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Abstract

We study the optimal approximation of the solution of an operator equa-

tion A(u) = f by certain n-term approximations with respect to specific

classes of frames. We consider worst case errors, where f is an element of the

unit ball of a Sobolev or Besov space Bt
q(Lp(Ω)) and Ω ⊂ R

d is a bounded

Lipschitz domain; the error is always measured in the Hs-norm. We study the

order of convergence of the corresponding nonlinear frame widths and com-

pare it with several other approximation schemes. Our main result is that the

approximation order is the same as for the nonlinear widths associated with

Riesz bases, the Gelfand widths, and the manifold widths. This order is better

than the order of the linear widths iff p < 2. The main advantage of frames

compared to Riesz bases, which were studied in our earlier papers, is the fact

that we can now handle arbitrary bounded Lipschitz domains—also for the

upper bounds.
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1 Introduction

We study the optimal approximation of the solution of an operator equation

(1) A(u) = f,

where A is a linear operator

(2) A : H → G

from a Hilbert space H to another Hilbert space G. We always assume that A is

boundedly invertible, hence (1) has a unique solution for any f ∈ G. We have in

mind the more specific situation of an operator equation which is given as follows.

Assume that Ω ⊂ R
d is a bounded Lipschitz domain and assume that

(3) A : Hs
0(Ω) → H−s(Ω)

is an isomorphism, where s > 0. For the exact definitions of Lipschitz domains and

spaces of distributions defined on such domains we refer to the Appendix, see also

[9]. Now we put H = Hs
0(Ω) and G = H−s(Ω). Since A is boundedly invertible, the

inverse mapping S : G → H is well defined. This mapping is sometimes called the

solution operator—in particular if we want to compute the solution u = S(f) from

the given right-hand side A(u) = f .

We study different mappings Sn for the approximation of the solution u = A−1(f)

for f contained in F ⊂ G. We consider the worst case error

(4) e(Sn, F,H) = sup
‖f‖F ≤1

‖A−1(f) − Sn(f)‖H,

where F is a normed (or quasi-normed) space, F ⊂ G. In our main results, F will

be a Sobolev or Besov space.1 Hence we use the following commutative diagram

G
S−→ H

I տ ր SF

F.

Here I : F → G denotes the identity and SF the restriction of S to F . Then one is

interested in approximations that have an optimal order of convergence depending

1Formally we only deal with Besov spaces. Because of the embeddings B−s+t
1 (Lp(Ω)) ⊂

W−s+t
p (Ω) ⊂ B−s+t

∞
(Lp(Ω)), which hold for 1 ≤ p ≤ ∞, t ≥ s, see [45], our results are valid

also for Sobolev spaces.
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on n, where n denotes the degrees of freedom. For our purposes, the following ap-

proximation schemes are important. Consider the class Ln of all continuous linear

mappings Sn : F → H ,

Sn(f) =

n∑

i=1

Li(f) · h̃i

with arbitrary h̃i ∈ H . The worst case error of optimal linear mappings is given by

the approximation numbers or linear widths

elinn (S, F,H) = inf
Sn∈Ln

e(Sn, F,H).

We may also use nonlinear approximations with respect to a Riesz basis R of H ,

i.e., we consider the class Nn(R) of all (linear or nonlinear) mappings of the form

Sn(f) =
n∑

k=1

ck hik ,

where the ck and the ik depend in an arbitrary way on f . Then the nonlinear widths

enon
n,C(S, F,H) are given by

enon
n,C(S, F,H) = inf

R∈RC

inf
Sn∈Nn(R)

e(Sn, F,H).

Here RC denotes a set of Riesz bases for H where C indicates the stability of the

basis, i.e., we require B/A ≤ C and A,B are the Riesz constants of the basis. The

investigation of these widths enon
n,C and its comparison with the linear widths have

been the major part of our analysis in [8, 9]. This has continued earlier research on

related topics, cf. e.g. [24, 38, 39, 40]. The next type of widths we are interested in

has served as a very useful tool in our analysis of the widths enon
n,C in [9]. The man-

ifold widths are related to the class Cn of continuous mappings, given by arbitrary

continuous mappings Nn : F → R
n and ϕn : R

n → H . Again we define the worst

case error of optimal continuous mappings by

(5) econt
n (S, F,H) = inf

Sn∈Cn

e(Sn, F,H),

where Sn = ϕn ◦ Nn. These numbers have been studied in [13, 27] and later in

[9, 14, 16, 17]. As mentioned above we have studied the relationships of these widths

in [9]. It has turned out that for problems as in (3) with F = B−s+t
q (Lp(Ω)) (with

some extra conditions on Ω) one has the following: if p ≥ 2 and t > 0 then

elinn (S,B−s+t
q (Lp(Ω)), Hs

0(Ω)) ≍ econt
n (S,B−s+t

q (Lp(Ω)), Hs
0(Ω))(6)

≍ enon
n,C(S,B−s+t

q (Lp(Ω)), Hs
0(Ω)) ≍ n−t/d ,
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whereas in the case 0 < p < 2 with t > d(1/p− 1/2)

elinn (S,B−s+t
q (Lp(Ω)), Hs

0(Ω)) ≍ n−t/d+1/p−1/2

and

econt
n (S,B−s+t

q (Lp(Ω)), Hs
0(Ω)) ≍ enon

n,C(S,B−s+t
q (Lp(Ω)), Hs

0(Ω)) ≍ n−t/d .

