C1 xd;k

ln d
< 1

iff limd

Pd
kDrd;�� C1

�
��
d;k

	�
ln d

< 1:
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Finally notice that

Pd
kD1 min

�
1;
�
��
d;j

	��
ln d

D rd;��

ln d
C
Pd
kDrd;�� C1

�
��
d;k

	�
ln d

:

That is why (5.21) is a necessary and sufficient condition for polynomial tractability
of S� .

To obtain the estimate on the exponent q, note that Md;� can be also written as

Md;� D
dY
kD1

�
˛� min

�
1;
�
��
d;k

	��C min
�
1;
�
��
d;k

	����1=�

�
dY
kD1

�
˛� min

�
1;
�
��
d;k

	��C 1
�1=�

:

Then

Md;�d
�q � exp

 
� ln.d/

"
q � ˛�

�

Pd
kD1 min

�
1;
�
��
d;k

	��
ln d

#!
:

So it is uniformly bounded in d for q given in the theorem. The rest of this point is
easy.

Assume now that �3 D 0. Then ˛� D 1 and p�� D 0. Note that for any non-
negative a we have

1C a

max.1; a/
D 1C min

�
a�1; a

�
:

Therefore we can now rewrite Md;� as

Md;� D
dY
kD1

�
1C min

��
��
d;k

	��
;
�
��
d;k

	��� D
dY
jD1

�
1C ˇ�d;j

�
:

The rest follows by the same reasoning as in the previous point.
We turn to strong polynomial tractability of S� for product weights. Then fMd;�g

must be uniformly bounded in d . For �3 > 0, this holds iff rd;�� D O.1/ and˚Pd
kDrd;�� C1Œ��

d;k
��
�

is uniformly bounded in d . This, in turn, holds iff p��� is
finite. This means that strong polynomial tractability holds iff p�� and p� are finite,
as claimed. This and the fourth point of the theorem give the formula for the exponent
of strong polynomial tractability.

For �3 D 0, the sequence fMd;�g is uniformly bounded in d iff
Pd
jD1 ˇ�d;j is

uniformly bounded in d , which holds iff pˇ < 1. The rest follows easily.
We now switch to order-dependent weights. Note that C2 in (5.23) is now the same

as C2 in (5.20), and this point follows from the first part of the theorem.
We are ready to address the last point of the theorem for finite-order weights. We

already know that p�� < 1 is necessary for polynomial tractability of S� . For any
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finite-order weights, consider C2 given by (5.20) with � > p� and q2 D !�=� . We
have

C2 D sup
d

� X
uWu�Œd�;juj�!�

�
��
d;u

	�� 1X
jD1

�
��
j

	��juj�1=�
d�q2 :

Since ��
d;u

� 1, the cardinality of the sum with respect to u is at most 2d!
�

, and the
sum with respect to j consists of the first term Œ��

1�
� D 1 and therefore the powers of

this sum are non-decreasing, we obtain

C2 �
� 1X
jD1

�
��
j

	��!�=� ˇ̌˚
u j �d;u 6D 0

�ˇ̌1=�
d�!�=� � 21=�

� 1X
jD1

�
��
j

	��!�=�

:

Then the estimate (5.24) on n."; d/ follows from the second point of the theorem.
Strong polynomial tractability is the same as in the fourth point of Theorem 5.2 specified
for finite-order weights. This completes the proof.

We now comment on Theorem 5.7. The essence of this theorem is that we know
necessary and sufficient conditions on polynomial tractability of the weighted prob-
lem S� . These conditions may be simplified for special weights. For product weights,
polynomial tractability is equivalent to the normalized (univariate) eigenvalues having
a finite sum-exponent and to the sum of a power of the normalized weights growing at
most logarithmically in d . Strong polynomial tractability holds iff the sum-exponents
of both the normalized eigenvalues and weights are finite, that is, the sums of their
powers are uniformly bounded in d . The sum-exponent p�� of the normalized eigen-
values measures the smoothness of the univariate problem; for ��

n D ‚.n�r/ it is equal
to 1=r . The sum-exponent p�� of the normalized weights measures the decay of the
weights and, in general, has nothing in common with p�� . We stress that the exponent
of strong polynomial tractability pstr-wor D 2max.p�� ; p� / can be much larger than
p�� . For example, take �d;j D j�ˇ for small positive ˇ such that ˇ 
 r , and assume
that �1 D �2. Then �� D � and pstr-wor D p�� D 1=ˇ, which is much larger than 1=r .
Hence, we see again that smoothness has nothing to do with tractability, although it sets
a lower bound on the exponent of strong polynomial tractability since pstr-wor � 2p��

for any normalized weights.
Observe that for the unweighted case, �d;u D 1, we have product weights and the

condition (5.21) is not satisfied as well as p�� D 1. This means that polynomial
tractability does not hold, and, in this case, Theorem 5.7 coincides with Theorem 5.6.

For general product weights, polynomial tractability does not necessarily imply
strong polynomial tractability, see [271]. Indeed, take a problem with p�� < 1,
and consider the weights �d;j D 1 for j D 1; 2; : : : ; d ln de, and �d;j D 0 for j D
d ln de C 1; : : : ; d . Then (5.21) or (5.22) holds for every positive � , so that we have
polynomial tractability. On the other hand, p��� D 1 and strong tractability does not
hold.

The situation changes if we consider product weights independent of d , i.e.,
�d;j D �j and �1 � �2 � � � � . Then strong polynomial tractability is equivalent
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to polynomial tractability, see Theorem 2 in [271]. Indeed, it is enough to show
that polynomial tractability implies strong polynomial tractability. We now have
��
d;j

D �j�2=�1, and (5.21) or (5.22) implies that limj �j D 0. Therefore there
exists a positive integer j0 and a positive number C such that

j � �j

ln j
� C for all j � j0,

with � satisfying (5.21) or (5.22). Hence,

�j � C 1=�
�

ln j

j

�1=�
for all j � j0.

This yields that p��� D p�� D p� � � < 1, and strong tractability holds.
We now turn to the case of finite-order weights. We stress that as long as the

sum-exponent of the normalized eigenvalues is finite, S� is polynomially tractable for
arbitrary finite-order weights. The only dependence on d is through the cardinality
of the set of non-zero finite-order weights. In general, this cardinality is of order
d!

�
, which explains why the bound on the information complexity n."; d/ depends

exponentially on the order !� of weights. Indeed, !� is the degree of d , as well as
the degree of the factor depending on the normalized eigenvalues. As long as !� is
relatively small, this exponential dependence causes no problem. On the other hand,
if !� is large, the situation is changed; although n."; d/ depends polynomially on d
we may be not quite satisfied with the bound. It is easy to see that this exponential
dependence on !� is generally unavoidable. Indeed, consider the simple case in which
�d;u D 1 for all juj D !�, and �d;u D 0 otherwise. For d D 1, assume that
�1 D �2 D 1 and �j D 0 for j � 3. Then we have

�
d
!�

�
multivariate problems with

!� variables, each having 2!
�

positive eigenvalues all equal to one. This implies that

n."; d/ D 2!
�
�
d

!�

�
D ‚

�
.2d/!

��
for all " 2 Œ0; 1/,

as claimed.
Obviously, the situation is better for some finite-order weights. For example, if we

take finite-diameter weights of order q�, then the dependence on d in n."; d/ is at most
linear. However, note that we may have an exponential dependence on the order q�,
since the number of non-zero finite-diameter weights may indeed depend exponentially
on q�.

We now compare Theorems 5.6 and 5.7. For �1 D �2 we know that the unweighted
problem S is intractable, whereas the weighted problem S� can even be strongly
polynomial tractable if both the sum-exponents p�� and p�� are finite. In fact, one
can check that for �d;u D 1 and for �1 D �2 we have ��

1 D 1 and therefore C2 in
(5.20) is at least supd 2

d=�d�q2 D 1 for all � > 0, which agrees with Theorem 5.6.
For �2 < �1, we know that the unweighted problem S is polynomially intractable, and
again for properly decaying normalized weights its weighted counterpart S� can even
be strongly polynomial tractable.
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We summarize this discussion by stressing the following. The unweighted prob-
lem that can be intractable or weakly tractable may become polynomially tractable or
strongly polynomial tractable for the weighted case.

We are ready to analyze weak tractability of the weighted problem S� . We first
remind the reader that the last point of Theorem 5.6 says that the unweighted problem
S is weakly tractable if �2 < �1 and �n D o..ln n/�2.ln ln n/�2/, whereas �2 D �1
implies intractability of S .

It would be natural to hope that the weights can only help and should preserve
weak tractability as long as �2 < �1 and �n goes to 0 at least as fast as indicated;
we might even hope to get weak tractability if �2 D �1 under some conditions on the
weights. We now show that this intuition is correct modulo a proper normalization of
the weights.

First we present an example of showing that unless the weights are properly nor-
malized, we may even loose weak tractability. The point here is that although we start
with a single largest eigenvalue �1, we select weights such that the largest normalized
eigenvalue is at least double and the weighted problem is intractable. Indeed, assume
for simplicity that 0 < �2 < �1 and the remaining eigenvalues are 0, i.e., �j D 0 for
j � 3. For the d -dimensional case we have 2d positive eigenvalues. More precisely
for k D 0; 1; : : : ; d we have

�
d
k

�
eigenvalues equal to �d1 .�2=�1/

k . Define the weights
�d;u D .�1=�2/

juj. Then ��
d;u

D 1 and all 2d eigenvalues for the weighted case are

just one. Hence for the weighted problem S� , we have n."; d/ D 2d for all " 2 Œ0; 1/,
and indeed we lost weak tractability.

The reason we have lost weak tractability is that we use exponentially large weights.
Indeed, for u D Œd � we defined �d;Œd� D .�1=�2/

d and we transformed the largest
eigenvalue �d1 of multiplicity 1 for the unweighted case to the largest normalized
eigenvalue 1 of multiplicity 2d .

To prevent such an unnatural behavior we restrict ourselves to weights

�d;; D 1 and �d;u 2 Œ0; 1� for all non-empty u 	 Œd �. (5.27)

We are ready to formulate a theorem on weak tractability of S� that covers the cases
of arbitrary multiplicity of the largest eigenvalue �1.

Theorem 5.8. Consider the linear weighted tensor product problem in the worst case
setting S� D fSd;�g for compact linear Sd;� W Hd;� ! Gd defined over Hilbert
spaces Hd;� and Gd with �2 > 0. We study the problem S� for the normalized error
criterion and for the class ƒall. The weight sequence � D f�d;ug satisfies (5.27). Let
n."; d/ D n."; Sd;� / denote the information complexity of Sd;� .

• Let �1 be of multiplicity one, i.e., �2 < �1.

If there is a non-zero weight �d;u for a non-empty u, and S� is weakly tractable,
then �n D o..ln n/�2/ as n ! 1.

If �n D o..ln n/�2.ln ln n/�2/ then S� is weakly tractable for all weight se-
quences.
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• Let �1 be of multiplicity p with p � 2, i.e., �pC1 < �p D �p�1 D � � � D �1,
and �n D o..ln n/�2.ln ln n/�2/. Define

mp."; d/ D
X

u�Œd�W �d;u>"
2

.p � 1/juj:

Then

– we have

1 � n."; d/

mp."; d/
D exp

�
o."�1 C d/

�
as "�1 C d ! 1.

Hence, S� is weakly tractable iff

lim
"�1Cd!1

lnmp."; d/

"�1 C d
D 0:

– For product weights �d;u D Q
j2u �d;j with

0 � �d;d � �d;d�1 � � � � � �d;1 � 1;

define k."; d; �/ D k to be the element k 2 Œd � such that

kY
jD1

�d;j > "
2 and

kC1Y
jD1

�d;j � "2:

If such a k does not exist, set k."; d; �/ D d .
Then S� is weakly tractable iff

lim
"�1Cd!1

k."; d; �/

"�1 C d
D 0:

– For order-dependent weights �d;u D 	d;juj with

0 � 	d;d � 	d;d�1 � � � � � 	d;1 � 1;

define k."; d; �/ D k to be the element k 2 Œ1; d � such that

	d;k > "
2 and 	d;kC1 � "2:

If such a k does not exist, set k."; d; �/ D d .
Then S� is weakly tractable iff

lim
"�1Cd!1

ln

� k.";d;�/X
jD0

.p � 1/j
�
d

j

�� �
"�1 C d

��1 D 0:
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– For finite-order weights �d;u D 0 for juj > !� with order !�, S� is always
weakly tractable.

Proof. For weights satisfying (5.27) we have ��
d;u

D �d;u.�2=�1/
juj. As before,

denote �0
j D �j =�1. Then the eigenvalues for the weighted case are

�
�d;�;j

�d;�;1

�
D
n
�d;u.j /

Y
k2u.j /

�0
jk

o
:

Let nunw."; k/ denote the information complexity of the unweighted k-dimensional
problem Sk , so that

nunw."; k/ D ˇ̌˚
j 2 .N n f1g/k j �0

j1
�0
j2

� � ��0
jk
> "2

�ˇ̌
:

Then
n."; d/ D

X
u�Œd�

nunw."�
�1=2
d;u

; juj/:

Observe that for �d;u � "2 we have "��1=2
d;u

� 1 and nunw."�
�1=2
d;u

; juj/ D 0. Therefore
we can rewrite the last equality as

n."; d/ D
X

u�Œd�; �d;u>"
2

nunw."�
�1=2
d;u

; juj/:

Assume first that �2 < �1. If �d;u is non-zero for some k WD juj > 0 then weak
tractability of S� implies that Sk is also weakly tractable, which can only happen if
�n D o..ln n/�2/, as claimed. On the other hand, we have

�d;u.j /
Y

k2u.j /

�0
jk

D �d;u.j /

dY
kD1

�0
jk

�
dY
kD1

�0
jk
:

The eigenvalues
˚Qd

kD1 �0
jk

�
j2Nd correspond to the unweighted case for the normal-

ized error criterion studied in Theorem 5.6. This shows that the weighted problem S�
is not harder than the unweighted problem S for the normalized error criterion and
that weak tractability of S implies weak tractability of S� as long as �2 < �1 and
�n D o..ln n/�2.ln ln n/�2/. This completes the proof of the first point.

We switch to the more interesting case when the largest eigenvalue �1 has multi-
plicity p with p � 2. As we know from Theorem 5.6, this implies that the unweighted
problem is intractable.

Observe that for �d;u > "2 we have nunw."��1=2; juj/ � .p� 1/juj, since there are
.p � 1/juj eigenvalues equal to one. Therefore

n."; d/ � mp."; d/:
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We need to estimate nunw."; k/ from above. Note that we now have jk 2 N n f1g, and
the multiplicity of the largest eigenvalue �0

2 D 1 is p � 1, and that �pC1 < 1. We use
an approach similar to that in the proof of (5.11). For �pC1 > 0, we define

ak."/ D min

 
k;

&
2

ln "�1

ln
�
�0
pC1

	�1
'

� 1
!
:

For �pC1 D 0 we take ak."/ D 0. We claim that

nunw."; k/ � .p � 1/k�ak."/

�
d

ak."/

�
nunw."; 1/ak."/:

Indeed this follows from the same proof as in (5.11), with the only difference being
that now at least k � ak."/ indices take integer values from the interval Œ2; p� and at
most ak."/ from ŒpC 1; nunw."; 1/�. This explains the extra factor .p� 1/k�ak."/. We
know that nunw."; 1/ D exp.o."�1= ln "�1// since �n D o..ln n/�2.ln n ln n/�2/. We
proved in (5.13) that

ln
�
k

ak."/

�
nunw."; 1/ak."/

"�1 C k
D o.1/ as "�1 C k ! 1.

This implies that

n."; d/ D exp
�
o."�1 C d/

� X
uW�d;u>"

2

.p � 1/juj D exp
�
o."�1 C d/

�
mp."; d/;

as claimed. Obviously

lim
"�1Cd!1

ln n."; d/

"�1 C d
D lim
"�1Cd!1

lnmp."; d/

"�1 C d
;

completing the proof of this point of the theorem.
Now consider product weights. Observe that �d;u > "2 with j D juj implies that

�d;Œj � > "
2. Hence, �d;u > "2 only for u being a subset of Œk�, where k D k."; d; �/.

For j D juj � k we have
�
k
j

�
such subsets, which yields that

mp."; d/ D
k.";d;�/X
jD0

.p � 1/j
�
k

j

�
D pk.";d;�/;

and the result follows from the previous point.
Next, consider order-dependent weights. Then �d;u > "2 iff juj � k."; d; �/,

which holds for all subsets of Œd � of cardinality at most k."; d; �/. This yields

mp."; d/ D
k.";d;�/X
jD0

.p � 1/j
�
d

j

�
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and the rest is obvious.
Finally, for arbitrary finite-order weights we even have polynomial tractability, see

Theorem 5.7, which obviously implies weak tractability. This completes the proof.

Clearly, the most important part ofTheorem 5.8 is the case of a multiple largest eigen-
value �1, i.e., when p � 2. Assuming that �n decays faster than .ln n/�2.ln ln n/�2,
weak tractability holds iff

lnmp."; d/ D o."�1 C d/:

Observe that for the unweighted case �d;u D 1, we havemp."; d/ D 2d and S� D S is
not weakly tractable. In this case, Theorem 5.8 coincides with Theorem 5.6. However,
we can have weak tractability of S� for equal and sufficiently small weights. Indeed,
let �d;� D cd . Then mp."; d/ D 0 if cd � "2, and mp."; d/ D pd if cd > "2. S� is
weakly tractable iff

lim
d!1

dc
1=2

d
D 0;

which holds iff cd D o.d�2/. This holds independently of p � 2. Hence, if all groups
of variables xu are monitored with a weight o.d�2/, then weak tractability holds.

For product weights, we must have k."; d; �/ D o."�1 C d/ to obtain weak
tractability. We can double-check whether this condition holds when we have poly-
nomial tractability. As we know, polynomial tractability for product weights holds ifPd
jD1 � �d;j D O.ln d/ for some positive � . Then �d;j D O.j�1=� ln d/. It is not

difficult to check that

k."; d; �/ D O
�
max

�
ln "�1; .ln d/�

��
;

which obviously satisfies k."; d�/ D o."�1 C d/.
We now choose product weights for which weak tractability holds but polynomial

tractability does not. Take �d;j D c 2 .0; 1�. For c D 1 all weights �d;u D 1, and we
have intractability, whereas for c 2 .0; 1/we do not have polynomial tractability, sincePd
jD1 � �d;j D c�d goes faster than ln d to infinity. However, we have weak tractability

since
k."; d; �/ D min

�
d; d2 ln."�1/= ln.c�1/e � 1� :

Then for x D max.d; "�1/ we have k."; d; �/ D O.ln x/, as in the proof of Theo-
rem 5.5, from which weak tractability easily follows.

One can also construct product weights that go to 0 and for which weak tractability
holds but polynomial tractability does not. Let

�d;j D Œ ln.e � 1C j /��ˇ

for a positive ˇ. Note that �d;j � �d;1 D 1. Obviously polynomial tractability for

such product weights does not hold, since
Pd
jD1 � �d;j grows faster than ln d . On the
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other hand, let k� D k�."/ D ˙
ln "�1�. Then

2k�Y
jD1

�d;j �
2k�Y

jDk�C1
�d;j � �

ln.k�/
��ˇk� � "ˇd ln "�1e � "2

for small ". This shows that k."; d; �/ � 2d ln "�1e, from which weak tractability
holds.

We now discuss order-dependent weights. Let 	d;j D j�ˇ . It is easy to check that
S� is weakly tractable iff ˇ > 2. Indeed, we now have

k D k."; d; �/ D ‚.min.d; "�2=ˇ //

and
kX

jD1
.p � 1/j

�
d

j

�
D ‚

�
min

�
pd ; Œ.p � 1/d �"�2=ˇ

��
;

which implies weak tractability iff ˇ > 2.
Obviously, the result for finite-order weights is not surprising in view of the fact

that S� is polynomially tractable for all finite-order weights. As an illustration, one can
check that mp."; d/ D O.d!

�
.p � 1/!

�
/ for finite-order weights, which also yields

weak tractability.

Example: Approximation for Weighted Korobov Space

We illustrate the results of this section for the multivariate approximation problem for
the weighted Korobov space HKor

d;�
D Hd;˛;� defined in Appendix A. That is, we have

Sd D APPd W HKor
d;�

! L2.Œ0; 1�
d / with APPdf D f .

Proceeding as we did in the example of approximation for Korobov spaces, it is easy
to check that the operator Wd D APP�

dAPPd W Hd;˛;� ! Hd;˛;� has the eigenpairs
f�h;� ; eh;�gh2Zd

�
with �h;� D %d;˛;� .h/

�1, eh;� given in Appendix A, and

Zd
� D fh 2 Zd j �d;uh

> 0g for uh D fk j hk 6D 0g:
We have

f�h;�gh2Zd
�

D
n
�d;uh

ˇ
d�juhj
1 ˇ

juhj
2

Y
j2uh

jhj j�2˛
o
h2Zd

�

:

Note that each eigenvalue does not depend on signs of the components of the vector
h 2 Zd . If some component of h is 0 then obviously the sign does not matter and
therefore the eigenvalue

�d;uh
ˇ
d�juhj
1 ˇ

juhj
2

Y
j2uh

jhj j�2˛
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has multiplicity at least 2juhj.
Let f�d;�;j gj2N be the ordered sequence of f�h;�gh2Zd

�
. That is, f�d;�;j gj2N D

f�h;�gh2Zd and �d;�;j � �d;�;jC1 for j 2 N. Clearly,

�d;�;1 D ˇd1 max
u�Œd�

�d;u

�
ˇ2

ˇ1

�juj
:

For ˛ D 0, all eigenvalues are of the form ˇd1 �d;u.ˇ2=ˇ1/
juj, and such eigenvalues

have infinite multiplicity if �d;u > 0 for juj > 0. If we assume that �d;u > 0

for some non-empty u then the information complexity n."; d/ D 1 for "2 <

ˇd1 �d;u.ˇ2=ˇ1/
juj. This implies that the problem is intractable for both the absolute

and normalized error criteria.
Assume that ˛ > 0. As we have done in this section, consider only the normalized

error criterion. Note that we cannot yet apply the results of this section to our problem
since the eigenvalues f�h;�g are defined over h 2 Zd

� whereas the theorems of this

section require them to be indexed over j 2 Nd . Obviously, it is possible to reduce
the case h 2 Zd

� to the case j 2 Nd , and we now show how to do this. Define

��
d;u D �d;u.ˇ2=ˇ1/

juj

maxv�Œd� �d;v.ˇ2=ˇ1/jvj ;

and the sequence of eigenvalues

�2k�1 D �2k D k�2˛ for k D 1; 2; : : : .

Note that �1 D �2 D 1 and therefore ��
j D �jC1=�2 D �jC1. We can also equiva-

lently write �j D 1=dj=2e2˛ for all j 2 N.
We now have �

�d;�;j

�d;�;1

�
j2N

D
n
��
d;uh

Y
j2uh

jhj j�2˛
o
h2Zd

:

We will show thatn
��
d;uh

Y
j2uh

jhj j�2˛
o
h2Zd

D
n
��
d;u.j /

Y
k2u.j /

��
jk�1

o
j2Nd

;

so that (5.18) holds. Here, as always, u.j / D fk j jk � 2g. This enables us to apply
the results of this section.

Observe that each eigenvalue in both sequences parameterized by h 2 Zd and
j 2 Nd has multiplicity 2juhj and 2ju.j /j, respectively. This has already been explained
for h 2 Zd , whereas for j 2 Nd it follows from the fact that each eigenvalue �j has
multiplicity 2. More precisely, let ık 2 f0; 1g for k 2 u.j /. Then for the vector j 0
with component j 0

k
D jk � ık for k 2 u.j / with even jk , and jk D jk C ık for

k 2 u.j / with odd jk , and jk D 1 for k … u.j /, we obtain the same eigenvalue.
Hence, we have 2ju.j /j such eigenvalues, as claimed.
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We now prove the equality of the sequences parameterized by h 2 Zd and by
j 2 Nd . Take an arbitrary h 2 Zd and consider the eigenvalue ��

d;uh

Q
k2uh

jhkj�2˛
of multiplicity 2juhj. Define jk D 2jhkj for k 2 uh and jk D 1 for k … uh. Then
u.j / D uh and �jk

D ��
jk�1 D jhkj�2˛ . Therefore

��
d;uh

Y
k2uh

jhkj�2˛ D ��
d;u.j /

Y
k2u.j /

��
jk�1:

Observe that the same equality is obtained for �jk�1 D ��
jk

. Hence, for all k 2 uh, we

have two eigenvalues in the sequence parameterized by j 2 Zd . Varying k, we have
2juhj such eigenvalues. Hence, we preserve the multiplicity of the original eigenvalue.

The proof of the reverse inclusion is similar. For ��
d;u.j /

Q
k2u.j / �

�
jk�1 we define

hk D ˙2jk if k 2 u.j / and hk D 0 for k … u.j /. Then uh D u.j / and clearly

��
d;u.j /

Y
k2u.j /

��
jk�1 D ��

d;uh

Y
k2uh

djk=2e�2˛ D ��
d;uh

Y
k2uh

jhkj�2˛:

Furthermore, the last equalities are achieved for 2ju.j /j vectors h. This completes the
proof.

We are ready to apply Theorems 5.7 and 5.8 for the weighted approximation problem
APP� D fAPPd g. For polynomial tractability we assume, as in Theorem 5.7, that for
each d , at least one weight �d;u > 0 for juj > 0. It is easy to check that we have
p�� D .2˛/�1. Hence APP� is polynomially tractable iff there exist q2 > 0 and
� > .2˛/�1 such that

C2 D sup
d

� X
u�Œd�

�
��
d;u

	�
.2�.2�˛//juj�1=�d�q2 < 1: (5.28)

If this holds then
n."; d/ � C �2 d

q2�"�2� :

Strong polynomial tractability holds iff we can take q2 D 0 in the definition of C2
above.

Consider now product weights with �d;; D 1, �d;u D Q
j2u �d;j and �d;j 2 Œ0; 1�.

Assume for simplicity that ˇ2 � ˇ1. Then maxv�Œd� �d;v.ˇ2=ˇ1/jvj D 1, and

��
d;u D

Y
j2u

�d;j
ˇ2

ˇ1
:

Then APP� is polynomially tractable iff there exists � > .2˛/�1 such that

A ´
�
ˇ2

ˇ1

��
lim sup

d

Pd
jD1 � �d;j
ln d

< 1:
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If this holds, then for any

q >
.2�.2�˛/ � 1/A

�

there exists a positive C such that

n."; d/ � Cdq"�2� :

Furthermore, APP� is strongly tractable for product weights iff p� < 1. If this holds,
then the exponent of strong polynomial tractability is 2max..2˛/�1; p� /.

For finite-order weights, APP� is always polynomially tractable. More precisely,
for any � > .2˛/�1 we have

n."; d/ � 2 .2�.2�˛/ � 1/ d!�
"�2� ;

where !� is the order of the finite-order weights.
For finite-order weights, strong polynomial tractability holds iff there exists � >

.2˛/�1 such that

sup
d

� X
u�Œd�;juj�!�

�
��
d;u

	�
Œ2�.2�˛/ � 1�juj�1=� < 1:

If this holds, then the exponent of strong polynomial tractability is 2� with the smallest �
satisfying the last condition. Note that for �d;; D 1 and �d;u 2 Œ0; 1�, we have
��
d;u

D �d;u.ˇ2=ˇ1/
juj.

We now turn to weak tractability for weights satisfying (5.27). As we know, even
the unweighted APP� is weakly tractable iff ˇ2 < ˇ1. Hence, we now consider the
case ˇ2 D ˇ1 and apply Theorem 5.8. Since the largest eigenvalue for d D 1 has now
multiplicity 3, we conclude that APP� is weakly tractable iff

lim
"�1Cd!1

m3."; d/

"�1 C d
D 0; (5.29)

where
m3."; d/ D

X
u�Œd�W �d;u>"

2

2juj:

The last condition can be simplified for specific weights such as product weights as in
Theorem 5.8.

Example: Trade-offs of the Exponents (Continued)

We slightly generalize the eigenvalues considered so far for this example. Letg W N!N
and g.d/ � d for all d 2 N. Consider the following eigenvalues

�d;j D
g.d/Y
kD1

j�˛
k for all j 2 Nd
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for some positive ˛. For g.d/ D min.d; d ln.d C 1/es/ we obtain the eigenvalues
previously studied.

Note that this sequence corresponds to product weights for which �d;j D 1 for
j D 1; 2; : : : ; g.d/ and �d;j D 0 for j D g.d/ C 1; g.d/ C 2; : : : ; d . The largest
eigenvalue is 1, and the absolute and normalized error criteria coincide. Furthermore,
the multiplicity of the largest eigenvalue is 1.

From Theorem 5.6 we know that weak tractability holds for any functiong. We want
to check when strong polynomial and polynomial tractability hold. From Theorem 5.7
it is easy to check that strong polynomial tractability holds iff

lim sup
d!1

g.d/ < 1:

If the last condition is satisfied then only finitely many dimensions are considered and
therefore the problem is strongly polynomially tractable. It is quite natural to consider
the opposite case when

lim sup
d!1

g.d/ D 1;

and turn to polynomial tractability. Then (5.21) states that polynomial tractability holds
iff

Ag ´ lim sup
d!1

g.d/

ln d
< 1:

Hence Ag < 1 iff g.d/ is at most a multiple of ln d . If Ag < 1 then for all

� > 1=˛ and q > Ag ln �.˛�/

we have
n."; d/ D O

�
dq"�2�� ;

with the factors in the big O notation depending only on � and q. Again, if Ag is
positive then we have a trade-off between the exponent of d and "�1. In particular, the
exponent of d can be arbitrarily small if we take sufficiently large � at the expense of
the exponent of "�1 which then becomes arbitrarily large.

Example: Schrödinger Equation (Continued)

We already considered the linear Schrödinger equation for zHd which is a subset of the
Korobov space Hd;˛ for ˛ � 2. We briefly comment on what happens if we replace
the unweighted space zHd by a weighted space zHd;� repeating the process of replacing
Hd;˛ by Hd;˛;� .

It is easy to see that zHd is also a subset ofHd;˛;� for ˛ � 2 and �d;Œd� > 0. Indeed,
�d;2j 2 Hd;˛;� and just now

k�d;2j kHd;˛
D
�
2d%d;˛.2j /

�d;Œd�

�1=2
D 2d=2%

1=2

d;˛;�
.2j /:
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Hence,
Q�d;2j;� D 2�d=2%�1=2

d;˛;�
.2j /�d;2j for all j 2 Nd

are orthonormal in Hd;˛;� and orthogonal in L2.
This suggests that we should define zHd;� as zHd with Q�d;2j replaced by Q�d;2j;� .

Observe that again for ˛ � 2, we have zHd;� 	 Hd so that the linear Schrödinger
problem for zHd;� is well defined. The operatorWd of the approximation problem over
zHd;� has the eigenvalues

�d;�;j D �d;Œd�

dY
kD1

ˇ2

22˛j 2˛
k

for all j 2 Nd .

Obviously, for the normalized error criterion the presence of positive �d;Œd� is irrelevant
and therefore we have the same tractability conditions as for the unweighted case. For
the normalized error criterion we thus have:

• the linear Schrödinger problem for zHd;� is weakly tractable for all weights � for
which �d;Œd� > 0,

• the linear Schrödinger problem for zHd;� is polynomially intractable for all
weights � for which �d;Œd� > 0.

5.4 Other Ways of Obtaining Linear Weighted Problems

The purpose of this section is to show that the construction of linear weighted problems
presented in the previous section does not cover all interesting cases. As we shall see,
we may have other natural linear weighted problems defined over standard spaces
for which the tractability analysis of the previous sections cannot be applied. More
importantly, the tractability results may be quite different.

The construction of linear weighted problems in the previous section was based on
tensor products. As we know, tractability depends on the behavior of the eigenvalues of
the operator Wd . The construction was done in such a way that the eigenvalues of the
operatorWd were given by weighted products of univariate eigenvalues. Furthermore,
the weight �d;; was related to a 1-dimensional subspace. As we shall see in this section,
this property is important. If it is violated, then we may even have intractability, no
matter how other weights are defined.

In this section, we return to the problem that we discussed at the beginning of the
book, namely, the problem of the relationship between smoothness and tractability.
Intuitively, one might expect that more smoothness makes the problem easier. This
is definitely true if we consider the asymptotic error estimates which go to 0 faster
for smoother problems. How about tractability? Does smoothness also help to obtain
at least weak tractability? It turns out that it is not the case in general. We provide
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examples for which smoothness hurts in terms of tractability. More specifically, this
holds for multivariate weighted approximation problems defined on variants of the
Sobolev spaces of smooth functions, which are intractable for all choices of weights
as long as the smoothness parameter m � 2, see [280]. Hence, even if we take all
zero weights except �d;; D 1, we have the curse of dimensionality. The reason is
that the weight �d;; will now correspond to a subspace of dimension md , which is
exponential in d iff m � 2. Hence, the only case for which we do not have this
exponential explosion of dimension is the smallest smoothness m D 1. In this case,
the situation is quite different. We have weak tractability for practically all weights,
and for some weights we may even have strong polynomial tractability. Hence, the
problem is tractable only if we have the smallest smoothness m D 1.

One of the major results of the previous section was that many multivariate problems
are polynomially tractable for any finite-order weights. In this section we present a
multivariate weighted problem that is still polynomially tractable for bounded finite-
order weights, but may be intractable for unbounded finite-order weights. This result
is made possible by defining the weighted problem differently than before and by
showing that the eigenvalues of the operator Wd are no longer given by weighted
products. Instead they are given by weighted sums of univariate eigenvalues. In this
case we need a different analysis which shows polynomial tractability for bounded
finite-order weights, and intractability for some unbounded finite-order weights.

These intriguing properties will be presented in the next section for a specific ex-
ample of multivariate approximation defined on a weighted Sobolev space of smooth
functions. We then generalize this example and study general linear weighted multi-
variate problems defined differently than in the previous section. We present several
tractability results that are different from those obtained in the previous sections.

5.4.1 Weighted Sobolev Space of Smooth Functions

This section is based on [280]. We first define the Sobolev space

Hd;� D Hd;m;�

withm � 1 being the smoothness parameter. Form D 1, the spaceHd;1;� is defined in
Section A.2.1 of Appendix A, and was studied by Thomas-Agnan [236]. For allm � 1,
it will be instructive to start with d D 1. For � > 0, the space H1;m;� consists of real
functions defined on Œ0; 1� whose .m � 1/st derivatives are absolutely continuous and
whose mth derivatives belong to L2.Œ0; 1�/, with the inner product

hf; gi1 D
Z 1

0

f .x/g.x/ dx C ��1
Z 1

0

f .m/.x/g.m/.x/ dx

for all f; g 2 H1;m;� .
For d � 2 and a product weight sequence � D f�d;ug with �d;u D Q

j2u �d;j and
positive �d;j , the spaceHd;m;� is the d -fold tensor product ofH1;m;�d;j

and the inner
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product is

hf; giHd;m;�
D

X
u�Œd�

1Q
j2u �d;j

Z
Œ0;1�d

@mjujf
@mxu

.x/
@mjujg
@mxu

.x/ dx

for all f; g 2 Hd;m;� . That is, for each term we differentiate functions m times with
respect to all variables in u, and then integrate over all d variables. For u D ; we have
�d;; D 1, and the integrand is simply f .x/g.x/.

For general weights � D f�d;ug, we replace
Q
j2u �d;j by �d;u, and obtain the

inner product

hf; giHd;m;�
D

X
u�Œd�

1

�d;u

Z
Œ0;1�d

@mjujf
@mxu

.x/
@mjujg
@mxu

.x/ dx

for all f; g 2 Hd;m;� . We assume that �d;; D 1 for all d 2 N.
If �d;u D 0 for some u 	 Œd � then we assume that

@mjujf
@mxu

D 0;

and interpret 0=0 D 0. Then obviously

@mjvjf
@mxv

D 0 for all v such that u 	 v,

and we can take �d;v D 0.
We define weighted multivariate approximation APP� D fAPPd;�g, where

APPd;� W Hd;m;� ! L2 WD L2.Œ0; 1�
d /

with APPd;�f D f . We consider this problem in the worst case setting for the
class ƒall.

We first note that the weighted problem APP� is not of the form studied in Sec-
tion 5.3. Indeed, take the zero weights �d;u D 0 for all u 6D ;. Then the space
Hd;m;� is the space of polynomials of degree at most m � 1 in each variable, and it
has dimension md . For m � 2, the weight �d;; D 1 corresponds to this space, and
therefore does not correspond to a 1-dimensional space as in Section 5.3. We prove
that the weighted problem APP� is intractable in this case. This should be contrasted
with its counterpart problems in Section 5.3 which are all trivial in this case. Indeed,
these earlier problems are all 1-dimensional, and hence they can be solved exactly
using one information operation. As we shall see in a moment, form D 1 and general
weights �d;u, the weighted problem APP� is still different from the weighted problems
of Section 5.3.

We now analyze APP� . It is easy to see that kf kL2
� kf kHd;m;�

with equality for
f D 1. This implies that the initial error is 1, and the absolute and normalized error
criteria coincide. It is well known that the nth minimal error ewor.nIm; �/ satisfies

ewor.nIm; �/ D o .n�r/ for all r < m as n ! 1.
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Furthermore, if at least one of the weights �d;u is positive for non-empty u, the last
estimate is sharp, i.e., r cannot be larger thanm. This shows how smoothness increases
the speed of convergence, and implies that the information complexity

n."; d Im; �/ D o ."�p/ for all p > 1=m as n ! 1.

We now turn to tractability and prove the following theorem.

Theorem 5.9. We have
n."; d Im; �/ � md

for arbitrary weights �d;u with juj > 0 and for arbitrary " 2 .0; 1/.
Hence, multivariate approximation APP� suffers from the curse of dimensionality

and is intractable for m � 2.

Proof. We could prove this theorem based on results already established. Instead, we
supply a direct and short proof, which basically was also already used in Chapter 3 for
some specific multivariate problems. Let

X D ff j f is a polynomial of degree at most m � 1 for each variableg :
Clearly, dim.X/ D md , X 	 Hd;m;� , and

kf kHd;m;�
D kf kL2

for all f 2 X .

We stress that the last equality holds for arbitrary weights �d;u, including the zero
weights�d;u D 0 for all juj > 0. For the zero weights, we obviously haveX D Hd;m;� .
For general weights,X is anmd -dimensional subspace ofHd;m;� , for which the norms
in spaces Hd;m;� and L2 are the same.

Suppose that n < md . Consider an arbitrary algorithm

An;d .f / D '.L1.f /; L2.f /; : : : ; Ln.f //;

whereLj D Lj . � IL1.f /; : : : ; Lj�1.f // are linear adaptive functionals,Lj 2H�
d;m;�

.
Choose now a non-zero g 2 X such that

L1.g/ D 0; L2.gI 0/ D 0; : : : ; Ln.gI 0; : : : ; 0/ D 0:

Such a functiong exists since we have a system ofn homogeneous linear equations with
at least nC 1 unknowns. We can normalize the function g by taking kgkHd;m;�

D 1.
Let a D '.0; : : : ; 0/ 2 L2. Then

ewor.An;d / � max
c2f�1;1g

kcg � akL2

� 1
2

�kg � akL2
C kg C akL2

� � kgkL2
D 1:

SinceAn;d is arbitrary, we conclude that thenth minimal error ewor.n/ � 1 forn < md .
Hence, to obtain an algorithm with worst case error " < 1, we must take at least md

information operations. This means that n."; d Im; �/ � md , as claimed.
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The last result shows that we cannot possibly have any kind of tractability unless
m D 1. We now analyze this case. We need to find the eigenpairs of the operator
Wd D APP�

dAPPd W Hd;1;� ! Hd;1;� . We know from Section A.2.1 of Appendix A
that fekgk2Nd given by (A.7) is an orthogonal basis of Hd;1;� . Observe that

hf; giL2
D hAPPdf;APPdgiL2

D hf;WdgiHd;1;�
for all f; g 2 Hd;1;� .

Taking f D ej and g D ek for arbitrary j; k 2 Nd and remembering that fekg is
also orthogonal in L2, we conclude that Wdek is orthogonal to ej for all j 6D k.
Hence, ek is an eigenfunction of Wd and its eigenvalue �d;k is given by �d;k D
hek; ekiL2

= hek; ekiHd;1;�
. From (A.10) we thus have

�d;k D 1

1CP
;6Du�Œd� ��1

d;u

Q
j2u

�
�.kj � 1/	2 :

Hence, for general weights, the eigenvalues �d;u are not weighted products of the
univariate eigenvalues, unlike the case in the previous section. This proves that APP�
differs from the linear weighted problems studied in Section 5.3.

For the information complexity n."; d/ WD n."; d I 1; �/ we have

n."; d/ D jfk j �d;k > "2gj D jfk j ��1
d;k < "

�2gj:
Hence,

n."; d/ D ˇ̌˚
k 2 Nd j 1CP

;6Du�Œd� ��1
d;u

Q
j2u

�
�.kj � 1/	2 < "�2�ˇ̌: (5.30)

We now consider tractability for several specific choices of the weights.

• Equal weights �d;u D 1 for all u � Œd�. In this case,Hd;1;� is a tensor product
space and the eigenvalues �d;k are of product form

�d;k D
dY
jD1

1

1C �
�.kj � 1/	2 for all k 2 Nd .

For these weights, the eigenvalues are products of the eigenvalues of the univariate
case, as in the previous sections. Therefore we can use the tractability results
already established.

Note that for the univariate case we have �1 D 1 and �2 D 1=.1C �2/, so that
the largest eigenvalue �1 is simple. Obviously, �n D ‚.n�2/, and Theorem 5.6
implies that we have weak tractability, but not polynomial tractability. Still even
in this case of equal weights, we break the curse of dimensionality present for
m � 2 and obtain weak tractability. Much more can be said about n."; d/. In
particular, we may use the results of Chapter 8 to conclude that for any positive
numbers ˛1 and ˛2 satisfying ˛1˛2 � 1, there exist two positive numbers C
and t such that

n."; d/ � C exp
�
t
�
ln1C˛1.1C "�1/C ln1C˛2.1C d/

	�
for all " 2 .0; 1/; d 2 N.
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• Productweights �d;u D Q
j 2u �d;j . In this case,Hd;1;� is also a tensor product

space and the eigenvalues �d;k are of product form

�d;k D
dY
jD1

�d;j

�d;j C �
�.kj � 1/	2 for all k 2 Nd .

Hence, this case is also covered by the previous analysis. It is easy to check that

sup
d2N

max
j2Œd�

�d;j < 1

implies weak tractability. In general, the last inequality is needed. Namely, there
exists a sequence � D f�d;ug with supd2N maxj2Œd� �d;j D 1 for which APP�
is intractable. One such example is given by the case �d;j D d . Indeed, the
second largest eigenvalue for the d -dimensional case is 1=.1C�2=d/, and if we
take

" D "d D 1

2

1

.1C �2=d/d=2
D 1

2
exp.��2=2/.1C o.1//;

then
n."d ; d / � 2d :

So we have the curse of dimensionality and intractability, as claimed.

From our general results, it is easy to check strong polynomial tractability and
polynomial tractability of APP� for bounded product weights. Namely, we have
strong polynomial tractability iff there is a positive number � for which

sup
d2N

dX
jD1

min
�
1; � �d;j

�
< 1:

Furthermore, the exponent of strong polynomial tractability is

p D max.1; 2��/;

where �� is the infimum of � satisfying the last inequality. In particular, for
�d;j D j�ˇ we have �� D 1=ˇ, and forˇ � 2 the exponent of strong tractability
is 1, just as for the univariate case. So in this case, we have strong polynomial
tractability for m D 1 with the smallest possible exponent.

Polynomial tractability holds iff there is a positive number � for which

lim sup
d!1

Pd
jD1 min

�
1; � �

d;j

�
ln d

< 1:

Obviously, for bounded product weights, we may replace min.1; � �
d;j
/ simply

by � �
d;j

.
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Finite-order weights

In this subsection we consider multivariate approximation APP� for the spaceHd;1;� ,
i.e., m D 1, equipped with finite-order weights. This case requires a different proof
technique than before since the eigenvalues �d;k have a different form. We now estab-
lish polynomial tractactability for bounded finite-order weights.

Theorem 5.10. APP� is polynomially tractable for bounded finite-order weights, i.e.,

�d;u D 0 for all u with juj > !�,

M ´ sup
d

max
u�Œd�;juj�!�

�d;u < 1:

In this case, for every � > 1 there exists a positive number C�;!� independent ofM;d
and " such that

n."; d/ � C�;!�M �=2d!
�
"�� for all " 2 .0; 1�; d 2 N.

Proof. It is enough to consider d > !�. We have

1

�d;k
D 1C

X
;6Du�Œd�

��1
d;u

Y
j2u

�
�.kj � 1/	2 for all k 2 Nd , (5.31)

with the convention that for �d;u D 0 there exists kj D 1 for j 2 u, and we interpret
0=0 D 0.

We now show that the sum in (5.31) consists of at most 2!
� � 1 positive terms.

Indeed, we have Wdek D �d;kek . Let

uk D fj 2 Œd � j kj > 1g D ˚
kj1
; kj2

; : : : ; kjs

�
;

where s D jukj. Note that if jukj > !� then �d;uk
D 0, so that the norm kekkHd;1;�

given in Appendix A would be infinite. Hence, k may have at most !� components
greater than 1. Equivalently, at least d � !� components of k are 1. So we cannot
have a positive term in the sum (5.31) unless u 	 uk . Since jukj � !�, the number
of its non-empty subsets is at most 2!

� � 1. Hence we can have at most 2!
� � 1 terms

in the sum (5.31), as claimed. Furthermore, the number of such sets uk is at most

!�X
jD1

�
d

j

�
D ‚.d!

�
/:

We can rewrite the expression for ��1
d;k

as

1

�d;k
D 1C

X
;6Du�uk

��1
d;u

Y
j2u

�
�.kj � 1/	2 :
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Since �d;u � M , we have

1

�d;k
� 1C 1

M

X
;6Du�uk

Y
j2u

�
�.kj � 1/	2

D 1C 1

M

h sY
iD1
.1C �2.kji

� 1/2/ � 1
i

� 1C 1

M

h
�2s

sY
iD1
.kji

� 1/2 � 1
i
:

Since ��1
d;k

< "�2, this implies that

sY
iD1
.kji

� 1/2 < M."�2 � 1/C 1

�2s
;

or (equivalently) that

sX
iD1

ln.kjj � 1/ < x ´ ln

�
M."�2 � 1/C 1

�2s

�1=2
:

Let ` D Œ`1; `2; : : : ; `s� with `i D kji
� 1 � 1. Due to (5.30), we conclude that

n."; d/ D O
�
d!

� ˇ̌˚
` j Ps

iD1 ln `i < x
�ˇ̌�
:

From (8.20) we can estimate the cardinality of the last set. We find that for every
number � > 1 there exists a number C.�; s/ such that

n."; d/ D O
�
d!

�
C.�; s/ exp.�x/

� D O
�
d!

�
M �=2"���:

The factor in the big O notation is independent of M , d and ", and may only depend
on � and s, or since s � !� it may depend on � and !�. This completes the proof.

We now show that the assumption that finite-order weights are bounded is essential,
and APP� may be intractable for unbounded finite-order weights. This can happen even
for a very simple case, in which we have only two non-zero weights. Namely, take
�d;; D 1, �d;f1g D 2d , with �d;u D 0 for the remaining u. We now have !� D 1 but
M D 1. Then APP� reduces to the univariate approximation problem and

n."; d/ D jf` 2 N j `2 < 2d .�"�1/2gj D �2d=2"�1.1C o.1//:

Clearly, we have the curse of dimensionality and the problem is intractable.
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Remark 5.11. We stress that the results presented in this section that large smoothness
m � 2 implies the curse of dimensionality and that the smallest smoothness m D 1

may lead even to strong tractability, are the consequence of the choice of norm in the
Sobolev space Hd;m;� . For some other choices of the norm, increasing smoothness
may help. Indeed, let us switch to a more standard norm which for d D 1 is of the
form

kf k2 D
Z 1

0

�
f .x/

	2
dx C

Z 1

0

�
f 0.x/

	2
dx C � � � C

Z 1

0

�
f .m/.x/

	2
dx

and corresponds to the standard Sobolev space Hm.Œ0; 1�/. Then for d > 1 we take
the d -fold tensor product of Hm.Œ0; 1�/ and obtain a space Hm.Œ0; 1�d /.

Let e.n;m; d/ denote the nth minimal worst case error of L2-multivariate approx-
imation for the space Hm.Œ0; 1�/d . Then the initial errors are the same, i.e,

e.0;m; d/ D 1 for all m; d 2 N.

Clearly, the problem for mC 1 is easier than the problem for m since we have

e.n;mC 1; d/ � e.n;m; d/ for all n;m; d 2 N,

e.n;m; d/ D O .n�mCı/ for all ı > 0.

It is easy to check that the largest eigenvalue ofW1 has multiplicity one, and therefore
Theorem 5.6 implies that L2-multivariate approximation is weakly tractable, but not
polynomially tractable, for any m.

The tractability of L2-multivariate approximation for the weighted version of
Hm.Œ0; 1�d / has not yet been studied. There are many different ways to introduce
weighted spaces Hm

� .Œ0; 1�
d /. One way is to define the norm for d D 1 as

kf k2 D
Z 1

0

�
f .x/

	2
dx C 1

�

�Z 1

0

�
f 0.x/

	2
dx C � � � C

Z 1

0

�
f .m/.x/

	2
dx

�
;

so that only one term remains unweighted. Let us denote this space by Hm
� .Œ0; 1�/.

For d � 1, we define

Hm
� .Œ0; 1�

d / D Hm
�d;1

.Œ0; 1�/˝Hm
�d;2

.Œ0; 1�/˝ � � � ˝Hm
�d;d

.Œ0; 1�/:

In this way we have the weighted spaceHm
� .Œ0; 1�

d /with product weights. Similarly as

we did for the weighted spaceHd;1;� , one can obtain the weighted spaceHm
� .Œ0; 1�

d /

for an arbitrary sequence � D f�d;ug of weights.
Note that the initial errors for L2-multivariate approximation do not depend on the

weights and are always 1. For m D 1 we have H 1
� .Œ0; 1�

d / D Hd;1;� and obviously

Hm
� .Œ0; 1�

d / 	 Hd;1;� . Therefore, the same conditions on the weights which we
presented in this section for polynomial or strong polynomial tractability of L2-multi-
variate approximation over the space Hd;1;� imply polynomial or strong polynomial
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tractability for L2-multivariate approximation over the space Hm.Œ0; 1�d / for any m.
Obviously, for the weighted spaceHm

� .Œ0; 1�
d /, it is needed to check if these conditions

are also necessary and find better estimates on the exponents of polynomial and strong
polynomial tractability.

5.4.2 General Linear Weighted Problems

In this section we present a generalization of the multivariate problem APP� stud-
ied in the previous section, and obtain weighted linear problems different from those
considered in Section 5.3.

The first step is the same as in Section 5.2. We take a linear tensor product problem
S D fSd g defined for

Sd D S1 ˝ � � � ˝ S1 W Hd D H1 ˝ � � � ˝H1 ! Gd D G1 ˝ � � � ˝G1;

where H1 and G1 are separable Hilbert spaces, and S1 is a compact linear operator.
To define linear weighted tensor product problems differently than in Section 5.3,

we assume that the space H1 of the univariate case is constructed as follows. Let F1
and F2 be two Hilbert spaces such that F1 \ F2 D f0g. Their inner products are
denoted by h � ; � iFi

. We define the Hilbert space H1 as H1 D F1 ˚ F2 with the inner
product

hf; giH1
D hf1; g1iF1

C hf2; g2iF2
;

where f; g 2 H1 have the unique representation f D f1 C f2 and g D g1 C g2, with
f1; g1 2 F1 and f2; g2 2 F2.

Then Hd D .F1 ˚ F2/ ˝ � � � ˝ .F1 ˚ F2/ and every f 2 Hd has a unique
decomposition

f D
X

b2f1;2gd

fb with fb 2 Fb ´ Fb1
˝ Fb2

˝ � � � ˝ Fbd
.

Here b D Œb1; b2; : : : ; bd � is a vector whose components take value 1 or 2. Clearly,
Fb is also a separable Hilbert space, namely, the d -fold tensor product of F1 or F2
depending on the values of bj . We have

hf; giHd
D

X
b2f1;2gd

hfb; gbiFb
for all f; g 2 Hd .

Let � D f�d;ug be an arbitrary sequence of positive weights. Define the weighted
space Hd;� as the space Hd with the inner product

hf; giHd;�
D

X
b2f1;2gd

��1
d;ub

hfb; gbiFb
for all f; g 2 Hd .

Here ub D fj 2 Œd � j bj D 2g. There is a one-to-one correspondence between
b 2 f1; 2gd and u 	 Œd �. Indeed, if for b; c 2 f1; 2gd , we have ub D uc then b D c.
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Similarly, if for a given u 	 Œd � we define bu by .bu/j D 2 for j 2 u, and .bu/j D 1

for j … u, then bu D bv implies that u D v.
The space Hd;� is a Hilbert space that is algebraically the same as the space Hd ,

and the norms of Hd;� and Hd are equivalent.
We also consider the case for which some weights �d;u may be 0. If �d;u D 0 then

we assume that fbu
D 0 for all fbu

in Fb . If one of the weights is 0 then the Hilbert
space Hd;� becomes a proper subspace of Hd .

Obviously, the linear operators Sd are well defined on Hd;� for any choice of � .
Note that although the values ofSdf do not depend on � , its adjointS�

d
as well its norm

kSdkHd;�
do depend on � . This explains why both the information complexity and the

tractability results depend on � . To stress the dependence on � , as in Section 5.3.3, we
define Sd;� W Hd;� ! Gd as Sd;�f D Sdf , which makes sense since Hd;� 	 Hd
and Sd is defined over Hd . Letting S� D fSd;�g, we have now defined the weighted
problem that we will study in this section.

We assume that �d;; D 1. The weight �d;; corresponds to b; D E1 D Œ1; 1; : : : ; 1�

and to the subspace
FE1 D F1 ˝ F1 ˝ � � � ˝ F1:

We stress that the dimension of F1 can be arbitrary. As we shall see, its dimension
will play a crucial role. This is the main difference between the constructions in this
section and in Section 5.3.1. In the latter section, the construction was such that the
weight �d;; corresponded to a 1-dimensional space. Hence, both constructions may
coincide only when dim.F1/ D 1. Note that they do coincide if F1 D span.e1/ and e1
is an eigenfunction of W1 D S�

1;�S1;� .
Obviously, some linear operators Sd;� are trivially tractable, independently of the

weights �d;u. This holds for dim.S1.H1// � 1, i.e., when S1 is a continuous linear
operator of rank at most 1. In this case, S1 D h� ; hiH1

g for some h 2 H1 and some
g 2 G1, so that

Sd D h� ; hiHd
gd

with the d -fold tensor product elements hd D h ˝ � � � ˝ h and gd D g ˝ � � � ˝ g.
Since we can compute hf; hd iHd

for the class ƒall, we solve the problem Sd exactly
with at most one information operation. More precisely, if hd D 0 then Sd is 0 and no
information operation is needed, whereas if hd 6D 0 then one information operation is
sufficient. Hence, without loss of generality we may assume that dim.S1.H1// � 2.

Let n."; d/ D nwor."; Sd;� ; ƒ
all/ denote the information complexity of Sd;� for the

absolute or normalized error criterion in the worst case setting and for the class ƒall.
The norm of Sd;� is obtained for some f from the unit ball of Hd;� , i.e., kSd;�k D
kSd;�f kGd

. In what follows, we sometimes assume that we can choose f as an
element of the unit ball of FE1. That is, the norm of Sd;� is the same when we restrict
this operator to the subspace FE1 of Hd;� .

We already explained why we need to assume that dim.S1.H1// � 2. As we
shall see in a moment, if the last assumption is strengthened to dim.S1.F1// � 2

then polynomial tractability cannot hold. Since H1 D F1 ˚ F2, this means that if
S1 restricted to F1 is not a continuous linear functional, then polynomial tractability
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cannot occur. Note that dim.S1.F1// � 2 implies that dim.F1/ � 2. Later on, we shall
see examples of multivariate problems for which these assumptions hold for arbitrary
weights, including the case of all zero weights �d;u D 0 for u 6D ;.

Theorem 5.12. Consider the weighted problem S� defined as in this section in the
worst case setting and for the class ƒall.

For the absolute error criterion we have:

• If 

S1ˇ̌F1



 > 1 and dim.S1.F1// � 2;

then S� is intractable for arbitrary weights �d;u for juj > 0.
• If 

S1ˇ̌F1



 D 1 and dim.S1.F1// � 2;

then S� is polynomially intractable for arbitrary weights �d;u for juj > 0.
If additionally the largest eigenvalue of S1

ˇ̌�
F1
S1
ˇ̌
F1

is of multiplicity k � 2, then
S� is intractable and

n."; d/ � kd

for arbitrary weights �d;u for juj > 0.
For the normalized error criterion we have:

• If there exists a linear subspace X of F1 of dimension at least 2 such that

kSd;�k D 

Sd ˇ̌Xd



 > 0 with Xd D X ˝ � � � ˝X .d times/,

then S� is polynomially intractable.

If additionally there exists a positive number ˛ such that

kS1f kG1
D ˛kf kF1

for all f 2 X
then S� is intractable.

• Consider product weights �d;u D Q
j2u �d;j with

M ´ sup
d

max
j2Œd�

�d;j < 1:

If
dim.S1.F1// � 2

then S� is polynomially intractable.

If additionally there exists a linear subspaceX of F1 of dimension at least 2 such
that S1.X/ is orthogonal to S1.F2/, and there exists a positive number ˛ such
that

kS1f kG1
D ˛kf kF1

for all f 2 X andMkS1
ˇ̌
F2

k2 � ˛2,

then S� is intractable.
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Proof. We first consider the absolute error criterion. Observe that the original problem
Sd;� defined over Hd;� is not easier than the problem Sd;� defined over the subspace
FE1. Note that Sd;� over FE1 is an unweighted tensor product problem that does not
depend on the weights �d;u. That is, Sd;�f D Sdf for f 2 FE1 D F1˝ � � � ˝F1 with

the norm of f D f1 ˝ f2 ˝ � � � ˝ fd , for fj 2 F1, given by kf kFd
D Qd

jD1 kfj kF1
.

As always, the information complexity of Sd;� over FE1 depends on the eigenvalues

of the operator Wd;FE1
D Sd

ˇ̌�
FE1
Sd
ˇ̌
FE1

. Due to the tensor product structure of Sd;�
and FE1, these eigenvalues are products �j1

�j2
� � ��jd

, where jk 2 N and f�j g are the
ordered eigenvalues ofW1. Since dim.S1.F1// � 2we know that �1 � �2 > 0. Since
kS1

ˇ̌
F1

k � 1, we know that

kSd;�
ˇ̌
FE1

j D �
d=2
1 � 1:

Hence

n."; d/ � ˇ̌˚
j 2 Nd j �j1

�j2
� � ��jd

> "2
�ˇ̌
:

Applying Theorem 5.4, we conclude that S� is intractable for �1 D kS1
ˇ̌
F1

k > 1, and

polynomially intractable for �1 D kS1
ˇ̌
F1

k D 1. Furthermore if we have �2 D 1 then
the same theorem implies that S� is intractable. Note that all these results hold for
arbitrary weights �d;u for juj > 0.

We now turn to the normalized error criterion. Consider the first part. Since
kSd;�k D kSd

ˇ̌
Xd

k, the both problems Sd;� and the unweighed problem Sd over
Xd 	 FE1 have the same initial error. The information complexity of Sd over Xd
depends on the eigenvalues of Wd;Xd

D Sd
ˇ̌�
Xd
Sd
ˇ̌
Xd

. Since Sd and Xd have tensor
product structure, the eigenvalues are again of the form �j1;X�j2;X � � ��jd ;X , where
jk 2 N and f�j;Xg are the ordered eigenvalues of W1;X . Then dim.S1.X// � 2

implies that �1 � �2 > 0 and kSd;�k D kSd
ˇ̌
Xd

k D �
d=2
1 . Hence

n."; d/ � ˇ̌˚
j 2 Nd j �j1

�j2
� � ��jd

> "2�d1
�ˇ̌
:

Applying Theorem 5.5, we conclude that S� is polynomially intractable.
Assume now that kS1f kG1

D ˛kf kF1
for all f 2 X . This implies thatW1;Xf D

f̨ for all f 2 X and therefore all eigenvalues of W1;X are ˛. The largest eigenvalue
is �1 D ˛, and since dim.X/ � 2, its multiplicity is at least 2. Again Theorem 5.5
implies that S� is intractable, as claimed.

We proceed to the second part for product weights. We do not assume that Sd;�
and Sd

ˇ̌
Xd

have the same initial error, and so the previous reasoning does not apply.

We first consider the case d D 1. As always, let f�1;j g denote the ordered eigenval-
ues ofW1 D S�

1;�S1;� W H1;� ! H1;� . Here � 2 .0;M�. The largest �1;� is obviously
equal to the square of the norm kS1k. For f D f1 C f2, where fi 2 Fi , we have
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kf k2H1;�
D kf1k2F1

C ��1kf1k2F2
and

kS1f kG1



S1ˇ̌F1



kf1kF1
C �1=2



S1ˇ̌F2



��1=2kf2kF2

� �

S1ˇ̌F1



2 C �


S1ˇ̌F2



2�1=2kf kH1;�
:

This proves that

�1;� � 

S1ˇ̌F1



2 C �


S1ˇ̌F2



2 � 

S1ˇ̌F1



2 CM


S1ˇ̌F2



2:
Since the last estimate is also true for � D 0, it holds for all � 2 Œ0;M �.

We need a lower bound estimate of �2;� . Recall that

�2;� D inf
h2H1;�

sup
f 2H1;� ;hf;hiH1;�

D0

hW1f; f iH1;�

hf; f iH1;�

:

If we replaceH1;� in the supremum by F1, then we obtain a lower bound on �2;� . For
f 2 F1, we have

hW1f; f iH1;�
D kS1f k2G1

D hVf; f iF1
;

where V D S1
ˇ̌�
F1
S1
ˇ̌
F1

W F1 ! F1. Since hf; hiH1;�
D hf; h1iF1

, the last infimum
over h 2 H1;� is the same as the infimum over h 2 F1. Therefore we have

�2;� � inf
h2F1

sup
f 2F1;hf;hiF1

D0
hVf; f iF1

hf; f iF1

D �2.V /;

where�2.V / is the second largest eigenvalue ofV . Since dim.V .F1// D dim.S1.F1//
is at least 2 by hypothesis, we conclude that �2.V / is positive. Hence,

0 < �2.V / � �1.V / D 

S1ˇ̌F1



2:
We now turn to d � 2. Let f�d;j;�g denote the ordered eigenvalues of Wd D

S�
d
Sd W Hd;� ! Hd;� . For product weights, we have

Hd;� D H1;�d;1
˝ � � � ˝H1;�d;d

:

From the tensor product structure, we have

f�d;j;�g D ˚Qd
kD1 �jk ;�d;k

j jk D 1; 2; : : :
�
;

where �d;j 2 Œ0;M �.
The square of the norm of Sd;� is the largest eigenvalue �d;1;� , and so

kSd;�k2Hd;�
D �d;1;� D

dY
jD1

�1;�j
�

dY
jD1

�

S1ˇ̌F1



2 CM


S1ˇ̌F2



2�:
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We now find a lower bound on

n."; d/ D minfn j �d;nC1;� � "2�d;1;�g;
for a specific ". Take an arbitrary integer k, and fix " as

" D 1

2

 
�2.V /

S1ˇ̌F1



2 CM


S1ˇ̌F2



2
!k=2

2 .0; 1/:

For d > k, consider the vectors i D Œi1; i2; : : : ; id � with ij 2 f1; 2g. Take k
indices ij equal to 2 and d � k indices ij equal to 1. We have

�
d
k

�
such vectors, for

which the eigenvalues satisfy

dY
jD1

�ij ;�d;j
D

Y
j Wij D1

�1;�d;j

Y
j Wij D2

�2;�d;j
D

Y
j Wij D2

�2;�d;j

�1;�d;j

dY
jD1

�1;�d;j
:

Since
�2;�d;j

�1;�d;j

� �2.V /

kS1
ˇ̌
F1

k2 CMkS1
ˇ̌
F2

k2 ;

we conclude that
dY
jD1

�ij ;�d;j
� 4"2�d;1;� :

This proves that

n."; d/ �
�
d

k

�
D ‚.dk/ as d ! 1.

Since k can be arbitrarily large, this means that S� is polynomially intractable, as
claimed.

We proceed to the last part of the theorem. SinceS.f1/ is orthogonal toS.f2/ for all
f1 2 X 	 F1 and for all f2 2 F2, we can improve our upper bound on �1;� D kS1k2.
For f 2 F1 we have

kS1f k2G1
D kS1f1 C S1f2k2G1

D kS1f1k2G1
C kS1f2k2G1

� ˛2kf1k2F1
C �kS1

ˇ̌
F2

k2��1kf2k2F2

� max
�
˛2; �kS1

ˇ̌
F2

k2�kf k2H1;�
:

Hence,
�1;� D kS1k2 � max

�
˛2; �kS1

ˇ̌
F2

k2�:
For � � M , the last assumption MkS1

ˇ̌2
F2

� ˛2 implies that �1;� � ˛2. Since
kS1f kG1

D ˛kf kF1
for all f 2 X , then kS1k � ˛. Hence

�1;� D ˛ for all � 2 Œ0;M �:
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For d � 2 and �d;j 2 Œ0;M �, we therefore have

�d;1;� D
dY
jD1

�1;�d;j
D ˛d :

This means that kSdk D kSd
ˇ̌
Xd

k, and S� is intractable due to the previous point.
This completes the proof.

We now comment on the assumptions of Theorem 5.12. First, we discuss the
absolute error criterion and show that kS1

ˇ̌
F1

k � 1 is needed. Indeed, if kS1
ˇ̌
F1

k < 1
and dim.S1.F1// � 2, we may have polynomial tractability. Indeed, take all �d;u D 0

for juj > 0. Then Sd D Sd
ˇ̌
FE1

and �1 D kS1k2 < 1. If we assume that �n D O.n�r/
for some positive r then Theorem 5.4 states that S� is even strongly polynomially
tractable. On the other hand, �n D o..ln n/�2.ln ln n/�2/ implies weak tractability
of S� .

For the normalized error criterion, the assumption kSd;�k D kSd
ˇ̌
Xd

k > 0 implies
polynomial intractability, but does not imply intractability in general. Indeed, let
�d;u D 1 for all u and let

�2 < �1 and �n D o..ln n/�2.ln ln n/�2/:

Then Theorem 5.5 implies that S� is weakly tractable.
For product weights, the assumption MkS1

ˇ̌
F2

k2 � ˛2 is needed in general. In-
deed, take �d;j D 1 for all j . Define F1 D span.e1; e2/, F2 D span.e3; e4; : : : / for
orthonormal fej gj2N. Let G1 D H1 D F1 ˚ F2, and

S1e1 D e1; S1e2 D e2; S1ej D ǰ ej for j � 3

with ǰ D ˇn�r for some positive ˇ and r . For d D 1, it is easy to check that the
eigenvalues of W1 are

1; 1; ˇ; ˇ2�r ; : : : ; ˇn�r ; : : : :
Then M D ˛ D 1 and kS1

ˇ̌
F2

k2 D ˇ. For ˇ � 1, the last point of Theorem 5.3
applies, and we have intractability of S� . So, let us assume that ˇ > 1. Then �1 D ˇ,
�2 D max.1; ˇ=2r/ < �1 and �n D ‚.n�r/. From Theorem 5.5 we know that S� is
now weakly tractable.

We illustrate Theorem 5.12 by three examples of multivariate approximation defined
for several standard Sobolev spaces.

Example 5.13. We show that Theorem 5.12 applies for the multivariate approximation
problem studied in Section 5.4.1. Take the space H1;m D H1;m;� for � D 1 from
Section 5.4.1. We show that H1;m D F1 \ F2 for appropriately defined Fi .

Let F1 be the space of univariate polynomials of degree at most m � 1 equipped
with the L2 D L2.Œ0; 1�/-norm. Define

F2 D ff 2 H1;m j hf; piL2
D 0 for all p 2 F1g
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and equip F2 with the norm of H1;m. Clearly, F1 \ F2 D f0g.
For f 2 H1;m, let f1 D Pm

jD1
˝
f; pj

˛
L2
pj for orthonormal polynomials pj 2 F1.

Then obviouslyf1 2 F1, andf2 D f �f1 2 F2. It is easy to see that the decomposition
f D f1 C f2 is unique, and

kf k2H1;m
D kf1k2H1;m

C kf2k2H1;m
:

Using the weighted tensor construction it is easy to see that the space Hd;m;� of
Section 5.4.1 is the same as the space Hd;� of Section 5.4.2. Finally, we let Gd D
L2.Œ0; 1�

d /, and Sdf D f for all f 2 Hd;� . This corresponds to the multivariate
approximation problem APP� of Section 5.4.1.

Then S1f D f and kS1
ˇ̌
F1

k D kS1k D 1 and we can takeX D F1, which implies
thatXd D FE1. In this case we have k D m and the statements of Theorems 5.12 and 5.9
coincide.

Example 5.14. The purpose of this example is to demonstrate a different weighted
problem with the space F1 of arbitrarily large dimension, which can lead to negative
tractability results.

Let r � 1. Define F1 D span.1; x; : : : ; xr�1/ as the r-dimensional space of
polynomials of degree at most r � 1 restricted to the interval Œ0; 1�, with the inner
product

hf; giF1
D

r�1X
jD0

f .j /.0/g.j /.0/:

Let F2 be the space of functions f defined over Œ0; 1� for which f .r�1/ is absolutely
continuous, f .r/ belongs to L2.Œ0; 1�/, and f .j /.0/ D 0 for j D 0; 1; : : : ; r � 1. The
inner product in F2 is

hf; giF2
D
Z 1

0

f .r/.t/g.r/.t/ dt:

Obviously, F1 \ F2 D f0g, as required in our analysis. We thus have

H1;� D ff W Œ0; 1� ! R j f .r�1/ absolutely continuous; f .r/ 2 L2.Œ0; 1�/g
with inner product

hf; giH1;�
D

r�1X
jD0

f .j /.0/g.j /.0/C ��1
Z 1

0

f .r/.t/g.r/.t/ dt:

It is well known that the Hilbert space H1;� has a reproducing kernel of the form

K1;� .x; t/ D
r�1X
jD0

xj

j Š

tj

j Š
C �

Z 1

0

.x � u/r�1C
.r � 1/Š

.t � u/r�1C
.r � 1/Š dt;

where as always uC D max.u; 0/, see e.g. [176].
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For the approximation problemSdf D f for allf 2 Hd;� withGd D L2.Œ0; 1�
d /,

we have
kS1

ˇ̌
F1

k > 1 and dim.S1.F1// D r:

The first inequality can be easily checked by taking, for example, the function f .x/ D
.1Cx/=

p
2. Then f 2 F1 for all r � 1, and kf kF1

D 1whereas kS1f kG1
D p

7=6.
For r � 2, Theorem 5.12 states that this approximation problem is intractable for

the absolute error criterion with arbitrary weights �d;u for juj > 0, and polynomially
intractable for the normalized error criterion and arbitrary product weighs.

We leave the reader the task of checking tractability for the normalized error criterion
with general weights.

For r � 1, it is known that the eigenvalues �j of the operator S1
ˇ̌�
H2
S1
ˇ̌
H2

are

proportional to j�2r . Hence for r D 1, we have F1 D span.e1/ with e1.x/ � 1.
Furthermore e1 is an eigenfunction of W1. Therefore the construction of this section
coincides with the construction of Section 5.3.1. Therefore we can use Theorem 5.6 and
conclude that for product weights, the approximation problem is strongly polynomially
tractable iff p�� < 1, and then the exponent of strong polynomial tractability is
max.2p�� ; 1/.

Example 5.15. The purpose of this example is to show that the splitting between the
unweighted and weighted parts for the univariate case may change tractability results.

We consider spaces similar to those from the previous example, but with a different
split between the unweighted and weighted parts. For r � 1 take an integer k 2 Œ1; r�.
Define F1;k D span.1; x; : : : ; xk�1/ and

F2;k D span.xk; xkC1; : : : ; xr�1/˚ F2;

with F2 as before. Then we have H1;k;� D F1;k ˚ F2;k with the kernel

K1;k;� .x; t/ D 1C
k�1X
jD1

xj

j Š

tj

j Š
C �

� r�1X
jDk

xj

j Š

tj

j Š
C
Z 1

0

.x � u/r�1C
.r � 1/Š

.t � u/r�1C
.r � 1/Š dt

�
:

This corresponds to the inner product

hf; giH1;k;�
D
k�1X
jD0

f .j /.0/g.j /.0/

C ��1
� r�1X
jDk

f .j /.0/g.j /.0/C
Z 1

0

f .r/.t/g.r/.t/ dtt

�
:

For the approximation problem of the previous example, we have

dim.S1.F1;k// D k:

Hence, for k � 2 we have the same intractability results as before.
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It is known that the eigenvalues �j of S1
ˇ̌�
F2;k

S1
ˇ̌
F2;k

are still of order j�2r .
Hence, for k D 1 and product weights the approximation problem is strongly poly-
nomially tractable iff p�� < 1 with the exponent of strong polynomial tractability
max.2p�� ; r�1/. Note that the exponent of strong polynomial tractability may now be
much smaller than in the previous example.

5.5 Notes and Remarks

NR 5:1. The results presented in this chapter on weak tractability are new. The results
on polynomial tractability can be found in many papers and we will try to identify them
in the successive notes.

The first papers on tractability were written for the worst case setting and for the
absolute error criterion, later the emphasis shifted to the normalized error criterion. As
already briefly mentioned in Chapter 2, the absolute error criterion has the nice property
that the sum of two polynomially or weakly tractable problems is still polynomially
or weakly tractable. The last property is generally not true for the normalized error
criterion, see [287] or Example 4.45. On the other hand, tractability results for the
absolute error results are highly dependent on scaling. Probably the most visible
example is for linear (unweighted) tensor product problems for which the initial error
in the d -dimensional case is �d=21 , where �1=21 is the largest singular value for the
univariate problem. Hence, the problem is properly scaled only for �1 D 1, whereas
for �1 < 1 it is exponentially small in d , and for �1 > 1 is exponentially large in d .
Hence, for �1 < 1we approximate a linear operator with an exponentially small norm,
and for �1 > 1, we approximate a linear operator with an exponentially large norm,
both cases equally unsatisfying. We believe that a proper scaling can be achieved by
a proper choice of weights. In any case, we study both the absolute and normalized
error criteria in the book, for both the unweighted and weighted cases.

NR 5.1:1. Theorem 5.1 on polynomial tractability for the absolute error criterion is a
variant of Theorem 4.1 of [287]. In the latter paper the condition (5.1) is replaced by an
equivalent condition (5.3). The reader is also referred to [269] for more information.
It is interesting to notice that in this first tractability paper, there is also a notion of
tractability in "�1 and d . Tractability in "�1 means that we do not care about the
dependence on d and want to have only a polynomial dependence in "�1. Similarly,
tractability in d means that we do not care about the dependence on "�1 and want to
have only a polynomial dependence in d . In this book we do not follow these concepts
and always insist on at least non-exponential dependence on both "�1 and d . However,
when we study generalized tractability in Chapter 8, we may restrict the domain either
of "�1 to the interval Œ"0; 1� or d to the interval Œ1; d�� and then the dependence on
"�1 or d do not play a role. This is similar in spirit to the notions of tractability in "�1
and d .
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NR 5.1:2. Theorem 5.2 on polynomial tractability for the normalized error criterion
cannot be formally found in the literature, although similar reasoning has been used in
many papers. The idea of using the sum of some powers of the eigenvalues to deduce
polynomial tractability conditions was first used for the average case setting in [94].

NR 5.2:1. We define a linear tensor product problem as d tensor copies of a linear
problem defined on univariate functions. As already mentioned in the footnote of this
section (see p. 174), it would be possible to start with any compact operator S1 W H1 !
G1 between arbitrary separable Hilbert spaces and have d tensor copies of it. For
example,H1 could be a space ofm-variate functions. This would correspond formally
to a measurable subset D of Rm and S1 would be an m-variate linear operator. The
operators Sd would be linear operators defined on spaces of dm-variate functions, etc.
All theorems would look the same with the interpretation that the eigenpairs .�i ; ei / of
W1 correspond to them-variate case. This approach was present in [93], [273] since for
some problems it is more natural to have the first basic step with m > 1, see Kuo and
Sloan [120], Kwas [127], Kwas and Li [128], and Li [134]. More precisely, Kuo and
Sloan studied integration over tensor products of spheres and in this case m is at least
2, whereas Kwas and Li studied, in particular, multivariate (m-variate) Feynman–Kac
path integration for an arbitrarily large m. Then approximation of path integration
requires us to work with tensor products of dm-variate functions.

We decide to simplify the analysis and to deal with one less parameter and opt for
m D 1. The reader should, however, remember that this is done only for simplicity,
and that everything goes through for a general Hilbert space H1.

NR 5.2:2. Polynomial tractability as presented in Theorem 5.5 is an elaborated version
of Theorem 3.1 of [288]. In the latter theorem, conditions on polynomial tractability
in "�1 and d are also given.

NR 5.3:1. This is a major section of the book introducing weighted spaces and weighted
multivariate problems. We restricted ourselves to Hilbert spaces and linear problems,
although it should be clear how to generalize these ideas to more general spaces and
problems. The restriction to Hilbert spaces was partially done for simplicity to reduce
technical difficulties in presenting the new concepts. But the main reason was that we
have the explicit formula for the information complexity only in Hilbert spaces and
for linear problems. For more general weighted spaces, the analysis would probably
require more specific assumptions about multivariate problems. For example, if we
drop the assumption that Sd is linear, then the analysis depends on the specific form
of Sd . This point will be illustrated in Volumes II and III, where we discuss a number
of non-linear problems.

NR 5.3:2. The construction of weighted Hilbert spaces in this section is similar to the
construction done in [271], [272], see also [126].

NR 5.3:3. We mentioned in the text who first used each specific type of weights. We
believe that new types of weights will be proposed in the near future and they will be
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modeling different applications of multivariate problems. We wish to remind the reader
that the concept of weights is relative new since their first use was proposed in [216] in
1998, which is just 10 years ago. It is worth adding that finite-diameter weights were
proposed by Creutzig [33] in 2007 at the time when we were working on this book.

NR 5.3:4. Theorem 5.7 in its full generality is new. However, the case of product
weights has been studied in [271], and the case of finite-order weights in [272], [273].
The latter papers also study the classƒstd, and we return to these papers in Volumes II
and III.

NR 5.4:1. As already mentioned, Subsection 5.4.1 is based on [280]. Subsection 5.4.2
is in turn partially based on [292], where the same problem is analyzed for product
weights.



Chapter 6

Average Case Setting

In the previous chapter we studied polynomial and weak tractability for linear multi-
variate problems in the worst case setting and for the classƒall. In this chapter we keep
most of the assumptions from the previous chapter but change the worst case setting
to the average one.

In Section 6.1, we consider a sequence of linear multivariate problems fSd g for
which SdC1 is not necessarily related to Sd . Polynomial and weak tractability condi-
tions are expressed, similarly to those in the worst case setting, in terms of summability
conditions of the singular values of the linear multivariate problems. In the worst case
setting everything depends on the behaviour of the largest singular values, whereas
in the average case setting everything depends on the truncated traces of the singular
values. As before, we study the absolute and normalized error criteria and show that, in
general, polynomial and weak tractabilities for these two error criteria are not related.

In Section 6.2, we generalize the construction of linear tensor product problems
presented in the worst case setting. In the average case setting only the target space
is assumed to be a Hilbert space; moreover, only this space needs to be a tensor
product space. The source space may be more general; we only need to assume that
it is a separable Banach space. It is relatively easy to show that non-trivial linear
tensor product problems are intractable for the normalized error criterion, and they are
also intractable for the absolute error criterion if the initial error is at least one. For
the absolute error criterion with initial error less than one, we show that polynomial
tractability is equivalent to strong polynomial tractability and they both hold if the
singular eigenvalues decay to 0 as O.n�p/ with p > 1.

Section 6.3 deals with weighted tensor product problems. We study necessary
and sufficient conditions on the weights to get polynomial and weak tractability for
the normalized error criterion. In particular, strong polynomial tractability holds for
product weights iff both the sequences of the singular values and weights are summable
with some power less than one. For finite-order weights, polynomial tractability holds
iff the sequence of the singular values is summable with some power less than one
independently of the specific values of finite-order weights. These conditions are
significantly relaxed when weak tractability is considered.

We illustrate the results of this chapter by several linear multivariate problems. In
particular, we study multivariate approximation for weighted Korobov spaces which has
been studied before in the worst case setting. This will allow us to compare tractability
results for this problem in both the worst case and average case settings.
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6.1 Linear Problems

In this section, we consider linear multivariate problems defined from separable Banach
spaces into Hilbert spaces and equipped with zero-mean Gaussian measures. We study
their polynomial and weak tractability for the absolute and normalized error criteria in
the average case setting and for the class ƒall.

As in Section 4.4 of Chapter 4, we consider the problem S D fSd g, where
Sd W Fd ! Gd is a linear operator and Fd is a separable Banach space whereas
Gd is a Hilbert space. The space Fd is equipped with the zero-mean Gaussian measure
d , so that �d D dS

�1
d

is the zero-mean Gaussian measure defined on the space of
the solution elements Sd .f /. Its correlation operator C	d

has the eigenpairs

C	d
�d;j D �d;j�d;j ;

where
˝
�d;j ; �d;i

˛
Gd

D ıi;j and �d;1 � �d;2 � � � � � 0, with

trace.C	d
/ D

1X
jD1

�d;j < 1:

We first consider tractability of S for the absolute error criterion. We know from
Section 4.3.1 of Chapter 4 that the nth minimal error of the linear operator Sd in the
average case setting for the class ƒall is the truncated trace

� 1X
jDnC1

�d;j

�1=2

and the information complexity n."; d/ ´ navg."; Sd ; ƒ
all/ is

n."; d/ D min
˚
n j P1

jDnC1 �d;j � "2
�
:

To omit the trivial case, we assume that S is non-zero, i.e., no Sd is the zero operator,
which implies that �d;1 > 0 for all d 2 N. We first study polynomial tractability.

Theorem 6.1. Consider the non-zero problem S D fSd g for a linear Sd defined from
a separable Banach space Fd into a Hilbert spaceGd . We study the problem S for the
absolute error criterion in the average case setting and for the class ƒall.

• S is polynomially tractable iff there exist a positive C1, non-negative q1, q2 and
� 2 .0; 1/ such that

C2 ´ sup
d

� 1X
jDdC1d

q1 e
��d;j

�1=�
d�q2 < 1: (6.1)
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• If (6.1) holds then

n."; d/ �
�
C1 C

�
�C2

1 � �
��=.1��/

C 1

�
dmax.q1;q2�=.1��//"�2�=.1��/

for all " 2 .0; 1� and d D 1; 2; : : : .

• If S is polynomially tractable, so that n."; d/ � Cdq"�p for some positive C
and p, and q � 0, then (6.1) holds with

C1 D 2C C 1; q1 D q; q2 D 2qp�1;

and for any � such that � 2 ..1C 2=p/�1; 1/. Then

C2 � 2.4C /2=p
�
�

�
�

�
1C 2

p

���1=�
;

where � is the Riemann zeta function.

• S is strongly polynomially tractable iff (6.1) holds with q1 D q2 D 0. The
exponent of strong polynomial tractability is

pstr-wor D inf
�
2�

1 � � j � satisfies (6.1) with q1 D q2 D 0

�
.

Proof. The proof is similar to the proof of Theorem 5.1 in the worst case setting, which
allows us to proceed a little faster.

Assume first that we have polynomial tractability with n."; d/ � Cdq"�p for
some positive C and p, and q � 0. This means that

P1
jDn.";d/C1 �d;j � "2. Since

the eigenvalues �d;j are non-increasing, we have

1X
jDbCdq"�pcC1

�d;j � "2:

Without loss of generality we assume that C � 1. Let k D bCdq"�pc C 1 � 2. If we
vary " 2 .0; 1� then k takes the values k D bCdqc C 1; bCdqc C 2; : : : . We also have
k � Cdq"�p C 1, which is equivalent to "2 � .Cdq=.k � 1//2=p . Hence

1X
jDk

�d;j �
�
Cdq

k � 1
�2=p

for all k � bCdqc C 1.

Observe that

k�d;2k�1 �
1X
jDk

�d;j � .Cdq/
2=p

�
2k � 1
k � 1

�2=p �
1

2k � 1
�2=p

;

.k C 1/�d;2k �
1X
jDk

�d;j � .Cdq/
2=p

�
2k

k � 1
�2=p �

1

2k

�2=p
:
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This yields

�d;2k�1 � .Cdq/
2=p 2k � 1

k

�
2k � 1
k � 1

�2=p �
1

2k � 1
�1C2=p

;

�d;2k � .Cdq/
2=p 2k

k C 1

�
2k

k � 1
�2=p �

1

2k

�1C2=p
:

Since k � 2 we have 2k=.k � 1/ � 4, and the last estimates can be simplified to

�d;j � 2.4Cdq/2=pj�.1C2=p/ for j � d.2C C 1/dqe � 2 .bCdqc C 1/ � 1.

Take � 2 ..1C 2=p/�1; 1/. Then

� 1X
jDd.2CC1/dqe

��d;j

�1=� � 2.4Cdq/2=p� .�.1C 2=p//1=� : (6.2)

Hence, (6.1) holds with C1 D 2C C 1, q1 D q, q2 D 2q=p, and any � such that
� 2 ..1 C 2=p/�1; 1/ and C2 � 2.4C /2=p�.�.1 C 2=p//1=� . This also proves the
third point of the theorem.

Assume now that (6.1) holds. Since �d;j ’s are ordered, we have as in (5.2),

�
n � dC1dq1e C 1

�1=�
�d;n �

� 1X
jDdC1d

q1 e
��d;j

�1=� � C2d
q2 (6.3)

for n D dC1dq1e; dC1dq1e C 1; : : : . For such n, and ˛ D dC1dq1e � 1 we then have

1X
jDnC1

�d;j � C2d
q2

1X
jDnC1

1

.j � ˛/1=� � C2d
q2

Z 1

n

dx

.x � ˛/1=�

D �C2d
q2

1 � �
1

.n � dC1dq1e C 1/.1��/=� :

Hence,
P1
jDnC1 �d;j � "2 for

n D
&�

�C2d
q2

.1 � �/"2
��=.1��/'

C dC1dq1e � 1:

This proves that

n."; d/ �
�
C1 C

�
�C2

1 � �
��=.1��/

C 1

�
dmax.q1;q2�=.1��//"�2�=.1��/:

Thus, S is polynomially tractable, proving the second point of the theorem.
Strong polynomial tractability of S is proven similarly by taking q D 0 in the first

part of the proof, and q1 D q2 D 0 in the second part. The formula for the exponent of
strong polynomial tractability follows from the second and third points of the theorem.
This completes the proof.
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It is interesting to compare Theorems 5.1 and 6.1, which present necessary and
sufficient conditions for polynomial tractability in the worst and average case settings.
First of all we stress that they address polynomial tractability of two different and, in
general, unrelated multivariate problems. The worst case is defined for the unit ball
of a Hilbert space Hd whereas the average case setting is defined for a whole Banach
spaceFd . The spacesHd andFd are, in general, not related. Therefore the eigenvalues
�d;j for the worst case may be quite different than the eigenvalues �d;j for the average
case setting. Following the usual notation, we use the same symbol for both sets of
eigenvalues although we admit that this may sometimes be confusing.

The polynomial tractability conditions are quite similar for the two settings, since
we have a similar dependence of the information complexity on the sequence of the
eigenvalues; in the worst case the information complexity is the smallestn for which the
.nC 1/st largest eigenvalue is at most "2, whereas in the average case the information
complexity is the smallest n for which the truncated trace starting from the .nC 1/st
largest eigenvalue is at most "2. Hence in both settings, the first polynomially many
eigenvalues do not effect polynomial tractability, whereas the sum of the rest of their
positive powers must be uniformly bounded in d . The only difference is that the
exponent � in the worst case setting can be arbitrarily large, whereas in the average
case setting � must be smaller than one. Also observe the difference between the
exponents of strong polynomial tractability. In the worst case setting, this exponent is
2� and in the average case setting it is 2�=.1 � �/, choosing the smallest possible �
satisfying the condition (5.1) or (6.1), respectively.

As in Chapter 5, it is easy to check that (6.1) holds iff there exist non-negative C1,
C2, q1, q2 and r > 1 such that

�d;n � C2d
q2
�
n � dC1dq1e C 1

��r
for all n � dC1dq1e. (6.4)

Indeed, if (6.1) holds then (6.3) implies (6.4) with the same C1; C2; q1; q2 and with
r D 1=� > 1. On the other hand, if (6.4) holds then for any � 2 .1=r; 1/ we have

� 1X
jDdC1d

q1 e
��d;j

�1=� � C2d
q2�.� r/1=� ;

and (6.1) holds.
As an example observe that for �d;j D e˛

p
dj�ˇ , with ˇ > 1, we do not have

polynomial tractability for ˛ > 0, whereas we have strong polynomial tractability for
˛ � 0, in which case the exponent of strong polynomial tractability is 2=.ˇ � 1/.