Hence, if p < 2 then there is an essential difference in the behavior, nonlinear

approximations can do better than linear ones.

This paper is a continuation of [8, 9]. We are again interested in optimal nonlin-

ear approximation schemes, but this time not related to Riesz bases but to classes

of frames. The motivation for this is given by the following observations. In [9], we

presented upper and lower bounds for enon
n,C(S, F,H). The proof of the lower bound

was quite general and used the fact that enon
n,C(S, F,H) can be estimated from be-

low by the manifold widths econt
n (S, F,H) up to some constants. In contrary to this,

the proof of the upper bound was based on norm equivalences of Besov norms with

weighted sequence norms that are induced by a biorthogonal wavelet basis. However,

this restricts the choice of the underlying domain Ω ⊂ R
d since on a general Lips-

chitz domain the construction of a suitable wavelet basis might be very complicated

or even impossible. This problem becomes less serious in the frame setting since a

suitable wavelet frame always exists, see Section 5.2 for a detailed discussion. More-

over, in recent years the application of frame methods for the numerical resolution

of the solution u in (1) has become a field of increasing importance. Especially, it

has been possible to derive adaptive wavelet frame schemes that are guaranteed to

converge for a wide range of problems [6, 7, 37]. Therefore it is important to clarify

the power that frame schemes can have, in principle.

In this paper, we give a first answer. Our main result states that the nonlinear

frame widths show the same asymptotic behavior as the enon
n,C(S, F,H), where we

now can allow arbitrary bounded Lipschitz domains.

There is an interesting difference to the Riesz bases case. In the frame setting,

we do not work with arbitrary n-term approximations, but only with those induced

by a frame pair, see Section 2.2 for details. The reason is that, for practical ap-

plications, only these canonical representations are used. Actually we prove that if

we would allow arbitrary n-term approximations then the associated frame widths

would be zero. Moreover, certain conditions related to stability must be satisfied

by the admissible frames. Fortunately, these conditions are always satisfied for the

known constructions of wavelet frames on Lipschitz domains.

This paper is organized as follows. In Section 2, we describe the basic setting.

First of all, we introduce and discuss the frame concept as far as it is needed for our

4



purposes. Then, in Subsection 2.2, we define the nonlinear frame widths and prove

some basic properties that are needed in the sequel. Section 3 contains the main

results of this paper. In the next section two examples are discussed: the Poisson

equation for Lipschitz domains and a Fredholm integral equation of the first kind

(the single layer potential). Proofs of our main results are given in Section 5. For

general Hilbert spaces H and G we show that similar to the Riesz bases case the

nonlinear frame widths can be estimated from below by the manifold widths. Then,

for the more specific case of Besov spaces on Lipschitz domains, we also prove an

upper estimate which shows that the asymptotic behavior is the same as for the

Riesz basis case—but this time for arbitrary bounded Lipschitz domains.

Notation. We write a ≍ b if there exists a constant c > 0 (independent of the

context dependent relevant parameters) such that

c−1 a ≤ b ≤ c a .

One-sided estimates of this type are denoted by a <∼ b. All unimportant constants

will be denoted by c, sometimes with additional indices. Identity operators are always

denoted by I, also sometimes with additional indices.

2 Frames

In this paper, we will study certain approximations of u = S(f) based on frames.

Therefore, in this section we recall the basic properties of frames as far as they

are needed for our purposes and introduce the corresponding nonlinear widths. For

further information on frames, we refer the reader e.g. to [2, 21]. A sequence F =

{hk}k∈N in a separable Hilbert space H is a frame for H if there exist constants

A,B > 0 such that

(7) A2
∞∑

k=1

∣∣(f, hk)H

∣∣2 ≤ ‖f‖2
H ≤ B2

∞∑

k=1

∣∣(f, hk)H

∣∣2

for all f ∈ H . As a consequence of (7), the corresponding operators of analysis and

synthesis given by

(8) T : H → ℓ2(N), f 7→
(
(f, hk)H

)
k∈N

,

(9) T ∗ : ℓ2(N) → H, c 7→
∞∑

k=1

ckhk,
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are bounded. The composition T ∗T is a boundedly invertible (positive and self-

adjoint) operator called the frame operator. Furthermore, F̃ := (T ∗T )−1F is again

a frame for H , the canonical dual frame. The following formulas hold

(10) f =

∞∑

k=1

(f, (T ∗T )−1hk)H hk =

∞∑

k=1

(f, hk)H (T ∗T )−1hk

for all f ∈ H . This classical concept of a frame is too general, we need an additional

stability condition, stronger than (7). Without this additional assumption on the

frames, there would not exist lower bounds for corresponding widths as we shall

now explain.

Remark 1. Let H be a separable Hilbert space and let K ⊂ H be a compact subset.

Then for an arbitrary C > 1 there exists a frame F = {hi}i∈N in H with B/A < C

such that the following is true: For all f ∈ K and for all ε > 0 there exists a hi ∈ F
and c ∈ R such that

‖f − chi‖H < ε.

Hence the best n-term approximation yields an error 0 already for n = 1. To prove

this statement, we construct such a frame for a given compact set K ⊂ H. Let

M1 = {ei, i ∈ N} be a complete orthonormal set of H and let {ki, i ∈ N} be a dense

subset of K. We consider sets of the form

M δ
2 = {α1k1, α2k2, . . . } ⊂ H

with αi = δi, where 0 < δ < 1 and put Fδ = M1∪M δ
2 . It is not difficult to check that

Fδ is a frame with all the claimed properties if δ = δ(C) is chosen appropriately.