We turn to the normalized error criterion for the same class ƒall. We now have

n."; d/ D min
˚
n j P1

jDnC1 �d;j � "2
P1
jD1 �d;j

�
:

Theorem 6.2. Consider the non-zero problem S D fSd g for a linear Sd defined from
a separable Banach space Fd into a Hilbert spaceGd . We study the problem S for the
normalized error criterion in the average case setting and for the class ƒall.
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• S is polynomially tractable iff there exist q2 � 0 and � 2 .0; 1/ such that

C2 ´ sup
d

�P1
jD1 ��d;j

�1=�P1
jD1 �d;j

d�q2 < 1: (6.5)

• If (6.5) holds then

n."; d/ �
��

�C2

1 � �
��=.1��/

C 1

�
dq2�=.1��/"�2�=.1��/

for all " 2 .0; 1� and d D 1; 2; : : : .

• If S is polynomially tractable, so that n."; d/ � Cdq"�p for some positive
C and p, and q � 0, then (6.5) holds for � 2 ..1 C 2=p/�1; 1/ with q2 D
qmax.1=�; 2=p/ and

C2 � �
2C C 1C �

2.4C /2=p�.�.1C 2=p//1=�
���1=�

:

• S is strongly polynomially tractable iff (6.5) holds with q2 D 0. The exponent
of strong polynomial tractability is

pstr-wor D inf
�
2�

1 � � j � satisfies (6.5) with q2 D 0

�
.

Proof. Since the proof is similar to the previous one, we only sketch the differences
between them. Assuming that n."; d/ � Cdq"�p we now know that

1X
jDbCdq"�pcC1

�d;j � "2
1X
jD1

�d;j :

From (6.2) and for � 2 ..1C 2=p/�1; 1/ we obtain

� 1X
jDd.2CC1/dqe

��d;j

�1=� � 2.4Cdq/2=p� .� .1C 2=p//1=�
1X
jD1

�d;j :

This yields P1
jD1 ��d;j�P1
jD1 �d;j

��
!1=�

�
 
��
d;1
.d.2C C 1/dqe � 1/CP1

jDd.2CC1/dqe ��d;j�P1
jD1 �d;j

��
!1=�

� �
.2C C 1/dq C �

2.4Cdq/2=p�.�.1C 2=p//1=�
���1=�

� C2d
qmax.1=�;2=p/;

where C2 D �
2C C 1C �

2.4C /2=p�.�.1C 2=p//1=�
���1=�

. This proves (6.5), as well
as the third point of the theorem.
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Assuming (6.5), we conclude that

n1=��d;n �
� 1X
jD1

��d;j

�1=� � C2d
q2

1X
jD1

�d;j for all n D 1; 2; : : : .

Then 1X
jDnC1

�d;j � �C2d
q2

1 � �
1

n.1��/=�
1X
jD1

�d;j :

Hence,
P1
jDnC1 �d;j � "2

P1
jD1 �d;j holds for

n �
��
�C2d

q2

1 � �
��=.1��/

C 1

�
"�2�=.1��/:

This proves polynomial tractability of S and the second point of the theorem. Strong
polynomial tractability follows as before.

As in the worst case setting, the main difference between Theorem 6.1 and Theo-
rem 6.2 is that for the absolute error criterion, polynomially many largest eigenvalues
of f�d;j g do not count, whereas for the normalized error criterion, the whole sequence
of normalized eigenvalues

˚
�d;j =

P1
kD1 �d;k

�
counts. The reason is that although

polynomially many initial eigenvalues can be arbitrarily large, for the normalized er-
ror criterion we consider the ratios �d;j =

P1
kD1 �d;k , which are always at most one.

Hence, for the normalized error criterion there is no need to drop the initial polynomial
part of the sequence, which was necessary for the absolute error criterion.

As in the worst case setting, it is natural to ask whether polynomial tractabilities
for the absolute and normalized error criteria in the average case setting are related.
It is easy to see that they are not. That is, it may happen that we have polynomial
tractability for the absolute error criterion but not for the normalized error criterion or
vice versa. Indeed, similarly to Chapter 5, consider the eigenvalues f�d;j g such that

f�d;j g D ˚
.j1 C ˛/�ˇ .j2 C ˛/�ˇ � � � .jd C ˛/�ˇ

�1
j1;j2;:::;jd D1 (6.6)

for some ˛ � 0 and ˇ > 1. Proceeding exactly as in Chapter 5, it is easy to check that
for sufficiently large ˛, we have strong polynomial tractability for the absolute error
criterion. More precisely, this holds for ˛ so large that the positive �� defined by the
condition 1X

jD1
.j C ˛/��� D 1

satisfies �� < ˇ. Then the exponent of strong polynomial tractability is

pstr-avg D 2��

ˇ � �� :
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For the normalized error criterion with the same sequence of eigenvalues (6.6), we
have for large ˛ and � 2 .ˇ�1; 1/,
�P1

jD1 ��d;j
�1=�P1

jD1 �d;j
D
�P1

jD1.j C ˛/�ˇ�
�d=�

�P1
jD1.j C ˛/�ˇ

�d D
�

ˇ � 1
.ˇ� � 1/1=� ˛

.1��/=� .1C o.1//

�d
:

It can be checked that it goes exponentially fast to infinity with d for large ˛ and ˇ > 1.
Due to Theorem 6.1, this implies that the problem S is polynomially intractable for
large positive ˛ and ˇ > 1.

Hence for large positive ˛, we have polynomial tractability for the absolute error
criterion and polynomial intractability for the normalized error criterion.

The opposite case of polynomial intractability for the absolute error criterion and
polynomial tractability for the normalized error criterion in the average case setting
can be obtained for the sequence of eigenvalues that we considered before, namely for
�d;j D e˛

p
dj�ˇ for positive ˛ and ˇ > 1. The lack of polynomial tractability for

the absolute error criterion was previously discussed, whereas for the normalized error
criterion we have �P1

jD1 ��d;j
�1=�P1

jD1 �d;j
D �.ˇ�/1=�

�.ˇ/
;

so that we even obtain strong polynomial tractability with the exponent 2=.ˇ � 1/.
We now analyze weak tractability of S . As in the worst case setting, the condi-

tions for weak tractability can be presented simultaneously for both the absolute and
normalized error criteria by defining

CRId D 1 for the absolute error criterion,

CRId D
1X
jD1

�d;j for the normalized error criterion:

We are ready to prove the following theorem.

Theorem 6.3. Consider the non-zero problem S D fSd g for a linear Sd defined from
a separable Banach space Fd into a Hilbert space Gd . We study the problem S for
the absolute or normalized error criterion in the average case setting and for the class
ƒall. Let

td;j ´
1X
kDj

�d;j :

S is weakly tractable iff

• we have

lim
j!1

td;j

CRId
ln2 j D 0 for all d , and
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• there exists a function f W .0; 1
2
� ! NC such that

M ´ sup
ˇ2.0; 1

2
�

1

ˇ2
sup

d�f .ˇ/
sup

j�dexp.d
p
ˇ/eC1

td;j

CRId
ln2 j < 1:

Proof. Observe that in the average case setting we have
P1
jDnC1 �d;j � "2CRId ,

which is equivalent to td;nC1 � "2CRId . The condition on td;j is exactly what we
studied in the worst case setting, and therefore Theorem 5.3 applies and directly implies
Theorem 6.3.

We now translate the conditions on td;j into conditions on the specific eigenvalues
�d;j that are given by

�d;j

CRId
D ‚

�
Cd

j p1 lnp2.j C 1/

�
for all j; d 2 N, (6.7)

where the factors in the big ‚ notation are independent of j and d . Since �d;j must
be summable we need to assume that p1 > 1 or that p1 D 1 and p2 > 1. Based on
Theorem 6.3 it is easy to obtain the following corollary.

Corollary 6.4. Consider the non-zero problem S D fSd g for a linear Sd defined
from a separable Banach space Fd into a Hilbert space Gd with the eigenvalues �d;j
satisfying (6.7). We study the problem S for the absolute or normalized error criterion
in the average case setting and for the class ƒall.

• Let p1 > 1. S is weakly tractable iff Cd D exp.o.d//.

• Let p1 D 1. S is weakly tractable iff p2 > 3 and Cd D o.dp2�3/.

Proof. Observe that

1X
kDj

�d;j D ‚

�
Cd

Z 1

j

dx

xp1 lnp2.x/

�
CRId :

Assume first that p1 > 1. Modulo a power of the logarithm, the last sum is of order
Cdj

�.p1�1/. This leads to

ln n."; d/ D ‚
�
lnCd C ln "�1� :

Then lim"�1Cd!1 ln n."; d/=."�1 C d/ D 0 iff lnCd D o.d/, as claimed.
Assume now that p1 D 1. Then the last sum is of order Cd ln�.p2�1/ j and

ln n."; d/ D ‚
�
C
1=.p2�1/
d

"�2=.p2�1/�:
Suppose that we have weak tractability, so that

lim
"�1Cd!1

ln n."; d/

"�1 C d
D 0:
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Taking "�1 ! 1 and a fixed d we see that 2=.p2 � 1/ < 1, i.e., that p2 > 3. On
the other hand, if "�1 D d and d ! 1 then Cd D o.dp2�3/. Finally, if p2 > 3 and
Cd D o.dp2�3/, we let z D max."�1; d / to find

ln n."; d/ D o
�
z.p2�3/=.p2�1/z2=.p2�1/� D o.z/;

which implies weak tractability, and completes the proof.

The case ofp1 > 1 in Corollary 6.4 may even yield polynomial tractability, whereas
the casep1 D 1 contradicts polynomial tractability since

P1
kDj ��d;j D 1 for all j and

� 2 .0; 1/, see Theorems 6.1 and 6.2. Therefore the case p1 D 1 is more interesting
when we consider weak tractability. We still can get weak tractability iff p2 > 3

and Cd D o.dp2�3/. This is the case when the eigenvalues �d;j decay with j as
j�1 ln�p2 j , and depend at most polynomially on d with the exponent at most p2 � 3
as a function of d .

We now discuss conditions needed for weak tractability. We might intuitively hope
that as long as the eigenvalues �d;j depend sub-exponentially on d then weak tractabil-
ity holds. This hope was confirmed in the worst case setting, where in Chapter 5 we
studied the eigenvalues �d;j D exp.˛1d˛2/j�˛3 for positive ˛i and weak tractabil-
ity holds for ˛2 < 1. In the average case setting, the situation is different since weak
tractability depends on the truncated sums of eigenvalues which may behave differently
than the eigenvalues alone. Indeed, Corollary 6.4 states that as long as the eigenvalues
behave polynomially, roughly like j�p1 with p1 > 1 then the truncated sums from
the j th largest eigenvalue also behave polynomially, roughly as j�.p1�1/, and weak
tractability holds with Cd D exp.o.d// depending sub-exponentially on d . The case
p1 D 1 is different, since now the truncated sums from the j th largest eigenvalues
depend on a power of the logarithm of j and weak tractability allows Cd to be at most
polynomially dependent on d .

As in the worst case setting, it may be difficult to check the second condition of
Theorem 6.3 to establish weak tractability. We now generalize Lemma 5.4 from the
worst case to the average case setting.

Lemma 6.5. Consider the non-zero problem S D fSd g for a linear Sd defined from a
separable Banach space Fd into a Hilbert space Gd . We study the problem S for the
absolute or normalized error criterion in the average case setting and for the classƒall.

If there exists a positive � 2 .0; 1/ such that

lim
d!1

ln
��P1

jD1 ��d;j
�1=�

= CRId
�

d
D 0 (6.8)

then S is weakly tractable.

Proof. Since n1=��d;n � �P1
jD1 ��d;j

�1=�
then

1X
jDnC1

�d;j � �

1 � �
� 1X
jD1

��d;j

�1=� 1

n.1��/=� :
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This yields

n."; d/ �
&"

�

1 � �

�P1
jD1 ��d;j

�1=�
CRId

#�=.1��/
"�2�=.1��/

'
:

Then the assumption (6.8) easily leads to

lim
"�1Cd!1

ln n."; d/

"�1 C d
D 0:

Hence, S is weakly tractable.

Clearly, (6.8) is only a sufficient condition for weak tractability. For example, take

�d;j D 1

j ln4.j C 1/
for all j; d 2 N.

Then
�P1

jD1 ��d;j
�1=� D 1 for any � 2 .0; 1/, and Lemma 6.5 does not apply,

however, the problem is weakly tractable.

Example: Trade-offs of the Exponents (Continued)

We return to trade-offs between the exponents of d and "�1 for polynomial tractability,
this time in the average case setting. For simplicity we only consider the normalized
error criterion. As in the worst case setting, we study the following sequence of the
eigenvalues

�d;j D
g.d/Y
kD1

j�˛
k for all j 2 Nd ,

this time for ˛ > 1 so that �d;j are summable. As before, g W N ! N and g.d/ � d .
It is easy to check from Theorem 6.2 that strong polynomial tractability holds iff

lim supd!1 g.d/ < 1, and polynomial tractability iff

Ag ´ lim sup
d!1

g.d/

ln d
< 1:

Furthermore, if Ag D 0 then the exponent of d can be arbitrarily small.
Assume now that g.d/ D min .d; d ln.d C 1/e/. Then it is easy to check that

n."; d/ D O .dq� "�p� / ;

where � 2 .1=˛; 1/ and

q� D �

1 � � ln
�.˛�/1=�

�.˛/
and p� D 2�

1 � � :
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We first show that these exponents are optimal in the following sense. Indeed, from
the case d D 1we conclude that the exponent of "�1 is at least 2=.˛�1/, and from the
case d D 2 that it must be larger than 2=.˛ � 1/. Note that for � 2 .1=˛; 1/ we have
2�=.1� �/ > 2=.˛ � 1/ and if � tends to 1=˛ then 2�=.1� �/ approaches 2=.˛ � 1/.
If we fix the exponent 2�=.1� �/ of "�1 then we claim that the exponent of d must be
at least q� . Indeed, n."; d/ D O.dq"�2�=.1��// implies that

1X
jDnC1

�d;j D O
�
dq.1��/=�Cln �.˛/n�.1��/=��;

�d;j D O
�
dq.1��/=�C�.˛/j�1=��:

Therefore for � 2 .�; 1/ we have

�P1
jD1 �

�

d;j

�1=�P1
jD1 �d;j

D O
�
dq.1��/=��.�=�/

�
:

On the other hand, the left hand side is of order d ln �.˛�/1=�=�.˛/. Letting � go to � we
conclude that

q � �

1 � � ln
�.˛�/1=�

�.˛/
;

as claimed.
If we now vary � 2 .1=˛; 1/ then the exponents of d and "�1 also vary. For � going

to 1=˛ we minimize the exponent of "�1 at the expense of the exponent of d which
goes to infinity. On the other hand, if � goes to 1 then the exponent of d goes to

�˛�
0.˛/
�.˛/

C ln �.˛/

at the expense of the exponent of "�1 which goes to infinity.
If we assume that d D d" D "�ˇ then

n."; d"/ D O

�
"

�
�
2�
1�� C �ˇ

1�� ln �.˛�/1=�

�.˛/

��
:

We now can choose � to minimize the exponent. Then � is the solution of

2C ˇ

�
.1 � �/

�
˛�0.˛�/
�.˛�/

� ln �.˛/

�
C ln

�.˛�/

�.˛/�

�
D 0:

For ˛ D ˇ D 2 we obtain � D 0:846587, whereas for ˛ D 2 and ˇ D 1 we obtain
� D 0:778559.



6.1 Linear Problems 253

Example: Schrödinger Equation (Continued)

The linear Schrödinger equation was defined in Chapter 5 with the Hilbert space Hd
given by (5.10) as its domain. Let

Q�d;j D ˇd;j�d;j for j 2 Nd , (6.9)

where .ˇd;j ; �d;j /’s are the eigenpairs of the compact operator .�� C q0/
�1. Then

f Q�d;j g is an orthonormal basis of Hd . We equip the space Hd with a zero-mean
Gaussian measure d such that its covariance operator C�d

is given by

C�d
Q�d;j D ˛d;j Q�d;j for j 2 Nd .

Here, the eigenvalues ˛d;j are positive and trace.C�d
/ D P

j2Nd ˛d;j < 1.
As explained in Chapter 5, we approximate Sdf by an algorithm of the form

SdAn;df , whereAn;d is an algorithm for approximating f fromHd . Due to isometry
of Sd , we haveZ

Hd

kSdf � SdAn;df k2L2
.df / D

Z
Hd

kf � An;df k2L2
.df /;

where L2 D L2.Œ0; 1�
d /.

Hence, also in the average case setting, the linear Schrödinger problem reduces to
multivariate approximation, APPdf D f for f 2 Hd .

Let �d D dAPP�1
d . Then �d is a zero-mean Gaussian measure on L2. To find its

covariance operator C	d
, note that

˝
f; Q�d;j

˛
Hd

D ˇ�1
d;j

˝
f; �d;j

˛
L2

. Therefore

˛d;j ıj;k D
Z
Hd

˝
f; Q�d;j

˛
Hd

˝
f; Q�d;k

˛
Hd

d .df /

D 1

ˇd;jˇd;k

Z
Hd

˝
f; �d;j

˛
L2

˝
f; �d;k

˛
L2
d .df /

D 1

ˇd;jˇd;k

Z
Hd

˝
f; �d;j

˛
L2

˝
f; �d;k

˛
L2
�d .df / D

˝
C	d

�d;j ; �d;k
˛
L2

ˇd;jˇd;k
:

Hence, C	d
�d;j D ˛d;jˇ

2
d;j
�d;j for j 2 Nd , and the eigenvalues of C	d

are

�d;j D ˛d;jˇ
2
d;j for j 2 Nd .

Formally we can now apply the results of this section for the sequence f�d;j gj2Nd ,
although, in general, it is difficult to check the summability conditions for an arbitrary
sequence of ˛d;j .

To simplify further calculations, we take

˛d;j D
�
q0 C

dX
kD1

�2j 2k

�2 �ıj.1/
j ˛1

C ıj.2/

j ˛2
C � � � C ıj.d/

j ˛
d

�
;
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where ıj.k/ D 0 if there exists an index i 6D k such that ji > 2, and ıj.k/ D 1

otherwise. That is, for d D 1, we have

˛d;j D .q0 C �2j 2/2

j ˛
;

and for d > 1, we have ˛d;j D 0 iff j has at least two components larger than 1. To
guarantee that

P
j2Nd ˛d;j < 1 we need to assume that ˛ > 5. Then

�d;j D ıj.1/

j ˛1
C ıj.2/

j ˛2
C � � � C ıj.d/

j ˛
d

:

We first check tractability of the linear Schrödinger equation for the absolute error
criterion. Note that for � 2 .1=˛; 1/ we have� X

j2Nd

��d;j

�1=� D d1=�
�
�.�˛/ � 1C d�1�1=�

with the Riemann zeta function �.
Due to Theorem 6.1, we see that strong polynomial tractability does not hold,

whereas polynomial tractability does with, e.g., q1 D 0, q2 D 1=� and � 2 .1=˛; 1/.
We then have

n."; d/ D O
�
d1=.1��/"2�=.1��/�

with the factor in the big O notation independent of "�1 and d . Note that the exponents
of d and "�1 can be both arbitrarily close to ˛=.˛ � 1/ < 1:25 and 2=.˛ � 1/ < 0:5,
respectively.

We now turn to the normalized error criterion. We now have�P
j2Nd ��d;j

�1=�P
j2Nd �d;j

D d .1��/=� �.˛�/ � 1C d�1

�.˛/ � 1C d�1 :

Due to Theorem 6.2, strong polynomial tractable does not hold, whereas polynomial
tractability does with q2 D .1 � �/=� and � 2 .1=˛; 1/. We then have

n."; d/ D O
�
d"2�=.1��/�

with the factor in the big O notation independent of "�1 and d . Note that the exponent
of d is now better than for the absolute error criterion, whereas the exponent of "�1
can be arbitrarily close to 2=.˛ � 1/ < 0:5, as for the absolute error criterion.

We summarize the analysis of this example. The linear Schrödinger problem in the
average case setting with the zero-mean Gaussian measure considered here is

• not strongly polynomially tractable for the absolute and normalized error criteria,

• polynomially tractable for the absolute and normalized error criteria.

We remind the reader that the linear Schrödinger problem for the space Hd is
intractable in the worst case setting. Hence, intractability in the worst case setting is
broken by switching to the average case setting for both error criteria.



6.2 Linear Tensor Product Problems 255

6.2 Linear Tensor Product Problems

So far, we have studied linear operators Sd without assuming any relations between
them. In this section, similarly to Section 5.2 of Chapter 5 we define all the Sd in terms
of a univariate problem. In Chapter 5, where we considered the worst case setting,
we defined Sd as tensor product problems generated by the univariate case. In this
chapter we consider the average case setting, for which we can relax the assumptions
of Section 5.2. It is enough to assume that the Hilbert space Gd is a tensor product
of d copies of an infinite dimensional separable Hilbert space G, i.e., Gd D ˝d

kD1G.
This means that Gd is a separable Hilbert space spanned by ˝d

kD1gk for gk 2 G, and
the inner product in Gd is defined such that

˝˝d
kD1 gk;˝d

kD1hk
˛
Gd

D
dY
kD1

hgk; hkiG for gk; fk 2 G.

Let f�ig be a complete orthonormal system of G. Then for d � 1 and a multi-index
j D Œj1; j2; : : : ; jd � with ji � 1, the system f�d;j g with

�d;j D ˝d
kD1�jk

(6.10)

is a complete orthonormal system of Gd and

Sdf D
X
j2Nd

˝
Sdf; �d;j

˛
Gd
�d;j for f 2 Fd ,

where, as before, Fd is a separable Banach space.
For f 2 Fd define Lj .f / D ˝

Sdf; �d;j
˛
Gd

. Since d is a zero-mean Gaussian
measure we know thatZ

Fd

Lj .f /d .df / D
Z
Gd

˝
g; �d;j

˛
Gd
�d .dg/ D 0 for all j 2 Nd .

We assume that the linear functionals Lj are orthogonal, i.e., for all j; i 2 Nd we
haveZ

Fd

Lj .f /Li .f /d .df / D
Z
Gd

˝
g; �d;j

˛
Gd

˝
g; �d;i

˛
Gd
�d .dg/ D �d;j ıj;i :

Hence
C	d

�d;j D �d;j�d;j for all j 2 Nd .

To preserve the tensor product structure of the space Gd and its orthonormal sys-
tem f�d;j g, we assume that the eigenvalues �d;j are given as follows. For d D 1, we
assume that �1;j D �j , where �1 � �2 � � � � � 0 and

1X
jD1

�j D trace.C	1
/ < 1:
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For d � 1, we assume that

�d;j D
dY
kD1

�jk
for all j D Œj1; j2; : : : ; jd � 2 Nd . (6.11)

Observe that

trace.C	d
/ D

X
j2Nd

�d;j D
� 1X
jD1

�j

�d
:

Similarly to the worst case, we call the multivariate problem S D fSd g with the
eigenpairs of the correlation operators C	d

given by (6.10) and (6.11) a linear tensor
product problem in the average case setting.

Let us order the sequence of the eigenvalues f�d;j gj2Nd D f�d;j gj2N such that
�d;1 � �d;2 � � � � � 0. Clearly, �d;1 D �d1 , �d;2 D �d�1

1 �2 etc. Note that for
�2 D 0, the operator Sd is equivalent to a continuous linear functional. Then Sd
can be solved exactly with one information operation from the class ƒall, and so the
problem S is trivial in this case. In the sequel, we will always assume that �2 > 0, so
that we have at least 2d positive eigenvalues. Indeed, we have

�
d
k

�
positive eigenvalues

�d�k
1 �k2 for k D 0; 1; : : : ; d . In this case it is meaningful to study tractability even if

the rest of the eigenvalues is 0, i.e., �j D 0 for j � 3. Observe that

1X
jDnC1

�d;j D
1X
jD1

�d;j �
nX

jD1
�d;j D

� 1X
jD1

�j

�d �
nX

jD1
�d;j �

� 1X
jD1

�j

�d � n�d1 :

Hence, the information complexity

n."; d/ ´ navg."; d;ƒall/ D min
˚
n j P1

jDnC1 �d;j � "2CRId
�

can be bounded from below by

n."; d/ � min
˚
n j �P1

jD1 �j
�d � n�d1 � "2CRId

� �
�P1

jD1 �j
�d � "2CRId

�d1
;

where, as always, CRId D 1 for the absolute error criterion, and

CRId D
1X
jD1

�d;j D
� 1X
jD1

�j

�d

for the normalized error criterion.
We are ready to study polynomial tractability of linear tensor product problems.

We will address both the absolute and normalized error criteria.

Theorem 6.6. Consider the linear tensor product problem in the average case setting
S D fSd g with �2 > 0. We study this problem for the class ƒall.
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• Consider the normalized error criterion. Then S is intractable since

n."; d/ � .1 � "2/
� 1X
jD1

�j

�1

�d
� .1 � "2/

�
1C �2

�1

�d
for all " 2 Œ0; 1/

is exponential in d and we have the curse of dimensionality.

• Consider the absolute error criterion. Let
P1
jD1 �j � 1. Then S is intractable

since

n."; d/ � 1

2

� 1X
jD1

�j

�1

�d
� 1

2

�
1C �2

�1

�d
for all " 2 Œ0;p2=2�

is exponential in d and we have the curse of dimensionality.

• Consider the absolute error criterion. Let
P1
jD1 �j < 1. ThenS is polynomially

tractable iff S is strongly polynomially tractable iff there is � 2 .0; 1/ such that

1X
jD1

��j � 1: (6.12)

If (6.12) holds then

n."; d/ � 1

1 � � "
�2�=.1��/;

and the exponent of strong polynomial tractability is

pstr-avg D inf
˚
2�
1�� j � satisfies (6.12)

�
.

Proof. Consider first the normalized error. For n D n."; d/ we have

� 1X
jD1

�j

�d � �d1n � "2
� 1X
jD1

�j

�d

which gives the bound needed.
Consider now the absolute error. Assume first that a WD P1

jD1 �j � 1. Then we

have ad � "2 � 1
2
ad for " 2 Œ0;p2=2� and

"2 �
1X

jDn.";d/C1
�d;j � ad � n."; d/�d1 :

This yields

n."; d/ � ad � "2
�d1

� ad

2�d1
D 1

2

1X
jD1

�
�j

�1

�d
� 1

2

�
1C �2

�1

�d

which is the bound needed.
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Assume finally that
P1
jD1 �j < 1 and consider polynomial tractability of S . We

will use Theorem 6.1. Take � 2 .0; 1/ and consider

1X
jDdC1d

q1 e
��d;j D

� 1X
jD1

��j

�d �
dC1d

q1 e�1X
jD1

��d;j �
� 1X
jD1

��j

�d � �d1C1dq1

D
� 1X
jD1

��j

�d�
1 �

�
��1P1
jD1 ��j

�d
C1d

q1

�
:

Then
P1
jD1 ��j > 1 implies that C2 in (6.1) is infinite. If

P1
jD1 ��j � 1 then

1X
jD1

��d;j �
h 1X
jD1

��j

id � 1:

Hence, we can take C1 D 1, q1 D q2 D 0 and C2 in (6.1) is bounded by 1. Hence,
polynomial tractability of S is equivalent to strong polynomial tractability of S and
holds iff

P1
jD1 ��j � 1. The rest follows from Theorem 6.1. This completes the

proof.

We now comment on Theorem 6.6. It it interesting to notice that we always have in-
tractability for the normalized error criterion. On the other hand, polynomial tractability
is equivalent to strong polynomial tractability for the absolute error criterion, holding
iff
P1
jD1 ��j � 1 for some positive � < 1. We now show that for �2 > 0 we have

1X
jD1

��j � 1 for � 2 .0; 1/ iff
1X
jD1

�j < 1 and �j D O .j�p/ for p > 1.

Indeed, if
P1
jD1 ��j � 1 for some � 2 .0; 1/, then for any s 2 Œ�; 1� by using Jensen’s

inequality1 twice we have

1X
jD1

�j � f .s/ ´
� 1X
jD1

�sj

�1=s �
� 1X
jD1

��j

�1=� � 1:

Hence, if
P1
jD1 �j D 1 then f .s/ � 1. This can only happen when �sj D constant,

which implies that�j 2 f0; 1g. Hence�2 D 1 and�1 � 1. This yields that
P1
jD1 �j �

2, which is a contradiction. Thus
P1
jD1 �j < 1. We also have

n��n �
1X
jD1

��j � 1;

1Jensen’s inequality states that
P1

j D1 aj � �P1
j D1 a

r
j

�1=r
for aj � 0 and r 2 .0; 1�. In our case, it

is enough to take aj D �j and r D s for the first use of this inequality, and r D �=s for the second time.
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and therefore �n � n�1=� . Hence �j D O.j�p/ with p D 1=� > 1.
Assume that

P1
jD1 �j < 1 and �j D O.j�p/ with p > 1. This clearly implies

that �j < 1. Consider the function g.s/ D f s.s/ for s 2 .1=p; 1�. The function g is
well defined, since �sj D O.j�sp/ and the series

P1
jD1 j�sp is convergent for sp > 1.

Furthermore,

g0.s/ D �
1X
jD1

�sj ln ��1
j

is also well defined and negative. Take a positive ı such that ı C 1=p < 1. Then the
function g0 is bounded over Œı C 1=p; 1�, and therefore for � 2 Œı C 1=p; 1� we have

g.�/ D g.1/C O.1 � �/:
Since g.1/ < 1 there exists a number � < 1 for which g.�/ � 1. This implies
f .�/ � 1, as claimed.

We stress that polynomial tractability holds only if the initial error
�P1

jD1 �j
�d=2

is exponentially small in d . Then the problem is obviously trivial for all

"2 �
� 1X
jD1

�j

�d

since n."; d/ D 0 for all such ". Hence we may have polynomial tractability for the
absolute error criterion only if the problem is badly scaled.

As in the comment after Theorem 5.5, we cannot in general claim that the exponent
of strong polynomial tractability is obtained for � such that

P1
jD1 ��j D 1. Indeed,

take �j D j̨�2 ln�p2.j C 1/. Then
P1
jD1 �

1=2
j < 1 for p2 > 2 and small ˛, whereasP1

jD1 ��j D 1 for all � < 1=2. This shows that the exponent of strong polynomial

tractability is 2, although
P1
jD1 �

1=2
j can be arbitrarily small.

We now turn to weak tractability. Obviously, weak tractability does not hold for
the normalized error criterion. Consider then the absolute error criterion. Observe that
since f�j g is summable, i.e.,

P1
jD1 �j < 1, then �j D O.j�p/ for some p � 1. For

p > 1, we know that we have strong polynomial tractability iff
P1
jD1 �j < 1. On

the other hand we know that
P1
jD1 �j � 1 implies intractability. Hence, for p > 1,

weak tractability implies that
P1
jD1 �j < 1, and is equivalent to strong polynomial

tractability. We summarize this observation in the following theorem.

Theorem 6.7. Consider the linear tensor product problem in the average case setting
S D fSd g with �2 > 0 and let �j D O.j�p/ with p > 1. We study this problem
for the absolute error criterion and the class ƒall. Then the following statements are
equivalent:

• S is weakly tractable,

• S is polynomially tractable,
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• S is strongly polynomially tractable,

•
P1
jD1 �j < 1.

Hence, the only case for which weak tractability may hold, and for which poly-
nomial tractability does not hold, is when p D 1. This corresponds, in particular, to
the case for which �j D O.j�1 ln�p2.j C 1// with p2 > 1. We leave the question
whether weak tractability holds for such sequences as our next open problem.

Open Problem 28.

• Consider the linear tensor product problem in the average case setting S D fSd g
with

P1
jD1 �j < 1 and�2 > 0. Study this problem for the absolute error criterion

and for the classƒall. Verify whether there are eigenvalues �j for which we have
weak tractability but not polynomial tractability. If so, characterize all such f�j g.
In particular, characterize the p2 for which we have weak tractability for

�j D ‚

�
1

j lnp2.j C 1/

�
:

Example: Approximation for Continuous Functions

We illustrate the results of this section for approximation defined for the space
Fd D C.Œ0; 1�d / of real continuous functions. The Banach space Fd is equipped with
a zero-mean Gaussian measure d whose covariance kernel is given by the Korobov
kernel. That is,Z

C.Œ0;1�d /

f .x/f .y/d .df / D Kd;˛.x; y/ for all x; y 2 Œ0; 1�d ,

where Kd;˛ is given by (A.2) in Appendix A with ˛ > 1=2, and it is the reproducing
kernel of the Korobov space Hd;˛ .

The approximation problem is defined as APP D fAPPd g, where

APPd W Fd D C.Œ0; 1�d / ! Gd D L2.Œ0; 1�
d / with APPdf D f .

The measure �d D dAPP�1
d is now a zero-mean Gaussian measure with the covari-

ance operator C	d
W Gd ! Gd given by

.C	d
f /.x/ D

Z
Œ0;1�d

Kd;˛.x; y/f .y/ dy for all x 2 Œ0; 1�d .

We now discuss the eigenpairs .�d;h; �d;h/h2Zd of C	d
. The eigenvalues are given by

�d;h D %�1
d;˛.h/ D

dY
kD1

�hk
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with
�hk

D ˇ1ı0;hk
C ˇ2.1 � ı0;jk

/jhkj�2˛;
with positive ˇ1 and ˇ2.

For h D 0, we have �d;0 D 1 and the corresponding eigenfunction is �d;0 D 1. For
h 6D 0, the eigenvalues �d;h and �d;�h are equal, and the corresponding eigenfunctions
�d;h and �d;�h can be taken as cos.2�h � x/ and sin.2�h � x/.

Hence, the eigenpairs of C	d
are the same as the eigenpairs of the operator Wd D

APPdAPP�
d W Hd;˛ ! Hd;˛ studied for approximation in the worst case setting for the

Korobov space, see Chapter 5. Note thatX
h2Z

�h D ˇ1 C 2ˇ2�.2˛/:

From Theorems 6.6 and 6.7 we conclude that

• APP is intractable for the normalized error criterion.

• Let ˇ1C2ˇ2�.2˛/ � 1. Then APP is intractable for the absolute error criterion.

• Let ˇ1 C 2ˇ2�.2˛/ < 1. Then APP is strongly polynomially tractable for the
absolute error criterion. The exponent of strong polynomial tractability is

pstr-avg D 2�

1 � � ;

where � 2 .0; 1/ is the unique solution of

ˇ�1 C 2ˇ�2�.2˛�/ D 1:

We add that similar results also hold in the worst case setting for approximation
defined for the Korobov space Hd;˛ . Observe that strong polynomial tractability for
both approximation problems holds for the absolute error criterion under the same
condition. However, the strong polynomial tractability exponent in the worst case
setting is smaller since it is 2� instead of 2�=.1 � �/ which is its counterpart in the
average case setting. The difference between them can be arbitrarily large if � is close
to one. In this case, the exponent in the worst case is close to 2, whereas the exponent
in the average case approaches infinity.

The reader may be surprised by the last remark that multivariate approximation in
the worst case seems easier than in the average case. The point is that we compare two
different approximation problems defined for two different spaces and in two different
settings. The space C.Œ0; 1�d / considered in the average case setting is much larger
than the Korobov space Hd;˛ considered in the worst case setting. Indeed, Hd;˛ is
obviously a subset of C.Œ0; 1�d / and d .Hd;˛/ D 0 due to the Kolmogorov principle,
see Shilov and Fan Dyk Tin [211], it can be also found in [242, p. 308]. Hence,
multivariate approximation for the Korobov space Hd;˛ equipped with the Gaussian
measure d is trivial in the average case setting. We need a much larger spaceX , such
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as C.Œ0; 1�d /, to guarantee that d .X// D 1. Of course, it is also of interest to select
a different Gaussian measure for which the Korobov space Hd;˛ has measure 1, and
then compare the worst and average case tractability results for the same multivariate
approximation problem defined over Hd;˛ . This is done in our next example.

Example: Approximation for Korobov Space

We consider multivariate approximation for the Korobov space Hd;˛ as it was done
in Chapter 5 for the worst case setting. We now consider the average case setting in
which we equip Hd;˛ with a zero-mean Gaussian measure d as follows. Recall that
fehgh2Zd

, defined as in Appendix A, is an orthonormal system of Hd;˛ . We choose
the covariance operator of C�d

such that

C�d
eh D ˛d;heh for all h 2 Zd ,

for positive ˛d;h such that
P
h2Zd ˛d;h < 1. To preserve the tensor product structure,

we assume that

˛d;h D
dY
jD1

˛hj
with

P
h2Z ˛h < 1

for some positive sequence f˛hgh2Z.
Proceeding as for the linear Schrödinger problem in the average case setting, we

check that �d D dAPP�1
d is a zero-mean Gaussian measure defined on L2 D

L2.Œ0; 1�
d / with the covariance operator C	d

given by C	d
�d;h D �d;h�d;h, where

�d;h D ˛d;h%d;˛.h/ D
dY
jD1

˛hj

�
ˇ1ı0;hj

C ˇ2.1 � ı0;hj
/jhj j�2˛� for all h 2 Zd ,

and �d;h.x/ D exp.2� ih � x/. To simplify further calculations, take

˛h D �1ı0;h C �2.1 � ı0;h/jhj�2ˇ for all h 2 Z,

with positive �1 and �2, and ˇ > 1=2, so that
P
h2Z ˛h D �1 C 2�.2ˇ/ < 1. Then

�d;h D
dY
jD1

�
�1ˇ1ı0;hj

C �2ˇ2.1 � ı0;hj
/jhj j�2.˛Cˇ/� for all h 2 Zd .

From Theorems 6.6 and 6.7 we conclude that

• APP is intractable for the normalized error criterion.

• Let �1ˇ1 C 2�2ˇ2�.2.˛ C ˇ// � 1. Then APP is intractable for the absolute
error criterion.
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• Let �1ˇ1C2�2ˇ2�.2.˛Cˇ// < 1. Then APP is strongly polynomially tractable
for the absolute error criterion. The exponent of strong polynomial tractability
is

pstr-avg D 2�

1 � � ;
where � 2 .0; 1/ is the unique solution of

.�1ˇ1/
� C 2.�2ˇ2/

��.2.˛ C ˇ/�/ D 1: (6.13)

We now compare the worst and average case tractability results for multivariate
approximation for the absolute error criterion. In the worst case setting, strong poly-
nomial tractability holds iff max.ˇ1; ˇ2/ < 1. This may be a weaker condition than
�1ˇ1 C 2�2ˇ2�.2.˛ C ˇ// < 1 which is a necessary and sufficient condition in the
average case setting.

The reader may think that it sounds like a contradiction since we may have strong
tractability in the worst case and intractability in the average case. There is no con-
tradiction since we are still comparing two different, although similar multivariate
approximation problems. The worst case is defined for the unit ball of the spaceHd;˛ ,
whereas the average case is considered for the whole space Hd;˛ . It is known that the
average case over the unit ball is essentially the same as for the whole space only if the
trace of C�d

is relatively small, see [286] where this result was originally proved, as
well as Section 5.8 of [242] where this result is also reported. In our case,

trace.C�d
/ D Œ�1 C 2�2�.2ˇ/�

d ;

and only for �1C2�2�.2ˇ/ < 1, the measure of the unit ball is practically 1 for large d .
Hence, the last inequality is also needed to make the average case for the unit ball of
Hd;˛ roughly the same as the average case for the whole space. If so then the exponents
of strong polynomial tractability behave properly, i.e.,

pstr-avg D 2� avg

1 � � av
< pstr-wor D 2�wor;

where � avg satisfies (6.13), and �wor satisfies (5.14).
Indeed, this inequality can be checked directly. We use Hölder’s inequality for

p D 1C �wor and q D p=.p � 1/ D 1C .�wor/�1, and obtain

.�1ˇ1/
�wor=.1C�wor/ C 2.�2ˇ2/

�wor=.1C�wor/� .2.˛ C ˇ/�wor=.1C �wor//

� �
ˇ�

wor C 2ˇ�
wor
�.2˛�wor/

�1=p
.�1 C 2�2�.2ˇ//

1=q < 1:

Hence, � avg < �wor=.1C �wor/, and pstr-avg < pstr-wor, as claimed.
We stress that the exponents pstr-wor and pstr-avg can be quite different. Indeed,

assume that ˛ and ˇ are approaching 1=2, and ˇ1 and ˇ2 are approaching 1. Then
pstr-wor goes to infinity as already discussed in Chapter 5, whereas pstr-avg goes to
2�=.1 � �/, where � is the unique solution of

��1 C 2��2�.2�/ D 1:
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Example: Schrödinger Equation (Continued)

As before we equip the spaceHd given by (5.10) with a zero-mean Gaussian measure
whose covariance operator C�d

has the eigenpairs .˛d;j ; Q�j;d /, where j 2 Nd , with
Q�j;d given by (6.9). To simplify calculations, we now take

˛d;j D
�
q0 CPd

kD1 �2j 2k
�2

.j1 C 1/˛.j2 C 1/˛ � � � .jd C 1/˛
:

To guarantee that
P
j2Nd ˛d;j < 1 we need to assume that ˛ > 5. Then the eigen-

values of the covariance operator C	d
are

�d;j D 1

.j1 C 1/˛.j2 C 1/˛ � � � .jd C 1/˛
for all j 2 Nd .

Hence, they are of product form with �1;j D �j D .j C 1/�˛ for j 2 N.
We first check tractability of the linear Schrödinger equation for the absolute error

criterion. Note that for � > 1=˛ we have

X
j2Nd

��d;j D
�X
j2N

��j

�d D .�.˛�/ � 1/d ;

with the Riemann zeta function �. Define a number ˛� such that

�.˛�/ D 2:

Then ˛� D 1:72865 : : : . Clearly, if ˛� � ˛� then �.˛�/ � 1 � 1, and
P
j2Nd ��d;j

is uniformly bounded in d . On the other hand, if ˛� < ˛� then �.˛�/ � 1 > 1 andP
j2Nd ��d;j is exponentially large in d .

Due to Theorem 6.1, see also Theorem 6.6, the linear Schrödinger equation is
strongly polynomially tractable. The exponent of strong polynomial tractability is
obtained by taking � D ˛�=˛, and is equal to

2˛�

˛ � ˛� � 2˛�

5 � ˛� � 1:0568 : : : :

We now turn to the normalized error criterion. We now have�P
j2Nd ��d;j

�1=�P
j2Nd �d;j

D
�
.�.˛�/ � 1/1=�
�.˛/ � 1

�d
:

For � > 1=˛, Jensen’s inequality implies .�.˛�/� 1/1=�=.�.˛/� 1/ > 1, and we have
exponential dependence on d . Due to Theorem 6.2, see also Theorem 6.6, the problem
is not polynomially tractable.
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Next we check weak tractability. Let f�d;j gj2N be the ordered sequence of
f�d;j gj2Nd . We have �d;1 D 2�d˛ and therefore

P1
jDnC1 �d;j � "2

P1
jD1 �d;j

implies
.�.˛/ � 1/d � n2�d˛ � "2.�.˛/ � 1/d :

Hence,
n."; d/ � .1 � "2/ Œ2˛.�.˛/ � 1/�d :

Since 2˛.�.˛/� 1/ > 1C .2=3/˛ > 1, the information complexity is exponential in d
and weak tractability cannot hold.

We summarize the analysis of this example. The linear Schrödinger problem in the
average case setting with the zero-mean Gaussian measure considered here is

• intractable for the normalized error criterion,

• is strongly polynomially tractable with the exponent at most 1:0568 : : : for the
absolute error criterion.

Hence, intractability of the linear Schrödinger problem for the space Hd in the worst
case setting is now broken by switching to the average case setting but only for the
absolute error criterion.

6.3 Linear Weighted Tensor Product Problems

As in Section 5.3 of Chapter 5, we now consider a sequence of weights � D f�d;ug
for all d 2 N and subsets u of Œd � D f1; 2; : : : ; dg. For a linear tensor product
problem S D fSd g, we assumed in the previous section that the linear functionals
Lj D ˝

Sdf; �d;j
˛
Gd

for j 2 Nd were orthogonal and �d;j ’s were the eigenelements
of the correlation operator C	d

with the corresponding eigenvalues

�d;j D
dY
kD1

�jk
:

For the weighted case, we keep everything as it was before except that the eigen-
values of C	d

may now depend on the weight sequence � . More precisely, we assume
as before that we have a sequence of f�j g such that

�1 � �2 � � � � � 0 and
P1
jD1 �j < 1.

Without loss of generality we assume that �2 > 0.
Then for j 2 Nd and u.j / D fk j jk � 2g, we define the weighted eigenvalues

�d;�;j D �d;u.j /

dY
kD1

�jk
D �d;u.j /�

d�ju.j /j
1

Y
k2u.j /

�jk
:
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We say that S� D fSd;�g is a linear weighted tensor product problem in the average
case setting, or simply a weighted problem, if the Sd;� D Sd are defined as in the
previous section and the correlation operator C	d

of the zero-mean Gaussian measure
�d has the eigenpairs

C	d
�d;j D �d;�;j�d;j for all j 2 Nd .

Hence in the average case setting, the only difference between linear tensor and
linear weighted tensor product problems is in the distribution of the linear function-
als Lj . For the weighted problem, the distribution depends on the weight sequence � .
By considering different weights, we can model different a priori knowledge about the
distributions of the solution elements Sdf , or more precisely, about the distributions
of their inner products

˝
Sdf; �d;j

˛
Gd

with respect to the elements �d;j . Obviously, if
�d;u � 1 then a linear weighted tensor product problem reduces to the linear tensor
product problem studied in the previous section. The weights only matter if they do
not all equal to one. For example, for finite-order weights with order !�, we know a
priori that

˝
Sdf; �d;j

˛
Gd

D 0 (with probability 1) for all j 2 Nd with ju.j /j > !�.
We are ready to study polynomial and weak tractability of the weighted problem

S� D fSd;�g for the class ƒall. As with the worst case setting, we leave as an open
problem the case of the absolute error criterion.

Open Problem 29.

• Consider the linear weighted tensor product problem in the average case setting
S� D fSd;�g with�2 > 0 as defined in this section. Find necessary and sufficient
conditions for polynomial and weak tractability of S� for the absolute error
criterion and for the class ƒall.

We now consider the normalized error criterion. For � 2 .0; 1�, define

˛� D
1X
jD2

�
�j

�1

��
(6.14)

with formally ˛� D 1 if the last series is not convergent. From Jensen’s inequality
we have ˛�1 � ˛� , and obviously ˛1 < ˛� .

The sum-exponent is defined in (5.19). It is easy to see that the sum-exponent p�
for � D f�j =�1g is the same as the sum exponent p�� for �� D f�jC1=�2g defined
before Theorem 5.7 in Chapter 5, and is now given by

p� D inf f� 2 .0; 1� j ˛� < 1g :
Note that p� is always well defined, since the last series is convergent for � D 1.

We are ready to present a theorem on polynomial tractability.

Theorem 6.8. Consider the linear weighted tensor product problem in the average
case setting S� D fSd;�g with �2 > 0. We assume that for each d there is at least one
non-empty u such that �d;u > 0. We study the problem S� for the normalized error
criterion and for the class ƒall.
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• S� is polynomially tractable iff p� < 1 and there exist q2 � 0 and � 2 .p�; 1/
such that

C2 ´ sup
d

�P
u�Œd� � �d;u˛

juj
�

�1=�
P

u�Œd� �d;u˛
juj
1

d�q2 < 1: (6.15)

• If (6.15) holds then

n."; d/ �
��

�C2

1 � �
��=.1��/

C 1

�
dq2�=.1��/"�2�=.1��/

for all " 2 .0; 1� and d D 1; 2; : : : .

• IfS� is polynomially tractable, so thatn."; d/ � Cdq"�p for someC > 0,p > 0
and q � 0, then p� � .1C 2=p/�1 and (6.15) holds for � 2 ..1C 2=p/�1; 1/
with q2 D qmax.1=�; 2=p/ and

C2 � �
2C C 1C �

2.4C /2=p�.�.1C 2=p//1=�
���1=�

:

• S� is strongly polynomially tractable iff (6.15) holds with q2 D 0. The exponent
of strong polynomial tractability is

pstr-avg D inf
˚
2�
1�� j � 2 .p�; 1/ and satisfies (6.15) with q2 D 0

�
.

• For product weights �d;u D Q
j2u �d;j with �d;jC1 � �d;j for j 2 Œd � 1� and

supd �d;1 < 1, we have

– S� is polynomially tractable iff p� < 1 and there exists � 2 .p�; 1/ such
that

lim sup
d!1

Pd
jD1 � �d;j
ln d

< 1: (6.16)

If (6.16) holds then for any

q >
1

�

� 1X
jD2

�
�j

�2

�� �
lim sup
d!1

Pd
jD1 � �d;j
ln d

there exists a positive C such that

n."; d/ � Cdq�=.1��/"�2�=.1��/ for all " 2 .0; 1� and d D 1; 2; : : : .

– S� is strongly polynomially tractable iff p� < 1 and p� < 1. Then the
exponent of strong tractability is

pstr-avg D 2max
�
p�; p�

�
1 � max

�
p�; p�

� :



268 6 Average Case Setting

• For order-dependent weights �d;u D 	d;juj, we have

– S� is polynomially tractable iff p� < 1 and there exist q2 � 0 and � 2
.p�; 1/ such that

C2 ´ sup
d

�Pd
kD0

�
d
k

� �
	d;k

	�
˛k�
�1=�

Pd
kD0

�
d
k

�
	d;k˛

k
1

d�q2 : (6.17)

If (6.17) holds then

n."; d/ �
��

�C2

1 � �
��=.1��/

C 1

�
dq2�=.1��/"�2�=.1��/

for all " 2 .0; 1� and d D 1; 2; : : : .

– S� is strongly polynomially tractable iff p� < 1 and (6.17) holds with
q2 D 0. Then the exponent of strong polynomial tractability is

pstr-avg D inf
˚
2�
1�� j � 2 .p�; 1/ and satisfies (6.17) with q2 D 0

�
.

• For finite-order weights �d;u D 0 for juj > !� with order !�, we have

– S� is polynomially tractable iff p� < 1. Then for any � 2 .p�; 1/, we have

n."; d/ � C
ˇ̌˚

u j �d;u 6D 0
�ˇ̌
"�2�=.1��/; (6.18)

where

C D
��

˛
1=�
�

˛1

�!�

�

1 � �
��=.1��/

C 1:

Hence, for arbitrary finite-order weights we have

n."; d/ � 2Cd!
�
"�2�=.1��/;

whereas for finite-diameter weights of order q� with q� < d we have

n."; d/ � 2q
��1C.d � q� C 2/"�2�=.1��/;

– S� is strongly polynomially tractable iffp� < 1 and there exists � 2 .p�; 1/
such that

sup
d

�P
u�Œd�;juj�!� � �d;u˛

juj
�

�1=�
P

u�Œd�;juj�!� �d;u˛
juj
1

< 1: (6.19)

The exponent of strong polynomial tractability is

pstr-avg D inf
˚
2�
1�� j � 2 .p�; 1/ and satisfies (6.19)

�
:
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Proof. The proof easily follows from Theorem 6.2. Indeed, let f�d;j gj2N be the
ordered sequence of the eigenvalues of C	d

. We have

˚
�d;j

�
j2Nd D

�
�d;u.j /�

d�ju.j /j
1

Y
k2u.j /

�jk

�
j2Nd

:

Then

1X
jD1

��d;j D
X
j2Nd

� �d;u.j /

dY
kD1

��jk
D � �d;;�

d�
1 C

X
u�Œd�;u6D;

� �d;u�
.d�juj/�
1

� 1X
jD2

��j

�juj

D �d�1

 
� �d;; C

X
u�Œd�;u6D;

� �d;u

� 1X
jD2

�
�j

�1

���juj!
D �d�1

X
u�Œd�

� �d;u˛
juj
� :

Since for each d there is a non-empty u such that �d;u > 0, the sum
P1
jD1 ��d;j is

finite for some � 2 .0; 1/ iff ˛� is finite. This means that p� < 1 if (6.5) holds. Note
that �P1

jD1 ��d;j
�1=�P1

jD1 �d;j
D
�P

u�Œd� � �d;u˛
juj
�

�1=�
P

u�Œd� �d;u˛
juj
1

:

This yields the formula (6.15) for C2.
Then the first four points of Theorem 6.8 are equivalent to the first four points

of Theorem 6.2 and are repeated for completeness. This is true modulo the bound,
p� � .1 C 2=p/�1. This follows from the first part of the proof of Theorem 6.2
which states that

P1
jD1 ��d;j is finite for all � 2 ..1C 2=p//�1; 1/ which implies thatP1

jD1 ��j is also finite. Hence p� � .1C 2=p/�1 as claimed.
Consider now the product weights. For � 2 .0; 1/, we have

�P1
jD1 ��d;j

�1=�P1
jD1 �d;j

D
dY
jD1

.1C � �
d;j
˛� /

1=�

1C �d;j˛1
:

Let ˛ D supd �d;j D supd �d;1. We know that ˛ 2 .0;1/. For x 2 Œ0; ˛� define

g.x/ D 1C x�˛� � .1C cx�˛� /.1C x˛1/
�

for some (small) positive c < 1. Obviously g.0/ D 0, and g.x/ D .1 � c/x�˛� .1C
o.1// for small x. Hence g is positive for arguments close to 0. Using the fact that
˛� � ˛�1 it is easy to check that g0.x/ � 0 for all x 2 .0; ˛� if c is sufficiently small.
This means that g.x/ � 0 for all x 2 Œ0; ˛�, and proves that

.1C cx�˛� /
1=� � .1C x�˛� /

1=�

1C x˛1
� .1C x�˛� /

1=�
:
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Hence

Y
jD1

.1C c� �d;j˛� /
1=� �

dY
jD1

.1C � �
d;j
˛� /

1=�

1C �d;j˛1
�
Y
jD1

.1C � �d;j˛� /
1=� :

Using (5.26) it is now clear that

d�q
dY
jD1

.1C � �
d;j
˛� /

1=�

1C �d;j˛1

is uniformly bounded in d iff

lim sup
d

Pd
jD1 � �d;j
ln d

< 1:

The rest of this point follows easily. Strong polynomial tractability follows from the
fourth point of the theorem.

The point for order-dependent weights follows from the first point, since C2 given
in (6.17) is now the same as C2 in (6.15).

For finite-order weights, we have

C2 D sup
d

�P
u�Œd�;juj�!� � �d;u˛

juj
�

�1=�
P

u�Œd�;juj�!� �d;u˛
juj
1

d�q2 :

Note thath X
u�Œd�;juj�!�

� �d;u˛
juj
�

i1=� D
� X

u�Œd�;juj�!�

�
�d;u˛

juj
1

���˛1=��
˛1

�� juj�1=�
:

Since ˛1=�� � ˛1, we obtainh X
u�Œd�;juj�!�

� �d;u˛
juj
�

i1=� �
�
˛
1=�
�

˛1

�!�h X
u�Œd�;juj�!�

�
�d;u˛

juj
1

��i1=�
:

Using Hölder’s inequality, we estimateh X
u�Œd�;juj�!�

�
�d;u˛

juj
1

��i1=� � ˇ̌˚
u j �d;u 6D 0

�ˇ̌.1��/=� X
u�Œd�;juj�!�

�d;u˛
juj
1 :

From the proof of Theorem 6.2 we easily conclude that

n."; d/ � C
ˇ̌˚

u j �d;u 6D 0
�ˇ̌
"�2�=.1��/;

where C is given in Theorem 6.8. The rest is easy since the cardinality of the set
fu j �d;u 6D 0g is at most 2d!

�
for arbitrary finite-order weights, and it is at most

2q
��1.d �q� C2/ for finite-diameter weights. Hence we can take q2 D !� or q2 D 1,

respectively. Strong tractability is clear since (6.19) is the same as (6.15) for finite-order
weights. This completes the proof.
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We now comment on Theorems 5.7 and 6.8 which describe the necessary and
sufficient conditions on polynomial tractability in the worst case and average case
settings. First of all, note that in the worst case setting, tractability conditions are given
for the normalized weights and eigenvalues, whereas in the average case setting, they
are expressed in terms of the original weights and normalized (somehow differently)
eigenvalues. The reason is that the initial errors and the nth minimal errors are different
in these two settings. In the worst case setting, the initial error is the square root of
the largest eigenvalue and the nth minimal error is the square root of the .n C 1/st
largest eigenvalue, whereas in the average case setting the initial error is the square
root of the sum of all eigenvalues and the nth minimal error is the square root of the
truncated sum of all eigenvalues, starting from the .nC 1/st largest one. This causes
the difference in tractability conditions. In particular, to obtain polynomial tractability
we need to assume that the sum-exponent of the normalized eigenvalues is finite in the
worst case setting and is less than 1 in the average case setting. We stress that both
the sum-exponents are the same, p�� D p�, although the sequences �� and � of the
normalized eigenvalues are slightly different.

The conditions on the weights look formally similar. Again, in the worst case
setting, the parameter � must be greater than the sum-exponent but otherwise can be
arbitrarily large, whereas in the average case setting it must be also smaller than one.
There is also the difference in the exponents of d and "�1.

Despite all these technical differences, the essence of Theorems 5.7 and 6.8 is
the same. We can guarantee polynomial or strong polynomial tractability only for
eigenvalues and weights that decay fast enough. In particular, for product weights we
obtain polynomial tractability if the sum of some power of the weights grows no faster
than ln d , see (5.21) and (6.16). Again, the power of the weights in the worst case
must be larger than the sum-exponent, whereas in the average case setting it must be
also less than one. For arbitrary finite-order weights, we obtain polynomial tractability
assuming only that the sum-exponent of the univariate eigenvalues is finite in the worst
case setting, whereas it must be less than 1 in the average case setting. The dependence
on d in both settings is similar, and depends on the cardinality of the non-zero weights.
For general finite-order weights this cardinality is of order d!

�
, and it is linear in d for

finite-diameter weights.
We turn to weak tractability of the weighted problem S� . As in Chapter 5, to omit

the scaling problem, we assume that

�d;; D 1 and �d;u 2 Œ0; 1� for all non-empty u 	 Œd �: (6.20)

Then the largest eigenvalue of the correlation operator C	d
is �d;1 D �d1 .

We first present necessary conditions for weak tractability. Clearly, the univariate
eigenvalues �j must go to 0 sufficiently quickly to guarantee that n."; 1/ is not expo-
nential in "�1. More precisely, for a given sequence � D f�j g with

P1
jD1 �j < 1,

define

n�."/ D ˚
n j P1

jDnC1 �j � "2
P1
jD1 �j

�
:
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We say that the sequence � admits weak tractability iff

lim
"�1!1

ln n�."/

"�1 D 0:

For example, if �j D ‚
�
j�1 ln�p j

�
then � admits weak tractability iff p > 3,

whereas if �j D O .j�p1 ln�p2 j /withp1 > 1 then � always admits weak tractability.

Lemma 6.9. Consider the linear weighted tensor product problem S� D fSd;�g with
�2 > 0 and with the weights � D f�d;ug satisfying (6.20). We study the problem S�
for the normalized error criterion in the average case setting and for the class ƒall.

• We have
n."; d/ � .1 � "2/

X
u�Œd�

�d;u˛
juj
1

with ˛1 D P1
jD2 �j =�1.

• If �1;f1g > 0 then
n."; 1/ D n�.˛"/ for all " 2 .0; 1/

with ˛ D �
.1C �1;f1g˛1/=.�1;f1g.1C ˛1//

	1=2
.

Hence, �1;f1g > 0 and weak tractability of S� imply that

• the sequence � D f�j g admits weak tractability,

• and

lim
d!1

ln
�P

u�Œd� �d;u˛
juj
1

�
d

D 0; (6.21)

which

– for product-weights �d;u D Q
j2u �d;j with �d;jC1 � �d;j and �d;j 2

Œ0; 1� means that

lim
d!1

Pd
jD1 �d;j
d

D 0;

– for order-dependent weights �d;u D 	d;juj with 	d;k 2 Œ0; 1� means that

lim
d!1

ln
�Pd

kD0
�
d
k

�
	d;k˛

k
1

�
d

D 0:

Proof. For d � 1 and " 2 .0; 1/, we have

n."; d/ D min
˚
n j P1

jDnC1 �d;j � "2
P1
jD1 �d;j

�
:
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For n D n."; d/ we know that

"2
1X
jD1

�d;j �
1X

jDnC1
�d;j �

1X
jD1

�d;j � �d;1n."; d/:

It was shown in the proof of Theorem 6.8 that

1X
jD1

�d;j D �d1

X
u�Œd�

�d;u˛
juj
1 :

Since �d;1 D �d1 , we obtain the estimate of n."; d/, as claimed in the first point of the
lemma.

For d D 1, we have
P1
jD1 �1;j D �1 C �1;f1g

P1
jD2 �j and

P1
jDnC1 �1;j D

�1;f1g
P1
jDnC1 �j for n � 1. This easily yields n."; 1/ D n�.˛"/, as claimed in the

second point of the lemma.
Weak tractability implies, in particular, that ln n."; 1/ D o."�1/ which implies

that � admits weak tractability. For " < 1, we also have limd .ln n."; d//=d D 0, and
then the lower bound estimate on n."; d/ proven above shows the third point of the
lemma.

Observe that for �d;u D a 2 .0; 1� for all u 6D ;, we have

X
u�Œd�

�d;u˛
juj
1 D 1C a

�
.1C ˛1/

d � 1	 � 1 � aC a

�
1C �2

�1

�d
:

Hence for �2 > 0, we do not have weak tractability. This agrees with the first point
of Theorem 6.6 for a D 1. Obviously Lemma 6.9 covers cases not addressed by
Theorem 6.6. For example, take product weights. Then

X
u�Œd�

�d;u˛
juj
1 D

dY
jD1

�
1C ˛1�d;j

�
:

Then for �2 > 0, we have ˛1 > 0 and weak tractability does not hold if

lim sup
d!1

Pd
jD1 �d;j
d

> 0:

In particular, weak tractability does not hold if �d;j � cd with cd not tending to 0, or
if �d;j � c1 for j � c2d , with positive c1 and c2 independent of d .

We now show that the necessary condition (6.21) for weak tractability is, in general,
not sufficient. Indeed, consider S� with �1 D �2 D 1 and �j D 0 for all j � 3, and
with �d;; D 1 and �d;u D 2�d for all non-empty u. Then ˛1 D 1 andX

u�Œd�
�d;u˛

juj
1 D 1C 2�d .2d � 1/ D 2 � 2�d :
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Hence, (6.21) holds. On the other hand, note that the eigenvalues f�d;j g are now given
by �d;1 D 1 and �d;j D 2�d for j D 2; 3; : : : ; 2d , and �d;j D 0 for j > 2d . For
n � 1, we have

P1
jDnC1 �d;j D 1 � n2�d . Then

P1
jDnC1 �d;j � "2

P1
jD1 �d;j

implies that
n."; d/ � 2d .1 � 2"2/C "2:

Hence, for a fixed " 2 .0;p2=2/, we conclude that

lim
d!1

ln n."; d/

d
D 1;

which means that S� is not weakly tractable.
We are ready to present sufficient conditions for weak tractability. We recall that

p� is the sum-exponent of the normalized univariate eigenvalues, and in the average
case setting we have p� � 1. In what follows we assume that p� < 1 leaving the case
p� D 1 as an open problem.

Lemma 6.10. Consider the linear weighted tensor product problem S� D fSd;�g with
�2 > 0 and with the weights � D f�d;ug satisfying (6.20). We study the problem S�
for the normalized error criterion in the average case setting and for the classƒall. We
assume that p� < 1. Then

• If there exists � 2 .p�; 1/ such that

lim
d!1

ln
��P

u�Œd� � �d;u˛
juj
�

�1=�ıP
u�Œd� �d;u˛

juj
1

	
d

D 0 (6.22)

then S� is weakly tractable.

• For product weights, �d;u D Q
j2u �d;j , if there exist � 2 .p�; 1/ such that

lim
d!1

Pd
jD1 � �d;j
d

D 0 (6.23)

then S� is weakly tractable.

• For order-dependent weights, �d;u D 	d;juj, if there exist � 2 .p�; 1/ such that

lim
d!1

ln
��Pd

kD0
�
d
k

�
	�
d;k
˛k�
�1=�ıPd

kD0
�
d
k

�
	d;k˛

k
1

	
d

D 0 (6.24)

then S� is weakly tractable.

• For finite-order weights, �d;u D 0 for juj > !� with order !�, S� is always
weakly tractable.
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Proof. We know that n1=��d;n � �P1
jD1 ��d;j

�1=�
. This yields

1X
jDnC1

�d;j � �

1 � �
1

n.1��/=�
� 1X
jD1

��d;j

�1=�
:

Hence,
P1
jDnC1 �d;j � "2

P1
jD1 �d;j holds for

n."; d/ �
" 

�

1 � �

�P1
jD1 ��d;j

�1=�P1
jD1 �d;j

!�=.1��/
C 1

#
"�2�=.1��/:

In the proof of Theorem 6.8 we obtain�P1
jD1 ��d;j

�1=�P1
jD1 �d;j

D
�P

u�Œd� � �d;u˛
juj
�

�1=�
P

u�Œd� �d;u˛
juj
1

:

From this we easily conclude that (6.22) implies limd .ln n."; d//=."�1 C d/ D 0,
which means that S� is weakly tractable.

For product weights, we have�P1
jD1 ��d;j

�1=�P1
jD1 �d;j

D
Qd
jD1

�
1C ˛��

�
d;j

�1=�
Qd
jD1

�
1C ˛1�d;j

� � exp
�
˛�

�

dX
jD1

� �d;j

�
:

Then (6.23) implies (6.22) and weak tractability.
For order-dependent weights the condition (6.24) is the same as (6.22). Finally, for

finite-order weights we have even polynomial tractability, so obviously weak tracta-
bility also holds. This completes the proof.

As an illustration, we can return to the example of S� before Lemma 6.10 with
�1 D �2 D 1, �j D 0 for j � 3, and with �d;; D 1 and �d;u D 2�d for all non-empty
u. Then we have p� D 0, and it is easy to check that the limit in (6.22) is .1 � �/=� ,
and indeed S� is not weakly tractable. Clearly, if we change �d;u D 2�d to �d;u D cd

with c 2 .0; 1
2
/ then we can take � D .ln 2/=.ln 1=c/, and (6.22) holds. Hence S�

becomes weakly tractable.
We stress that Lemmas 6.9 and 6.10 supply necessary and sufficient conditions for

weak tractability which are, unfortunately, not the same. Furthermore, in Lemma 6.10
we assumed that p� < 1, although it is not clear whether this assumption is really
needed. Hence, much more work is needed to understand weak tractability for linear
weighted tensor product problems in the average case setting. This leads us to the next
open problem.

Open Problem 30.

• Consider the linear weighted tensor product problem in the average case setting
S� D fSd;�g with�2 > 0 as defined in this section. Find necessary and sufficient
conditions for weak tractability of S� for the normalized error criterion and for
the class ƒall.
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• In particular, consider the case for which p� D 1 and verify when S� is weakly
tractable.

Example: Approximation for Continuous Functions (Continued)

We now equip the space Fd D C.Œ0; 1�d / with a zero-mean Gaussian measure d
whose covariance kernel is the weighted Korobov kernel,

Z
C.Œ0;1�d /

f .x/f .y/d .df / D Kd;˛;� .x; y/ for all x; y 2 Œ0; 1�d ,

whereKd;˛;� is given by (A.3) in Appendix A with ˛ > 1=2, and it is the reproducing
kernel of the Korobov space Hd;˛;� .

We consider the weighted multivariate approximation problem APP� D fAPPd g
similarly as before, but this time only for the normalized error criterion. The eigenvalues
of the covariance operator C	d

are now given by

�d;�;h D �d;uh
ˇ
d�juhj
1 ˇ

juhj
2

Y
j2uh

jhj j�2˛ for all h 2 Zd ,

where, as always, uh D fj j hj 6D 0g. For simplicity we assume that ˇ1 � ˇ2. Then

˛� D 2

�
ˇ2

ˇ1

��
�.2˛�/ and p� D 1

2˛
< 1.

We are now ready to apply Theorem 6.8 as well Lemmas 6.9 and 6.10 on polynomial
and weak tractability for the normalized error criterion. In particular, we obtain

• Let �d;u D d�sjuj. Then APP� is strongly polynomially tractable iff s > 1. For
s > 1, the exponent of strong polynomial tractability is

max

�
2

s � 1;
1

˛ � 1
2

�
:

Note that this exponent may be, however, arbitrarily large if s is close to 1 or if
˛ is close to 1=2.

• Let �d;u D d�sjuj. Then APP is weakly tractable iff s > 0.

As we know, APP� is intractable for the unweighted case and the normalized error
criterion, since the problem suffers the curse of dimensionality. Hence, the weights
can break the curse and we may even have strong polynomial tractability.



6.3 Linear Weighted Tensor Product Problems 277

Example: Approximation for Weighted Korobov Space (Continued)

We now consider the weighted Korobov space Hd;˛;� defined in Appendix A, and
studied in Chapter 5 in the worst case setting. We equip the space Hd;˛;� with a zero-
mean Gaussian measure whose covariance operator C�d

has the eigenpairs C�d
eh D

˛d;heh with eh defined in Appendix A for h 2 Zd . To preserve the structure of the
weighted space Hd;˛;� we take the sequence � D f�d;ug of weights such that the
eigenvalues ˛d;h D ˛d;;h depend on the weights �d;u and are given by

˛d;;h D �d;uh
�
d�juhj
1 �

juhj
2

Y
j2uh

jhj j�2ˇ for all h 2 Zd ,

where �1 and �2 are positive, and ˇ > 1=2.
We consider multivariate approximation APP� for the normalized error criterion.

Then C	d
has the eigenvalues

�d;�;h D �d;uh
�d;uh

.�1ˇ1/
d�juhj.�2ˇ2/juhj Y

j2uh

jhj j�2.˛Cˇ/ for all h 2 Zd .

Then p� D 1=.2.˛ C ˇ// < 1=2 no matter how close ˛ and ˇ are to 1=2.
Again we may now apply Theorem 6.8 as well Lemmas 6.9 and 6.10 on polynomial

and weak tractability for the normalized error criterion. In particular, consider

�d;u D d�s1juj and �d;u D d�s2juj

for non-negative s1 and s2. Let s D s1 C s2. We obtain

• APP� is strongly polynomially tractable iff s > 1. For s > 1, the exponent of
strong polynomial tractability is

max

 
2

s � 1;
1

˛ C ˇ � 1
2

!
� max

�
2

s � 1; 2
�
:

Note that this exponent may be arbitrarily large only if s is close to 1.

• APP� is weakly tractable iff s > 0.

So we obtained similar results as for the previous example, with the only difference that
the exponent of strong polynomial tractability does depend weakly on the smoothness
parameters ˛ and ˇ.

We now briefly compare tractability results obtained for the space Hd;˛;� in the
worst and average case settings for the normalized error criterion. To guarantee that
the average case setting over the whole space is roughly the same as the average case
over the unit ball, we need to assume that the trace of C�d

is of order 1. That is,

trace.C�d
/ D

X
u�Œd�

�d;u�
d�juj
1 �

juj
2 Œ2�.2ˇ/�juj D O.1/ as d ! 1. (6.25)
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There is one more assumption to have a fair comparison between the worst and aver-
age case settings for the normalized error criterion. Namely, we need to guarantee that
the initial errors in the worst and average case settings are comparable. For simplicity,
we take ˇ1 � ˇ2, �1 � �2 and assume that �d;u; �d;u 2 Œ0; 1� with �d;; D �d;; D 1.
Denote byRd the ratio of the squares of the worst and average case initial errors. Then
we assume that

Rd ´ ˇd1P
u�Œd� �d;u�d;u.�1ˇ1/d�juj.�2ˇ2/juj Œ2�.2.˛ C ˇ//�juj D O.1/ as d 2 1.

(6.26)
We have

• APP� is polynomially tractable in the worst case setting iff

sup
d

� X
u�Œd�

� �
wor

d;u Œˇ2=ˇ1�
�wor juj Œ2�.2�wor˛/�juj �1=�wor

d�qwor
2 < 1

for some qwor
2 � 0 and �wor > .2˛/�1. If so then

nwor."; d/ D O
�
dq

wor
2
�wor
"�2�wor�

:

• APP� is polynomially tractable in the average case setting iff

sup
d

�P
u�Œd�  �

avg

d;u
Œ�2ˇ2=.�1ˇ1/�

�avgjuj Œ2�.2� avg.˛ C ˇ//�juj �1=�avg

d�qavg
2

P
u�Œd�  d;uŒ�2ˇ2=.�1ˇ1/�juj Œ2�.2.˛ C ˇ//�juj < 1

with  d;u D �d;u�d;u, for some qavg
2 � 0 and � avg 2 .2.˛ C ˇ//�1; 1/. If so

then
navg."; d/ D O

�
dq

avg
2
�avg=.1��avg/"�2�avg=.1��avg/

�
:

Obviously, if qwor
2 or qavg

2 is 0 then we have strong polynomial tractability in the corre-
sponding setting.

We now show that if (6.25) and (6.26) hold then

• polynomial tractability in the worst case setting implies polynomial tractability in
the average case setting. Furthermore, the exponents of "�1 and d in the average
case setting are not larger than their counterparts in the worst case setting.

To prove this claim, take � D �wor=.1C �wor/, so that �=.1� �/ D �wor. We want
to show that we can take � avg D � .

We now use Hölder’s inequality with p D 1 C � and q D 1 C 1=�wor, so that
�p D �wor and �q D 1, and obtain

1X
jD1

1

j 2�.˛Cˇ/ �
� 1X
jD1

1

j 2�
wor˛

�1=p� 1X
jD1

1

j 2ˇ

�1=q
:
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This implies that

2�.2�.˛ C ˇ// � Œ2�.2�wor˛/�1=p Œ2�.2ˇ/�1=q :

ThenX
u�Œd�

 �d;uŒ�2ˇ2=.�1ˇ1/�
� juj Œ2�.2�.˛ C ˇ//�juj

�
X

u�Œd�

�
�
�p

d;u
Œˇ2=ˇ1�

�pjuj Œ2�.2�wor˛/�juj �1=p���q
d;u
.�2=�1/

�qjuj Œ2�.2ˇ/�juj �1=q :
Applying now Hölder’s inequality for finite sums, and using again the fact that �p D
�wor and �q D 1, we obtain

� X
u�Œd�

 �d;uŒ�2ˇ2=.�1ˇ1/�
� juj Œ2�.2�.˛ C ˇ//�juj �1=�

�
� X

u�Œd�
� �

wor

d;u Œˇ2=ˇ1�
�wor juj Œ2�.2�wor˛/�juj �1=�wor

trace.C�d
/��d
1 :

Note also thatX
u�Œd�

 d;uŒ�2ˇ2=.�1ˇ1/�
juj Œ2�.2.˛ C ˇ//�juj

D
P

u�Œd�  d;u.�1ˇ1/d�juj.�2ˇ2/juj Œ2�.2.˛ C ˇ//�juj

.�1ˇ1/d

D 1

�d1Rd
:

From this we conclude that�P
u�Œd�  �d;uŒ�2ˇ2=.�1ˇ1/�

� juj Œ2�.2�.˛ C ˇ//�juj �1=�P
u�Œd�  d;uŒ�2ˇ2=.�1ˇ1/�juj Œ2�.2.˛ C ˇ//�juj

D �d1Rd

� X
u�Œd�

 �d;uŒ�2ˇ2=.�1ˇ1/�
� juj Œ2�.2�.˛ C ˇ//�juj �1=�

�
� X

u�Œd�
� �

wor

d;u Œˇ2=ˇ1�
�wor juj Œ2�.2�wor˛/�juj �1=�wor

Rd trace.C�d
/:

The rest is easy. Suppose we have polynomial tractability in the worst case setting.
Since both Rd and trace.C�d

/ are of order 1, then the last expression is bounded by
O.dq

wor
2 /. Hence, we have polynomial tractability also in the average case setting and

we can take � avg D � , so that the exponent of "�1 is at most 2�=.1 � �/ D �wor, and
the exponent of d is at most qwor

2 �wor, as claimed.
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We now compare tractability results for the normalized error criterion in the worst
and average case settings for a few specific weights. For simplicity we additionally
assume that ˇ1 D 1, so that the initial error in the worst case setting is 1 for all d 2 N.

• Let �d;u D d�s1juj and �d;u D d�s2juj for non-negative s1 and s2. Then we
have strong polynomial tractability in the worst case setting iff s1 > 0 and then
the exponent of strong tractability is

pwor D max

�
2

s1
;
1

˛

�
:

Assume then that s1 > 0.

The square of the initial error in the average case setting and Rd are now

trace.C�d
/ D

�
�1 C 2�2�.2ˇ/

d s2

�d
D exp .d Œa1d

�s2 C ln �1�/ .1C o.1//

Rd D
�
�1 C 2�2ˇ2�.2.˛ C ˇ//

d s1Cs2

��d

D exp
�
d
��a2d�s1�s2 C ln ��1

1

	�
.1 D o.1//:

Here

a1 D 2�2�.2ˇ/

�1
and a2 D 2�2ˇ2�.2.˛ C ˇ//

�1
:

It can be checked that (6.25) and (6.26) hold iff

s2 � 1 and �1 D 1:

In particular, this means that we cannot take �d;u � 1 if we want to have a fair
comparison with the worst case setting.

As we know we have strong polynomial tractability in the average case setting iff
s1 C s2 > 1 which is satisfied if s1 > 0 since we must take s2 � 1. However, if
we take s1 D 0 then we have polynomial intractability in the worst case setting
and strong polynomial tractability in the average case setting if s1 > 1.

If s1 C s2 > 1 then the exponent of strong tractability in the average case setting
is

pavg D max

�
2

s1 C s2 � 1;
1

˛ C ˇ � 1
2

�
:

Note that pavg � pwor since ˇ > 1
2

. If s2 D 1 then pavg D pwor, whereas for
s2 > 1 we have pavg < pwor. Furthermore, the difference pwor � pavg can be
arbitrarily large. Indeed, for ˛ close to 0 and s1 D 2˛ we have pwor D 1=˛

which can be arbitrarily large since we deal with not very smooth functions. On
the other hand, for s2 D 2 and ˇ D 3=2, we obtain pavg � 2.
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• Let �d;u D Q
j2u �d;j be product weights with �d;jC1 � �d;j and �d;j 2 .0; 1�.

Similarly, let �d;u D Q
j2u �d;j be also product weights with �d;jC1 � �d;j and

�d;j 2 .0; 1�. Note that the previous weights are also product weights, but now
we consider the general case of product weights.

Let �1 D 1. To guarantee that the trace of C�d
is of order 1, we must assume

that supd
Pd
jD1 �d;j < 1 which implies that p � 1. This also implies that

Rd D O.1/.

As before, let  D f d;ug with  d;u D �d;u�d;u. It is easy to verify that

p D 1
1
p�

C 1
p�

;

so that2p is the harmonic mean ofp� andp . Then we obtain strong polynomial
tractability in the worst case setting iff p� < 1 and then the exponent of strong
tractability is

pwor D max
�
2p� ; ˛

�1� :
Strong polynomial tractability in the average case setting holds iff p < 1. The
last condition may hold even if p� D 1, i.e., when we do not have strong
polynomial tractability in the worst case setting. Indeed, in this case, we have
p D p and it is enough to assume that p < 1.

If strong polynomial tractability holds in the average case setting then the expo-
nent of strong tractability is

pavg D max
�
2p ; .˛ C ˇ/�1

�
1 � 1

2
max

�
2p ; .˛ C ˇ/�1

� :
Again pavg � pwor which can also be directly checked. As for the previous case
of weights, these exponents can be equal. For instance, take p� D p D 1 and
˛ D ˇ D 1

2
. Then pwor D pavg D 2. On the other hand, if ˛ is close to 0 and

2p� � ˛�1 then pwor D ˛�1 can be arbitrarily large, whereas for p D 2 and
ˇ C 1, we have pavg � 2.

Example: Schrödinger Equation (Continued)

We now equip the space Hd as before with a zero-mean Gaussian measure. The only
change is that the eigenvalues ˛d;j D ˛d;�;j of C�d

depend now on a given weight
sequence,

˛d;�;j D �d;u.j /

�
q0 CPd

kD1 �2j 2k
�2

.j1 C 1/˛.j2 C 1/˛ � � � .jd C 1/˛
for all j 2 Nd ,
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where u.j / D fk 2 Œd � j jk � 2g and ˛ > 5. Then the eigenvalues of C	d
are

�d;�;j D �d;u.j /

.j1 C 1/˛.j2 C 1/˛ � � � .jd C 1/˛
for all j 2 Nd .

For simplicity, we only consider the specific product weights, �d;u D Q
j2u j

�s for
s � 0. Then p� D 1=˛ and p� D 1=s.

Using the proofs of Theorem 6.8, Lemmas 6.9 and 6.10, we conclude that the linear
Schrödinger problem for the normalized error criterion in the average case setting with
the zero-mean Gaussian measure considered here is

• strongly polynomially tractable iff polynomially tractable iff s > 1,

• not polynomially tractable but weakly tractable iff s 2 .0; 1�,
• intractable iff s D 0.

6.4 Notes and Remarks

NR 6:1. The results on weak tractability presented in this chapter are new. The results
on polynomial tractability have been studied in several papers and we will give proper
references later. Here we only want to mention that tractability in the average case
setting was already studied in the first tractability paper [287] which dealt with linear
multivariate problems for the absolute error criterion.

NR 6.1:1. Theorem 6.1 on polynomial tractability for the absolute error criterion is a
variant of Theorem 5.1 of [287], where the condition (6.1) is replaced by the equivalent
condition (6.4). As in the worst case setting, tractability in "�1 and d was also studied
in [287] in the average case setting. The idea of using summability of the singular
values as a technical tool for tractability study is from [94], and was also used in [93].
The reader is also referred to [269] for more information.

NR 6.1:2. Theorem 6.2 on polynomial tractability for the normalized error criterion is
from [93], whereas strong tractability was proved before in [94].

NR 6.2:1. The approach for linear and linear weighted tensor product problems in the
average case setting is taken from [93]. Theorem 6.6 for the normalized case can be
easily deduced from Theorem 1 and Corollary 1 in [93], where the general weighted
case is studied. The absolute error criterion has not been studied before. In any case,
Theorem 5.5 is quite simple to prove.

NR 6.3:1. Theorem 6.8 is basically from Theorem 1 and Corollary 1 in [93], and the
case of finite-order weights corresponds to Corollary 2 in [93].



6.4 Notes and Remarks 283

NR 6.3:2. Comparison of tractability results in the worst and average case settings for
multivariate approximation defined for weighted Korobov spaces with product weights
and for lattice rules algorithm can be found in [122].



Chapter 7

Randomized Setting

In the previous chapters we studied the worst case and average case settings for the
class ƒall of all continuous linear functionals. In this chapter we switch to the ran-
domized setting for linear problems defined between Hilbert spaces. We already know
from Section 4.3.3 that there is a close relationship between the worst case and ran-
domized settings for the class ƒall, and randomization does not practically help, see
Theorem 4.42. Therefore for the classƒall, all tractability results obtained for the worst
case setting are also valid in the randomized setting, see Section 7.1 for details.

The purpose of this very short chapter is only to summarize this negative result
that randomization does not help. This chapter can be also viewed as an introduction
to study randomization for the class ƒstd of function values, which will be done in
Volume II.

7.1 Tractability of Linear Problems for ƒall

As in Chapter 4, for d D 1; 2; : : : , let Sd W Hd ! Gd be a compact linear operator,
where Hd is a Hilbert space of real functions defined on Dd 	 Rd , and Gd is also
a Hilbert space. We deal with such problems in the randomized setting, and restrict
ourselves to measurable randomized algorithms. For the class ƒall, see Remark 4.37
and Theorem 4.42, we know that for all n � 1 we have

1
2
ewor.4n � 1; d Iƒall/ � eran.n; d Iƒall/ � ewor.n; d Iƒall/; (7.1)

where ewor.n; d/ and eran.n; d/ denote the minimal worst case and randomized errors if
we use n deterministic and randomized information operations fromƒall, respectively,
for approximating the operator Sd .

From these two inequalities it is easy to conclude the equivalence of tractabilities
in the worst case and randomized settings. More precisely, let nwor."; d Iƒall/ and
nran."; d Iƒall/ denote the minimal number of information operations fromƒall needed
to approximate Sd to within " in the worst case and randomized setting for the absolute
or normalized error criterion. Then for nran."; d Iƒall/ � 1 we have

1
4

�
nwor.2"; d Iƒall/C 1

� � nran."; d Iƒall/ � nwor."; d Iƒall/: (7.2)

This yields the following corollary.

Corollary 7.1. Consider the linear problem S D fSd g, with compact linear operators
Sd between Hilbert spaces, for the class ƒall and for the absolute or normalized
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error criterion. Then weak tractability, polynomial tractability and strong polynomial
tractability in the randomized setting are equivalent to weak, polynomial tractability
and strong polynomial tractability in the worst case setting for the class ƒall and for
the absolute or normalized error criterion, respectively. Furthermore, the exponents
of polynomial tractability and strong polynomial tractability are the same in the two
settings.

Estimates (7.2) can be also used for .T;
/-tractability, see Section 4.4.3. If
T ..2"/�1; d / D O

�
T ."�1; d /

�
for all ."�1; d / 2 
 then we have the equivalence

of .T;
/-tractability of S in the worst case and randomized settings. Similarly, if
T ..2"/�1; 1/ D O

�
T ."�1; 1/

�
for all ."�1; d / 2 
 then we have the equivalence of

strong .T;
/-tractability of S in the worst case and randomized settings.
Corollary 7.1 presents a negative result that, as long as we consider linear problems

defined over Hilbert spaces, the randomized setting is practically the same as the worst
case setting for the class ƒall. The assumption about Hilbert space is essential since
randomization may help for some linear problems defined over certain Banach spaces,
see Heinrich [79] and Mathé [141]. The assumption about the classƒall is also essential.

As we shall see later, the randomized setting is especially important for the class
ƒstd, where only function values can be computed. For many multivariate problems,
randomization significantly helps for ƒstd, although it cannot help more then the class
ƒall in the worst case setting. However, for some multivariate problems the class ƒall

is so powerful that ewor.n; d;ƒall/ D 0 for all n � n0 with n0 independent of d . For
instance, for continuous linear functionals, we have n0 D 1, and for linear multivariate
problems with Sd of rank k, we have n0 D k. This really makes such problems trivial
for the class ƒall. The only interesting case for such problems is to study the power
of randomization for the class ƒstd. The most known case is, of course, Monte Carlo
for multivariate integration. As we shall see, Monte Carlo may break intractability of
the worst case setting for many classes of functions. In fact, we will see examples of
commonly used spaces for which multivariate integration is intractable in the worst
case setting and strongly polynomially tractable in the randomized setting.



Chapter 8

Generalized Tractability

In the previous chapters we studied polynomial and weak tractability of multivariate
problems in the worst, average, and randomized settings for the class ƒall. In this
chapter we study generalized tractability that was already briefly defined in Chapter 4.
We restrict ourselves only to the worst case setting and the class ƒall. The class ƒstd

will be studied in Volume II for continuous linear functionals in the worst case setting.
Generalized tractability in other settings has not yet been studied. This chapter is based
on [69], [70], and all results reported here were originally proved in these two papers.

Generalized tractability is defined in terms of a function T and a set
. We assume
that

• T , called a tractability function, is defined on Œ1;1/ � Œ1;1/ and is non-
decreasing in both variables "�1 and d and grows slower than exponentially
to infinity,

• 
, called a tractability domain set, is a subset of Œ1;1/ � N for which at least
one of the variables can go to infinity.

As always, let n."; d/ denote the information complexity in a given setting for the
absolute or normalized error criterion. To obtain generalized tractability, we need
to verify that n."; d/ can be bounded by a multiple of a power of T ."�1; d / for all
."�1; d / 2 
. To obtain strong generalized tractability, we need to verify that n."; d/
can be bounded by a multiple of a power ofT ."�1; 1/ for all ."�1; d / 2 
. The smallest
powers of T ."�1; d / or T ."�1; 1/ are called the exponents of (generalized) tractability.

We will mainly study linear (unweighted) tensor product problems for the classƒall.
We present necessary and sufficient conditions on T such that generalized tractability
holds for such multivariate problems. In particular, we exhibit a number of examples
for which polynomial tractability does not hold but generalized tractability does.

We add in passing that for linear tensor product problems, we needed to introduce
weights to obtain polynomial tractability under suitable assumptions on the decay of
weights. As we shall see, generalized tractability often holds even for unweighted
spaces. Hence, there is a trade-off. If we want to guarantee polynomial tractability
we must, in general, work with weighted spaces and impose suitable conditions on
weights. On the other hand, if we want to work with unweighted spaces then we must
relax the notion of polynomial tractability and switch to generalized tractability for
functions T which are non-exponential but tend to infinity faster than polynomials.

Generalized tractability may differ from polynomial tractability in two ways. The
first is the domain of ."; d/. For polynomial tractability, " and d are independent,
and ."�1; d / 2 Œ1;1/ � N. For some applications, as in mathematical finance, d is
huge but we are only interested in a rough approximation, so that " is not too small.
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There may be also problems for which d is relatively small and we are interested in
a very accurate approximation which corresponds to a very small ". For generalized
tractability, we assume that ."�1; d / 2 
, where

Œ1;1/ � f1; 2; : : : ; d�g [ Œ1; "�1
0 / � N 	 
 	 Œ1;1/ � N (8.1)

for some non-negative integer d� and some "0 2 .0; 1� such that

d� C .1 � "0/ > 0:
The importance of the case d� D 0 will be explained later.