The frames Fδ can be considered as “pathological”, since the norms of many

elements of Fδ are extremely small. A first idea would be to request that the norms

of the frame elements are uniformly bounded from above and below,

0 < c1 ≤ ‖hi‖H ≤ c2 <∞ for all hi ∈ F = {hi}i∈N ,

but this does not help: Now we can define Fδ as the union of M1 and multiples of

the ei ± αiki. Then one obtains such a “normed” frame such that: For all f ∈ K

and for all ε > 0 there exist hi ∈ F and ci ∈ R such that

‖f − c1h1 − c2h2‖H < ε.

Therefore we go into a different direction, see Definitions 1 and 2.
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2.1 Frame Pairs

As it is well-known, Sobolev spaces built on L2(Ω) can be discretized by means of

weighted ℓ2-spaces, see the Appendix for some examples how one can do this. Let

w := (wk)k∈N be a sequence of positive numbers which we call simply a weight in

what follows. Then we put

ℓ2,w :=
{
a = (ak)k∈N : ‖ a ‖ℓ2,w

:=
( ∞∑

k=1

wk |ak|2
)1/2

<∞
}
.

Definition 1. Let H be a separable Hilbert space with dual space H ′. Let w = (wk)k

be a weight.

(i) Two sequences (F ,G), F := {hk}k∈N ⊂ H ′,G := {gk}k∈N ⊂ H, are called a frame

pair for (H,w), if

(11) f =
∞∑

k=1

〈f, hk〉H×H′ gk,

holds for all f ∈ H and we have the norm equivalence

(12) A ‖ (〈f, hk〉H×H′)k∈N ‖ℓ2,w
≤ ‖f‖H ≤ B ‖ (〈f, hk〉H×H′)k∈N ‖ℓ2,w

with some positive constants A,B. In addition, we require that there exists a bounded

linear operator R : ℓ2,w −→ H satisfying

(13) R(δk) = gk and ‖R‖ ≤ B.

(ii) Let K be a subspace of H. A frame pair (F ,G) for (H,w) is called stable with

respect to K if the inequality

(14) A′ ‖(〈f, hk〉H×H′)k∈Λ‖ℓ2,w
≤

∥∥∥∥∥
∑

k∈Λ

〈f, hk〉H×H′ gk

∥∥∥∥∥
H

holds with some A′ > 0, all finite subsets Λ ⊂ N and all f ∈ K.

(iii) Let K be a subspace of H and let C ≥ 1 be a given number. By PC(K) we denote

the set of all stable frame pairs (G,F) with respect to K such that the constants A,B

and A′ in (12) and (14) satisfy B/min(A,A′) ≤ C.

Remark 2. To avoid any type of confusion we shall use (·, ·) for the scalar product

in H and 〈·, ·〉 for duality pairings, in particular for H ×H ′.

Some comments are in order.
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Remark 3. (i) A frame pair in the sense of (11) and (12) is sometimes called

an atomic decomposition, cf. e.g. [2, Def. 17.3.1.]. However, the phrase atomic

decomposition is used with a different meaning in the theory of function spaces,

cf. e.g. [18, 25, 43, 46]. For this reason we do not use it here.

(ii) Let (F ,G) be a frame pair for (H,w). As above let F = {hk}k∈N ⊂ H ′ and

G := {gk}k∈N ⊂ H. By the Riesz representation theorem, for every hk there

exists an element h̃k ∈ H such that 〈f, hk〉H×H′ = (f, h̃k)H . Consequently,

‖ (f,
√
wk h̃k)k∈N ‖ℓ2 = ‖ (〈f, hk〉H×H′)k∈N ‖ℓ2,w

for all f ∈ H .

Hence, there is a one-to-one correspondence between F and the Hilbert frame

(
√
wk h̃k)k. However, note that G need not be related to the canonical dual

frame of (
√
wk h̃k)k.

(iii) The reader might wonder why we use the concept of frame pairs instead of the

classical frame setting as introduced in (7) and (10). However, since we are

dealing here with Gelfand triples (Hs
0(Ω), L2(Ω), H−s(Ω)), s−1/2 6= integer, see

Remark 10, this approach would be at least problematic since we are not allowed

to identify the space Hs
0(Ω) with its dual.(Otherwise, it would not be possible

to identify L2(Ω) with its dual at the same time - a strange construction. We

refer to [23] for further details.)

(iv) Our concept is closely related to Banach frames in the sense of [20, 22]. A

Banach frame for a separable and reflexive Banach space B is a sequence F =

{hk}k∈N in B′ with an associated sequence space Bd such that the following

properties hold:

(B1) norm equivalence: there exist constants A,B > 0 such that

(15) A
∥∥∥
(
〈f, hk〉B×B′

)
k∈N

∥∥∥
Bd

≤ ‖f‖B ≤ B
∥∥∥
(
〈f, hk〉B×B′

)
k∈N

∥∥∥
Bd

for all f ∈ B;

(B2) there exists a bounded operator S from Bd onto B, a so-called synthesis

or reconstruction operator, such that

(16) S
((

〈f, hk〉B×B′

)
k∈N

)
= f.