The essence of (8.1) is that for all such
, we know that at least one of the parameters
."�1; d / may go to infinity but not necessarily both of them. Hence, for generalized
tractability we assume that ."�1; d / 2 
 and we may choose an arbitrary
 satisfying
(8.1) for some d� and "0.

The second way in which generalized tractability may differ from polynomial
tractability is how we measure the lack of exponential dependence. For polynomial
tractability, we want to bound the information complexity n."; d/ by a polynomial in
"�1 and d , whereas for generalized tractability we want to bound n."; d/ by a multiple
of a power of T ."�1; d / that can go faster to infinity than polynomially.

We are mainly interested in how the choice of
 and T affects the class of tractable
problems. The first promising result was obtained in [293] for


 D Œ1;1/ � N and T .x; y/ D f1.x/f2.y/ with fi .t/ D exp.ln1C˛i t /:

Here ˛1 and ˛2 are non-negative. Note that for ˛1 D ˛2 D 0 we have T .x; y/ D xy,
which corresponds to polynomial tractability. Namely, it was proved that (unweighted)
linear tensor product problems with polynomially decaying eigenvalues are tractable
iff ˛1˛2 � 1. Hence, these problems are not polynomially tractable, but are tractable
if, for example, ˛1 D ˛2 D 1. This shows that we can regain tractability of the
(unweighted) linear tensor product problems if we agree to consider functions T going
to infinity like exp.ln2 x C ln2 y/.

In this chapter, we study linear tensor product problems for the class ƒall. Let
� D f�j g be the sequence of the singular values for the univariate case. We assume
that �1 D 1 so that the absolute and normalized error criteria coincide. We first choose
a “smallest” set,


 D 
res D Œ1;1/ � f1; 2; : : : ; d�g [ Œ1; "�1
0 / � N;

which is called the restricted tractability domain.
We provide necessary and sufficient conditions on the tractability function T such

that generalized tractability holds for
res. These conditions depend on the parameters
d� and "0, as well as on the sequence �. In particular, the following results hold.
Assume that d� � 1 and "0 < 1. If the largest eigenvalue has multiplicity at least two,
i.e., if �2 D 1, then generalized tractability does not hold, no matter how we choose
the tractability function T .
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Assume then that �2 < 1 and that we have a polynomial rate of convergence of
the singular eigenvalues, i.e., �j D ‚.j�ˇ / for a positive ˇ. This case is typical and
corresponds to many classical Sobolev or Korobov tensor product spaces of smooth
functions whose smoothness is measured by the parameter ˇ.

Assume first that "20 < �2. Then generalized strong tractability does not hold, no
matter how we choose T . Generalized tractability holds iff

lim inf
x!1

ln T .x; 1/

ln x
2 .0;1� and lim inf

d!1
inf

"2Œ"0;
p
�2/

ln T ."�1; d /
˛."/ ln d

2 .0;1�;

where ˛."/ D d2 ln.1="/= ln.1=�2/e � 1. In particular, if we take T .x; y/ D xy then
polynomial tractability holds with the exponent

t tra D max

�
2

ˇ
; ˛."0/

�
:

Note that t tra goes to maxf2=ˇ; 1g as �2 � "20 tends to 0, and t tra goes to infinity as "0
tends to 0.

Assume now that �2 � "20. Then generalized strong tractability holds iff

lim inf
x!1

ln T .x; 1/

ln x
2 .0;1�:

For T .x; y/ D xy, we obtain strong polynomial tractability with the exponent t str D
2=ˇ.

Then we consider the unrestricted tractability domain


unr D Œ1;1/ � N:

We consider three cases of linear tensor product problems depending on the behaviour
of their singular eigenvalues for the univariate case. These cases are:

• only finitely many singular values are positive,

• singular values decay exponentially fast,

• singular values decay polynomially fast.

As we know from Chapter 5, weak tractability holds for these three cases, and even for
all linear tensor product problems for which the singular values decay slightly faster
that logarithmically. In this chapter, we present necessary and sufficient conditions on
the function T such that generalized tractability holds. These conditions are obtained
in terms of the singular values for the univariate case and limiting properties of T . The
tractability conditions tell us how fast T must go to infinity. As already indicated, T
must go to infinity faster than polynomially. We show that generalized tractability is
obtained for such functions as T .x; y/ D x1Clny .
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We also study tractability functions T of product form, T .x; y/ D f1.x/f2.x/.
Assume that

ai D lim inf
x!1 .ln ln fi .x//=.ln ln x/ < 1 for i D 1; 2.

Then we obtain generalized tractability iff

ai > 1 and .a1 � 1/.a2 � 1/ � 1;

and if .a1 � 1/.a2 � 1/ D 1 then we need to assume one more condition (8.28). If

.a1 � 1/.a2 � 1/ > 1
then the exponent of tractability is 0, and if

.a1 � 1/.a2 � 1/ D 1

then the exponent of tractability is positive. If T is of product form, the tractability
conditions as well as the exponent of tractability depend only on the second singular
eigenvalue and they do not depend on the rate of their decay.

Finally, we compare the results obtained for the unrestricted and restricted do-
mains. In general, the tractability results are quite different. We may have generalized
tractability for the restricted domain and no generalized tractability for the unrestricted
domain which is the case, for instance, for polynomial tractability T .x; y/ D xy. We
may also have generalized tractability for both domains with different or with the same
exponents of tractability.

8.1 Motivation of Generalized Tractability

The essence of tractability is to guarantee that the information complexity n."; d/ does
not depend exponentially on "�1 and d . There are various ways to measure the lack of
exponential dependence. First of all, we must agree how the parameters " and d vary.
In most previous work on tractability, and so far also in this book, it was assumed that
" and d are independent, and " 2 .0; 1�, d 2 N. In particular, it was assumed that both
"�1 and d may go to infinity. For some applications, as in finance, we are interested in
huge d and relatively small "�1. For instance, d may be in the hundreds or thousands,
however, we may have " � 0:01. The reason is that since financial models are relatively
weak, depending for instance on future re-financing rates, there is no merit in a more
accurate solution. In such cases, the assumption that both "�1 and d may go to infinity
is too demanding.

That is why we assume that ."�1; d / belongs to 
, where the domain 
 is, in
general, a proper subset of Œ1;1/�N. Obviously, the domain
 should be big enough
to properly model the essence of a given multivariate problem.
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As before, we use the notation Œn� WD f1; 2; : : : ; ng for any integer n. In particular,
Œn� D ; if n � 0. We assume that

Œ1;1/ � Œd�� [ Œ1; "�1
0 / � N 	 
 (8.2)

for some d� 2 N0 and some "0 2 .0; 1� such that d� C .1� "0/ > 0. Condition (8.2)
is the only restriction we impose on
. The constraint d� C .1� "0/ > 0 excludes the
case d� D 0 and "0 D 1 corresponding to no restriction on 
.

Polynomial tractability for multivariate problems is defined by demanding that
n."; d/ is bounded by a polynomial in "�1 and d . Obviously there are different ways
of guaranteeing that n."; d/ does not depend exponentially on "�1 and d .

For instance, in theoretical computer science, tractability for discrete problems is
usually understood by demanding that the cost bound of an algorithm is a polynomial
in k D dlog2.1C "�1/e . That is, we want to compute k correct bits of the solution in
time polylog in "�1.

We note in passing that if one adopts this definition of tractability then most mul-
tivariate problems become intractable since even for the univariate case, d D 1, we
typically have that n."; 1/ is a polynomial in "�1.

One may also take a point of view opposite to the one presented above, and consider
a problem to be tractable when n."; d/ can be bounded by a function of "�1 and d that
grows faster than polynomials. This has been partially done in [293] by demanding
that n."; d/ is bounded by a multiple of powers of f1."�1/ and f2.d/ with functions
fi such as fi .x/ D exp.ln1C˛i .x// with ˛i > 0. Indeed, such functions grow faster
than any polynomial as x tends to infinity, but slower than any exponential function ax

with a > 1. It was shown in [293] that the class of tractable multivariate problems is
larger for such functions fi than the tractability class studied before.

The approach of [293] is not fully general. Its notion of tractability decouples
the parameters "�1 and d since functions fi depend only on one of these parameters.
For some multivariate problems, such as tensor product problems, this restriction is
essential. It is therefore better not to insist on independence of "�1 and d , and study
tractability without assuming this property.

Hence, we study tractability defined by a function T of two variables, using a
multiple of a power ofT ."�1; d / in the definition of generalized tractability. Obviously,
we need to assume that T satisfies several natural properties. First of all, the problem
of computing an "-approximation usually becomes harder as " decreases. Furthermore,
with a proper definition of the operators Sd , the problem should become harder when d
increases. That is why we assume that the function T is non-decreasing in both its
arguments. Moreover, to rule out the exponential behavior of T , we assume that
T .x; y/=axCy tends to 0 as x C y tends to infinity for any a > 1. This is equivalent
to assuming that ln T .x; y/=.x C y/ tends to 0 as x C y approaches infinity. As
we shall see in a moment, it will be convenient to define the domain of T as the set
Œ1;1/ � Œ1;1/. In particular, this domain allows us to say that T is non-decreasing,
and will be useful for the concept of generalized strong tractability. This discussion
motivates the following definitions.



8.1 Motivation of Generalized Tractability 291

A function T W Œ1;1/ � Œ1;1/ ! Œ1;1/ is a tractability function if T is non-
decreasing in x and y and

lim
.x;y/2Œ1;1/�Œ1;1/; xCy!1

ln T .x; y/

x C y
D 0: (8.3)

Consider a multivariate problem S D fSd g in some setting for a class ƒ D fƒd g
of information operations, and for the absolute or normalized error criterion. Here by
ƒd we denote the class of information operations used for approximation of Sd . Let
n."; Sd ; ƒd / denote its information complexity.

The multivariate problem S is .T;
/-tractable in the class ƒ if there exist non-
negative numbers C and t such that

n."; Sd ; ƒd / � CT ."�1; d /t for all ."�1; d / 2 
. (8.4)

The exponent t tra of .T;
/-tractability in the class ƒ is defined as the infimum of all
non-negative t for which there exists a C D C.t/ such that (8.4) holds.

Let
 be an arbitrary domain
 satisfying (8.2) with "0 < 1. Then it is easy to see
that if

n."0; Sd ; ƒd / � �d for almost all d 2 N with � > 1, (8.5)

then S is not .T;
/-tractable in the class ƒ for an arbitrary tractability function T .
Indeed, suppose on the contrary that S is .T;
/-tractable in the class ƒ. Then

lnC C t ln T ."�1
0 ; d /

"�1
0 C d

� d ln �

"�1
0 C d

;

implying that

lim inf
d!1

ln T ."�1
0 ; d /

"�1
0 C d

� ln �

t
> 0;

which contradicts (8.3).
Similarly, let 
 be an arbitrary domain 
 satisfying (8.2) with d� � 1. If there

exist d 2 Œd�� and � > 1 such that

n."; Sd ; ƒd / � �1=" for sufficiently small ", (8.6)

then S is not .T;
/-tractable in the classƒ for an arbitrary tractability function T . As
before, this follows from the fact that

lim inf
"!0

ln T ."�1; d /
"�1
0 C d

� ln �

t
> 0;

which contradicts (8.3).
For some multivariate problems, it has been shown that n."; Sd ; ƒd / is bounded

by a multiple of some power of "�1 that does not depend on d . This property is
called strong tractability. In our case, we can define generalized strong tractability by
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insisting that the bound in (8.4) is independent of d . Formally, we replace T ."�1; d /
by T ."�1; 1/. We stress that ."�1; d / from 
 does not necessarily imply that ."�1; 1/
is in
. Nevertheless, due to the more general domain of T , the value T ."�1; 1/ is well
defined, and since T is monotonic, we have T ."�1; 1/ � T ."�1; d /.

The multivariate problem S is strongly .T;
/-tractable in the classƒ if there exist
non-negative numbers C and t such that

n."; Sd ; ƒd / � CT ."�1; 1/t for all ."�1; d / 2 
. (8.7)

The exponent t str of strong .T;
/-tractability in the class ƒ is defined as the infimum
of all non-negative t for which there exists a C D C.t/ such that (8.7) holds.

Clearly, strong .T;
/-tractability in the class ƒ implies .T;
/-tractability in the
class ƒ. Furthermore, t tra � t str. For some multivariate problems the exponents t tra

and t str are the same, and for some they are different. We shall see such examples also
in this chapter.

When it will cause no confusion, we simplify our notation and terminology as
follows. If 
 and ƒ are clear from the context, we say that S is T -tractable or
strongly T -tractable. If T is also clear from the context, we say that S is tractable or
strongly tractable. Finally, we talk about generalized tractability or generalized strong
tractability if we consider various T , 
 and ƒ.

We note in passing what happens if two tractability functions T1 and T2 are such
that T1 D T ˛2 for some positive ˛. It is clear that the concepts of Ti -tractability are
then essentially the same, with the obvious changes of their exponents. Therefore we
can obtain substantially different tractability results for T1 and T2 only if they are not
polynomially related.

We now introduce a couple of specific cases of generalized tractability depending
on the domain 
 and the form of the function T . We begin with two examples of 

which seem especially interesting.

• Restricted tractability domain. Let


res D Œ1;1/ � Œd�� [ Œ1; "�1
0 / � N

for some d� 2 N0 and "0 2 .0; 1� with d� C .1 � "0/ > 0. This corresponds
to a smallest set 
 used for tractability study. This case is called a restricted
tractability domain independently of the function T .

We may consider the special sub-cases where d� D 0 or "0 D 1. If d� D 0

then "0 < 1 and we have 
res D Œ1; "�1
0 /� N. Hence, we now want to compute

an "-approximation for only " 2 ."0; 1� and for all d . We call this sub-case
restricted tractability in ".

If "0 D 1 then d� � 1 and we have 
res D Œ1;1/� Œd��. Hence, we now want
to compute an "-approximation for all " 2 .0; 1� but only for d � d�. We call
this sub-case restricted tractability in d .
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• Unrestricted tractability domain. Let


unr D Œ1;1/ � N:

This corresponds to the largest set 
 used for tractability study. This case is
called the unrestricted tractability domain independently of the function T . This
domain has been used so far in the book.

We now present several examples of generalized tractability in terms of specific func-
tions T that we think are of a particular interest.

• Polynomial tractability. Let

T .x; y/ D xy:

In this case .T;
unr/-tractability coincides with tractability previously studied
in most of tractability papers as well as so far in the book. For this function
T , independently of 
, tractability means that n."; Sd ; ƒd / is bounded by a
polynomial in "�1 and d , explaining the name.

• Separable tractability. Let

T .x; y/ D f1.x/f2.y/

with non-decreasing functions f1; f2 W Œ1;1/ ! Œ1;1/. To guarantee (8.3) we
assume that

lim
x!1

ln fi .x/

x
D 0 for i D 1; 2.

Now .T;
unr/-tractability coincides with the notion of .f1; f2/-tractability stud-
ied in [293]. For this T , independently of
, the roles of "�1 and d are separated,
explaining the name. Observe that polynomial tractability is a special case of
separable tractability for f1.x/ D f2.x/ D x.

For separable tractability, we can modify the condition (8.4) by taking possibly
different exponents of "�1 and d . That is, the problem S is .T;
/-tractable in
the class ƒ if there are non-negative numbers C; p and q such that

n."; Sd ; ƒd / � Cf1."
�1/pf2.d/q for all ."�1; d / 2 
: (8.8)

The exponents p and q are called the "-exponent and the d -exponent. We stress
that, in general, they do not need to be uniquely defined. Note that we obtain
(8.4) from (8.8) by taking t D maxfp; qg. Similarly, the notion of strong .T;
/-
tractability in the class ƒ is obtained if q D 0 in the bound above, and the
exponent t str is the infimum of p satisfying the bound above with q D 0. Again
for f1.x/ D f2.x/ D x these notions coincide with the notions of polynomial
tractability.
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• Separable restricted tractability. Let

T .x; y/ WD

�
f1.x/ if .x; y/ 2 Œ1;1/ � Œ1; d��;
f2.y/ if .x; y/ 2 Œ1; "�1

0 / � N n Œ1; d��;
maxff1.x/; f2.y/g otherwise,

where f1; f2 are as above with f2.d�/ � f1."
�1
0 /.

It is easy to check that T is indeed a generalized tractability function. Suppose
that the function T is considered over the restricted tractability domain 
res.
Then .T;
res/-tractability corresponds to the smallest set 
 and we have a sep-
arate dependence on " and d , explaining the name. As already discussed, such
generalized tractability seems especially relevant for the case when for huge d
we are only interested in a rough approximation to the solution.

• Non-separable symmetric tractability. Let

T .x; y/ D exp .f .x/f .y// (8.9)

with a non-decreasing function f W Œ1;1/ ! RC. To guarantee (8.3) we need
to assume that limxCy!1 f .x/f .y/=.x C y/ D 0. This holds, for example, if
f .x/ D x˛ with ˛ 2 .0; 1=2/ or if f .x/ D ln1C˛.xC 1/ with a positive ˛. The
tractability function corresponding to f .x/ D ln1C˛.xC1/will be useful in the
study of linear tensor product problems.

It is easy to see that this tractability function is not separable if f is not a constant
function. Indeed, assume on the contrary that T .x; y/ D f1.x/f2.y/ for some
functions f1 and f2. For x D 1, we get f2.y/ D f1.1/

�1 exp.f .1/f .y//, and
similarly by taking y D 1, we obtain f1.x/ D f2.1/

�1 exp.f .1/f .x//. Hence,

exp.f .x/f .y// D Œf1.1/f2.1/�
�1 exp.f .1/.f .x/C f .y///:

Now f1.1/f2.1/ D exp.f 2.1//. Taking x D y, we obtain

f 2.x/ D 2f .1/f .x/ � f 2.1/;
which leads to the conclusion that f .x/ D f .1/ for all x. This contradicts the
requirement that f is not a constant function. Thus, T is not separable. Since
the roles of "�1 and d are the same, this motivates the name of this generalized
tractability.

We finish this subsection by an example of a function T that is not a tractability
function. Consider T .x; y/ D exp.y1�1=x/. This function is bounded in x for fixed y
and increases sub-exponentially in y for fixed x. Nevertheless,

lim sup
xCy!1

ln T .x; y/

x C y
� lim
xDy!1

x1�1=x

2x
D 1

2
;

proving that T is not a tractability function. This example shows that the notion of
tractability functions does not admit functions that increase asymptotically as fast as
an exponential function in some direction.
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8.2 Linear Tensor Product Problems

In this section we consider multivariate problems defined as linear tensor product
problems and study generalized tractability in the worst case setting mostly for the class
ƒall. As we know from Chapter 5, the information complexity n."; d/ WD n."; Sd ; ƒd /

depends entirely on the sequence of the singular values� D f�j g for the univariate case,
andƒd D ƒall is the class of all continuous linear functionals used for approximation
of Sd . We normalize the problem by assuming that �1 D 1, so that 1 � �2 � � � � and
limk �k D 0. Hence, the absolute and normalized error criteria coincide. We have

n."; d/ D jf.i1; : : : ; id / 2 Nd j �i1 � � ��id > "2gj; (8.10)

with the convention that the cardinality of the empty set is 0. Since n."=
p
�j ; d �1/ �

n."; d � 1/ we obtain for all d � 2,

n."; 1/ � n."; d � 1/ � n."; d/ � n."; 1/d : (8.11)

We show a simple lemma relating generalized tractability to the sequence f�ig.

Lemma 8.1. Let T be an arbitrary tractability function, 
 be a domain satisfying
(8.2) with "0 < 1, S D fSd g be a linear tensor product problem, and ƒ D fƒd g be
an arbitrary class of information operations.

• Let �2 D 1. Then S is not .T;
/-tractable in the class ƒ.

• Let "20 < �2 < 1. Then S is not strongly .T;
/-tractable in the class ƒ.

• Let �2 D 0. Then S is strongly .T;
/-tractable in the class ƒall since
n."; d/ D 1 for all ."�1; d / 2 
 with " < 1, and t str D 0.

Proof. Sinceƒd 	 ƒall we have n."; Sd ; ƒd / � n."; d/. If �2 D 1, then we can take
i1; i2; : : : ; id 2 f1; 2g to conclude from (8.10) that

n."0; d / � 2d for all d:

Hence (8.5) holds with � D 2, and S is not .T;
/-tractable in the class ƒ.
If "20 < �2 < 1, then we take d �1 values of ij D 1 and one value of ij D 2. Since

we have at least d products of eigenvalues �ij equal to �2, we get

n."0; d / � d for alld:

This contradicts strong .T;
/-tractability in the class ƒ, since n."0; d / cannot be
bounded by CT ."�1

0 ; 1/
t for all d .

Finally, if�2 D 0 thenS1, as well asSd , is equivalent to a bounded linear functional,
which can be computed exactly using only one information evaluation. This completes
the proof.

In what follows we will need a simple bound for n."; d/, which was proved in [288,
Remark 3.1]. For the sake of completeness, we restate the short proof of this bound.
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Lemma 8.2.

• For " 2 .0; 1/ and �2 2 .0; 1/, let

˛."/ ´ d2 ln.1="/= ln.1=�2/e � 1;
ˇ."/ WD n."; 1/, and a WD minf˛."/; dg. Then

�
d

a

�
� n."; d/ �

�
d

a

�
ˇ."/a: (8.12)

• If �2 � "20 < 1 then

n."; d/ D 1 for all " 2 Œ"0; 1/ and for all d 2 N. (8.13)

Proof. Let us consider a product �i1 � � ��id such that �i1 � � ��id > "2. Let k denote the
number of indices ij , where j 2 Œd �, with ij � 2. Then necessarily �k2 > "2, which
implies k � ˛."/. Consequently we have at most a indices that are not one. From
(8.10), it follows that ˇ."/ D jfj j �j > "2gj, which implies that ij � ˇ."/ for all
j 2 Œd �. This leads to (8.12). For �2 � "20, we may assume without loss of generality
that �2 > 0, and we have ˛."/ D a D 0 for all " 2 Œ"0; 1/ and for all d . Then (8.12)
implies (8.13).

8.3 Restricted Tractability Domain

In this section, we study generalized tractability for the linear tensor product problem
S and a restricted tractability domain


res D Œ1;1/ � Œd�� [ Œ1; "�1
0 / � N

for d� 2 N0 and "0 2 .0; 1� with d� C .1 � "0/ > 0.
We first treat the two sub-cases of restricted tractability in " and ind . We will see that

in the first case, when d� D 0, the second largest eigenvalue �2 is the only eigenvalue
that effects tractability, while in the second case, when "0 D 1, the convergence rate
of the sequence � is the important criterion for tractability. Then we consider the case
of the restricted tractability domain with d� � 1 and "0 < 1.

8.3.1 Restricted Tractability in "

We now provide necessary and sufficient conditions for restricted tractability in ",
which we then illustrate for several tractability functions. In this subsection "0 < 1,
and from Lemma 3.1 we see that we can restrict our attention to the case when �2 < 1.
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Theorem 8.3. Let "0 < 1 and d� D 0, so that


res D Œ1; "�1
0 / � N:

Let S be a linear tensor product problem with �2 < �1 D 1.

• S is strongly .T;
res/-tractable in the class ƒall iff �2 � "20. If this holds, then
n."; d/ D 1 for all ."; d/ 2 Œ"0; 1/ � N, and the exponent of strong restricted
tractability is t str D 0.

• Let �2 > "20. Then S is .T;
res/-tractable in the class ƒall iff

B ´ lim inf
d!1

inf
"2Œ"0;

p
�2/

ln T ."�1; d /
˛."/ ln d

2 .0;1�;

where, as in Lemma 3.2, ˛."/ D d2 ln.1="/= ln.1=�2/e�1: If this holds then the
exponent of restricted tractability is t tra D 1=B .

Proof. The first part of the lemma follows directly from Lemma 8.1 and 8.2. Before
we verify the second part, we present an estimate of n."; d/. Let " 2 Œ"0; 1/. For
d � ˛."/, we get from (8.12) of Lemma 3.2,

n."; d/ � ˇ."/˛."/

˛."/Š
d.d � 1/ � � � .d � ˛."/C 1/ � C1d

˛."/; (8.14)

where C1 depends only on "0 and S1.
Let nowB 2 .0;1�. We want to show the existence of some positive C and t such

that
n."; d/ � CT ."�1; d /t for all ."; d/ 2 Œ"0; 1/ � N. (8.15)

Let fBng be a sequence in .0; B/ that converges to B . Then we find for each n 2 N a
number dn 2 N such that

inf
"2Œ"0;

p
�2/

ln T ."�1; d /
˛."/ ln d

� Bn for all d � dn.

Due to (8.14), to prove (8.15) it is sufficient to show that C1d˛."/ � CT ."�1; d /t ,
which is equivalent to

ln.C1=C /

t ln d
C ˛."/

t
� ln T ."�1; d /

ln d
:

If C � C1 and 1=t D Bn, then for all d � dn and all " 2 Œ"0; 1�, we have

n."; d/ � CT ."�1; d /t :

To make the last estimate hold for every ."; d/ 2 Œ"0; 1�� N, we only have to increase
the number C if necessary. Letting n tend to infinity, we see that t tra � 1=B .
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Now let (8.15) hold for some positive C and t . To prove thatB 2 .0;1�, we apply
(8.12) of Lemma 8.2 for " 2 Œ"0;

p
�2/ and d � ˛."0/. Then

n."; d/ �
�
d

˛."/

�
�
�
d

˛."/

�˛."/
� C2d

˛."/

with1 C2 D ˛."0/
�˛."0/. Thus for " 2 Œ"0;

p
�2/ we have

C2d
˛."/ � CT ."�1; d /t for all d � ˛."0/,

which is equivalent to

ln T ."�1; d /
ln d

� ˛."/

t
C ln.C2=C /

t ln d
:

The condition "2 < �2 implies ˛."/ � 1, and we get

lim inf
d!1

inf
"2Œ"0;

p
�2/

ln T ."�1; d /
˛."/ ln d

� 1

t
:

This proves that B > 0 and t tra � 1=B , and completes the proof.

We illustrate Theorem 8.3 for a number of tractability functions T , assuming that
�2 2 ."20; 1/. In this case we do not have strong tractability. However, tractability
depends on the particular function T .

• Polynomial tractability, T .x; y/ D xy. Then .T;
res/-tractability in the class
ƒall holds with the exponent t tra D 1=B with

B D 1

˛."0/
D 1

d2 ln.1="0/= ln.1=�2/e � 1:

• Separable restricted tractability, T .x; y/ D f2.y/ for x; y 2 Œ1; "�1
0 � � N, and

with a non-decreasing function f2 W Œ1;1/ ! Œ1;1/ such that

lim
y!1

ln f2.y/

y
D 0:

Then .T;
res/-tractability in the class ƒall holds iff

B1 ´ lim inf
d!1

ln f2.d/

ln d
2 .0;1�I

in this case we get t tra D 1=B , where

B D B1

˛."0/
D B1

d2 ln.1="0/= ln.1=�2/e � 1:
1Here we use the inequality

�
d

k

� � .d=k/k for d � k, which can be easily checked by induction on d .
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Note that B1 > 0 iff f2.d/ is at least of order dˇ for some positive ˇ. Hence,
if we take f2.d/ D d ln.d C 1/e then we do not have tractability. On the other
hand, if f2.d/ D dˇ for a positive ˇ thenB1 D ˇ. For f2.d/ D exp.ln1Cˇ .d//
with ˇ > 0, we obtain B1 D 1 and t tra D 0. This means that in this case for an
arbitrarily small positive t we have

n."; d/ D O
�
T ."�1; d /t

�
for all " 2 Œ"0; 1�; d 2 N.

• Non-separable symmetric tractability, T .x; y/ D exp.f .x/f .y// with f as in
(8.9). Then .T;
res/-tractability in the class ƒall holds iff

B2 D lim inf
d!1

f .d/

ln d
2 .0;1�;

and the exponent t tra D 1=B , with

B D B2 inf
"2Œ"0;

p
�2/

f .x/

˛.x/
:

Note thatB2 > 0 ifff .d/ is at least of order ln.d/. For example, iff .x/ D ˇ ln d
for a positive ˇ then B2 D ˇ, whereas f .d/ D d˛ with ˛ > 0 yields B2 D 1
and t tra D 0.

8.3.2 Restricted Tractability in d

We now assume that d� � 1 and "0 D 1 so that


res D Œ1;1/ � Œd��:

We provide necessary and sufficient conditions for restricted tractability in d in terms
of the sequence of eigenvalues� D f�j g of the compact operatorW1 D S�

1 S1. Assume
first that W1 has a finite number of positive eigenvalues �j . Then

lim
"!0

n."; 1/ < 1

and (8.11) yields that

lim
"!0

n."; d/ � �
lim
"!0

n."; 1/
�d
< 1

for all d . In our case, we have d � d�. Hence, the problem is strongly .T;
res/-
tractable with t str D 0 for all tractability functions T , since

n."; d/ � C WD �
lim
"!0

n."; 1/
�d�

for all ."; d/ 2 
res.

Assume then thatW1 has infinitely many positive eigenvalues�j which is equivalent
to assuming that lim"!0 n."; 1/ D 1. In this case we have the following theorem.
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Theorem 8.4. Let


res D Œ1;1/ � Œd�� with d� � 1; and lim
"!0

n."; 1/ D 1:

Then the following three statements are equivalent:

(i)

A WD lim inf
"!0

ln T ."�1; 1/
ln n."; 1/

2 .0;1�;

(ii) S is .T;
res/-tractable in the class ƒall,

(iii) S is strongly .T;
res/-tractable in the class ƒall.

If (i) holds then the exponent of strong .T;
res/-tractability and the exponent of
.T;
res/-tractability satisfy

1

A
� t tra � t str � d�

A
:

Proof. It is enough to show that (iii) ) (ii) ) (i) ) (iii).
(iii) ) (ii) is obvious.
(ii) ) (i). For d D 1 we now know that

CT ."�1; 1/t � n."; 1/

for some positive C and t with t � t tra. Taking logarithms we obtain

ln T ."�1; 1/
ln n."; 1/

� 1

t
C lnC�1

t ln n."; 1/
:

Since n."; 1/ goes to infinity, we conclude thatA � 1=t > 0, as claimed. Furthermore,
t � 1=A and since t can be arbitrarily close to t tra, we have t tra � 1=A.

(i) ) (iii). We now know that for any ı 2 .0; A/ there exists a positive "ı such that

n."; 1/ � T ."�1; 1/1=.A�ı/ for all " 2 .0; "ı �.
Hence, there is a number Cı � 1 such that

n."; 1/ � CıT ."
�1; 1/1=.A�ı/ for all " 2 .0; 1�.

From (8.11) we obtain that

n."; d/ � C d
�

ı T ."�1; 1/d�=.A�ı/ for all " 2 .0; 1� and d 2 Œd��.

This proves strong tractability with the exponent at most d�=.A � ı/. Since ı can
be arbitrarily small, t tra � t str � d�=A, which completes the proof.
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Theorem 8.4 states that .T;
res/-tractability is equivalent to A > 0, where A
depends only on the behavior of the eigenvalues for d D 1. The condition A > 0

means that ln T ."�1; 1/ goes to infinity at least as fast as ln n."; 1/. Note that for a
finite positive A and for d� > 1, we do not have sharp bounds on the exponents.
We shall see later that both bounds in Theorem 8.4 may be attained for some specific
multivariate problems and tractability functions T . It may also happen that A D 1.
In this case t tra D t str D 0, which means that for all d 2 Œd��, and all positive t we
have

n."; d/ D o.T ."�1; d /t / as " ! 0.

To verify the conditionA > 0 and find better bounds on the exponents of tractability,
we study different rates of convergence of the sequence � D f�j g. We consider
exponential, polynomial and logarithmic rates of �. That is, we assume

• exponential rate: �j is of order exp.� ǰ / for some positive ˇ, or a little more
generally, �j is of order exp.� ǰ ˛/ for some positive ˛ and ˇ;

• polynomial rate: �j is of order j�ˇ D exp.�ˇ ln j /, or a little more generally,
�j is of order exp.�ˇ.ln j /˛/ for some positive ˛ and ˇ;

• logarithmic rate: �j is of order .ln j /�ˇ D exp.�ˇ ln ln j / for some positive ˇ.

Note that for ˛ < 1, we have sub-exponential or sub-polynomial behavior of the
eigenvalues, whereas for ˛ > 1, we have super-exponential or super-polynomial decay
of the eigenvalues. For the sake of simplicity we omit the prefixes sub and super and
talk only about exponential or polynomial rates.

As we shall see, tractability will depend on some limits. We will denote these
limits using subscripts indicating the rate of convergence of �. Hence, the subscript e
indicates an exponential rate, the subscript p a polynomial rate, and the subscript l a
logarithmic one.

Exponential Rate

Theorem 8.5. Let
res D Œ1;1/� Œd�� with d� � 1. Let S be a linear tensor product
problem with �1 D 1 and with exponentially decaying eigenvalues �j , so that

K1 exp
� � ˇ1j ˛1

� � �j � K2 exp
� � ˇ2j ˛2

�
for all j 2 N

for some positive numbers ˛1, ˛2, ˇ1, ˇ2, K1 and K2.
Then S is .T;
res/-tractable (as well as strongly .T;
res/-tractable due to Theo-

rem 8.4) in the class ƒall iff

Ae WD lim inf
x!1

ln T .x; 1/

ln ln x
2 .0;1�:
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If Ae > 0 then the exponent of .T;
res/-tractability satisfies

1

˛1
max
d2Œd��

d

Ae;d
� t tra � 1

˛2
max
d2Œd��

d

Ae;d
;

where

Ae;d D lim inf
x!1

ln T .x; d/

ln ln x
;

(clearly, Ae;d � Ae;1 D Ae > 0), and the exponent of strong .T;
res/-tractability
satisfies

d�

˛1Ae
� t str � d�

˛2Ae
:

Proof. We have
n."; 1/ D minfj j �jC1 � "2g:

Using the estimates of �j we obtain

minfj j g1.j / � "2g � n."; 1/ � minfj j g2.j / � "2g;
where gi .j / D Ki exp

� � ˇi .j C 1/˛i
�
. This yields

�
1

ˇ1
ln
�
K1"

�2��1=˛1

� 1 � n."; 1/ �
�
1

ˇ2
ln
�
K2"

�2��1=˛2

:

For small " this leads to

ln ln "�1

˛1
.1C o.1// � ln n."; 1/ � ln ln "�1

˛2
.1C o.1// :

Therefore A from (i) of Theorem 8.4 satisfies ˛2Ae � A � ˛1Ae . Hence, A > 0 iff
Ae > 0, and (i) of Theorem 8.4 yields the first part of Theorem 8.5.

We now find bounds on the exponents assuming that Ae > 0. First we estimate the
information complexity n."; d/. With x WD ln..Kd2 "

�2/1=ˇ2/ we use (8.10) to obtain

n."; d/ � me.x; d/ WD ˇ̌˚
.i1; : : : ; id / j Pd

jD1 i
˛2

j < x
�ˇ̌
:

We now prove that

�d;x

��
x

d

�1=˛2

� 1
�d

� me.x; d/ � xd=˛2 ; (8.16)

where �d;x D 1 for x � d , and �d;x D 0 for x < d . We prove (8.16) by induction
on d . Let ˛ D ˛2. For d D 1 we have m.x; 1/ D jfi j i < x1=˛gj, i.e., x1=˛ � 1 �
m.x; 1/ < x1=˛ . For d > 1, we have

me.x; d/ D
X

k<x1=˛

me.x � k˛; d � 1/:
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From our induction hypothesis we get

me.x; d/ �
X

k<x1=˛

.x � k˛/.d�1/=˛ �
X

k<x1=˛

x.d�1/=˛ � xd=˛:

To prove a lower bound, we can assume that x > d , so that

me.x; d/ �
X

kW k˛Cd�1�x

��
x � �˛
d � 1

�1=˛
� 1

�d�1

�
Z .xC1�d/1=˛

1

��
x � �˛
d � 1

�1=˛
� 1

�d�1
d�:

Since x C 1� d � x=d and .x � �˛/=.d � 1/ � x=d for � 2 Œ1; .x=d/1=˛�, we have

me.x; d/ �
Z .x=d/1=˛

1

��
x

d

�1=˛
� 1

�d�1
d� D

��
x

d

�1=˛
� 1

�d
;

as claimed.
Consequently, we have

n."; d/ �
�

ln
�
Kd2 "

�2/
ˇ2

�d=˛2

(8.17)

for all " 2 .0; 1� and d 2 Œd��. Take C � WD supf.1=ˇ2/d=˛2 j d 2 Œd��g. It is easy to
see that K2 � 1. We want to show the existence of some positive C and t such that

n."; d/ � C � ln
�
Kd

�

2 "�2�d�=˛2 � CT ."�1; 1/t (8.18)

for all " 2 .0; 1�. The right-hand inequality is equivalent to

ln.C �=C /
t ln ln "�1 C d�

˛2t

ln ln
�
Kd

�

2 "�2�
ln ln "�1 � ln T ."�1; 1/

ln ln "�1 : (8.19)

Let fAng be a sequence in .0; Ae/ converging to Ae . Hence for every n there exists a
positive "n such that

ln T ."�1; 1/
ln ln "�1 � An for all " 2 .0; "n�.

Therefore, decreasing "n if necessary, we obtain (8.19) for all " 2 .0; "n� as long as
we choose C � C � and t > d�=.˛2An/. To establish (8.18) for all " 2 ."n; 1�, we
can keep the same t and, if necessary, increase C . Hence, we have strong tractability
with the exponent t str � d�=.˛2An/, and with n tending to infinity, we conclude that
t str � d�=.˛2Ae/.
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We know that the problem is also tractable. To obtain an upper bound on the
exponent of tractability, we use (8.17) and we find positive C and t for which

n."; d/ �
�

ln.Kd
�

2 "�2/
ˇ2

�d=˛2

� CT ."�1; d /t for all d 2 Œd��.

Proceeding as before, we conclude that t tra � maxd2Œd�� d=.˛2Ae;d /.
To obtain lower bounds on the exponents, we use the estimate

n."; d/ � Qme.z; d/ WD ˇ̌˚
.i1; : : : ; id / j Pd

jD1 i
˛1

j < z
�ˇ̌
;

where z D z."; d/ WD ln..Kd1 "
�2/1=ˇ1/. For sufficiently small ", we can use the

left-hand side of (8.16) with ˛2 replaced by ˛1 which yields

n."; d/ � czd=˛1 D c
�

ln
��
Kd1 "

�2�1=ˇ1
��d=˛1

for all d 2 Œd��, where c is independent of " and d . Thus, for all t > t str there exists a
C > 0 such that for small " we have the inequality

CT ."�1; 1/t � c
�

ln
��
Kd

�

1 "�2�1=ˇ1
��d�=˛1 ;

which is equivalent to

ln T ."�1; 1/
ln ln "�1 � ln.c=C /

t ln ln "�1 C d�

˛1t

ln
�
ˇ�1
1 ln

�
Kd

�

1 "�2��
ln ln "�1 :

This implies Ae � d�=.˛1t /, and t str � d�=.˛1Ae/.
For tractability, we know that there are positive C and t such that

CT ."�1; d /t � c
�

ln
��
Kd1 "

�2�1=ˇ1
��d=˛1 for all d 2 Œd��.

Proceeding as before, we conclude that t tra � maxd2Œd�� d=.˛1Ae;d /. This concludes
the proof.

For exponentially decaying eigenvalues, Theorem 8.5 states that strong tractability
(and tractability) are equivalent to the condition Ae > 0. If we know the precise order
of convergence of �, i.e., when ˛1 D ˛2 D ˛ > 0, then we know the exponents of
tractability and strong tractability,

t tra D 1

˛
max
d2Œd��

d

Ae;d
;

t str D 1

˛

d�

Ae
:

As we shall see it may happen that t str > t tra.
We now illustrate Theorem 8.5 for a number of tractability functions T .
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• Polynomial tractability, T .x; y/ D xy. Then Ae;d D Ae D 1, and we have
strong tractability with t tra D t str D 0.

• Separable restricted tractability, T .x; y/ D f1.x/ for .x; y/ 2 
res and a non-
decreasing function

f1 W Œ1;1/ ! Œ1;1/ with lim
x!1

ln f1.x/

x
D 0:

Then strong .T;
res/-tractability holds iff

Ae;d D Ae D lim inf
x!1

ln f1.x/

ln ln x
2 .0;1�:

Note that Ae > 0 iff f1.x/ is at least of order .ln x/ˇ for some positive ˇ. If
we take f .x/ D d ln.x C 1/e then we have strong tractability with Ae D 1. For
˛1 D ˛2 D ˛ > 0, the exponents are t str D t tra D d�=˛.

• Non-separable symmetric tractability, T .x; y/ D exp.f .x/f .y// with f as in
(8.9). Then .T;
res/-tractability holds iff

Ae;d D f .d/ lim inf
x!1

f .x/

ln ln x
2 .0;1�:

Hence, Ae D Ae;1 > 0 iff f .x/ is at least of order ˇ ln ln x for some positive ˇ.
For example, if we take f .x/ D ln1C˛.x C 1/ for ˛ > �1, then Ae;d D 1 and
t str D t tra D 0. For f .x/ D ˇ ln ln.xC c/with c > exp.1/�1 and a positive ˇ,
we have f .1/ > 0 and

Ae;d D f .d/ˇ D ˇ2 ln ln.d C c/:

For ˛1 D ˛2 D ˛ > 0, we now have

t str D d�

˛ˇ2 ln ln.1C c/
:

Assume for simplicity that d� D 2 and take c close to exp.1/ � 1. Then the
maximum of the function d= ln ln.d C c/ is attained for d D 1, and we have

t tra D 1

˛ˇ2 ln ln.1C c/
D t str

d� :

Polynomial Rate

Theorem 8.6. Let
res D Œ1;1/� Œd�� with d� � 1. Let S be a linear tensor product
problem with �1 D 1 and with polynomially decaying eigenvalues �j , so that

K1 exp
� � ˇ1.ln j /˛

� � �j � K2 exp
� � ˇ2.ln j /˛

�
for all j 2 N
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for some positive numbers ˛; ˇ1; ˇ2; K1 and K2.
Then S is .T;
res/-tractable (as well strongly .T;
/-tractable due to Theorem 8.4)

in the class ƒall iff

Ap WD lim inf
x!1

ln T .x; 1/

.ln x/1=˛
2 .0;1�:

If ˛ 2 .0; 1� and Ap > 0 then the exponents of .T;
res/-tractability satisfy�
2

ˇ1

�1=˛
A�1
p � t tra � t str �

�
2

ˇ2

�1=˛
A�1
p :

If ˛ 2 .1;1/ and Ap > 0 then the exponent of .T;
res/-tractability satisfies�
2

ˇ1

�1=˛
max
d2Œd��

d1�1=˛

Ap;d
� t tra �

�
2

ˇ2

�1=˛
max
d2Œd��

d1�1=˛

Ap;d
;

where

Ap;d D lim inf
x!1

ln T .x; d/

.ln x/1=˛
;

(clearly, Ap;d � Ap;1 D Ap > 0), and the exponent of strong .T;
res/-tractability
satisfies

.d�/1�1=˛
�
2

ˇ1

�1=˛
A�1
p � t str � .d�/1�1=˛

�
2

ˇ2

�1=˛
A�1
p :

Proof. We now have

minfj j g1.j / � "2g � n."; 1/ � minfj j g2.j / � "2g
with gi .j / D Ki exp

� � ˇi .ln.j C 1//˛
�
. This yields

exp
�
.ˇ�1
1 ln

�
K1"

�2�/1=˛� � 1 � n."; 1/ � exp
�
.ˇ�1
2 ln

�
K2"

�2�/1=˛�:
For small " this leads to�

2 ln "�1

ˇ1

�1=˛
.1C o.1// � ln n."; 1/ �

�
2 ln "�1

ˇ2

�1=˛
.1C o.1// :

Hence,A from (i) of Theorem 8.4 satisfies .ˇ2=2/1=˛Ap � A � .ˇ1=2/
1=˛Ap . Hence,

A > 0 iff Ap > 0, and (i) of Theorem 8.4 yields the first part of Theorem 8.6, and the
bound t tra � .2=ˇ1/

1=˛A�1
p .