(It is a remarkable fact that for Banach spaces the existence of the reconstruc-

tion operator does not follow from the norm equivalence (15) and has to be

explicitly required).
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A frame pair in the sense of Definition 1 (i) induces a Banach frame F =

{hk}k∈N for the special case B = H, Bd = ℓ2,w(N) where the operator R serves

as synthesis operator, cf. [2, Thm. 3.2.3]. Consequently, in our setting, the

estimate

(17)

∥∥∥∥∥
∑

k∈N

ck gk

∥∥∥∥∥
H

≤ B ‖(ck)k∈N‖ℓ2,w

always holds.

(v) We comment on the condition (14). Clearly, (14) always holds on all of H

for a Riesz basis {gk}k∈N for H. However, there exist frames which are not

Riesz bases and for which (14) holds on H. E.g., take an orthonormal basis

{ek}k∈N and define the frame F =: {e1, 2−1/2e2, 2
−1/2e2, e3, e4...}. This is a

tight frame, (12) holds with A = B = 1, so the primal and the canonical

dual frame coincide. (We refer again to [2, Chapt. 5] for further information).

Since {ek}k∈N is an orthonormal basis, a direct computation shows that (14)

holds for A′ = 2−1/2. Nevertheless, requiring (14) on all of H would be very

restrictive, and most frames would not satisfy it. As an example, consider the

frame F := {e1, 2−1/2e2, 2
−1/2e2, 3

−1/2e3, 3
−1/2e3, 3

−1/2e3, . . .}. This is also a

tight frame, but again a direct check shows that (14) does not hold. Therefore we

require (14) only on subsets. Fortunately, such a condition is satisfied in case

of the known frame constructions for function spaces on Lipschitz domains.

(vi) The example in (v) shows that the two constants A amd A′ in Definition 1

need not to be related at all. Nevertheless, to avoid unnecessary notational

difficulties, we will restrict ourselves to the case A = A′ in the sequel. The

modifications to the case A 6= A′ are straightforward.

(vii) For simplicity, we have introduced our basic concepts for frame pairs indexed

by the set of natural numbers. Later on, we shall also use frame pairs corre-

sponding to more general countable sets, with the obvious modifications.

For later use, let us finally state the following simple but useful property: frame

pairs are invariant under isomorphic mappings.

Lemma 1. Let G,H be Hilbert spaces and let S : G → H be an isomorphism. Let

(F ,G) be a frame pair for (G,w) with frame constants A,B. Then the following

holds:

(i) (S∗−1(F), S(G)) is a frame pair for (H,w) with frame constants Ã = A/‖S−1‖
and B̃ = B‖S‖.
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(ii) If (F ,G) is contained in PC(K) then (S∗−1(F), S(G)) is contained in P eC(S(K)),

where C̃ = C‖S‖‖S−1‖.

Proof. Step 1. Proof of (i). We start by showing (11). For f ∈ H , we obtain

f = S(S−1(f)) = S
(∑

k∈N

〈S−1(f), hk〉H×H′ gk

)
=

∑

k∈N

〈f, S∗−1(hk)〉H×H′ S(gk).

The next step is to show the norm equivalence (12). We obtain

1

‖S‖‖f‖H =
1

‖S‖‖(S ◦ S−1)(f)‖H ≤ ‖S−1(f)‖G

≤ B(〈S−1(f), hn〉G×G′)ℓ2,w
= B(〈f, S∗−1(hk)〉H×H′)ℓ2,w

≤ B

A
‖S−1(f)‖G ≤ B

A
‖S−1‖‖f‖H .

Let R be the bounded operator associated with (F ,G). Then R̃ = S ◦ R is again a

bounded operator with

R̃(δk) = S(R(δk)) = S(gk), ‖R̃‖ ≤ ‖S‖‖R‖ ≤ ‖S‖B,

and (i) is shown.

Step 2. Proof of (ii). For f ∈ S(K), we get

‖
∑

k∈Λ

〈f, S∗−1(hk)〉H×H′ S(gk)‖H ≥ ‖S−1‖−1
∥∥∥

∑

k∈Λ

〈S−1(f), hk〉G×G′ gk

∥∥∥
G

≥ ‖S−1‖−1A ‖ (〈S−1(f), hk〉G×G′)k∈Λ ‖ℓ2,w

= ‖S−1‖−1A ‖ (〈f, S∗−1hk〉H×H′)k∈Λ ‖ℓ2,w
,

and (ii) is proved with C̃ = B̃/Ã = C‖S‖‖S−1‖.

2.2 Nonlinear Widths for Frame Pairs

The aim of this paper is to study the asymptotic behavior of specific nonlinear

approximation schemes based on frames and to compare them with other well-

known widths. Especially, we want to prove frame analogues to the results obtained

in [8, 9] for the nonlinear widths associated with classes of Riesz bases.

Let (F ,G) be a frame pair for (H,w) in the sense of Definition 1 and consider

specific n-term approximations of the form

(18) σn

(
u, (F ,G)

)
:= inf

|Λ|≤n

∥∥∥u−
∑

k∈Λ

〈u, hk〉H×H′ gk

∥∥∥
H
.

We do not allow arbitrary expansions in terms of the gk involving at most n nonvan-

ishing coefficients. The reason is that, for practical applications, only these canonical

10



representations are used. Furthermore, to end up with a reasonable notion of a width

we need to restrict us to stable frame pairs.

In what follows we shall use the conventions: if F is a subspace of G and if S :

G → H is an isomorphism then we equip the subspace S(F ) with the quasi-norm

‖S(f) |S(F )‖ := ‖ f |F‖. Furthermore, if K is a subspace of S(F ) we endow it with

the quasi-norm of S(F ).

Definition 2. Let G and H be separable Hilbert spaces and let S : G → H be an

isomorphism. Let F be a quasi-normed subspace of G. For a given constant C ≥ 1

we denote by KC the set of all subspaces K ⊂ S(F ) such that the inequality

(19) econt
n (I, S(F ), H) ≤ Cecont

n (I,K,H)

holds for all n. Then, for n ∈ N, the nonlinear frame width eframe
n,C (S, F,H) of the

operator S is defined by

(20)

eframe
n,C (S, F,H) := inf

{
sup

‖f‖F ≤1

σn

(
S(f), (F ,G)

)
| (F ,G) ∈ PC(K), K ∈ KC

}
.

Remark 4. We comment on this definition. To get a reasonable lower bound for

eframe
n,C (S, F,H) we need to restrict ourselves to frame pairs which are stable with

respect to subspaces K of S(F ) which are not too small. “Not too small” is expressed

by the inequality (19).

In the above definition we decided for the manifold widths because they have

some nice properties. These widths econt
n are particular examples of s-numbers in the

sense of Pietsch [31], see also [27]. One of the interesting properties consists in the

inequality

(21) econt
n (T2 ◦ T1 ◦ T0, E0, F0) ≤ ‖ T0 ‖ ‖ T2 ‖ econt

n (T1, E, F ) ,

where T0 ∈ L(E0, E), T1 ∈ L(E,F ), T2 ∈ L(F, F0) and E0, E, F, F0 are arbitrary

quasi-Banach spaces. As a consequence one obtains that the asymptotic behavior

of the manifold widths remains unchanged under isomorphisms. A similar result is

true in case of our nonlinear frame widths. As a consequence we can concentrate on

the investigation of identity operators in what follows.

Lemma 2. Let G and H be separable Hilbert spaces and let S : G → H be an

isomorphism. Let F be a quasi-normed subspace of G and let I : F → G be the

identity. For C ≥ 1 and

C̃ = C (‖S−1‖ ‖S‖)2

11



we obtain

(22) eframe
n, eC

(S, F,H) ≤ ‖S‖ eframe
n,C (I, F,G)

and

(23) eframe
n, eC

(I, F,G) ≤ ‖S−1‖ eframe
n,C (S, F,H).

Proof. We shall prove (22), the proof of (23) is very similar. From (20) we can

conclude that for any ε > 0 we can find a subspace K ∈ KC and a frame pair

(F ,G) ∈ PC(K) for (G,w) such that

sup
‖f‖F ≤1

inf
|Λ|≤n

∥∥∥ f −
∑

k∈Λ

〈f, hk〉G×G′ gk

∥∥∥
G
≤ eframe

n,C (I, F,G) + ε .

Lemma 1 implies that (S∗−1(F), S(G)) is a frame pair for (H,w) which is contained

in PC1
(S(K)), where C1 = C ‖S−1‖ ‖S‖. We consider the following commutative

diagrams:

S(F )
I1−−−→ H

S−1

y
xS

F
I2−−−→ G

K
I2−−−→ G

S

y
xS−1

S(K)
I1−−−→ H .

By means of (21) we derive from these diagrams

econt
n (I1, S(F ), H) ≤ ‖S−1‖ ‖S‖ econt

n (I2, F,G)

and

econt
n (I2, K,G) ≤ ‖S−1‖ ‖S‖ econt

n (I1, S(K), H) .

Now our assumption K ∈ KC yields

econt
n (I1, S(F ), H) ≤ ‖S−1‖ ‖S‖ econt

n (I2, F,G) ≤ C ‖S−1‖ ‖S‖ econt
n (I2, K,G)

≤ C (‖S−1‖ ‖S‖)2 econt
n (I1, S(K), H) .

In other words, S(K) belongs to the set K eC . From

∥∥∥S(f) −
∑

k∈Λ

〈S(f), S∗−1(hk)〉H×H′ S(gk)
∥∥∥

H
≤ ‖S‖

∥∥∥ f −
∑

k∈Λ

〈f, hk〉g×G′ gk

∥∥∥
G

it follows that

eframe
n, eC

(S, F,H) ≤ ‖S‖ eframe
n,C (I, F,G) .
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We finish this section by proving two additional properties of nonlinear frame

widths that will be used later on in Section 5.3.

Lemma 3. Let G1, G2, H1, H2 be Hilbert spaces and let Si ∈ L(Fi, Hi), i = 1, 2,

be isomorphisms. Let F1, F2 be quasi-normed subspaces of G1 and G2, respectively.

Furthermore we suppose T1 ∈ L(F1, F2), T2 ∈ L(H2, H1) and both are isomorphisms.

Finally, we assume that we can decompose S1 = T2 ◦ S2 ◦ T1. Then,

(24) eframe
n, eC

(S1, F1, H1) ≤ ‖T2‖ ‖T1‖ eframe
n,C (S2, F2, H2)

holds with C̃ = C ‖T−1
2 ‖ ‖T2‖.

Proof. Corresponding to our assumptions we have the following commutative dia-

gram:
F1 −−−→

S1

H1

T1

y
xT2

F2 −−−→
S2

H2 .