We now find bounds on the exponents assuming that Ap > 0. First we estimate the
information complexity n."; d/. With x D x."; d/ WD ln..Kd2 "

�2/1=ˇ2/, we have

n."; d/ � mp.x; d/ WD ˇ̌˚
.i1; : : : ; id / j Pd

jD1.ln ij /˛ < x
�ˇ̌
:

We now prove the following estimates on mp.x; d/. Let s > 1. If ˛ 2 .0; 1� then
there exists a positive number C.s; d/ such that

exp
�
x1=˛

� � 1 � mp.x; d/ � C.s; d/ exp
�
sx1=˛

�
: (8.20)
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If ˛ 2 Œ1;1/ then there exists a positive number C.s; d/ such that

�
exp

��x
d

�1=˛� � 1
�d � mp.x; d/ � C.s; d/ exp

�
sd1�1=˛x1=˛

�
: (8.21)

For d D 1 we have mp.x; 1/ D jfj j j < exp.x1=˛/gj and exp
�
x1=˛

� � 1 �
mp.x; 1/ < exp

�
x1=˛

�
.

We start with ˛ 2 .0; 1�. The lower bound is already proved since mp.x; d/ �
mp.x; 1/. To obtain an upper bound on mp.x; d/, we modify an argument from the
proof of Theorem 3.1(ii) in [288]. Let �.s/ D P1

kD1 k�s denote, as always, the
Riemann zeta function. We show by induction on d that

mp.x; d/ � �.s/d�1 exp
�
sx1=˛

�
:

Clearly, this holds for d D 1. Assume that our claim holds for d . Then

mp.x; d C 1/ D
X

k<exp.x1=˛/

mp
�
x � .ln k/˛; d�

� �.s/d�1 X
k<exp.x1=˛/

exp
�
s .x � .ln k/˛/1=˛ �:

Since .a � b/1=˛ � a1=˛ � b1=˛ for all a � b � 0 and ˛ 2 .0; 1�, we obtain

mp.x; d C 1/ � �.s/d�1 X
k<exp.x1=˛/

exp
�
sx1=˛

�
exp.�s ln k/

D �.s/d�1 exp
�
sx1=˛

� X
k<exp.x1=˛/

k�s � �.s/d exp
�
sx1=˛

�
:

Let now ˛ 2 Œ1;1/. Again we proceed by induction on d . The estimate (8.21)
clearly holds for d D 1. Assume that our claim holds for d . Again we have

mp.x; d C 1/ D
X

k<exp.x1=˛/

mp
�
x � .ln k/˛; d�:

To get a lower bound on mp.x; d C 1/, we obtain

mp.x; d C 1/ �
Z exp.x1=˛/

1

�
exp

��
x � .ln �/˛

d

�1=˛�
� 1

�d
d�

�
Z exp..x=.dC1//1=˛/

1

�
exp

��
x

d C 1

�1=˛�
� 1

�d
d�

�
�

exp
��

x

d C 1

�1=˛�
� 1

�dC1
:
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We now obtain an upper bound onmp.x; d C 1/. Let r D .1C s/=2. Since r > 1, we
can use the upper bound on mp.x; d/ and obtain

mp.x; d C 1/ � C.r; d/

�
exp

�
rd1�1=˛x1=˛

�

C
Z exp.x1=˛/

1

exp
�
rd1�1=˛�x � .ln �/˛�1=˛� d�

�
:

The substitution z D ln � leads toZ exp.x1=˛/

1

exp
�
rd1�1=˛�x � .ln �/˛�1=˛� d� �

Z x1=˛

0

exp.rh.z// dz;

where h.z/ D d1�1=˛.x � z˛/1=˛ C z. Since

h0.z/ D 1 � d1�1=˛
�
x

z˛
� 1

�1=˛�1
;

the function h takes its maximum at z D .x=.d C 1//1=˛ , and we get

mp.x; d C 1/ � C.r; d/
n

exp
�
rd1�1=˛x1=˛/C x1=˛ exp

�
r.d C 1/1�1=˛x1=˛

�o
� C.r; d/.1C x1=˛/ exp

�
r.d C 1/1�1=˛x1=˛

�
:

Since

a ´ sup
x>0

.1C x1=˛/ exp
� � .s � r/.d C 1/1�1=˛x1=˛

�
D sup
x>0

.1C x1=˛/ exp
� � .s � 1/.d C 1/1�1=˛x1=˛=2

�
< 1

we take C.s; d C 1/ D aC.r; d/ and conclude that

mp.x; d C 1/ � C.s; d C 1/ exp
�
s.d C 1/1�1=˛x1=˛

�
;

as claimed.
Let � WD maxf0; 1� 1=˛g. Then (8.20) and (8.21) yield that for every s > 1 there

exists a positive Cs such that

n."; d/ � Cs exp
�
sd �

�
ln "�2=ˇ2

�1=˛�
(8.22)

for all " 2 .0; 1� and d 2 Œd��. Knowing that Ap > 0, we want to show that

Cs exp
�
s.d�/� .ln "�2=ˇ2/1=˛

� � CT ."�1; 1/t (8.23)

for some positive C and t . Let fAng be a sequence in .0; Ap/ converging to Ap . Then
for every n there exists a positive "n such that

ln T ."�1; 1/
.ln "�1/1=˛

� An for all " 2 .0; "n�.
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Observe that (8.23) is equivalent to

s.d�/�

t

�
2

ˇ2

�1=˛
C ln.Cs=C /

t.ln "�1/1=˛
� ln T ."�1; 1/
.ln "�1/1=˛

:

This holds for all " 2 .0; "n� if t � s.d�/� .2=ˇ2/1=˛A�1
n and C � Cs . For " > "n

we can keep the same t and, if necessary, increase C . Hence (8.23) holds with t D
s.d�/� .2=ˇ2/1=˛A�1

n . Thus, S is strongly .T;
res/-tractable. Taking s arbitrarily
close to 1 and letting n tend to infinity, we conclude that t str � .d�/� .2=ˇ2/1=˛A�1

p .
We now show that in the case ˛ 2 .1;1/ the exponent of strong tractability satisfies

t str � .d�/1�1=˛.2=ˇ1/1=˛A�1
p . Here we use the estimate

n."; d/ � mp.z; d/;

where z D z."; d/ WD ln..Kd1 "
�2/1=ˇ1/. For small ", the left-hand side of (8.21)

implies that there is a positive c.d/ such that

n."; d/ � c.d/ exp
�
d1�1=˛

�
1

ˇ1
ln
�
Kd1 "

�2��1=˛�: (8.24)

Thus for all t > t str there exists a C > 0 such that for small ", we have

CT ."�1; 1/t � c.d�/ exp
�
.d�/1�1=˛

�
1

ˇ1
ln
�
Kd1 "

�2��1=˛�;
which is equivalent to

ln T ."�1; 1/
.ln "�1/1=˛

� ln.c.d�/=C /
t.ln "�1/1=˛

C .d�/1�1=˛

t

�
1

ˇ1

ln
�
Kd1 "

�2�
ln "�1

�1=˛
:

Taking the limit inferior as " ! 0, we obtain Ap � .d�/1�1=˛.2=ˇ1/1=˛t�1, and
t str � .d�/1�1=˛.2=ˇ1/1=˛A�1

p .
We finally find estimates of the exponent of tractability for ˛ 2 .1;1/. We proceed

similarly as before and assume that

CT ."�1; d /t � n."; d/ for all d 2 Œd��.

By (8.24), this implies that

t ln T ."�1; d /
.ln "�1/1=˛

� d1�1=˛
�
2

ˇ1

�1=˛
.1C o.1//

for small ". This yields that t tra � .2=ˇ1/
1=˛ maxd2Œd�� d

1�1=˛=Ap;d .
To get an upper bound on t tra, we use (8.22), and conclude that it is enough to find

positive C and t such that

Cs exp

�
sd1�1=˛ �ln "�2=ˇ2

�1=˛� � CT ."�1; d /t for all d 2 Œd��.
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This holds for t � smaxd2Œd�� d
1�1=˛.2=ˇ2/1=˛A�1

p;d
. Since s can be arbitrarily close

to one, we get that t tra � maxd2Œd�� d
1�1=˛.2=ˇ2/1=˛A�1

p;d
, which completes the proof.

For polynomially decaying eigenvalues, Theorem 8.6 states that strong tractability
(and tractability) are equivalent to the condition Ap > 0. If we know the precise order
of convergence of �, so that ˇ1 D ˇ2 D ˇ > 0, then we know the exponents of
tractability. For ˛ 2 .0; 1� we have

t tra D t str D
�
2

ˇ

�1=˛
A�1
p ;

whereas for ˛ 2 .1;1/ we have

t tra D
�
2

ˇ

�1=˛
max
d2Œd��

d1�1=˛

Ap;d
;

t str D .d�/1�1=˛
�
2

ˇ

�1=˛
A�1
p :

As before, it may happen that t str > t tra.
We now illustrate Theorem 8.6 for a number of tractability functions T .

• Polynomial tractability, T .x; y/ D xy. Then Ap;d D Ap and its value depends
on ˛. We have Ap D 0 for ˛ < 1, and Ap D 1 for ˛ D 1, and Ap D 1 for
˛ > 1. Hence, we have strong tractability (and tractability) iff ˛ � 1. For ˛ > 1,
we have t tra D t str D 0, whereas for ˛ D 1 and ˇ1 D ˇ2 D ˇ > 0, we have
t tra D t str D 2=ˇ.

• Separable restricted tractability, T .x; y/ D f1.x/ with f1 as for exponential
decaying eigenvalues. Then strong .T;
res/-tractability holds iff

Ap;d D Ap D lim inf
x!1

ln f1.x/

.ln x/1=˛
2 .0;1�:

Note that Ap > 0 iff f1.x/ is at least of order exp
�
�.ln x/1=˛

�
for some pos-

itive �. If we take f1.x/ D exp
�
�.ln x/1=˛

�
then we have strong tractability

with Ap D �. For ˇ1 D ˇ2 D ˇ > 0, the exponents are t str D t tra D
.d�/.1�1=˛/C.2=ˇ/1=˛��1.

• Non-separable symmetric tractability, T .x; y/ D exp.f .x/f .y// with f as in
(8.9). Then .T;
res/-tractability holds iff

Ap;d D f .d/ lim inf
x!1

f .x/

.ln x/1=˛
2 .0;1�:

Hence,Ap D Ap;1 > 0 iff f .x/ is at least of order �.ln x/1=˛ for some positive �.
For example, if we take f .x/ D �.ln.xC c//1=˛ with a positive c, then Ap;d D
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f .d/�. For a given ˛ 2 Œ1;1/, ˇ1 D ˇ2 D ˇ > 0, and sufficiently small c, the
maximum of the function d1�1=˛=Ap;d is attained for d D 1, and we have

t tra D 21=˛

�2.ˇ ln.1C c//1=˛
D t str

.d�/1�1=˛ :

Logarithmic Rate

Theorem 8.7. Let
res D Œ1;1/� Œd�� with d� � 1. Let S be a linear tensor product
problem with �1 D 1 and with logarithmically decaying eigenvalues �j , so that

K1 exp.�ˇ ln.ln.j /C 1// � �j � K2 exp.�ˇ ln.ln.j /C 1// for all j 2 N

for some positive numbers ˇ;K1 and K2.
Let ˇ � 2. Then S is not .T;
res/-tractable in the class ƒall.
Let ˇ > 2. Then S is .T;
res/-tractable (as well strongly .T;
res/-tractable due

to Theorem 8.4) in the class ƒall iff

Al WD lim inf
x!1

ln T .x; 1/

x2=ˇ
2 .0;1�:

If ˇ > 2 and Al > 0 then the exponent of .T;
res/-tractability satisfies

max
d2Œd��

K
d=ˇ
1

Al;d
� t tra � max

d2Œd��

K
d=ˇ
2

Al;d
;

where

Al;d WD lim inf
x!1

ln T .x; d/

x2=ˇ
;

(clearly, Al;d � Al;1 D Al > 0/, and the exponent of strong .T;
res/-tractability
satisfies

K
1=ˇ
1

Al
� t str � K

d�=ˇ
2

Al
:

(Note that the numbers K1 and K2 must satisfy K1 � 1 � K2. Thus, if K1 D
K2 D 1, we have also K1=ˇ1 D K

d�=ˇ
2 , and the last inequality becomes an equality.)

Proof. We now have

minfj j g1.j / � "2g � n."; 1/ � minfj j g2.j / � "2g
with gi .j / D Ki exp.�ˇ ln.ln.j C 1/C 1//. This yields

exp.K1=ˇ1 "�2=ˇ � 1/ � 1 � n."; 1/ � exp.K1=ˇ2 "�2=ˇ � 1/:
For small " this leads to

K
1=ˇ
1 "�2=ˇ .1C o.1// � ln n."; 1/ � K

1=ˇ
2 "�2=ˇ .1C o.1// :
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Assume first that ˇ � 2. Then

lim inf
"!0

ln T ."�1; 1/
ln n."; 1/

� K
�1=ˇ
1 lim inf

"!0

ln T ."�1; 1/
"�1 C 1

"�1 C 1

"�2=ˇ D 0

due to (8.3). Therefore A from (i) of Theorem 8.4 is 0, and we do not have tractability,
as claimed.

Assume then that ˇ > 2. Then K�1=ˇ
2 Al � A � K

�1=ˇ
1 Al . Hence, A > 0

iff Al > 0, and (i) of Theorem 8.4 yields the first part of Theorem 8.6, and that
t str � K

1=ˇ
1 A�1

l
.

We now find bounds on the exponents, assuming that Al > 0. First we estimate
the information complexity n."; d/. With x D x."; d/ WD ln..Kd2 ="

2/1=ˇ / we get

n."; d/ � ml.x; d/ WD ˇ̌˚
.i1; : : : ; id / j Pd

jD1 ln.ln.ij /C 1/ < x
�ˇ̌
:

We prove that for every s > 1, there exists a positive number C.s; d/ such that

exp.exp.x/ � 1/ � 1 � ml.x; d/ � C.s; d/ exp
�
s.exp.x/ � 1/�: (8.25)

Let � WD exp.x/. Clearly we have ml.x; 1/ D jfj j j < exp.� � 1/gj, which implies
that

exp.� � 1/ � 1 � ml.x; 1/ � exp.� � 1/:
Let now d � 1 and assume that (8.25) holds for d . Then

ml.x; d C 1/ D
X

k<exp.��1/
ml
�
x � ln.ln.k/C 1/; d

�
:

Thus, we get the trivial lower bound estimate

ml.x; d C 1/ � ml.x; d/ � exp.� � 1/ � 1:
We now obtain an upper bound on ml.x; d C 1/. Let r D .1C s/=2. Then

ml.x; d C 1/ � C.r; d/

�
exp.r.� � 1//

C
Z exp.��1/

1

exp
�
r
�

exp
�
x � ln.ln.�/C 1/

� � 1�� d�

�
:

The last integral is of the formZ exp.��1/

1

exp
�
r
� �

ln.�/C 1
� 1

��
d� D

Z �

1

exp.rh.z// dz;

where z D ln.�/C 1, and h W Œ1; �� ! R with h.z/ D �=z C z=r � .1C 1=r/. It is
easy to check that h takes its maximum � � 1 at the point z D 1. So we haveZ �

1

exp.rh.z// dz � .� � 1/ exp.r.� � 1//:
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This implies that

ml.x; d C 1/ � C.r; d/� exp.r.� � 1//
D C.r; d/� exp

�
.r � s/.� � 1/� exp

�
s.� � 1/�

� C.r; d/
�

sup
�1

� exp
� � .s � 1/.� � 1/=2�� exp

�
s.� � 1/�

� C.s; d C 1/ exp.s.� � 1//
for suitably large C.s; d C 1/, as claimed.

Due to (8.25), we conclude that

n."; d/ � C.s; d/ exp
�
s.K

d=ˇ
2 "�2=ˇ � 1/�:

For Al 2 .0;1�, " 2 .0; 1� and d 2 Œd��, we want to show that

C.s; d/ exp
�
s
�
K
d=ˇ
2 "�2=ˇ � 1�� � CT ."�1; 1/t (8.26)

for some positive C and t . Therefore let fAng be a sequence in .0; Al/ converging
to Al . Thus for every n there exists a positive "n such that

ln T ."�1; 1/
"�2=ˇ � An for all " 2 .0; "n�.

Then (8.26) is equivalent to

sK
d=ˇ
2

t
C ln.C.s; d/=C / � s

t "�2=ˇ � ln T ."�1; 1/
"�2=ˇ :

This holds for all " 2 .0; "n� if t � sK
d=ˇ
2 A�1

n and C � C.s; d/. For " 2 ."n; 1� we
can keep the same t and, if necessary, increase C . Letting s tend to 1 and n tend to
infinity, we conclude t str � K

d�=ˇ
2 A�1

l
.

We can similarly show bounds on t tra, since .ln T ."�1; d //="�2=ˇ is arbitrarily
close to Al;d for small ". This leads to t tra � maxd2Œd��K

d=ˇ
2 =Al;d . To get a lower

bound on t tra, we use the left-hand side inequality in (8.25) to conclude that

n."; d/ � exp
�
K
d=ˇ
1 "�2=ˇ � 1� � 1:

This yields that t tra � maxd2Œd��K
d=ˇ
1 =Al;d , and completes the proof.

For logarithmically decaying eigenvalues, Theorem 8.7 states that for ˇ � 2, we do
not have tractability. This means that the eigenvalues �j converge to 0 too slowly, no
matter how we choose the tractability function T . For ˇ > 2, strong tractability (and
tractability) are equivalent to the conditionAl > 0. In this case, and forK1 D K2 D 1,
we know the exponents of tractability satisfy

t tra D t str D A�1
l :

We now illustrate Theorem 8.7 for a number of tractability functions T .
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• Polynomial tractability,T .x; y/ D xy. Then forˇ > 2, we haveAl;d D Al D 0.
Hence, strong tractability (and tractability) does not hold.

• Separable restricted tractability, T .x; y/ D f1.x/ with f1 as for exponential
decaying eigenvalues. Let ˇ > 2. Then strong .T;
res/-tractability holds iff

Al;d D Al D lim inf
x!1

ln f1.x/

x2=ˇ
2 .0;1�:

Note thatAl > 0 iff ln f1.x/ is at least of order x˛ with ˛ 2 Œ2=ˇ; 1/. If we take
f1.x/ D exp.x˛/ then we have strong tractability withAl D 0 for ˛ 2 .2=ˇ; 1/,
and then t str D t tra D 0, whereas Al D 1 for ˛ D 2=ˇ and t str D t tra D 1 for
K2 D K1 D 1.

• Non-separable symmetric tractability, T .x; y/ D exp.f .x/f .y// with f as in
(8.9). For ˇ > 2, .T;
res/-tractability holds iff

Al;d D f .d/ lim inf
x!1

f .x/

x2=ˇ
2 .0;1�:

Hence, Al D Al;1 > 0 iff f .x/ is at least of order x2=ˇ . For example, if we take
f .x/ D x2=ˇ then Al;d D f .d/. For K2 � exp.1=d�/, the maximum of the

functionKd=ˇ2 =f .d/ is attained ford D 1, and t tra � K
1=ˇ
2 and t str � exp.1/1=ˇ .

8.3.3 Restricted Tractability with d� � 1 and "0 < 1

Based on the results for restricted tractability in " and d , it is easy to study restricted
tractability with d� � 1 and " 2 .0; 1/. In this subsection we let


res D 
res."0; d
�/ D Œ1;1/ � Œd�� [ Œ1; "�1

0 / � N

for d� 2 N0 and "0 2 .0; 1�.
Hence, restricted tractability in " corresponds to 
res."0; 0/ D Œ1; "�1

0 / � N with
"0 2 .0; 1/, and restricted tractability in d corresponds to 
.1; d�/ D Œ1;1/ � Œd��
with d� � 1.

Since
res."0; d
�/ D 
res."0; 0/[
res.1; d�/, it is obvious that strong tractability

and tractability for d� � 1 and "0 2 .0; 1/ are equivalent to restricted strong tractability
and tractability in " and d , respectively. We summarize this simple fact in the following
lemma.

Lemma 8.8. Let d� � 1 and "0 2 .0; 1/. Let S be a linear tensor product problem
with �1 D 1. Then

• S is strongly .T;
res."0; d
�//-tractable in the class ƒall iff S is strongly

.T;
res."0; 0//- and strongly .T;
res.1; d�//-tractable in the class ƒall.
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• S is .T;
res."0; d
�//-tractable in the class ƒall iff S is .T;
res."0; 0//- and

.T;
res.1; d�//-tractable in the class ƒall.

• The exponents of strong tractability and tractability for 
res."0; d
�/ are the

respective maxima of the exponents for 
res."0; 0/ and 
res.1; d�/.
Proof. It is obviously enough to show that (strong) tractability for 
res."0; 0/ and

res.1; d�/ imply (strong) tractability for
res."0; d

�/. Let us consider only tractability
since the reasoning for strong tractability is the same. We have

n."; d/ � C1T ."
�1; d /t1 for all ."; d/ 2 
res."0; 0/;

n."; d/ � C2T ."
�1; d /t2 for all ."; d/ 2 
res.1; d�/;

for some positive C1; C2; t1 and t2. Furthermore, we can take ti arbitrarily close to the
exponents of tractability t trai for i D 1; 2.

For ."; d/ 2 
res."0; d
�/ we have

."; d/ 2 
res."0; 0/ if d > d�; and

."; d/ 2 
res.1; d�/ if d � d�:

Since T ."�1; d / � 1, we then have

n."; d/ � max.C1; C2/T ."
�1; d /max.t1;t2/ for all ."; d/ 2 
res."0; d

�/:

This implies tractability with the exponent t tra � max.t1; t2/. If we take ti tending to
t trai , then t tra � max.t tra1 ; t

tra
2 /. The last bound is sharp since for ."; d/ 2 
res."0; 0/

we must have t tra � t tra1 , and for ."; d/ 2 
res.1; d�/ we must have t tra � t tra2 . This
completes the proof.

We now combine the results of the previous subsections and present two theorems
on the tractability of S for 
res."0; d

�/. In these theorems, strong tractability of S
means that S is strongly .T;
res."0; d

�//-tractable in the classƒall, and tractability of
S means that S is .T;
res."0; d

�//-tractable in the class ƒall.

Theorem 8.9. Let d� � 1 and "0 2 .0; 1/. Let S be a linear tensor product problem
with �1 D 1.

• Let �2 D 1. Then S is not tractable.

• Let "20 < �2 < 1. Then S is not strongly tractable, and S is tractable iff

A D lim inf
"!0

ln T ."�1; 1/
ln n."; 1/

2 .0;1�;

B D lim inf
d!1

inf
"2Œ"0;

p
�2/

ln T ."�1; d /
˛."/ ln d

2 .0;1�;

where ˛."/ D d2 ln.1="/= ln.1=�2/e � 1.
If A > 0 and B > 0 then

max
�
A�1; B�1� � t tra � max

�
d�A�1; B�1�:
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• Let 0 < �2 � "20.

Let lim"!0 n."; 1/ < 1. Then S is strongly tractable and t str D 0.

Let lim"!0 n."; 1/ D 1. Then S is strongly tractable iff S is tractable iff

A D lim inf
"!0

ln T ."�1; 1/
ln n."; 1/

2 .0;1�:

If A > 0 then
A�1 � t tra � t str � d�A�1:

• Let �2 D 0. Then n."; d/ D 1 for all ."; d/ 2 
."0; d
�/, and S is strongly

tractable with t str D 0.

Proof. For �2 D 1, it is enough to apply the first part of Lemma 8.1.
Let "20 < �2 < 1. The lack of strong tractability follows from the second part of

Lemma 8.1. Tractability in "holds iffB 2 .0;1�due to the second part of Theorem 8.3.
Let lim"!0 n."; 1/ < 1. Then tractability in d holds and, in this case, A 2 .0;1�,
due to the reasoning before Theorem 8.4. Let lim"!0 n."; 1/ D 1. Then tractability
in d holds iff A 2 .0;1� due to Theorem 8.4. Hence, Lemma 8.8 implies that S is
tractable iff both A;B 2 .0;1�. The bounds on t tra now follow from Theorems 8.3
and 8.4 along with Lemma 8.8.

For 0 < �2 � "20 and lim"!0 n."; 1/ < 1, we conclude that S is strongly tractable
due to the first part of Theorem 8.3, the reasoning before Theorem 8.4 and Lemma 8.8.
In this case, t str D 0.

For 0 < �2 � "20 and lim"!0 n."; 1/ D 1, strong tractability in " holds with
t str D 0 due to the first part of Theorem 8.3, and strong tractability in d is equivalent to
tractability in d and equivalent toA 2 .0;1� due to Theorem 8.4. This and Lemma 8.8
yield that S is strongly tractable iff S is tractable iff A 2 .0;1�. The bounds on t tra

and t str follow from Theorem 8.4.
For �2 D 0, the problem is trivial due to the last part of Lemma 8.1.

We now summarize tractability conditions for 
."0; d�/, assuming the specific
rates of convergence of the eigenvalues � D f�j g as discussed in Theorems 8.5, 8.6
and 8.7.

Theorem 8.10. Let d� � 1 and "0 2 .0; 1/. Let S be a linear tensor product problem
with �2 < �1 D 1.

• Let�j D ‚
�

exp.� ǰ ˛/
�
converge to0with an exponential rate for somepositive

˛ and ˇ.

– Let "20 < �2. Then S is not strongly tractable, and S is tractable iff
Ae D Ae;1 2 .0;1� and B 2 .0;1� with

Ae;d D lim inf
x!1

ln T .x; d/

ln ln x
2 .0;1�;
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and B as in Theorem 8.9. If Ae > 0 and B > 0 then

t tra D max
�
1

˛
max
d2Œd��

d

Ae;d
;
1

B

�
:

– Let �2 � "20. Then S is strongly tractable iff Ae 2 .0;1�. If Ae > 0 then

t str D d�

˛Ae
and t tra D 1

˛
max
d2Œd��

d

Ae;d
:

• Let �j D ‚
�

exp.�ˇ.ln j /˛/� converge to 0 with a polynomial rate for some
positive ˛ and ˇ.

– Let "20 < �2. Then S is not strongly tractable, and S is tractable iff
Ap D Ap;1 2 .0;1� and B 2 .0;1� with

Ap;d D lim inf
x!1

ln T .x; d/

.ln x/1=˛
2 .0;1�;

and B as in Theorem 8.9. If Ap > 0 and B > 0 then

t tra D max
��
2

ˇ

�1=˛
max
d2Œd��

d .1�1=˛/C
Ap;d

;
1

B

�
:

– Let �2 � "20. Then S is strongly tractable iff Ap 2 .0;1�. If Ap > 0 then

t str D
�
2

ˇ

�1=˛ .d�/.1�1=˛/C
Ap

and t tra D
�
2

ˇ

�1=˛
max
d2Œd��

d .1�1=˛/C
Ap;d

:

• Let �j D exp
� � ˇ

�
ln.ln.j / C 1/

��
converge to 0 with a logarithmic rate for

some positiveˇ. Forˇ � 2, S is not tractable. Forˇ > 2, we have the following.

– Let "20 < �2. Then S is not strongly tractable, and S is tractable iff
Al 2 .0;1� and B 2 .0;1� with

Al D lim inf
x!1

ln T .x; 1/

x2=ˇ
2 .0;1�

and B as in Theorem 8.9. If Al > 0 and B > 0 then

t tra D max
�
1

Al
;
1

B

�
:

– Let �2 � "20. Then S is strongly tractable iff Al 2 .0;1�. If Al > 0 then

t str D t tra D 1

Al
:
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Proof. For the exponential rate and "20 < �2, the lack of strong tractability follows from
Theorem 8.9, whereas tractability is equivalent toAe; B 2 .0;1� due to Theorems 8.5
and 8.3. The formula for t tra also follows from these two theorems and Lemma 8.8.

For the exponential rate and �2 � "20, strong tractability in " trivially holds, and
strong tractability in d holds iff Ae > 0 due to Theorem 8.5. The formulas for t str and
t tra are also from Theorem 8.5.

For the polynomial and logarithmic rates, we proceed in the same way and use
Theorem 8.6 for the polynomial case, and Theorem 8.7 for the logarithmic case, instead
of Theorem 8.5.

We illustrate Theorems 8.9 and 8.10 for a number of tractability functions T .

• Polynomial tractability, T .x; y/ D xy. Then Ae;d D Ap;d D 1 for ˛ > 1,
whereas Ap;d D 1 if ˛ D 1, and Ap;d D 0 for ˛ < 1. Finally, Al;d D 0 for
ˇ > 2. Hence, for logarithmically and polynomially decaying eigenvalues with
˛ < 1, S is not tractable.

Let "20 < �2. We have B D 1=˛."0/. Then for exponentially and polynomially
decaying eigenvalues with ˛ > 1, S is not strongly tractable but is tractable with
the exponent

t tra D ˛."0/ D d2 ln.1="0/= ln.1=�2/e � 1:
For polynomially decaying eigenvalues with ˛ D 1, S is not strongly tractable
but is tractable with the exponent

t tra D max
�
2

ˇ
; ˛."0/

�
:

Let �2 � "20. Then for exponentially and polynomially decaying eigenvalues
with ˛ > 1, S is strongly tractable with t str D 0. For polynomially decaying
eigenvalues with ˛ D 1, S is strongly tractable with t str D 2=ˇ.

• Separable restricted tractability, T .x; y/ D f1.x/ for .x; y/ 2 
.1; d�/, and
T .x; y/ D f2.y/ for .x; y/ 2 
."0; 0/ with non-decreasing f1 and f2 such that
limt!1.ln fi .t//=t D 0.

For simplicity, let us take fi .t/ D exp
�
.ln t /˛i

�
for some positive ˛i . Then

Ae;d D 1, whereas Ap;d D 1 if ˛1 > 1=˛, and Ap;d D 1 if ˛1 D 1=˛, and
Ap;d D 0 if ˛1 < 1=˛. Finally, Al;d D 0. Hence, for polynomially decaying
eigenvalues with ˛1 < 1=˛, and for logarithmically decaying eigenvalues S is
not tractable.

Let "20 < �2. If ˛2 < 1, thenB D 0 and S is not tractable. Let ˛2 � 1. Then for
exponentially and polynomially decaying eigenvalues with ˛1 > 1=˛, S is not
strongly tractable but S is tractable. The exponent of tractability is t tra D ˛."0/

if ˛2 D 1 and t tra D 0 if ˛2 > 1. For polynomially decaying eigenvalues with
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˛1 D 1=˛, S is not strongly tractable but is tractable with exponent

t tra D max
��
2

ˇ

�1=˛
.d�/.1�1=˛/C ; ˛."0/

�
if ˛2 D 1

and

t tra D
�
2

ˇ

�1=˛
.d�/.1�1=˛/C if ˛2 > 1.

Let �2 � "20. Then for exponentially and polynomially decaying eigenvalues
with ˛1 > 1=˛, S is strongly tractable and t str D 0. For polynomially decaying
eigenvalues with ˛1 D 1=˛, S is strongly tractable with

t tra D t str D
�
2

ˇ

�1=˛
.d�/.1�1=˛/C :

• Non-separable symmetric tractability, T .x; y/ D exp.f .x/f .y// with f as in
(8.9). For simplicity, let us take f .x/ D .ln.xC 1//� for some positive �. Then
Ae;d D 1, whereas Ap;d D 1 for � > 1=˛, and Ap;d D f .d/ for � D 1=˛,
and Ap;d D 0 for � < 1=˛. Finally, Al;d D 0. Hence, S is not tractable for
logarithmically and polynomially decaying eigenvalues with � < 1=˛.

Let "20 < �2. If � < 1, then B D 0 and S is not tractable. Let � � 1. Then for
exponentially and polynomially decaying eigenvalues with � > 1=˛, S is not
strongly tractable but S is tractable. In the case � > 1 we have t tra D 0. For
polynomially decaying eigenvalues with � D 1=˛, S is not strongly tractable but
tractable. If we have � > 1, then ˛ 2 .0; 1/ and

t tra D
�

2

ˇ ln 2

�1=˛
:

Let �2 � "20. Then for exponentially and polynomially decaying eigenvalues
with � > 1=˛, S is strongly tractable and t str D 0. For polynomially decaying
eigenvalues with � D 1=˛, S is strongly tractable with

t str D .d�/.1�1=˛/C
�

2

ˇ ln 2

�1=˛
; t tra D

�
2

ˇ

�1=˛
max
d2Œd��

d .1�1=˛/C
.ln.d C 1//1=˛

:

8.4 Unrestricted Tractability Domain

In this section, we study generalized tractability for the unrestricted tractability domain


unr D Œ1;1/ � N:
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We consider linear tensor product problems for the classƒall in the worst case setting,
and the sequence of the singular values � D f�j g for the univariate case. As before,
we assume that 1 D �1 � �2 � � � � with limj �j D 0. We analyze three cases of the
singular values in the three subsequent subsections.

8.4.1 Finitely Many Eigenvalues

In this section we consider the case when we have only finitely many positive eigen-
values �j . First we consider the case where we have k � 2 eigenvalues different from
0 and k � 1 of them are equal. We need an auxiliary lemma which will be helpful in
the course of the proof of the first theorem.

Lemma 8.11. Let d; k 2 N and let ˛ be an integer satisfying 0 � ˛ � k�1
k
.d C 1/.

Then

max
0�	�˛

�
d

�

�
.k � 1/	 D

�
d

˛

�
.k � 1/˛: (8.27)

Proof. For 0 � � � ˛, the inequality

�
d

� � 1
�
.k � 1/	�1 �

�
d

�

�
.k � 1/	

holds iff � � .d � � C 1/.k � 1/, and the last inequality holds iff � � k�1
k
.d C 1/.

This shows that the function

� 7!
�
d

�

�
.k � 1/	

is non-decreasing on Œ0; ˛� \ N.

Theorem 8.12. Let T be a tractability function. Let

�1 D 1; 0 < �2 D � � � D �k < 1; and �l D 0 for l > k � 2:

Then the linear tensor product problem S D fSd g is .T;
unr/-tractable in the class
ƒall iff

Bk WD lim inf
d!1

inf
1�˛."/�k�1

k
d

ln T ."�1; d /
mk."; d/

2 .0;1�; (8.28)

where mk."; d/ WD ˛."/ ln
�
d
˛."/

.k � 1/�C .d � ˛."// ln
�

d
d�˛."/

�
.

If Bk > 0, then the exponent t tra of tractability is given by

t tra D B�1
k : (8.29)
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Proof. For the eigenvalues specified in Theorem 8.12, it is easy to check that (8.10)
yields

n."; d/ D
minf˛."/;dgX

	D0

�
d

�

�
.k � 1/	 : (8.30)

Let us first assume that S is .T;
unr/-tractable, i.e., that there exist C; t > 0 such
that n."; d/ � CT ."�1; d /t . Let 1 � ˛."/ � k�1

k
d . From (8.27) and (8.30) we get

the estimate�
d

˛."/

�
.k � 1/˛."/ � n."; d/ � .˛."/C 1/

�
d

˛."/

�
.k � 1/˛."/: (8.31)

Using Stirling’s formula for factorials mŠ D mmC1=2e�mp
2�.1C o.1//, we obtain

ln

��
d

˛."/

�
.k � 1/˛."/

�
D ln.d Š/ � ln.˛."/Š/ � ln..d � ˛."//Š/C ˛."/ ln.k � 1/
D
�
d C 1

2

�
ln.d/ �

�
˛."/C 1

2

�
ln.˛."// �

�
d � ˛."/C 1

2

�
ln.d � ˛."//

� ln.
p
2�/C ln.O.1//C ˛."/ ln.k � 1/

D mk."; d/C 1

2
ln

�
d

˛."/.d � ˛."//
�

C O.1/:

Thus

ln T ."�1; d /
mk."; d/

� 1

t
C

ln
�

d
˛."/.d�˛."//

�
2tmk."; d/

� ln.C /

tmk."; d/
C O.1/

tmk."; d/
: (8.32)

Let f."�1
	 ; d	/g be a sequence in 
unr such that 1 � ˛."	/ � .k � 1/d=k, and

lim	!1.˛."	/=d	/ exists (and obviously is at most .k�1/=k) with lim	!1 d	 D 1.
If lim	!1.˛."	/=d	/ > 0 then mk."	 ; d	/ D ‚.d	/ and the right hand side of

(8.32) tends to 1=t for � ! 1.
If lim	!1.˛."	/=d	/ D 0 then

mk."	 ; d	/ D ‚

�
˛."	/ ln

�
d	

˛."	/
.k � 1/

��
;

since

.d	 � ˛."	// ln

�
d	

d	 � ˛."	/
�

D ‚.˛."	//:

Furthermore, ˇ̌̌
ˇln
�

d	

˛."	/.d	 � ˛."	//
�ˇ̌̌
ˇ D ‚.ln.˛."	///:
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Hence, again, the right hand side of (8.32) tends to 1=t . Since an arbitrary sequence
f."�1

	 ; d	/g with lim	!1 d	 D 1 and 1 � ˛."	/ � k�1
k
d has a sub-sequence

f."�1
� ; d�/g for which f˛."�/=d�g converges, we conclude that

Bk � 1

t
> 0 and t tra � B�1

k : (8.33)

Assume now Bk > 0. We want to show that for all t > B�1
k

there exists a
C D C.t/ > 0 such that n."; d/ � CT ."�1; d /t for all d 2 N, " 2 .0; 1/. From
(8.30) we see that this inequality is trivial if ˛."/ D 0, and, since T ."�1; d / is non-
decreasing in "�1, that the case ˛."/ > d is settled if we have the inequality for
˛."/ D d . Thus it remains to consider the following two cases:

Case 1: 1 � ˛."/ � k�1
k
d . We now show that for all t > B�1

k
there exists a

C D C.t/ > 0 such that for all d 2 N,

ln T ."�1; d /
mk."; d/

� 1

t
C ln.1C ˛."//

tmk."; d/
C ln

�
d

˛."/.d�˛."//
�

2tmk."; d/

� ln.C /

tmk."; d/
C O.1/

tmk."; d/
:

(8.34)

Due to (8.31) and the formula for ln
��

d
˛."/

�
.k � 1/˛."/

�
, we conclude that n."; d/ �

CT ."�1; d /t for all d 2 N, 1 � ˛."/ � k�1
k
d .

To prove (8.34), observe that ln
�

d
˛."/.d�˛."//

� � ln.k/. Obviously,

mk."; d/ � ˛."/ ln

�
d

˛."/
.k � 1/

�
:

For a given l 2 N let xl 2 R be so large that for all x � xl we have

ln.1C x/

x ln.k/
� 1

l
:

Let now dl � .1C xl/
lC1. Then we get for d � dl and 1 � ˛."/ � k�1

k
d ,

ln.1C ˛."//

˛."/ ln. d
˛."/

.k � 1// � 1

l
:

Furthermore, let f zBlg be a sequence in .0; Bk/ that converges to Bk . For each l we
find a d 0

l
such that for all d � d 0

l
and all 1 � ˛."/ � k�1

k
d

ln T ."�1; d /
mk."; d/

� zBl :

Choose tl WD .1 C 1
l
/ zB�1
l

. For all d � maxfdl ; d 0
l
g and all 1 � ˛."/ � k�1

k
d we

have
ln T ."�1; d /
mk."; d/

� 1

tl

�
1C ln.1C ˛."//

mk."; d/

�
:



8.4 Unrestricted Tractability Domain 323

It is now easy to see that (8.34) holds for t D tl and all d 2 N and all 1 � ˛."/ � k�1
k
d

if we just choose C D C.tl/ suitably large. Observe that tl converges to B�1
k

as l
tends to infinity.

Case 2: k�1
k
d < ˛."/ � d . Let ı 2 .0; B�1

k
/ and t � .Bk � ı/�1. There exists a

dı such that for all d � dı and all "� with 1 � ˛."�/ � k�1
k
d , we have

ln T ."�1� ; d /

mk."�; d /
� Bk � ı:

For d � dı and ˛."/ � k�1
k
d , choose "� 2 Œ"; 1/ such that ˛."�/ D bk�1

k
dc D

d � dd
k

e. Then

mk."�; d / � d ln.k/ �

d

k

�
ln

�
1C k

d

�
;

and
t ln T ."�1; d / � .Bk � ı/�1 ln T ."�1� ; d / � mk."�; d /:

We find a number C not depending on d such that ln.C / � dd
k

e ln.1 C k
d
/. From

(8.30) we know that n."; d/ � kd , and this yields

t ln T ."�1; d / � mk."�; d / � ln n."; d/ � ln.C /;

implying CT ."�1; d /t � n."; d/. Choosing C D C.t/ sufficiently large the last
inequality extends to all d and all " with k�1

k
d � ˛."/ � d .

The statement of the theorem follows from Cases 1 and 2.

We illustrate Theorem 8.12 by two tractability functions.

• Let T .x; y/ D xy which corresponds to polynomial tractability. Then it is
easy to check that Bk D 0 for all k � 2. This means that we do not have
polynomial tractability for any linear tensor product problem with at least two
positive eigenvalues for d D 1. This result has been known before.

• Let T .x; y/ D x1Clny . Then it can be checked that

Bk D 1
2

ln.��1
2 / for all k � 2; and t tra D 2

ln.��1
2 /

:

Hence, the exponent of tractability only depends on the second largest eigenvalue
and is independent of its multiplicity. Note that the exponent of tractability goes
to infinity as �2 approaches 1.

We now consider the general case of finitely many positive eigenvalues.

Corollary 8.13. Let T be a tractability function. Let k � 2 and �1 D 1, �2 2 .0; 1/,
and �l D 0 for l > k. Then the linear tensor product problem S D fSd g is .T;
unr/-
tractable in the class ƒall iff for some (and thus for all ) j 2 f2; 3; : : : ; kg

Bj D lim inf
d!1

inf
1�˛."/� j �1

j
d

ln T ."�1; d /
mj ."; d/

2 .0;1�; (8.35)
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where mj ."; d/ D ˛."/ ln
�
d
˛."/

.j � 1/
� C .d � ˛."// ln

�
d

d�˛."/
�
. In this case the

exponent t tra of tractability satisfies

B�1
2 � t tra � B�1

k : (8.36)

Proof. Obviously we have B2 � B3 � � � � � Bk . We need to show that B2 > 0

implies that Bk > 0. We first show that B2 > 0 implies

lim inf
d!1

inf
1�˛."/� k�1

k
d

ln T ."�1; d /
m2."; d/

> 0: (8.37)

Let "� satisfy ˛."�/ D bd
2

c. We havem2."�; d / � d ln.2/� dd
2

e ln.1C 2
d
/. Thus for

d
2
< ˛."/ � k�1

k
d we get

m2."; d/ � d ln.2/C d

2
ln.k/ � Cm2."�; d /

for d and C sufficiently large. Since T is non-decreasing with respect to the first
variable, it is easy to see that B2 > 0 implies (8.37).

Now we prove that

mk."; d/

m2."; d/
D 1C ˛."/ ln.k � 1/

˛."/ ln
�
d
˛."/

�C .d � ˛."// ln
�

d
d�˛."/

� (8.38)

is bounded uniformly for all d 2 N and all " with 1 � ˛."/ � k�1
k
d . This follows

easily from

m2."; d/ � ˛."/ ln

�
d

˛."/

�
� ˛."/ ln

�
k

k � 1
�
:

Thus B2 > 0 implies

Bk �
�

lim inf
d!1

inf
1�˛."/� k�1

k
d

ln T ."�1; d /
m2."; d/

��
inf

d2NI1�˛."/� k�1
k
d

m2."; d/

mk."; d/

�
> 0:

Since the linear tensor product problem S 0 having only the two non-zero eigenvalues
�0
1 D �1 and�0

2 D �2 is at most as difficult asS and the problemS 00 having eigenvalues
�00
1 D �1, �00

2 D � � � D �00
k

D �2 and �00
l

D 0 for l > k is at least as difficult as S , the
corollary follows from Theorem 8.12.

Remark 8.14. Theorem 8.12 shows that in the case �3 D � � � D �k D 0 we have
t tra D B�1

2 , while in the case �2 D �3 D � � � D �k we have t tra D B�1
k

.
If we consider a fixed tractability function T , a sequence fS .n/g of tensor prod-

uct problems whose eigenvalues f�.n/i g satisfy �.n/1 D �1 D 1, �.n/2 D �2 2 .0; 1/,

�
.n/
3 ; : : : ; �

.n/

k
> 0, and limn!1 �

.n/
3 D 0, then we do not necessarily have that the
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corresponding exponents of tractability t tran converge to B�1
2 as the following coun-

terexample shows. Let

T ."�1; d / D
minf˛."/;dgX

	D0

�
d

�

�
:

Then it is not hard to see that T is indeed a tractability function and that B2 D 1

(we showed that implicitly in the proof of Theorem 8.12). According to Corol-
lary 8.13 each problem S .n/ is .T;
unr/-tractable. For d 2 N we obviously have
sup"2.0;1/ T ."�1; d / D 2d . If we choose " D "

.n/

d
D 1

2
.�
.n/

k
/d=2, we get n."; S .n/

d
/ D

kd . This implies t tran � ln.k/= ln.2/ for all n. This shows that the sequence ft tran g does
not converge to B�1

2 D 1.

Example 8.15. Let the conditions of Corollary 8.13 hold. We consider the spe-
cial tractability function T .x; y/ D exp.f1.x/f2.y//, where fi W Œ1;1/ ! .0;1/,
i D 1; 2, are non-decreasing functions. Let

ai WD lim inf
x!1

fi .x/

ln x
for i D 1; 2.