By definition, for any ε > 0 we can find a subspace K ∈ KC ⊂ G and a frame pair

(F ,G) ∈ PC(K) for (H2, w) such that

sup
‖f‖F2

≤1

inf
|Λ|≤n

∥∥∥S2f −
∑

k∈Λ

〈S2f, hk〉H2×H′

2
gk

∥∥∥
H2

≤ eframe
n,C (S2, F2, H2) + ε .

Lemma 1 implies that (T ∗
2
−1(F), T2(G)) is a frame pair for (H1, w) which is contained

in P eC(T2(K)), where C̃ = C ‖T−1
2 ‖ ‖T2‖. We put

uk := T ∗
2
−1(fk) and vk := T2(gk) .

Consequently

∥∥∥S1g −
∑

k∈Λ

〈S1g, uk〉H1×H′

1
vk

∥∥∥
H1

≤ ‖T2‖
∥∥∥S2(T1g) −

∑

k∈Λ

〈S2(T1g), T
∗
2 uk〉H2×H′

2
T−1

2 vk

∥∥∥
H2

≤ ‖T2‖ (eframe
n,C (S2, F2, H2) + ε) ,

if ‖ T1g ‖F2
≤ 1. A homogeneity argument yields

sup
‖g‖F1

≤1

inf
|Λ|≤n

∥∥∥S1(g) −
∑

k∈Λ

〈S1g, uk〉H1×H′

1
vk

∥∥∥
H1

≤ ‖T2‖ ‖T1‖ eframe
n,C (S2, F2, H2)

which proves our claim.
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Lemma 4. Let U be a closed subspace of the Hilbert space H equipped with the same

norm as H. Let G be a Hilbert space and let S : G → H be an isomorphism. If F

is a subset of S−1(U), then

eframe
n,C (S, F, U) ≤ eframe

n,C (S, F,H)

follows.

Proof. The Hilbert space H can be written as the orthogonal sum of U and its

orthogonal complement V . By P we denote the orthogonal projection onto U . Let

(F ,G) be a frame pair for (H,w). Then the elements f ∈ U can be written in the

form

f =

∞∑

k=1

〈f, hk〉Pgk .

The norm equivalences (12) remain unchanged. Hence, (F , P (G)) is a frame pair

for (U,w) with constants Ã, B̃ and A ≤ Ã ≤ B̃ ≤ B. Concerning the stability it is

enough to notice that only subsets K of S(F ) ⊂ U come into consideration.

3 Main Results

In this section, we want to state and to prove the main results of this paper. The first

theorem is a general result for arbitrary Hilbert spaces H and G that clarifies the

relationships of the manifold widths econt
n (S, F,H) with the nonlinear frame widths

eframe
n,C (S, F,H). The second theorem deals with the more specific situation of function

spaces on Lipschitz domains contained in R
d and provides upper and lower bounds

for eframe
n,C (S,B−s+t

q (Lp(Ω)), Hs
0(Ω)).

Theorem 1. Let H and G be separable Hilbert spaces. Let S : G → H be an

isomorphism. Suppose that the embedding F →֒ G is compact. Then for all C ≥ 1

and all n ∈ N, we have

(25) econt
4n+1(S, F,H) ≤ 2C2 eframe

n,C (S, F,H) .

Theorem 2. Let Ω be a bounded Lipschitz domain contained in R
d. Let 0 < p, q ≤

∞, s > 0, and t > d(1
p
− 1

2
)+. Let S : H−s(Ω) → Hs

0(Ω) be an isomorphism. Then

there exists a number C∗ such that for any C ≥ C∗ we have

eframe
n,C (S,B−s+t

q (Lp(Ω)), Hs
0(Ω)) ≍ n−t/d .

Remark 5. (i) The number C∗ depends on Ω. It is known that for any Lipschitz

domain there exists an appropriate frame pair as it is needed here. However,

optimal estimates about the stability seem to be not known.
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(ii) For exact definitions of the distribution spaces defined on Lipschitz domains

we refer to the Appendix and to [9]

(iii) Theorem 2 is a frame analogue to Theorem 4 in [9]. In [9], it has been shown

that if the domain Ω is chosen in such a way that the spaces B−s+t
q (Lp(Ω)) and

H−s(Ω) allow a discretization by one common wavelet system R̃∗, then also

enon
n,C(S,B−s+t

q (Lp(Ω)), Hs
0(Ω)) ≍ n−t/d

holds for C sufficiently large. We see that the restrictive condition on the

domain that was needed in the Riesz basis case can be dropped in the frame

setting.

(iv) Our proof of the upper bounds in Theorem 2 is constructive. One may always

use the frame pair constructed in Lemma 5 below.

4 Examples

In this section, we apply the analysis presented above to two classical examples, i.e.,

the Poisson equation in a Lipschitz domain and the single layer potential equation

on the unit circle.

4.1 The Poisson Equation

We consider the Poisson equation in a bounded Lipschitz domain Ω contained in R
d

−△u = f in Ω(26)

u = 0 on ∂Ω.

As usual, we study (26) in the weak formulation. Then, it can be shown that the

operator A = △ : H1
0 −→ H−1 is boundedly invertible, see, e.g., [23] for details.

Hence Theorem 2 applies with s = 1, so that

eframe
n,C (S,B−1+t

q (Lp(Ω)), H1
0 (Ω)) ≍ n−t/d

if t > d (1
p
− 1

2
)+.

4.2 The Single Layer Potential

As a second example we shall deal with an integral equation. Let Γ be the unit

circle. Then we consider the Fredholm integral equation of the first kind

Af(x) := − 1

2π

∫

Γ

log |x− y| f(y) dΓy = ϕ(x) , x ∈ Γ .

15



The left-hand side is called the single layer potential. The following is known, cf. e.g.

[5]: the operator A belongs to L(H−1/2(Γ), H1/2(Γ)), where H1/2(Γ) is the collection

of all functions g ∈ L2(Γ) such that

∫

Γ

∫

Γ

|g(x) − g(y)|2
|x− y|2 dΓx dΓy <∞

and H−1/2(Γ) its dual. Furthermore, A is a bijection of H onto G where

G := {g ∈ H1/2(Γ) :

∫

Γ

g(y) dΓy = 0} and H := {g ∈ H−1/2(Γ) : 〈g, 1〉 = 0} .

The space G can be interpreted as the quotient space H1/2(Γ)/R of H1/2(Γ) with

R (the constants) and H can be interpreted as the quotient space H−1/2(Γ)/R

of H−1/2(Γ) with R. By S we denote A−1, defined on G with values in H . Now

we investigate eframe
n,C (S, F,G) where F is chosen to be the quotient space of the

Besov space B
t+1/2
q (Lp(Γ)) and the constants, see Subsection 5.3.2 for a definition

of B
t+1/2
q (Lp(Γ)). We put

Y s
q (Lp(Γ)) := {g ∈ Bs

q(Lp(Γ)) : 〈g, 1〉Γ = 0} .

The same principles as above apply. Again we use a commutative diagram

H1/2(Γ)/R
S−→ H−1/2(Γ)/R

I տ ր SF(27)

F := Y
t+1/2
q (Lp(Γ)).

Here I denotes the identity and SF the restriction of S to F . Then the outcome is

as follows.

Theorem 3. Let 0 < p, q ≤ ∞ and t > (1
p
− 1

2
)+. Then there exists a number C∗

such that for any C ≥ C∗ we have

eframe
n,C (S, Y t+1/2

q (Lp(Γ)), H) ≍ n−t .

Remark 6. There are far-reaching extensions concerning the theory of the mapping

properties of the single layer potentials. In particular, much more general curves and

surfaces are discussed. We refer to [44, Sect. 20] for the discussion of these properties

in the framework of d-sets.
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5 Proofs

5.1 Proof of Theorem 1

First we deal with Theorem 1. Here we shall work in the framework of Hilbert frame

pairs. Hence we consider sequences (gk)k and (hk)k in a (separable) Hilbert space H

such that

(28) f =

∞∑

k=1

(f, hk)gk

for all f ∈ H , compare with Remark 3 (ii). By (17) we may assume that

(29)

∥∥∥∥∥

∞∑

k=1

ckgk

∥∥∥∥∥

2

≤ B2 ·
∞∑

k=1

c2k

for arbitrary (ck)k∈N ∈ ℓ2(N). Moreover, we assume that the representation (28) is

stable on K ⊂ H in the sense that

(30) A2
∑

k∈Λ

|(f, hk)|2 ≤
∥∥∥∥∥
∑

k∈Λ

(f, hk)gk

∥∥∥∥∥

2

for arbitrary f ∈ K and Λ ⊂ N. Moreover we assume that

(31)
B

A
≤ C.

We consider particular n-term approximations of f ∈ K by subsums of (28) and

their error

(32) σn(f) = inf
|Λ|≤n

∥∥∥∥∥f −
∑

k∈Λ

(f, hk)gk

∥∥∥∥∥ .

We define

(33) en,C(K,H) = inf
(gk)k,(hk)k

sup
f∈K

σn(f),

with the understanding that (28)-(32) hold true. Moreover, we define

(34) econt
n (K,H) := inf

Nn,ϕn

sup
u∈K

‖ϕn(Nn(u)) − u‖,

where the infimum runs over all continuous mappings ϕn : R
n → H and Nn : K →

R
n. Then the following result is a frame analogue of Proposition 1 from [9].

Proposition 1. Assume that K ⊂ H is compact and C ≥ 1. Then

(35) econt
4n+1(K,H) ≤ 2Cen,C(K,H).
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Proof. Assume thatK, n, and C ≥ 1 are given. Let ε > 0. Then there exist sequences

(gk)k and (hk)k in H such that (28)-(31) as well as

(36) sup
f∈K

inf
|Λ|≤n

‖f −
∑

k∈Λ

(f, hk)gk‖ ≤ en,C(K,H) + ε

hold. Since we only consider f ∈ K, we can always assume that the index set Λ is

a subset of {1, 2, . . . , N}. We only loose another ε. Here N might be large, but is

finite. We write

(37) LN (f) =

N∑

k=1

(f, hk)gk

and obtain

(38) sup
f∈K

‖f − LN(f)‖ ≤ ε

and

(39) sup
f∈K

inf
|Λ|≤n

∥∥∥∥∥LN (f) −
∑

k∈Λ

(f, hk)gk

∥∥∥∥∥ ≤ en,C(K,H) + 4ε.

For the n-term approximation in (39) we also write

(40) f ∗
n =

∑

k∈Λ

akgk,

hence ak = (f, hk) and |Λ| = n for each f ∈ K and

(41) sup
f∈K

‖LN(f) − f ∗
n‖ ≤ en,C(K,H) + 4ε.