Let us assume that S is .T;
unr/-tractable. According to Corollary 8.13 we have
B2 > 0, and from m2."; d/ � ˛."/.ln.d/ � ln.˛."/// for all " satisfying 1 � ˛."/ �
d=2 we get

0 < B2 � lim inf
d!1

f1."
�1/f2.d/

˛."/.ln.d/ � ln.˛."///

� f1."
�1/

˛."/

�
lim inf
d!1

f2.d/

ln.d/

��
lim sup
d!1

ln.d/

ln.d/ � ln.˛."//

�
D f1."

�1/
˛."/

a2:

Thus a2 > 0, and

0 <
B2

a2
� lim inf

"!0

f1."
�1/

˛."/
D lim inf

"!0

�
ln."�1/
˛."/

f1."
�1/

ln."�1/

�
D ln.��1

2 /

2
a1:

Hence, a1 > 0 and a2 > 0 are necessary conditions for the problem S to be .T;
unr/-
tractable, and the exponent of tractability is bounded from below by

t tra � B�1
2 � 2

a1a2 ln.��1
2 /

:

In Corollary 8.24 we will show in particular that the conditions a1 > 0, a2 > 0 are
also sufficient for .T;
unr/-tractability.

Remark 8.16. Under the conditions of Corollary 8.13 we can state a slightly simpler
criterion to characterize .T;
unr/-tractability. The linear tensor product problem S D
fSd g is .T;
unr/-tractable in the class ƒall iff

B WD lim inf
d!1

inf
1�˛."/�d=2

ln T ."�1; d /
˛."/ ln.d=˛."//

2 .0;1�: (8.39)
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The necessity and sufficiency of B > 0 follows from (8.35) and the (easy to check)
inequalities

1

2
m2."; d/ � ˛."/ ln

�
d

˛."/

�
� m2."; d/

for all " satisfying 1 � ˛."/ � d
2

and large d . A drawback of (8.39) is that the quantity
B is not related to the exact exponent of tractability as Bk in Theorem 8.12.

Example 8.17. The tractability criteria (8.35) and (8.39) depend on the second largest
eigenvalue �2 via ˛."/. In fact, for a given tractability function T , a linear tensor
product problem S D fSd g with only two positive eigenvalues for S�

1 S1 may be
.T;
unr/-tractable, but if we increase the value of �2 this may not necessarily be the
case any more. Choose, e.g.,

T .x; y/ WD
(
1 if x 2 Œ1; ��1=2

2 �;

eln.x/.1Cln.y// otherwise.

From criterion (8.39) it easily follows that S is .T;
unr/-tractable. But if we consider
the problem zS where we only increase the second eigenvalue to Q�2 > �2, we see that

for Q��1=2
2 < "�1 � �

�1=2
2 we have

n."; zSd / �
minf Q̨."/;dgX

	D0

�
d

�

�
�
�
d

1

�
D d; where Q̨ ."/ WD

&
2 ln."�1/
ln. Q��1

2 /

'
� 1 � 1.

Thus the problem zSd is obviously not .T;
unr/-tractable since CT ."�1; d /t D C

cannot be larger than d for d > C .

The counterexample above motivates us to state a sufficient condition on T ensur-
ing .T;
unr/-tractability of all linear tensor product problems S with finitely many
eigenvalues regardless of the specific value of �2.

Corollary 8.18. Let T be a tractability function. If

zB WD lim inf
d!1

inf
1<"�1�ed

ln T ."�1; d /
ln."�1/ .1C ln .d= ln."�1///

2 .0;1� (8.40)

then arbitrary linear tensor product problem S with finitely many eigenvalues is
.T;
unr/-tractable. However, the exponent of tractability goes to infinity as �2 ap-
proaches 1.

Proof. The proof of the corollary is easy. For values of " 2 Œe�d ; 1/ satisfying ˛."/ 2
Œ1; d=2� one can simply show that ˛."/ ln.d=˛."// � C ln."�1/.1C ln.d= ln."�1///,
where the number C depends only on �2. If we substitute the upper bound on ˛."/
in the definition of B in (8.39) by the minimum of d=2 and d2d= ln.��1

2 /e � 1, we
therefore see that this modified quantity is strictly positive. From that we can deduce
similarly as in Case 2 in the proof of Theorem 8.12 thatB > 0, and due to Remark 8.16,
the problem S is .T;
unr/-tractable. Obviously, n."; d/ � 2d for "2 < �d2 . Hence,
the exponent of tractability must go to infinity as �2 goes to one.
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Remark 8.19. Condition (8.40) in the corollary above is sufficient for .T;
unr/-
tractability for all linear tensor product problems S with finitely many eigenvalues,
but not necessary as the example T ."�1; d / D exp.ln."�1/.1 C ln.d/// shows, see
Corollary 8.24.

8.4.2 Exponential Decay of Eigenvalues

We begin to study linear tensor problems with infinitely many positive eigenvalues. As
we shall see, tractability results depend on the behavior of the eigenvalues for d D 1.
In this section we assume that they are exponentially decaying whereas in the next
section that they are polynomially decaying.

Theorem 8.20. Let T be a tractability function. Let S be a linear tensor product
problem with exponentially decaying eigenvalues �j ,

exp.�ˇ1.j � 1// � �j � exp.�ˇ2.j � 1// for all j 2 N,

for some positive numbers ˇ1; ˇ2. For i D 1; 2, define

B.i/e WD lim inf
"�1Cd!1

"<�i

ln T ."�1; d /
m
.i/
e ."; d/

;

where �1 D e�ˇ1=2, �2 D p
�2, and

m.i/e ."; d/ WD dzie ln

�
1C d

dzie
�

C d ln

�
1C dzie

d

�
;

with

zi D zi ."/ WD 2

ˇi
ln."�1/ � 1:

Then

S is .T;
unr/-tractable iff B.2/e 2 .0;1�.

Furthermore, B.2/e > 0 is equivalent to B.1/e 2 .0;1� and B2 2 .0;1� with B2 given
by (8.28) for k D 2.

If S is .T;
unr/-tractable then the exponent t tra of tractability satisfies

�
min

˚
B2; B

.1/
e

���1 � t tra � �
B.2/e

��1
:

If ˇ1 D ˇ2 then

t tra D �
B.2/e

��1
:

Before we prove Theorem 8.20, we state an auxiliary lemma.
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Lemma 8.21. For d 2 N and x > �1 let

e.x; d/ WD ˇ̌˚
.i1; : : : ; id / 2 Nd j Pd

jD1 ij < x C d C 1
�ˇ̌
:

Then

e.x; d/ D
�dxe C d

d

�
:

Proof. For d D 1 we have

e.x; 1/ D jfi 2 N j i < x C 2gj D dxe C 1:

Assume by induction that

e.y; d/ D
�dye C d

d

�

for some d 2 N and all y > �1. If x > �1 then

e.x; d C 1/ D
dxeC1X
kD1

e.x C 1 � k; d/ D
dxeC1X
kD1

�dxe C 1 � k C d

d

�

D
dxeX
	D0

�
� C d

d

�
D
�dxe C d C 1

d C 1

�
: �

Proof of Theorem 8.20. Let e.x; d/ be defined as in Lemma 8.21. Then

e.z1; d / D ˇ̌˚
.i1; : : : ; id / 2 Nd j Qd

jD1 exp.�ˇ1.ij � 1// > "2�ˇ̌ � n."; d/:

Similarly, we get n."; d/ � e.z2; d /.
Let us first assume that S is .T;
unr/-tractable, i.e., that there exist positive t andC

such that
n."; d/ � CT ."�1; d /t for all ."�1; d / 2 
unr.

Let us assume that " < e�ˇ1=2, which implies that dz1e � 1. From this inequality we
get due to Lemma 8.21

ln T ."�1; d /
m
.1/
e ."; d/

� ln.C�1/C ln
�dz1eCd

d

�
tm

.1/
e ."; d/

:

Similarly as in the proof of Theorem 8.12 we use Stirling’s formula for factorials, and
conclude

ln
�dz1e C d

d

�
D m.1/e ."; d/C 1

2
ln

�dz1e C d

dz1ed
�

C O.1/: (8.41)

We have

� minfln.d/; lndz1eg � ln

�dz1e C d

dz1ed
�

D ln

�
1

dz1e C 1

d

�
� ln.2/:
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So it is easy to check that we get B.1/e � 1=t , implying B.1/e > 0 and t tra � .B.1/e /�1.
Furthermore, we get from Corollary 8.13 that B2 > 0 and t tra � B�1

2 .
Let us now show that B2 > 0 and B.1/e > 0 imply B.2/e > 0. As a careful analysis

reveals, we get

K WD lim inf
"�1Cd!1

inf
"<e�ˇ1=2

m.1/e ."; d/

m
.2/
e ."; d/

> 0;

which gives us

lim inf
"�1Cd!1

"<e�ˇ1=2

ln T ."�1; d /
m
.2/
e ."; d/

� B.1/e K > 0:

In the case e�ˇ1=2 � " <
p
�2 both functions ˛."/ and z2."/ are bounded. Thus we

have m2."; d/ D ‚.ln.d// D m.2/e ."; d/, where m2 is given in Theorem 8.12. Hence

L WD lim inf
d!1

inf
e�ˇ1=2�"<p

�2

m2."; d/

m
.2/
e ."; d/

> 0;

which yields

lim inf
"�1Cd!1

e�ˇ1=2�"�
p

�2

ln T ."�1; d /
m
.2/
e ."; d/

� B2L > 0:

This means that B.2/e is positive, as claimed.
Now let us assume that B.2/e > 0 and let tı WD ..1 � ı/B.2/e /�1 for a given

ı 2 .0; 1/. Then there exists anR.ı/ such that for any pair ."; d/with "�1Cd > R.ı/

(and " <
p
�2, but for convenience we will not mention this restriction in the rest of

the proof) we get
ln T ."�1; d /
m
.2/
e ."; d/

>

�
1 � ı

2

�
B.2/e :

We want to show that there exists a number Cı such that

n."; d/ � CıT ."
�1; d /tı for all ."�1; d / 2 
unr:

Since n."; d/ � e.z2; d /, it is sufficient to verify the inequality

ln T ."�1; d /
m
.2/
e ."; d/

� ln.C�1
ı
/C ln

�dz2eCd
d

�
tım

.2/
e ."; d/

: (8.42)

The left hand side is at least .1 � ı=2/B.2/e . Using Stirling’s formula (8.41) for z2
instead of z1, we see that the right hand side can be written as

.1 � ı/B.2/e C ln. dz2eCd
dz2ed /

2tım
.2/
e ."; d/

C ln.C�1
ı
/

tım
.2/
e ."; d/

C O.1/

tım
.2/
e ."; d/

:

The limes superior of all the summands, except of .1�ı/B.2/e , goes to 0 as "�1Cd tends
to infinity. Hence, there exists an zR.ı/ such that for all pairs ."; d/with "�1Cd > zR.ı/
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inequality (8.42) holds. Choosing Cı sufficiently large, we see therefore that (8.42)
holds for all ."�1; d / 2 
unr. This shows that we have .T;
unr/-tractability and, since
ı 2 .0; 1/ was arbitrary, the exponent of tractability t tra satisfies t tra � .B.2/e /�1. As
we already have seen, tractability implies B.1/e > 0 and B2 > 0.

Finally, if ˇ1 D ˇ2 then B.1/e D B.2/e , and therefore .minfB2; B.1/e g/�1 � t tra �
.B.2/e /�1 implies that B2 � B.1/e and t tra D .B.2/e /�1.

We illustrate Theorem 8.20 by taking again the tractability function T .x; y/ D
x1Clny . For ˇ1 D ˇ2 D ˇ > 0, we have �2 D exp.�ˇ/. It can be checked that

B.2/e D ˇ

2
D ln.��1

2 /

2
:

Thus the exponent of tractability is

t tra D .B.2/e /�1 D 2

ˇ
D 2

ln.��1
2 /

:

We can simplify the necessary and sufficient conditions in Theorem 8.20 for
.T;
unr/-tractability at the expense of getting good estimates on the exponent of
tractability.

Corollary 8.22. Let T be a tractability function. Let S be a linear tensor product
problem with 0 < �2 < �1 D 1, and with exponentially decaying eigenvalues �j ,

K1 exp.�ˇ1j / � �j � K2 exp.�ˇ2j / for all j 2 N,

for some positive numbers ˇ1; ˇ2; K1 and K2. Then S is .T;
unr/-tractable iff

lim inf
"�1Cd!1

"<
p

�2

ln T ."�1; d /
minfd; ˛."/g.1C j ln.d=˛."//j/ 2 .0;1�: (8.43)

Proof. Since �j � minf�2; K2 exp.�ˇ2j /g for j � 2, we can choose positive ˇ0
1 �

ˇ1, ˇ0
2 � ˇ2 such that

exp.�ˇ0
1.j � 1// � �j � exp.�ˇ0

2.j � 1// for all j 2 N.

Thus we can apply Theorem 8.20. There we showed that B.2/e > 0 is necessary
and sufficient for .T;
unr/-tractability. For 1 � ˛."/ � d=2 and large d , we have
m2."; d/=2 � ˛."/ ln.d=˛."// � m2."; d/. Furthermore, one can also verify that

lim inf
d!1

inf
d=2�˛."/

�
m.2/e ."; d/

minfd; ˛."/g.1C j ln.d=˛."//j/
�q

> 0;

where q 2 f�1;C1g. Thus (8.43) holds iff B.2/e 2 .0;1�, which proves the corollary.
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8.4.3 Polynomial Decay of Eigenvalues

In this section we study tractability for linear tensor product problems with polynomi-
ally decaying eigenvalues for d D 1. We believe that such behavior of eigenvalues is
typical and therefore the results of this section are probably more important than the
results of the previous sections.

Theorem 8.23. Let T be a tractability function. Let S be a linear tensor product
problem with 1 D �1 > �2 > 0 and �j D O.j�ˇ / for all j 2 N and some positive ˇ.
A sufficient condition for .T;
unr/-tractability of S is

F WD lim inf
"�1Cd!1

"<
p

�2

ln T ."�1; d /
ln."�1/.1C ln.d//

2 .0;1�:

If F 2 .0;1�, then the exponent of tractability satisfies

B�1
2 � t tra � max

�
2

ˇ
;

2

ln.��1
2 /

�
F �1;

with B2 given in (8.28) for k D 2.

Proof. LetC1 be a positive number satisfying�j � C1j
�ˇ for all j . WithC2 WD C

1=ˇ
1

we have

n."; 1/ D maxfj j �j > "2g � maxfj j C1j�ˇ > "2g � C2"
�2=ˇ � C2"

�p

for all p > 2=ˇ. From the identity

n."; d/ D
1X
iD1

n
�
"=
p
�i ; Sd�1

�
it now follows by simple induction that

n."; d/ � C2

� 1X
jD1

�
p=2
j

�d�1
"�p for all p > 2=ˇ. (8.44)

Thus for each d0 2 N and all p > 2=ˇ there exists a number C.d0; p/ such that

n."; d/ � C.d0; p/"
�p for all d � d0 and " 2 .0;

p
�2/.

Let now ı 2 .0; 1/ and "ı <
p
�2 such that for all " 2 .0; "ı/ and all d � d0

ln T ."�1; d /
ln."�1/.1C ln.d//

� .1 � ı/F;

where F is assumed to be positive. Then for t D t .ı; p; d0/ WD p.1 � ı/�1F �1 and
C D C.d0; p/ we have

ln.CT ."�1; d /t / � lnC C p.1C ln.d// ln."�1/ � ln n."; d/
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for all d � d0 and " 2 .0; "ı/. This implies that for each t > .2=ˇ/F �1 there exists a
sufficiently large number C D Ct such that

n."; d/ � CT ."�1; d /t for all d � d0 and " 2 .0;
p
�2/. (8.45)

We now consider arbitrarily large d . Let us estimate the sum on the right hand side
of inequality (8.44). For this purpose we choose k 2 N such that �2 > C1k�ˇ . Since
�2 � C12

�ˇ , we have obviously k > 2. We have
1X
jD1

�
p=2
j � 1C �

p=2
2 C � � � C �

p=2

k
C C

p=2
1

1X
jDkC1

j� pˇ
2 ;

and 1X
jDkC1

j� pˇ
2 �

Z 1

k

x� pˇ
2 dx D k� pˇ

2 C1

.pˇ=2/ � 1:

Now we choose p D p.d/ such that

k

�
�
p=2
2 C .C1k

�ˇ /p=2

.pˇ=2/ � 1
�

D 1

d
:

From k�
p=2
2 � 1=d we conclude

p � 2

�
ln d C ln k

ln.��1
2 /

�
:

From �2 > C1k
�ˇ we get

k

�
1C 1

.pˇ=2/ � 1
�
�
p=2
2 � 1

d
;

implying

p � 2

 
ln d C ln k C ln

�
1C 1

.pˇ=2/�1
�

ln.��1
2 /

!
:

Thus we have

p D 2 ln.d/

ln.��1
2 /

.1C od .1// as d ! 1.

Let now � 2 .0; 1/ and d� 2 N such that od .1/ � � and

ln T ."�1; d /
ln."�1/.1C ln.d//

� .1C �/�1F

for all d � d� and all " 2 .0;p�2/. For these d and " we have

n."; d/ � C2

�
1C 1

d

�d�1
"�p � eC2 exp

�
2 ln.d/

ln.��1
2 /

.1C �/ ln."�1/
�

� C3 exp
�

2

ln.��1
2 /

F �1.1C �/2 ln T ."�1; d /
�
;
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where C3 WD eC2. Hence for � D �.�; p; dı/ WD 2.ln.��1
2 //

�1.1C �/2F �1 we get

n."; d/ � C3T ."
�1; d /� for all d � d� and " 2 .0;

p
�2/. (8.46)

The estimates (8.45) and (8.46) show that we have .T;
unr/-tractability. Choosing
d0 D d� in (8.45) and letting � tend to 0 yields the claimed upper bound for t tra.

Since our problem is at least as hard as the problem with only two positive eigen-
values 0 < �2 < �1 D 1 for d D 1, the lower bound t tra � B�1

2 follows from
Theorem 8.12 for k D 2.

The upper bound on the exponent t tra in Theorem 8.23 is, in general, sharp. Indeed,
assume that �j D ‚.j�ˇ / and take T .x; y/ D x1Clny . Then n."; 1/ D ‚."�2=ˇ /
which easily implies that t tra � 2=ˇ. In this case, we haveF D 1 andB2 D 1

2
ln.��1

2 /.
This shows that the upper bound on t tra in Theorem 8.23 is sharp and

t tra D max

�
2

ˇ
;

2

ln.��1
2 /

�
:

Hence, for ˇ � ln.��1
2 / the exponent of tractability is the same as for the problem

with only two positive eigenvalues 0 < �2 < �1 D 1. For this tractability function,
the problem S with polynomially decaying eigenvalues is as hard as the problem with
only two positive eigenvalues. However, for ˇ < ln ��1

2 , the exponent of tractability
depends on ˇ and the problem S is harder than the problem with only two positive
eigenvalues.

Corollary 8.24. Let 1 D �1 > �2 > 0 and �j D O.j�ˇ / for all j 2 N and some
fixed ˇ > 0. Let fi W Œ1;1/ ! .0;1/, i D 1; 2, be non-decreasing functions such
that

lim
xCy!1

f1.x/f2.y/

x C y
D 0:

For T .x; y/ D exp.f1.x/f2.y//, we have .T;
unr/-tractability iff

ai WD lim inf
x!1

fi .x/

ln x
2 .0;1� for i D 1; 2.

If a1, a2 2 .0;1�, then the exponent of tractability satisfies

2

a1a2 ln.��1
2 /

� t tra � max

�
2

ˇ
;

2

ln.��1
2 /

�
1

minfa1b2; b1a2g ;

where

b1 D inf
"<

p
�2

f1."
�1/

ln."�1/
and b2 D inf

d2N

f2.d/

1C ln.d/
:

Proof. We have already seen in Example 8.15 that even for two non-zero eigenvalues
�1, �2 and 0 D �3 D �4 D � � � the condition a1; a2 > 0 is necessary for S to be
.T;
unr/-tractable, and that t tra � 2=.a1a2 ln.��1

2 //.
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Let us now assume that a1, a2 2 .0;1�. It is easy to see that

F D lim inf
"�1Cd!1

"<
p

�2

ln T ."�1; d /
ln."�1/.1C ln.d//

D lim inf
"�1Cd!1

"<
p

�2

f1."
�1/f2.d/

ln."�1/.1C ln.d//
D minfa1b2; b1a2g;

and that a1, a2 > 0 implies b1, b2 > 0. Thus F > 0 and due to Theorem 8.23 we have
.T;
unr/-tractability and the stated upper bound for t tra.

We illustrate Corollary 8.24 again for T .x; y/ D x1Clny D exp ..ln x/.1C ln y//.
We now have a1 D a2 D b1 D b2 D 1. If we assume that �j D ‚.j�ˇ / then, as we
have already checked, t tra D maxf2=ˇ; 2= ln ��1

2 g. Hence, the upper bound on t tra in
Corollary 8.24 is, in general, sharp. This proves that for tractability functions T of the
form T .x; y/ D exp.f1.x/f2.x//, the exponent of tractability may depend on ˇ, i.e.,
on how fast the eigenvalues decay to 0 for d D 1.

We now consider different tractability functions of the form

T .x; y/ D f1.x/f2.x/ D exp.ln f1.x/C ln f2.x//

and show that for such functions the exponent of tractability does not depend on ˇ.
The following theorem generalizes a result from [293] which corresponds to fi .x/ D
exp.ln1C˛i .1C x//.

Theorem 8.25. Let S be a linear tensor product problem with 1 D �1 > �2 > 0

and �j D O.j�ˇ / for all j 2 N. For i D 1; 2 let fi W Œ1;1/ ! Œ1;1/ be a
non-decreasing function with

ai WD lim inf
x!1

ln ln fi .x/

ln ln x
< 1:

Then the function T defined by T .x; y/ D f1.x/f2.y/ is a tractability function.
S is .T;
unr/-tractable iff

a1 > 1; a2 > 1; .a1 � 1/.a2 � 1/ � 1; and B2 2 .0;1�;

where B2 is given by (8.28) for k D 2.
If a1 > 1, a2 > 1 and .a1 � 1/.a2 � 1/ > 1 then B2 D 1 and the exponent of

tractability t tra is 0.
If a1 > 1, a2 > 1, .a1�1/.a2�1/ D 1 andB2 > 0 then the exponent of tractability

is

t tra D B�1
2 D

 
lim inf

"�1Cd!1

"<
p

�2

ln f1."�1/C ln f2.d/

˛."/ ln.d/

!�1
:



8.4 Unrestricted Tractability Domain 335

Proof. Since a1, a2 < 1, it is obvious that T is a tractability function. Let first S be
.T;
/-tractable, i.e., there exist positive numbers C and t such that

n."; d/ � Cf1."
�1/tf2.d/t for all ."�1; d / 2 
unr.

Due to (8.12) we have

n."; d/ �
�
d

˛."/

�
�
�
d

˛."/

�˛."/
;

which implies

˛."/ ln

�
d

˛."/

�
� ln.C /C t ln f1."

�1/C t ln f2.d/: (8.47)

Keeping "fixed and lettingd grow, we see that for any ı > 0 there exists ad 0 D d 0.ı; "/
such that for all d � d 0 we have ˛."/ ln.d/ � .t C ı/ ln f2.d/, and therefore

1C ln ˛."/

ln ln.d/
� ln ln f2.d/

ln ln.d/
C ln.t C ı/

ln ln.d/
:

Thus a2 � 1. Let now " vary and take d D 2˛."/. Since ln f2.d/ D o.d/ D o.˛."//,
we get from (8.47) for arbitrary ı > 0, for "0 D "0.ı/ sufficiently small, and for all
" � "0 that ˛."/ ln.2/ � .t C ı/ ln f1."�1/. Since

ln ˛."/ D ln.2/C ln ln."�1/ � ln ln.��1
2 /C O.1/ as " tends to 0;

the estimate a1 � 1 easily follows. Let now � > a1 � 1. Define

d D d."/ D ˛."/˛."/
�

:

Then (8.47) yields

.˛."/�C1 � ˛."// ln.˛."// � ln.C /C t ln f1."
�1/C t ln f2.d/:

Due to the choice of � and the fact that ˛."/ D 2 ln."�1/= ln.��1
2 /CO.1/, the function

ln f1."�1/ is of order o.˛."/�C1/. We thus have for arbitrary ı, for ".ı/ sufficiently
small, and for all " � ".ı/,

˛."/�C1 ln.˛."// � .t C ı/ ln f2.d/;

leading to

�C 1C ln ln.˛."//

ln.˛."//
� ln.t C ı/

ln.˛."//
C ln ln f2.d/

ln ln.d/

ln ln.d/

ln.˛."//
:

This implies

�C 1 �
�

lim inf
d!1

ln ln f2.d/

ln ln.d/

��
lim

"�1!1
� ln.˛."//C ln ln.˛."//

ln.˛."//

�
D a2�:



336 8 Generalized Tractability

Thus �.a2�1/ � 1. Letting � tend to a1�1we get .a1�1/.a2�1/ � 1. This proves
that a1 > 1 and a2 > 1. Furthermore, due to Theorem 8.12, B2 has to be positive or
infinite for any tractable problems with two positive eigenvalues 0 < �2 < �1 D 1.

Assume now that a1 > 1, a2 > 1, .a1 � 1/.a2 � 1/ � 1, and B2 > 0. Due to
Theorem 8.23, to prove .T;
unr/-tractability it is enough to verify that

F D lim inf
"�1Cd!1

"<
p

�2

ln f1."�1/C ln f2.d/

ln."�1/.1C ln.d//
2 .0;1�:

Assume we have an arbitrary sequence f."�1
m ; dm/g such that f"�1

m C dmg tends to
infinity, "m <

p
�2, and the sequence fFmg, where

Fm WD ln f1."�1
m /C ln f2.dm/

ln."�1
m /.1C ln.dm//

;

converges to F . Then we find a sub-sequence f."�1
n ; dn/g for which

fln ln.dn/= ln ln."�1
n /g

converges to an element x 2 Œ0;1�. For this sub-sequence we show that F >

2B= ln.��1
2 /. If the sequence f"�1

n g or fdng is bounded, then fFng tends to infin-
ity, since a1 and a2 are both strictly larger than 1. So we can assume that f"�1

n g
as well as fdng tend to infinity. First, let us assume that x 2 Œ0; .a1 � 1//. Then
ln.dn/ � ln."�1

n /
a1�1�ı for ı sufficiently small and sufficiently large n � n.ı/. Thus

F � lim inf
n!1

ln f1."�1
n /

ln."�1
n /

a1�ı D 1:

If x 2 ..a2 � 1/�1;1�, we just change the roles of the parameters "�1 and d to get

F � lim inf
n!1

ln f2.dn/

ln.dn/a2�ı D 1:

If .a1 � 1/.a2 � 1/ > 1, then we have considered all possible values of x in Œ0;1�

since then Œ0; .a1 � 1// [ ..a2 � 1/�1;1� D Œ0;1�, and we have shown F D 1.
Theorem 8.23 implies then that the exponent of tractability is t tra D 0 and therefore
B2 D 1.

If .a1 � 1/.a2 � 1/ D 1, we still have to consider the case x D a1 � 1. Then

ln.˛."n// D ln ln."�1
n /Cln.2/�ln ln.��1

2 /CO.1/ 2 Œ.a2�1/�ı; .a2�1/Cı� ln ln.dn/

for arbitrary ı and sufficiently large n � n.ı/. Then ˛."n/ � .ln dn/a2�1Cı D o.dn/.
Hence we have

F D lim inf
n!1

ln f1."�1
n /C ln f2.dn/

˛."n/.1C ln.dn=˛."n///

˛."n/.1C ln.dn=˛."n///

ln."�1
n /.1C ln.dn//

D B2
2

ln.��1
2 /

> 0:
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To obtain the formula for the exponent t tra we can use the bound on t tra from Theo-
rem 8.23. For ˇ � ln ��1

2 we get t tra D B�1
2 . To obtain the same result for ˇ < ln ��1

2

we proceed as follows. In the proof of Theorem 8.23 we showed that for small positive ı
there is a positive number Cˇ;ı depending only on ˇ and ı such that

n."; d/ � Cˇ;ı exp

�
� max

�
2C ı

ˇ
;
2.1C ı/ ln.d/

ln.��1
2 /

�
ln."�1/

�

for all ."�1; d / 2 
unr.
To show that the last right side function is at most C

�
f1."

�1/f2.d/
�t

it is enough
to check that

2.1C ı/

ln.��1
2 /

ln."�1/ ln.d/ � t
�
ln.f1."

�1//C ln.f2.d//
�

for large "�1 and d . Or equivalently that

t � .1C ı/

 
lim inf

"�1Cd!1

"<
p

�2

ln.f1."�1//C ln.f2.d//

˛."/ ln.d/

!�1
:

The last limit inferior is achieved if ˛."/ is a power of ln.d/, and therefore it is the
same as B2. Since ı can be arbitrarily small we conclude that t tra � B�1

2 . The lower
bound on t tra from Theorem 8.23 then implies t tra D B�1

2 , as claimed. This completes
the proof of Theorem 8.25.

Remark8.26. Let the conditions of Theorem 8.25 hold and assume thata1 > 1, a2 > 1
and .a1 � 1/.a2 � 1/ D 1. Then condition B2 2 .0;1� does not necessarily hold as
the following example shows. Let ı W Œ1;1/ ! Œ0;1/ be a decreasing function with
limx!1 ı.x/ D 0. Define

fi .x/ D exp
�

ln.x/2�ı.x/� for i D 1; 2.

Then we have obviously a1 D 2 D a2 and .a1 � 1/.a2 � 1/ D 1. But

�
ln ��1

2

��1
B2 � lim inf

"�1Cd!1

"�1Dd

ln."�1/2�ı."�1/ C ln.d/2�ı.d/

ln."�1/ ln.d/
D 2 lim inf

d!1
ln.d/�ı.d/

D 2 lim inf
d!1

exp .�ı.d/ ln ln.d// :

If we choose, e.g., ı.x/ D .ln ln ln.x//�1, then we see that B2 D 0.

We stress again that the exponent of tractability in Theorem 8.25 does not depend
on ˇ and it is B�1

2 for all polynomial decaying eigenvalues with the same two largest
eigenvalues 0 < �2 < �1 D 1. However, B2 depends on particular functions fi
satisfying the conditions of Theorem 8.25. We now show that B2 can take any positive
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value or even be infinite. Indeed, take fi .x/ D exp
�
ci Œ ln x�.1C˛i /

�
for positive ci and

˛i . Then ai D 1C ˛i . For ˛1˛2 D 1 it can be checked that

B2 D c2.1C ˛2/

�
c1˛1

c2

�1=.1C˛1/ ln.��1
2 /

2
: (8.48)

Taking, c2 D c1 D c and varying c for fixed ˛i , we see that B2 can be any positive
number with the same limits ai .

On the other hand, for fi .x/ D exp
�
ln.e C ln x/Œ ln x�1C˛i

�
, and ˛1˛2 D 1we get

ai D 1C ˛i as before, but B2 D 1.
We also stress that in Theorem 8.25 we assume that the eigenvalues decay at

least polynomially. This assumption holds, in particular, for finitely many positive or
exponentially decaying eigenvalues. We summarize this discussion in the following
remark.

Remark 8.27. As long as a tractability function T is of product form, T .x; y/ D
f1.x/f2.x/, then .T;
unr/-tractability of S as well as the exponent of tractability
depend only on the functions f1, f2 and the second eigenvalue �2 as long as the
eigenvalues �j decay at least polynomially. Hence, if we have two problems, one with
only two positive eigenvalues 0 < �2 < �1 D 1, and the second with the same two
eigenvalues and the rest of them are non-negative and decaying polynomially, then
these two problems lead to the same tractability conditions and to the same exponents
of tractability.

We stress that this property does not hold for more general tractability functions. For
instance, if we consider T .x; y/ D exp.g1.x/g2.y//, i.e, when ln T is of product form,
then the exponent of tractability may depend on the rate of decay of eigenvalues. This
holds, for instance, forT .x; y/ D exp.ln.x/.1Cln.d/// as shown after Corollary 8.24.

8.5 Comparison

We briefly compare tractability results for the restricted and unrestricted domains. We
consider linear tensor product problems S with "20 < �2 < �1 D 1. Then

• Strong .T;
unr/-tractability ofS as well as strong .T;
res/-tractability ofS does
not hold regardless of the tractability function T .

• Consider finitely many, say k, positive eigenvalues as in Section 8.4.1.

It is easy to see from (8.30) that for ."; d/ with d � d�, the information com-
plexity n."; d/ is uniformly bounded in "�1. Therefore the more interesting case
is when ."�1; d / 2 Œ1; "�1

0 / � N. Then n."; d/ D ‚.d˛."// with the factors in
the Theta-notation only dependent on "0, �2 and k. So we have a polynomial
dependence on d which obviously implies weak tractability. It follows from
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Theorem 8.3 that .T;
res/-tractability of S holds iff

Bres ´ lim inf
d!1

inf
1�˛."/�˛."0/

ln T ."�1; d /
˛."/ ln.d/

2 .0;1�; (8.49)

and the exponent of tractability is 1=Bres.

In particular, we have polynomial tractability, i.e., when T .x; y/ D xy, with the
exponent

˛."0/ D

2 ln."�1

0 /

ln.��1
2 /

�
� 1:

This exponent can be arbitrarily large if "0 is small or �2 close to one. On the
other hand, it is interesting that the exponent does not depend on the total number
k of positive eigenvalues.

As we already said, for the unrestricted domain
unr we do not have polynomial
tractability of S . This agrees with the fact that the exponent of polynomial
tractability for the restricted domain goes to infinity as "0 approaches 0, and for
the unrestricted domain formally "0 D 0.

• Consider exponentially decaying eigenvalues �j D exp.�ˇ.j � 1// for a posi-
tive ˇ. Then Theorem 8.10 states that .T;
res/-tractability of S holds iff

Ae;res ´ lim inf
x!1

ln T .x; 1/

ln ln.x/
2 .0;1� and Bres 2 .0;1�;

where Bres is given by (8.49). Furthermore, if Ae;res D 1 then the exponent of
tractability is B�1

res .

Hence, we again have polynomial tractability, and indeed since Ae;res D 1 and
�2 D exp.�ˇ/, the exponent of polynomial tractability is

˛."0/ D

2 ln "�1

0

ˇ

�
� 1:

As we know, for the unrestricted domain 
unr we do not have polynomial
tractability.

Take now T .x; y/ D x1Clny . Then Ae;res D 1 and Bres D ˇ=2. Furthermore,
as we already know, B.2/e D ˇ=2. So we have .T;
res/-tractability as well as
.T;
unr/-tractability with the same exponents 2=ˇ. Hence, there is no much
difference between the restricted and unrestricted domains for this particular
tractability function.

Note also the difference in the exponents for the last two tractability functions
and for the restricted domain. For polynomial tractability, the exponent depends
on "0 and goes to infinity as "0 approaches 0. For the second tractability function,
the exponent does not depend on "0.
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• Consider polynomially decaying eigenvalues �j D ‚.j�ˇ / for a positive ˇ.
Then Theorem 8.10 states that .T;
res/-tractability of S holds iff

Ap;res WD lim inf
x!1

ln T .x; 1/

ln.x/
2 .0;1� and Bres 2 .0;1�:

If this holds then the exponent of tractability is

t tra D maxf2=.ˇAp;res/; 1=Bresg:

Let us consider polynomial tractability, i.e., T .x; y/ D xy. Then we have
Ap;res D 1 and, as stated above, Bres D ˛."0/

�1. Due to Theorem 8.10 we have
.T;
res/-tractability with t tra D maxf2=ˇ; ˛."0/g but, as already mentioned, no
.T;
unr/-tractability.

Take now T .x; y/ D exp.ln2 x/ exp.ln2 y/. Then Ap;res D Bres D 1, and S is
.T;
res/-tractable with t tra D 0. For the unrestricted case, we conclude from
(8.48) that S is .T;
unr/-tractable with t tra D .ln.��1

2 //
�1. Hence, we have

tractability in both cases but the exponents are quite different.

Let now T .x; y/ D x1Clny . Then Ap;res D 1 and Bres D ˇ=2. Thus S
is .T;
res/-tractable with t tra D 2=ˇ, see also Theorem 8.10. As already
stated, we have also .T;
unr/-tractability with the exponent of tractability t tra D
maxf2=ˇ; 2= ln.��1

2 /g.

8.6 Notes and Remarks

NR 8:1. As already mentioned, this chapter is basically equivalent to the two papers
[69], [70].



Appendix A

Reproducing Kernel Hilbert Spaces of Sobolev Type

Sobolev spaces are used in many applications. Examples include the solution of impor-
tant computational problems such as differential and integral equations, and problems
in financial mathematics. There are many variants of Sobolev spaces. In this book,
we usually study Sobolev spaces that are also Hilbert spaces. Moreover, we consider
spaces which are often called Sobolev spaces of dominating mixed smoothness. A
recent survey about such spaces can be found in the paper of Schmeisser [209].

We wish to stress an important difference between the theory of function spaces and
the study of tractability. In the theory of function spaces, one often studies properties
that do not change if a norm is replaced by an equivalent norm. This is different from
the study of tractability since tractability very much depends on the specific norm. The
reader will notice that some of the spaces considered here are identical as vector spaces
with equivalent norms but lead to different tractability results. The reason is that the
corresponding numbers for the equivalence of norms usually depend exponentially on
the number of variables.

A.1 Korobov Spaces

Korobov spaces are probably the most important spaces for the study of computational
problems for periodic smooth functions. These spaces have also many interesting
applications for non-periodic functions due to interesting relations and estimates be-
tween the complexity for the periodic and non-periodic computational problems such
as multivariate integration, see Volume II.

The Korobov space HKor
d

D Hd;˛ is a separable Hilbert space that consists of
complex-valued functions defined on Œ0; 1�d . The parameter ˛ � 0 measures the
smoothness of these functions. For ˛ D 0, the Korobov space HKor

d
D L2.Œ0; 1�

d /

is the same as the L2 space of square Lebesgue integrable functions. For ˛ > 0, the
Korobov space HKor

d
is a proper subset of L2.Œ0; 1�d /. For ˛ > 1=2 it consists of

functions that are periodic in each variable with period 1 and enjoy some smoothness
property measured by ˛.

For h D Œh1; h2; : : : ; hd � 2 Zd and f 2 L2.Œ0; 1�d /, let Of .h/ denote the Fourier
coefficient of f ,

Of .h/ D
Z
Œ0;1�d

exp .�2� ih � x/ f .x/ dx;

where i D p�1 and h � x D h1x1 C h2x2 C � � � C hdxd .
We consider a little more general case of the Korobov spaces than usually studied
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and define the inner product and the norm inHd;˛ depending on two positive parameters
ˇ1 and ˇ2. We then discuss various values of ǰ and relate them to the cases studied
before.

For ˛ � 0, define

%d;˛.h/ D
dY
jD1

�
ˇ�1
1 ı0;hj

C ˇ�1
2 .1 � ı0;hj

/jhj j2˛� ;
where ı is the Kronecker delta function. For h D 0, we have %d;˛.0/ D ˇ�d

1 . For
˛ D 0, we have

%d;0.h/ D ˇ
�jfj jhj D0gj
1 ˇ

�.d�jfj jhj D0gj/
2 :

The Korobov space HKor
d

consists of functions for which

kf kHKor
d

D
� X
h2Zd

%d;˛.h/j Of .h/j2
�1=2

< 1:

The inner product is defined for f; g 2 Hd;˛ as

hf; giHd;˛
D

X
h2Zd

%d;˛.h/ Of .h/ Og.h/:

As in [123], we have adopted an unconventional notation in which the parameter ˛ in
the traditional notation is replaced by 2˛. This is done, as we shall see, to simplify the
expression for the Korobov norm in terms of derivatives. The traditional notation was
used in e.g., [45], [95], [172], [218].

Korobov spaces have been studied for multivariate integration and approximation
in many papers for ˇ1 D ˇ2 D 1, and with our ˛ replaced by ˛=2. There are too many
papers to cite, and we only give the reference to the book of Sloan and Joe [214]. The
case of ˇ1 D 1 and ˇ2 D .2�/�2˛ , was studied in [123]. As we shall see in a moment,
the latter choice of ǰ simplifies the relations between the Korobov norm and the norm
involving derivatives of functions.

In the theory of function spaces, Korobov spaces are sometimes called periodic
Sobolev spaces of dominating mixed smoothness, see e.g., Sickel and Ullrich [212]
and the survey Schmeisser [209]. Also the notion of functions with bounded mixed
derivative is very common, see the book of Temlyakov [232].

For h 2 Zd , define

eh.x/ D %d;˛.h/
�1=2 exp .2� ih � x/ :

It is easy to check that for � 2 Zd we have Oeh.�/ D %d;˛.h/
�1=2ıh;� . This implies that

heh; e� iHd;˛
D ıh;� for all h; � 2 Zd .
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Hence, fehgh2Zd is an orthonormal basis of Hd;˛ . Note that each eh is of the product
form,

eh.x/ D
dY
jD1

ehj
.xj /

with

ehj
.xj / D �

ˇ�1
1 ı0;hj

C ˇ�1
2 .1 � ı0;hj

/jhj j2˛��1=2 exp
�
2� ihjxj

�
:

This easily yields that Hd;˛ is the tensor product Hilbert space

Hd;˛ D H1;˛ ˝H1;˛ ˝ � � � ˝H1;˛; d times:

Here, H1;˛ is the Hilbert space of univariate functions with the inner product

hf; giH1;˛
D
X
h2Z

%1;˛.h/ Of .h/ Og.h/;

and fehgh2Z is its orthonormal basis.
The smoothness parameter ˛ moderates the rate of decay of the Fourier coefficients

of the functions and guarantees the existence of some derivatives of the functions. To
see this more clearly, assume for a moment that d D 1 and let ˛ D r � 1 be an integer.
Then

kf k2H1;r
D ˇ�1

1 j Of .0/j2 C ˇ�1
2

X
h2Z;h6D0

jhj2r j Of .h/j2 < 1:

On the other hand, we know that

f .x/ D
X
h2Z

Of .h/ exp.2� ih � x/:

From this it follows that f is r times differentiable, and its kth derivative is absolutely
continuous for k D 1; 2; : : : ; r � 1, whereas the r th derivative belongs to L2. Indeed,
for k D 1; 2; : : : ; r , we have

f .k/.x/ D .2� i/k
X

h2Z;h6D0
hk Of .h/ exp.2� ih � x/:

For k � r � 1, the last series is pointwise convergent since

jf .k/.x/j � .2�/k
X

h2Z;h6D0
j Of .h/jŒ%1;r.h/�1=2jhkj=Œ%1;r.h/�1=2

� .2�/k
�X
h2Z

%1;r.h/j Of .h/j2
�1=2�

ˇ2
X

h2Z;h6D0
jh2kj=jhj2r

�1=2

D 2.2�/kˇ
1=2
2 kf kH1;r

�.2.r � k//1=2 < 1;
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with � being, as always, the Riemann zeta function. For k D r this argument yields
that f .r/ belongs to L2Œ0; 1�.

Absolute continuity for k < r � 1 is obvious since f .k/ is even Lipschitz. For
k D r � 1 it is easy to check that f .r�1/.x/ D f .r�1/.a/C R x

a
f .r/.t/ dt holds for

any a 2 Œ0; 1� which is equivalent to absolute continuity.
Orthonormality of the functions fexp.2� ih � x/g in L2.Œ0; 1Œ/ implies thatZ 1

0

jf .r/.x/j2 dx D .2�/2r
X

h2Z;h6D0
jhj2r j Of .h/j2:

Since Of .0/ D R 1
0
f .x/ dx, this means that

kf k2H1;r
D ˇ�1

1

ˇ̌̌
ˇ
Z 1

0

f .x/ dx

ˇ̌̌
ˇ
2

C ˇ�1
2 .2�/�2r

Z 1

0

jf .r/.x/j2 dx:

For ˇ1 D 1 and ˇ2 D .2�/�2r we have an especially pleasing relation,

kf k2H1;r
D
ˇ̌̌
ˇ
Z 1

0

f .x/ dx

ˇ̌̌
ˇ
2

C
Z 1

0

jf .r/.x/j2 dx: (A.1)

Hence, for d D 1 and any arbitrary positive ˇ1 and ˇ2, the space H1;r consists of
periodic functions whose derivatives up to the .r � 1/st are absolutely continuous and
the r th derivative belongs to L2.

Assume now that d � 1. As always, Œd � D f1; 2; : : : ; dg. For h 2 Zd define
uh D fj 2 Œd � j hj 6D 0g. For any u 	 Œd �, let

Zu D fh 2 Zd j uh D ug:
It is obvious that the sets Zu are disjoint and Zd D S

u�Œd� Zu. We can then rewrite
the inner product of Hd;˛ as

hf; giHd;˛
D

X
u�Œd�

X
h2Zu

ˇ
�.d�juj/
1 ˇ

�juj
2

Of .h/ Og.h/
Y
j2u

jhj j2˛:

For an integer ˛ D r � 1, define the differentiation operator

Du;rf D @rjujQ
j2u @x

r
j

f:

For u D ;, we have D;;rf D f . We also need to define the integration operator,

I�uf .x/ D
Z
Œ0;1�d�juj

f .x/ dx�u;

where we integrate over variables not in the set u and variables in u are intact. For
u D Œd �, we have I�Œd�f D f . Finally, let

Vu;rf D Du;rI�uf:
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In particular, we have V;;rf D R
Œ0;1�d

f .x/ dx, and VŒd�;rf D f .r;r;:::;r/.
We claim that

hf; giHd;r
D

X
u�Œd�

ˇ
�.d�juj/
1 ˇ

�juj
2 .2�/�2rjuj

Z
Œ0;1�d

Vu;rf .x/Vu;rg.x/ dx:

Indeed, using again f .x/ D P
h2Zd

Of .h/ exp.2� ih � x/ we obtain

Du;rf .x/ D
X
h2Zd

Of .h/.2� i/rjuj�Y
j2u

hrj

�
exp.2� ih � x/:

Observe that if hj D 0 for j 2 u then the corresponding term in the last sum is 0.
Therefore we can sum up only terms with h such that u 	 uh, i.e.,

Du;rf .x/ D
X

h2Zd ;u�uh

Of .h/.2� i/rjuj�Y
j2u

hrj

�
exp.2� ih � x/:

This leads to

Vu;rf .x/ D
X

h2Zd ;u�uh

Of .h/.2� i/rjuj�Y
j2u

hrj

� Z
Œ0;1�d�juj

exp.2� ih � x/ dx�u

D
X

h2Zd ;u�uh
hj D0 for all j …u

Of .h/.2� i/rjuj�Y
j2u

hrj

�
exp

�
2� i

X
j2u

hjxj

�

D
X
h2Zu

Of .h/.2� i/rjuj�Y
j2u

hrj

�
exp

�
2� i

X
j2u

hjxj

�
:

Hence Z
Œ0;1�d

Vu;rf .x/Vu;rg.x/ dx D .2�/2rjuj X
h2Zu

Of .h/ Og.h/
�Y
j2u

h2rj

�
;

from which our claim follows. Again for

ˇ1 D 1 and ˇ2 D .2�/�r

we have a pleasing relation

hf; giHd;r
D

X
u2Œd�

Z
Œ0;1�d

Vu;rf .x/Vu;rg.x/ dx:

This formula for f D g and d D 1 agrees with (A.1). For d D 2, it takes the form

kf k2H2;r
D
ˇ̌̌
ˇ
Z
Œ0;1�2

f .x1; x2/ dx1 dx2

ˇ̌̌
ˇ
2

C
Z 1

0

ˇ̌̌
ˇ
Z 1

0

@f .x1; x2/

@x1
dx2

ˇ̌̌
ˇ
2

dx1

C
Z 1

0

ˇ̌̌
ˇ
Z 1

0

@f .x1; x2/

@x2
dx1

ˇ̌̌
ˇ
2

dx2 C
Z
Œ0;1�2

ˇ̌̌
ˇ@2f .x1; x2/@x1@x2

ˇ̌̌
ˇ
2

dx1 dx2:
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The Korobov space Hd;˛ is a reproducing kernel Hilbert spaces iff ˛ > 1=2.
Indeed, for ˛ > 1=2 and x; y 2 Œ0; 1�d define the kernel

Kd;˛.x; y/ D
X
h2Zd

%�1
d;˛.h/ exp.2� ih � .x � y//: (A.2)

Since

%�1
d;˛.h/ D

dY
jD1

�
ˇ�1
1 ı0;hj

C ˇ�1
2 .1 � ı0;hj

jhj j2˛��1

D
dY
jD1

�
ˇ1ı0;hj

C ˇ2.1 � ı0;hj
/jhj j�2˛�;

we easily check that Kd is well defined and

jKd;˛.x; y/j � Kd;˛.x; x/ D
X
h2Zd

%�1
d;˛.h/ D

dY
jD1

.ˇ1 C 2ˇ2�.2˛// < 1:

Note that to claim that �.2˛/ is well defined we must assume that ˛ > 1=2.
To show that Kd;˛ is a reproducing kernel of Hd;˛ observe that4Kd;˛. � ; x/.h/ D %�1

d;˛.h/ exp
� � 2� ih � x�;

and therefore

˝
f;Kd;˛. � ; x/˛

Hd;˛
D

X
h2Zd

%d;˛.h/ Of .h/4Kd;˛. � ; x/.h/

D
X
h2Zd

Of .h/ exp .2� ih � x/ D f .x/;

as needed.
On the other hand, if Hd;˛ is a reproducing kernel Hilbert space then

Lx.f / D f .x/ for all f 2 Hd;˛ ,

is a continuous linear functional for any x 2 Œ0; 1�d . Indeed,

f .x/ D
X
h

%
1=2

d;˛
.h/ Of .h/%�1=2

d;˛
.h/ exp.2� ih � x/

yields

jf .x/j2 � kf k2Hd;˛

X
h2Zd

%�1
d;˛.h/ D kf k2Hd;˛

dY
jD1

.ˇ1 C 2ˇ2�.2˛//:
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Note that the last estimate is sharp. Hence it is finite iff ˛ > 1=2, as claimed.
The reproducing kernel Kd;˛ can also be written in the product form as

Kd;˛.x; y/ D
dY
jD1

K1;˛.xj ; yj /

with

K1;˛.xj ; yj / D
X
h2Z

%�1
1;˛.h/ exp

�
2� ih.xj � yj /

�

D ˇ1 C 2ˇ2

1X
hD1

cos
�
2�h.xj � yj /

�
h2˛

:

If ˛ D r is a positive integer, then the reproducing kernel Kd;˛ is related to the
Bernoulli polynomial B2r of degree 2r since B2r has the Fourier series

B2r.x/ D .�1/rC1.2r/Š
X

h2Z;h6D0
.2�h/�2r exp .2� ihx/

D 2.�1/rC1.2r/Š
.2�/2r

1X
hD1

cos.2�hx/

h2r
:

Then

Kd;˛.x; y/ D
dY
jD1

�
ˇ1 C ˇ2.�1/rC1.2�/2r

B2r.fxj � yj g/
.2r/Š

�
;

where fxj � yj g denotes the fractional part of xj � yj .

A.1.1 Weighted Korobov Spaces

We define the weighted Korobov space HKor
d;�

D Hd;˛;� for ˛ � 0 and a sequence
of non-negative weights � D f�d;ug, where d 2 N and u is, as always, an arbitrary
subset of Œd � WD f1; 2; : : : ; dg.

To obtain the weighted Korobov space we only need to generalize %d;˛.h/ which
are used for the inner product and norm of the Korobov space HKor

d
. For h 2 Zd , we

already used
uh D fj 2 Œd � j hj 6D 0g

as the set of indices of h with non-zero components. Let

%d;˛;� .h/ D ��1
d;uh

%d;˛.h/ D 1

�d;uh
ˇ
d�juhj
1 ˇ

juhj
2

Y
j2uh

jhj j2˛:

For �d;uh
D 0 we formally set %d;˛;� .h/ D 1.
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Then we proceed as in the previous section with the only difference that we take
%d;˛;� .h/ instead of %d;˛.h/. Hence, the weighted Korobov space HKor

d;�
consists of

complex-valued functions defined on Œ0; 1�d for which

kf kHKor
d;�

D
� X
h2Zd

%d;˛;� .h/j Of .h/j2
�1=2

< 1:

Here, we adopt the notation that if %d;˛;� .h/ D 1 then we have Of .h/ D 0 and interpret
the product 1 0 as 0. Hence, if �d;u D 0 then Of .h/ D 0 for all indices h for which
uh D u.

The inner product for f; g 2 Hd;˛;� is, of course, defined as

hf; giHd;˛;�
D

X
h2Zd

%d;˛;� .h/ Of .h/ Og.h/:

Clearly, for �d;u � 1 we have HKor
d;�

D HKor
d

.

For ˛ D 0, the weighted Korobov space is a weighted L2.Œ0; 1�d / which is alge-
braically the same as L2.Œ0; 1�d / if all �d;u > 0. For ˛ > 1=2, the weighted Korobov
space is a separable Hilbert space consisting of functions which are periodic in each
variable with period 1.

For h 2 Zd and �d;uh
> 0, define

eh;� .x/ D %d;˛;� .h/
�1=2 exp .2i�h � x/

D �
1=2

d;uh
ˇ
.d�juhj/=2
1 ˇ

juhj=2
2

Y
j2uh

exp
�
2� ihjxj

�
jhj j˛ :

It is easy to check that feh;�gh2Zd is an orthonormal basis of Hd;˛;� . Note that eh;�
depends only on variables belonging to uh.

For general weights, the space Hd;˛;� is not a tensor product Hilbert space. How-
ever, for product weights, �d;; D 1 and �d;u D Q

j2u �d;j for non-empty u, it is a
tensor product Hilbert space of the form

Hd;˛;� D H1;˛;�d;1
˝H1;˛;�d;2

˝ � � � ˝H1;˛;�d;d

with the Hilbert space H1;˛;�d;j
of univariate functions and the inner product

hf; giH1;˛;�d;j
D
X
h2Z

%1;˛;�d;j
.h/ Of .h/ Og.h/

D ˇ�1
1

Of .0/ Og.0/C ��1
d;jˇ

�1
2

X
h2Z;h6D0

Of .h/ Og.h/jhj2˛:

For general weights � D f�d;ug, functions in Hd;˛;� are at least as smooth as
functions inHd;˛ , and for non-zero weights �d;u they are of the same smoothness. Of
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course, if all �d;u D 0 thenHd;˛;� D f0g, and if all �d;u D 0 for u 6D ; and �d;; > 0,
then Hd;˛;� is the set of constant functions. So these special weights increase the
smoothness of functions.

The weighted Korobov space is a reproducing kernel Hilbert space if ˛ > 1=2 and
the condition ˛ > 1=2 is also necessary if at least one of the weights �d;u is non-zero
for u 6D ;. Indeed, for x; y 2 Œ0; 1�d define

Kd;˛;� .x; y/ D
X
h2Zd

%�1
d;˛;� .h/ exp .2� ih � .x � y// : (A.3)

Observe that if �d;u D 0 for all u 6D ; then Kd;˛;� .x; y/ D �d;;ˇd1 is well defined
independently of ˛. If at least one of �d;u > 0 for u 6D ; then

Kd;˛;� .x; y/ D
X
h2Zd

�d;uh
ˇ
d�juhj
1 ˇ

juhj
2

Y
j2uh

exp
�
2�hj .xj � yj /

�
jhj j2˛

D
X

u�Œd�

X
h2Zd ;uhDu

�d;uˇ
d�juj
1 ˇ

juj
2

Y
j2u

exp
�
2� ihj .xj � yj /

�
jhj j2˛

D
X

u�Œd�
�d;uˇ

d�juj
1 .2ˇ2/

juj Y
j2u

1X
hD1

cos
�
2�h.xj � yj /

�
h2˛

:

For x D y we obtain

Kd;˛;� .x; x/ D
X
u2Œd�

�d;uˇ
d�juj
1 .2ˇ2/

juj�.2˛/juj:

Hence, it is well defined iff ˛ > 1=2.
As in the previous section, if ˛ D r is a positive integer then

Kd;r;� .x; y/ D
X

u�Œd�
�d;u.�1/.rC1/juj.2�/2rjujˇd�juj

1 ˇ
juj
2

Y
j2u

B2r.fxj � yj g/
.2r/Š

:

Proceeding as in the previous section, we can check thatKd;˛;� is the reproducing
kernel of the weighted Korobov space Hd;˛;� . For general weights, Kd;˛;� cannot
be written in the product form. However, for the product weights �d;; D 1 and
�d;u D Q

j2u �d;j for non-empty u, we have

Kd;˛;� .x; y/ D
dY
jD1

K1;˛;�d;j
.xj ; yj /

with

K1;˛;�d;j
.xj ; yj / D ˇ1 C 2�d;jˇ2

1X
hD1

cos
�
2�.xj � yj /

�
h2˛

:
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If ˛ D r is a positive integer then

Kd;r;� .x; y/ D
dY
jD1

�
ˇ1 C �d;jˇ2.�1/rC1.2�/2r

B2r.fxj � yj g/
.2r/Š

�

with the Bernoulli polynomial B2r .

A.2 Sobolev Spaces

In this section, we restrict ourselves only to Sobolev spaces which are relevant for
financial applications, and this corresponds to the study of multivariate integration and
low discrepancy points. These spaces are reproducing kernel Hilbert spaces related to
tensor product spaces and they consist of functions with relatively low smoothness.

The standard Sobolev spaces are unweighted which corresponds to �d;u D 1. As we
know, polynomial tractability results in many cases can be only obtained for weighted
spaces with sufficiently decaying weights. That is why we adopt the standard Sobolev
spaces to general weights and obtain weighted Sobolev spaces. The first weighted
Sobolev space was introduced in [216], and further variants of weighted Sobolev spaces
were given and analyzed in [218].

We consider here three weighted variants of the standard Sobolev spaces of non-
periodic and periodic functions defined over the d -dimensional unit cube Œ0; 1�d whose
first mixed derivatives are square integrable. These variants differ by the choice of a
norm. The univariate norms are of the form

kf k D �
A2.f /C ��1kf 0k2L2.Œ0;1�/

	1=2
with three different choices of A.f /:

A.f / D kf kL2.Œ0;1�/; A.f / D f .a/; A.f / D
Z 1

0

f .t/ dt;

for some positive � and a 2 Œ0; 1�. The case � D 0 is also allowed and is obtained
by passing with positive � to 0. For � D 0, the three Sobolev spaces considered here
consist of only constant functions.

A.2.1 The First Weighted Sobolev Space

For d D 1 and � > 0, the space H1;� is the Sobolev space of absolutely continuous
real functions defined over Œ0; 1�whose first derivatives belong toL2.Œ0; 1�/. The inner
product in the space H1;� is defined as

hf; gi1 D
Z 1

0

f .x/g.x/ dx C ��1
Z 1

0

f 0.x/g0.x/ dx for all f; g 2 H1;� .
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Following Thomas-Agnan [236] and [280], we show that fekgk2N is an orthogonal
basis of H1;� , where

ek.x/ D cos .�.k � 1/x/ for all x 2 Œ0; 1�.
Note that ek does not depend on � , however, its norm is a function of � given by

kekk1 D �
ı1;k C .1 � ı1;k/

p
2
�q
1C ��1 Œ�.k � 1/�2;

with the Kronecker delta function ı1;k .
Indeed, to show that fekgk2N is an orthogonal basis, it is enough to show that˝

ek; ej
˛
1

D 0 for allk 6D j , which obviously holds, and thatf 2 H1;� and hf; eki1 D 0

for all k 2 N imply that f D 0. Observe that e0
k
.0/ D e0

k
.1/ D 0 for all k 2 N, and

integration by parts yields

˝
f 0; e0

k

˛
L2

D
Z 1

0

e0
k.x/ df .x/ D �

Z 1

0

f .x/e00
k.x/ dx D Œ�.k � 1/�2 hf; ekiL2

;

with L2 D L2.Œ0; 1�/. Hence,

hf; eki1 D �
1C ��1 Œ�.k � 1/�2 � hf; ekiL2

:

Then hf; eki1 D 0 implies that hf; ekiL2
D 0 for all k 2 N. Since f 2 L2 and

fekgk2N is an orthonormal basis of L2, we conclude that f D 0, as claimed.
The reproducing kernel K1 of this space was found by Thomas-Agnan [236] rela-

tively late in 1996, and has the intriguing form

K� .x; y/ D
p
�

sinh
p
�

cosh
�p
�.1 � max.x; y//

�
cosh

�p
� min.x; y/

�
: (A.4)

The reproducing kernel K� can also be written as

K� .x; y/ D
1X
kD1

ek.x/

kekk1
ek.y/

kekk1 for all x; y 2 Œ0; 1�.

For d � 2 and a product weight sequence � D f�d;ug, with �d;; D 1 and �d;u DQ
j2u �d;j for non-empty u 	 Œd � and positive �d;j , the space Hd;� D H.Kd;� / is

the d -fold tensor product of H1;�d;j
, and is a reproducing kernel Hilbert space with

the kernel

Kd;� .x; y/ D
dY
jD1

K�d;j
.xj ; yj / for all x; y 2 Œ0; 1�d . (A.5)

This is the Sobolev space of d -variate real functions defined over Œ0; 1�d with the inner
product

hf; giHd;�
D

X
u�Œd�

Y
j2u

��1
d;j

Z
Œ0;1�d

@jujf
@xu

.x/
@jujg
@xu

.x/ dx: (A.6)
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As always, x D Œx1; x2; : : : ; xd �, and xu denotes the vector with juj components given
by .xu/j D xj for all j 2 u. For u D ;, the integrand is f .x/g.x/.

Due to the tensor product of Hd;� , the sequence fekgk2Nd is an orthogonal basis
of Hd;� , where

ek.x/ D
dY
jD1

cos
�
�.kj � 1/xj

�
for all x 2 Œ0; 1�d . (A.7)

As for d D 1, this sequence does not depend on � , however, its norm is still a function
of � ,

kekkHd;�
D

dY
jD1

�
ı1;kj

C .1 � ı1;kj
/
p
2
�q
1C ��1

d;j

�
�.kj � 1/	2:

The periodic variant of this weighted Sobolev space is when we take the tensor
product of univariate periodic functions from H1;�d;j

with the additional assumption
that f .0/ D f .1/. Then, see [218], the kernel is

Kd;� .x; y/ D
dY
jD1

�
K�d;j

.xj ; yj / � aj
�

sinh.bj .xj � 1=2// sinh.bj .yj � 1=2//��;
(A.8)

where aj D p
�d;j = sinh

p
�d;j and bj D p

�d;j .
We now briefly discuss an arbitrary weight sequence �d;u. Note that the space

Hd;� can be now defined as a Hilbert space with inner product given by (A.6) withQ
j2u �d;j replaced by a positive �d;u. That is, the inner product is now

hf; giHd;�
D

X
u�Œd�

��1
d;u

Z
Œ0;1�d

@jujf
@xu

.x/
@jujg
@xu

.x/ dx: (A.9)

Note that the spaces Hd;� for arbitrary positive weights �d;u are equivalent, and
the sequence fekgk2Nd given by (A.7) is an orthogonal basis for all Hd;� . However,
the norm of ek depends on � and is now given by

kekkHd;�
D 2�jfj2Œd�jkj>1gj=2�1C

X
;6Du�Œd�

��1
d;u

Y
j2u

�
�.kj � 1/	2 �1=2:

The space Hd;� is a reproducing kernel Hilbert space with the kernel

Kd;� .x; y/ D
X
k2Nd

ek.x/

kekkHd;�

ek.y/

kekkHd;�

for all x; y 2 Œ0; 1�d .

Hence, for general weights, we do not have a closed form of the reproducing kernel
which holds for product weights, see (A.5).
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Observe that kekkL2.Œ0;1�d
D 2�jfj2Œd�jkj>1gj=2, and therefore we have

kekk2
L2.Œ0;1�d /

kekk2Hd;�

D
�
1C

X
;6Du�Œd�

��1
d;u

Y
j2u

�
�.kj � 1/	2 ��1

: (A.10)

This formula will be useful when we study the multivariate approximation problem for
the space Hd;� .

Finally, we add that it is possible to consider also weights with some �d;u D 0. In

this case we must restrict indices k 2 Nd such that
Q
j2u

�
�.kj � 1/	2 D 0. That is,

kj D 1 for some j 2 u. Then we have the expression 0=0which should be interpreted
as 0. In terms of functions, the weight �d;u D 0 means that

@juj

@xu
f D 0

for all f 2 Hd;� . Observe that this implies that

@jvj

@xv
f D 0 for all u 	 v,

and without loss of generality we can assume that also �d;v D 0 for all sets v which
contain u. In this way, we can consider finite-order, or finite-diameter weights also for
the space Hd;� . In particular, if �d;; D 1 and all the rest of the weights are 0, then
Hd;� consists only of constant functions.

A.2.2 The Second Weighted Sobolev Space

The second weighted Sobolev space Hd;� is algebraically the same as the first space
but has a different inner product. This space depends on a vector a 2 Œ0; 1�d and
sometimes it is called the weighted Sobolev space anchored at a, whereas the first
weighted Sobolev space is sometimes referred to as the unanchored space.

As before, for d D 1 and � > 0, the space H1;� consists of absolutely continuous
real functions defined over Œ0; 1� with integrable first derivatives. The inner product is
now

hf; gi1 D f .a/g.a/C ��1
1

Z 1

0

f 0.x/g0.x/ dx for all f; g 2 H1;� ,

where a 2 Œ0; 1�. Its reproducing kernel is

K� .x; y/ D 1C 1
2
�
�jx � aj C jy � aj � jx � yj	 for all x; y 2 Œ0; 1�. (A.11)

Note that K� .x; y/ D 0 for all x � a � y and y � a � x. This means that K�
is decomposable at a if 0 < a < 1. As we shall see in Volume II this is a very useful
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property which allows us to obtain lower bounds on the worst case errors of arbitrary
algorithms for approximation of linear functionals.

The most standard choices of a are 0 and 1. For a D 0, we obtain K� .x; y/ D
1C � min.x; y/, and for a D 1, we obtain K� .x; y/ D 1C � min.1 � x; 1 � y/.

For d � 2, a 2 Œ0; 1�d and an arbitrary weight sequence � D f�d;ug, the space
Hd;� D H.Kd;� / is a reproducing kernel Hilbert space with the kernel

Kd;� .x; y/ D
X

u�Œd�

�d;u

2juj
Y
j2u

�jxj � aj j C jyj � aj j � jxj � yj j	 (A.12)

for all x; y 2 Œ0; 1�d . The inner product of Hd;� is

hf; giHd;�
D

X
u�Œd�

��1
d;u

Z
Œ0;1�juj

@jujf
@xu

.xu; a/
@jujg
@xu

.xu; a/ dxu: (A.13)

Here, .xu; a/ denotes the vector of d components such that .xu; a/j D xj for all j 2 u,
and .xu; a/j D aj for all j … u. Hence, for u D ; we have .xu; a/ D a, and for
u D Œd � we have .xu; a/ D x. For u D ;, the integral is replaced by f .a/g.a/.

The space Hd;� is used for the study of the L2-discrepancy anchored at a, see
Volume II. For a D 0 or a D 1, this space is related to the Wiener sheet measure and
the average case setting, see also Volume II.

The periodic variant of the space Hd;� is obtained as before by assuming that for
d D 1we impose the periodicity condition f .0/ D f .1/. There is a general procedure
how to find the reproducing kernel after such periodization, see Section 2.2 of [218].
Applying this procedure, we find out that the kernel for the periodic case is changed to

zKd;� .x; y/ D
X

u�Œd�

�d;u

2juj
Y
j2u

zKaj
.xj ; yj / for all x; y 2 Œ0; 1�d , (A.14)

where
zKa.x; y/ D jx � aj C jy � aj � jx � yj � 2.x � a/.y � a/:

For product weights, �d;u D Q
j2u �d;j , the spaceHd;� is thed -fold tensor product

of H1;�d;j
and its reproducing kernel has the product form

Kd;� .x; y/ D
dY
jD1

�
1C �d;j

2

�jxj � aj j C jyj � aj j � jxj � aj j	�

for all x; y 2 Œ0; 1�d , whereas its periodic counterpart takes the form

Kd;� .x; y/ D
dY
jD1

�
1C �d;j

2
zKaj
.xj ; yj /

�
for all x; y 2 Œ0; 1�d .
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A.2.3 The Third Weighted Sobolev Space

The third weighted Sobolev space Hd;� is algebraically the same as the first and the
second space but has a different inner product which does not depend on any parameter.
That is why this space, as the first one, is also sometimes called the unanchored Sobolev
space.

As before, for d D 1 and � > 0, the space H1;� consists of absolutely continuous
real functions defined over Œ0; 1� with integrable first derivatives. The inner product is
now

hf; gi1 D
Z 1

0

f .x/ dx
Z 1

0

g.x/ dx C ��1
1

Z 1

0

f 0.x/g0.x/dx for all f; g 2 H1;� .

Its reproducing kernel is

K� .x; y/ D 1C �
2

�
B2.jx � yj/C 2.x � 1

2
/.y � 1

2
/
	

for all x; y 2 Œ0; 1�, (A.15)

where B2 is the Bernoulli polynomial of degree 2, that is, B2.x/ D x2 � x C 1
6

. Note
that B2.jx�yj/ D B2.fx�yg/, where f�g denotes the fractional part. That is why we
can use these two formulas interchangeably.

For d � 2 and an arbitrary weight sequence � D f�d;ug, the space Hd;� D
H.Kd;� / is a reproducing kernel Hilbert space with the kernel

Kd;� .x; y/ D
X

u�Œd�

�d;u

2juj
Y
j2u

�
B2.jxj � yj j/C 2.xj � 1

2
/.yj � 1

2
/
	

(A.16)

for all x; y 2 Œ0; 1�d . The inner product of Hd;� is

hf; gid D
X

u�f1;2;:::;dg

Y
j2u

��1
j

Z
Œ0;1�juj

�Z
Œ0;1�d�juj

@jujf
@xu

.x/ dx�u
�

�
�Z

Œ0;1�d�juj

@jujg
@xu

.x/ dx�u
�

dxu:

(A.17)

Here, x�u denotes the vector xŒd��u of d � juj components. For u D ;, the term of
the last sum is ��1

d;;
R
Œ0;1�d

f .x/ dx
R
Œ0;1�d

g.x/ dx, whereas for u D Œd �, the corre-

sponding term is ��1
d;Œd�

R
Œ0;1�d

@d=@xf .x/ dx
R
Œ0;1�d

@d=@xg.x/ dx.
The periodic variant of the space Hd is obtained as before by assuming that for

d D 1 we impose the periodicity condition f .0/ D f .1/. Then the kernel is changed
to

zKd;� .x; y/ D
X

u�Œd�

�d;u

2juj
Y
j2u

B2.jxj � yj j/ for all x; y 2 Œ0; 1�d . (A.18)

In this case, it is the same as for the Korobov space of Section A.1.1 with ˛ D 1 and
ˇ1 D 1, ˇ2 D .2�/�1.
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For product weights, �d;u D Q
j2u �d;j , the spaceHd;� is thed -fold tensor product

of H1;�d;j
and its reproducing kernel has the product form

Kd;� .x; y/ D
dY
jD1

�
1C �d;j

2

�
B2.jxj � yj j/C 2.xj � 1

2
/.yj � 1

2
/
	�

for all x; y 2 Œ0; 1�d , whereas its periodic counterpart takes the form

zKd;� .x; y/ D
dY
jD1

�
1C �d;j

2
B2.jxj � yj j/

�
for all x; y 2 Œ0; 1�d .



Appendix B

Gaussian Measures

Here we list major properties of Gaussian measures that are needed in our book. A
more detailed study of Gaussian measures can be found, for instance, in the books of
Kuo [118] and Vakhania, Tarieladze and Chobanyan [251].

B.1 Gaussian Measures on Banach Spaces

A probability measure defined on Borel sets of R is called a Gaussian measure if it is
absolutely continuous with respect to the Lebesgue measure on R and has the density

%.x/ D .2�t/�1=2 exp.�.x � ˛/2=.2t//;
where ˛ 2 R and t > 0. The parameters ˛ and t are the mean and the variance of .
Hence

˛ D
Z

R
y.dy/; t D

Z
R
.y � ˛/2.dy/ D

Z
R
y2.dy/ � ˛2:

In this way, mean and variance determine a Gaussian measure on R. For a Borel set A
of R, its Gaussian measure is

.A/ D 1p
2�t

Z
A

exp.�.x � ˛/2=.2t//dx:

It is also possible to take t D 0 in which case the Gaussian measure becomes a point
measure  D ı˛ , i.e.,

.A/ D 1 if ˛ 2 A and .A/ D 0 if ˛ … A
for any Borel set A of R.

Let now k 2 N. For finite dimensional spaces Rk , a probability measure  defined
on Borel sets of Rk is called a Gaussian measure if  is absolutely continuous with
respect to the Lebesgue measure on Rk and has the density

%k.x/ D .2�/�k=2det.M/�1=2 exp
��1

2

˝
M�1.x � ˛; x � ˛˛� ;

where ˛ 2 Rk andM is a k � k symmetric and positive definite matrix, whereas h � ; � i
denotes the Euclidean inner product, hx; yi D Pk

jD1 xjyj . The vector ˛ is called
mean and the matrix M is called the correlation matrix of . Hence

h˛; xi D
Z

Rk

hx; yi.dy/ for all x 2 Rk ,
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and

hMx; zi D
Z

Rk

hy � ˛; xi hy � ˛; zi.dy/ for all x; y 2 Rk .

This means that mean and correlation matrix determine a Gaussian measure on Rk .
For a Borel set A of Rk , its Gaussian measure is

.A/ D 1

.2�/d=2det.M/�1=2

Z
A

exp
��1

2

˝
M�1.x � ˛/; x � ˛˛� dx:

For a diagonal matrixM D diag.t1; t2; : : : ; tk/, with tj > 0, the last formula simplifies
to

.A/ D 1Qk
jD1.2�tj /1=2

Z
A

exp
�

� 1
2

kX
jD1

.xj � j̨ /
2=tj

�
dx:

It is also possible to take tj D 0 for some j by limiting process tj ! 0. For example,
if all tj D 0, we obtain a point measure  D ı˛ , and

.A/ D 1 if ˛ 2 A and .A/ D 0 if ˛ … A
for any Borel set A of Rk .

For the complex numbers these definitions are modified as follows. A probability
measure � is called standard Gaussian measure on C if it has the density

%.z/ D ��1 exp.�jzj2/:
Note that this formally corresponds to the real Gaussian measure on R2 with ˛ D 0

and M D diag
�
1
2
; 1
2

�
.

A measure  on C is called Gaussian if there exist ˛ 2 C and t � 0 such that  is
the image of � under the mapping z 7! ˛ C p

tz. Then, again, the parameter ˛ is the
mean and we obtain

˛ D
Z

C
z.dz/; t D

Z
C

jzj2.dz/ � j˛j2:

We now define a Gaussian measure on a separable Banach spaceF . If dim.F / D
1 then Gaussian measures cannot be defined by means of densities. Instead a different
approach is used. Gaussian measures, as well as arbitrary probability measures, can be
uniquely defined through their characteristic functionals. The characteristic functional
 � of a probability measure  defined on Borel sets of F is given by

 �.L/ D
Z
F

exp .iRe .L.f /// .df /

for all L 2 F �, where i D p�1. The Re stands for the real part and, of course, this is
not needed in the case of a Banach space over the reals.
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A measure  defined on Borel sets of F is Gaussian iff the 1-dimensional images
L�1 are Gaussian for all L 2 F �. That is, for any Borel set of R, we have

L�1.A/ D .ff 2 F j L.f / 2 Ag/ D 1p
2�tL

Z
A

exp.�.x � ˛L/2=.2tL// dx

for some ˛L and tL depending on L. In the complex case, this formula is modified by

L�1.A/ D .ff 2 F j L.f / 2 Ag/ D 1

�tL

Z
A

exp.�jz � ˛Lj2=tL/ dz:

Equivalently, a measure  is Gaussian iff its characteristic functional is of the form

 �.L/ D exp.iL.m�/ � 1
2
L.C�L//

for all L 2 F � for some m� 2 F and a linear operator C� W F � ! F . The element
m� is called the mean element of  and is uniquely defined by the condition

L.m�/ D
Z
F

L.f /.df / for all L 2 F �.

The operator C� is called the correlation operator of  and is uniquely defined by the
condition

L1.C�L2/ D
Z
F

L1.f �m�/L2.f �m�/.df / for all L1; L2 2 F �.

The correlation operator is linear, symmetric in the sense that

L1.C�L2/ D L2.C�L1/;

and non-negative definite, i.e., L.C�L/ � 0 for all L1; L2; L 2 F �. If m� D 0 then
C� is also called the covariance operator of .

For general separable Banach spaces, the complete characterization of the corre-
lation operators is not known. If, however, F is a separable Hilbert space then the
correlation operators are fully characterized by being symmetric, nonnegative definite,
and having a finite trace. That is, C� is a correlation operator of a Gaussian measure
 on F iff C� D C �

� � 0 and

trace.C�/ D
Z
F

kf k2.df / D
dim.F /X
jD1

˝
C��j ; �j

˛
< 1;

where f�j g is a complete orthonormal system of F . In particular, one can choose f�j g
as eigenelements of C�, C��j D �j�j for j D 1; 2; : : : . Thus, the trace of C� is the
sum of the eigenvalues of C� which is finite,

trace.C�/ D
dim.F /X
jD1

�j < 1:
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Without loss of generality we can assume that the eigenvalues �j are non-increasing,
�j � �jC1 for all j 2 N. The eigenvalue �j can be interpreted as the importance
of the direction �j of the space F . For a finite dimensional space F , one can take all
�j equal, i.e., �j D � > 0 for j D 1; 2; : : : ; dim.F /. For an infinite dimensional
space F , we must have decaying eigenvalues. Thus all directions of the space F can
be equally important only if dim.F / < 1. This property is sometimes described that
there is no fair Gaussian measure in infinite dimensional spaces.

We mention a result concerning the measure of a ballBq D fx 2 X j kxk � qg with
respect to a zero-mean Gaussian measure on the separable Hilbert space X , see [242]
for a proof. For all q > 0,

.Bq/ � 1 � 5 exp
� �q2
2 trace.C�/

�
:

Hence, if q2 is large relative to the trace of the correlation operator then the Gaussian
measure of the ball Bq is close to one. This property will be used in the average and
probabilistic settings.

In this book we mainly use Gaussian measures on real Banach spaces, however
only minor changes are needed to consider the complex case. We provide an example
with the Wiener measure. For the real case, we consider the space C.Œ0; 1�/ of real
continuous functions with the sup norm, kf k D supx2Œ0;1� jf .x/j. Then the Wiener
measure w is Gaussian with the zero-mean and with the covariance kernel,

K.x; y/ ´
Z
C.Œ0;1�/

f .x/f .y/w.df / for all x; y 2 Œ0; 1�,

given by K.x; y/ D min.x; y/. Note that f .0/ D 0 with probability 1 for the Wiener
measure.

The complex Wiener space is a triple .CC.Œ0; 1�/;S 0; C/. Here CC.Œ0; 1�/ is the
space of complex valued continuous functions f W Œ0; 1� ! C with the norm kf k D
supx2Œ0;1� jf .x/j. By B we denote the Borel � -algebra induced by the norm. The
canonical process is

Zt .!/ D Xt .!/C iYt .!/ D !.t/; ! 2 CC.Œ0; 1�/:

The probability measure C is the unique probability measure on B such that

• X and Y are independent real processes,

• X0 D Y0 D 0 with probability 1,

• X and Y have independent zero-mean Gaussian increments,

• E..Xt �Xs/2/ D E..Yt � Ys/2/ D t � s for 0 � s � t � 1.
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B.2 GaussianMeasures andReproducingKernelHilbert Spaces

Let F be a separable Banach space of real functions defined on D which is a subset
of Rd for some d 2 N. We assume that for each x 2 D, the linear functional Lx is
continuous, where Lx.f / D f .x/ for all f 2 F .

We equip the spaceF with a zero-mean Gaussian measure with correlation operator
C� W F � ! B . Then

K�.x; y/ D Lx.C�Ly/ D
Z
F

f .x/f .y/.df / for all x; y 2 D,

is called the covariance kernel of .
The covariance kernel K� has the same properties as a reproducing kernel of a

Hilbert space. Indeed, it is symmetric, K�.x; y/ D K�.y; x/, and semi-positive
definite, i.e., the matrix .K�.xi ; xj //i;jD1;:::;m is symmetric and semi-positive definite
for all m and xi ; xj 2 D. This simply follows from the fact that for arbitrary real aj
we have

mX
i;jD1

aiajK�.xi ; xj / D
Z
F

� mX
jD1

ajf .xj /
�2
.df / � 0:

Let
zH D C�.F

�/ D fC�L j L 2 F �g
be a subset of F consisting of functions gL D C�L which we can obtain by varying
L 2 F �. Note that

gL.x/DLx.C�L/D
Z
F

Lx.f /L.f /.df /D
Z
F

f .x/L.f /.df / for all x 2D.

Clearly, zH is a linear subspace of F . We equip zH with the inner product

˝
gL1

; gL2

˛
zH D L1.C�L2/ D

Z
F

L1.f /L2.f /.df / for all L1; L2 2 F �.

This defines a semi-inner product. To prove that this is indeed an inner product assume
that there exists L 2 F � such that hgL; gLi zH D L.C�L/ D 0. Since

jL1.C�L/j � .L1.C�L1//
1=2.L.C�L/

1=2 D 0

then L1.C�L/ D 0 for all L1 2 F �. In particular, Lx.C�L/ D .C�L/.x/ D 0 for all
x 2 D, and gL D C�L D 0, as needed.

Note that for gLx
D C�Lx we have

gLx
.y/ D Ly.C�Lx/ D K�.y; x/ for all y 2 D.

Hence, gLx
D K�. � ; x/ 2 zH for all x 2 D. Furthermore,˝

gL; K�. � ; x/˛ zH D L.C�Lx/ D Lx.C�L/ D .C�L/.x/ D gL.x/
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and this holds for all gL 2 zH and all x 2 D. This proves that K� is a reproducing
kernel of zH .

The space zH is, in general, not a Hilbert space. We define H D H.K�/ as the
completion of zH , and obtain a reproducing kernel Hilbert space with the reproducing
kernel K�. Its inner product is denoted by h � ; � iH .

In this way, a Banach spaceF and a zero-mean Gaussian measure yield a reproduc-
ing kernel Hilbert space H.K�/. We illustrate the construction of the space H.K�/
for the class of continuous functions F D C.Œ0; 1�d / equipped with the Wiener sheet
measure  D w which is a zero-mean Gaussian measure with the covariance function

Kw.x; y/ D
dY
jD1

min.xj ; yj / for all x; y 2 Œ0; 1�d .

Note that just now f .x/ D 0 with probability 1 if x has at least one component equal
to 0.

The space H.Kw/ is the Sobolev space which is the tensor product of d copies of
the space of univariate functions that are absolutely continuous, vanish at 0, and whose
first derivatives are in L2.Œ0; 1�/. The inner product in H.Kw/ is of the form

hg1; g2iH.Kw/
D
Z
Œ0;1�d

@d

@x1@x2 : : : @xd
g1.x/

@d

@x1@x2 : : : @xd
g2.x/ dx;

and functions g in H.Kw/ satisfy the boundary conditions g.x/ D 0 if x has at least
one component equal to 0.

It is also possible to remove the boundary conditions if we equip the space F D
C.Œ0; 1�d / with the weighted Wiener measure  D w� . This is a zero-mean Gaussian
measure with the covariance kernel

Kw�
.x; y/ D

X
u�Œd�

�d;u
Y
j2u

min.xj ; yj / for all x; y 2 Œ0; 1�d .

Then the space H.Kw!
/ is a Sobolev space with the inner product

hg1; g2iH.Kw! /
D

X
u�Œd�

1

�d;u

Z
Œ0;1�juj

@juj

@xu
g1.xu; 0/

@juj

@xu
g2.xu; 0/ dx:

As we shall see in Volume II, approximation of a continuous linear functional L
in the average case setting for the class ƒstd and for the space F equipped with the
zero-mean Gaussian measure  is equivalent to approximation of a continuous linear
functional h � ; gLiH in the worst case setting for the same class ƒstd and for the unit
ball of H.K�/. In particular, the problem of multivariate integration in the average
case setting for the spaceC.Œ0; 1�d / and the Gaussian measurew orw� is equivalent to
the problem of multivariate integration in the worst case setting for the space Sobolev
space H.Kw/ or H.Kw�

/, respectively.



Appendix C

List of Open Problems

1. Integration and approximation for the classes Fd;r , Section 3.3.

2. Integration and approximation for the classes Fd;r.d/ and Fd;1, Section 3.3.

3. Integration for a finite dimensional space Fd of trigonometric polynomials, Sec-
tion 3.3.

4. Integration for weighted Korobov spaces, Section 3.3.

5. Approximation of C1-functions from the classes Fd;p , Section 3.3.

6. Construction of points with small star-discrepancy, Section 3.3.

7. On bounds for the star-discrepancy, Section 3.3.

8. Diagonal problems for C r -functions from the class Fd;�;r , Section 3.3.

9. Construction of good points for Gaussian integration for the isotropic Wiener
measure, Section 3.3.

10. Tractability for approximation with foldedWiener sheet measures with increasing
smoothness, Section 3.3.

11. Tractability for approximation with folded Wiener sheet measures with varying
smoothness, Section 3.3.

12. Tractability for a modified error criterion, Section 3.3.

13. Tractability in the randomized setting for integration over weighted Sobolev
spaces, Section 3.3.

14. Tractability in the randomized setting for integration over periodic weighted
Sobolev spaces, Section 3.3.

15. Tractability in the randomized setting for general linear operators,
Section 3.3.

16. On the power of adaption for linear problems, Section 4.2.1.

17. On the power of adaption for linear operators on convex sets, Section 4.2.1.

18. On the asymptotic optimality of linear algorithms for Sobolev embeddings for
ƒstd, Section 4.2.4.

19. On the existence of optimal measurable algorithms, Section 4.3.3.
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20. On the power of adaption for linear problems in the randomized setting, Sec-
tion 4.3.3.

21. On the (almost) optimality of linear algorithms for linear problems in the ran-
domized setting, Section 4.3.3.

22. How good are linear randomized algorithms for linear problems?
Section 4.3.3.

23. How good are linear randomized algorithms for linear problems defined over
Hilbert spaces? Section 4.3.3.

24. On the optimality of measurable algorithms in the randomized setting,
Section 4.3.3.

25. On Sobolev embeddings in the randomized setting, Section 4.3.3.

26. Weak tractability of linear tensor product problems in the worst case setting with
�1 D 1 and �2 < 1, Section 5.2.

27. Tractability of linear weighted tensor product problems for the absolute error
criterion, Section 5.3.4.

28. Weak tractability for linear tensor product problems in the average case setting,
Section 6.2.

29. Tractability of linear weighted product problems in the average case setting for
the absolute error criterion, Section 6.3.

30. Weak tractability for linear weighted tensor product problems in the average case
setting, Section 6.3.
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[111] A. Kiełbasiński, Basic concepts in numerical error analysis (suggested by linear algebra
problems), in Mathematical models and numerical methods, Banach Center Publications
3, PWN, Warsaw, 223–232, 1978. 101, 102



Bibliography 371

[112] A. N. Kolmogorov, Über die beste Annäherung von Funktionen einer gegebenen Funk-
tionenklasse, Ann. of Math. 37, 107–110, 1936. 153

[113] M. A. Kon and E. Novak, The adaption problem for approximating linear operators, Bull.
Amer. Math. Soc. 23, 159–165, 1990. 111

[114] N. P. Korneichuk, Optimization of active algorithms for recovery of monotonic functions
from Hölder’s class, J. Complexity 10, 265–269, 1994. 114

[115] M. Kowalski, K. A. Sikorski and F. Stenger, Selected Topics in Approximation and Com-
putation, Oxford University Press, New York, 1995. 95

[116] P. Kritzer and F. Pillichshammer, Constructions of general polynomial lattices for multi-
variate integration, Bull. Austral. Math. Soc. 76, 93–110, 2007. 79

[117] S. N. Kudryavtsev. The best accuracy of reconstruction of finitely smooth functions from
their values at a given number of points. Izv. Math. 62(1), 19–53, 1998. 126

[118] Hui-Hsiung Kuo, Gaussian Measures in Banach Spaces, Lecture Notes in Mathematics
463, Springer-Verlag, Berlin, 1975. 49, 357

[119] F. Y. Kuo, Component-by-component constructions achieve the optimal rate of conver-
gence for multivariate integration in weighted Korobov and Sobolev spaces, J. Complexity
19, 301–320, 2003. 13, 78

[120] F. Y. Kuo and I. H. Sloan, Quasi-Monte Carlo methods can be efficient for integration
over product spheres, J. Complexity 21, 196–210, 2005. 239
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[267] G. W. Wasilkowski and H. Woźniakowski, Average case optimal algorithms in Hilbert
spaces. J. Approx. Theory 47, 17–25, 1986. 153
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