For the proof we may assume that A = 1. We consider the modification L∗
N of LN

defined by

(42) L∗
N (f) =

N∑

k=1

a∗kgk,

where a∗k = ak if |ak| ≥ 2β and a∗k = 0 if |ak| ≤ β. To obtain a continuous dependence

of a∗k from ak and, hence, a continuous mapping L∗
N : H → H , we define

a∗k = 2sgnak · (|ak| − β)

if |ak| ∈ (β, 2β). The number β > 0 will be defined later.

Assume that for f ∈ K there are m > n of the ak with |ak| ≥ β. Then

LNf − f ∗
n =

∑

k∈Λ̃

akgk,
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where Λ̃ contains at least m− n elements with |ak| ≥ β. Then we obtain from (30)

‖LNf − f ∗
n‖ ≥ (m− n)1/2β

and with (41) we get

(43) m− n ≤ 1

β2
(en,C(K,H) + 4ε)2.

Now we consider the sum
∑

|ak|<β a
2
k for f ∈ K. We distinguish between those k that

are used for f ∗
n (there are at most n of those k) and the other indices and obtain

(44)
∑

|ak|<β

a2
k ≤ nβ2 + (en,C(K,H) + 4ε)2.

Now we are ready to estimate ‖L∗
N(f)−LN (f)‖ for f ∈ K. Observe that |a∗k−ak| ≤ β

for any k. We obtain

‖L∗
N (f) − LN (f)‖ ≤ B(mβ2 + nβ2 + (en,C(K,H) + 4ε)2)1/2.

Using the estimate (43) for m, we obtain

‖L∗
N (f) − LN (f)‖ ≤ B(2nβ2 + 2(en,C(K,H) + 4ε)2)1/2.

Now we define β by

nβ2 = (en,C(K,H) + 4ε)2

and obtain the final error estimate (where we replace, for general A, the number B

by B/A)

‖L∗
N (f) − LN (f)‖ ≤ 2B

A
(en,C(K,H) + 4ε).

In addition we obtain

m ≤ 2n

and therefore L∗
N yields a continuous 2n-term approximation of f ∈ K with error

at most

sup
f∈K

‖L∗
N (f) − f‖ ≤ 2B

A
(en,C(K,H) + 4ε) + ε.

The mapping L∗
N is continuous and the image is a complex of dimension 2n, see, e.g.,

[14]. Hence we have an upper bound for the so-called Aleksandrov widths, see [14]

and [36]. By the famous theorem of Nöbeling, any such mapping can be factorized

as L∗
N = ϕ4n+1 ◦ N4n+1 where N4n+1 : K → R

4n+1 and ϕ4n+1 : R
4n+1 → H are

continuous. Hence the result is proved.
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Proof of Theorem 1

First we observe that

econt
4n+1(S, F,H) = econt

4n+1(I, S(F ), H).

Condition (19) implies that

econt
n (I, S(F ), H) ≤ C econt

n (I,K,H) = C econt
n (K,H)

so that Proposition 1 yields

econt
4n+1(K,H) ≤ 2C en,C(K,H) ≤ 2C eframe

n,C (I, S(F ), H).

We also have

eframe
n,C (I, S(F ), H) = eframe

n,C (S, F,H),

hence we finally obtain

econt
4n+1(S, F,H) ≤ 2C2 eframe

n,C (S, F,H).

5.2 Proof of Theorem 2

We want to make a general remark concerning the notation in advance. In what

follows we will use the symbol 〈·, ·〉 for different duality pairing. Which one will be

always clear from the context. So we avoid indices.

5.2.1 Lower Bounds

The proof of the lower bound follows by combining Theorem 1 with the following

proposition proved in [9], see also [13, 14, 16]:

Proposition 2. Let Ω ⊂ R
d be a bounded Lipschitz domain. Let 0 < p, q ≤ ∞,

s > 0, and

t > d

(
1

p
− 1

2

)

+

.

Then

econt
n (S,B−s+t

q (Lp(Ω)), Hs
0(Ω)) ≍ n−t/d .
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5.2.2 Upper Bounds

The proof of the upper bound turns out to be a little bit more complicated. However,

let us mention that our proof is constructive. As a first step we reduce the proof of

Theorem 2 to the proof of the following

Theorem 4. Let Ω be as above. Let 0 < p, q ≤ ∞, s ∈ R and suppose that

t > d
(1

p
− 1

2

)

+

holds. Then there exists a number C∗ such that for any C ≥ C∗ we have

eframe
n,C (I, Bs+t

q (Lp(Ω)), Bs
2(L2(Ω))) <∼ n−t/d .

Proof of Theorem 2. Since H−s(Ω) = B−s
2 (L2(Ω)), cf. Remark 10, Theorem 4

yields that

eframe
n,C (I, B−s+t

q (Lp(Ω)), H−s(Ω)) <∼ n−t/d.

Since S : H−s(Ω) → Hs
0(Ω) is an isomorphism, Lemma 2 implies the desired result.

5.2.3 Widths and Discrete Besov Spaces

The proof of Theorem 4 requires several preparations. First of all, let us fix some

notation. Let 0 < p, q ≤ ∞ and let s ∈ R. Let ∇ := (∇j)
∞
j=−1 be a sequence of

subsets of finite cardinality of the set {1, 2, . . . , 2d − 1}×Z
d. We suppose that there

exist 0 < C1 ≤ C2 and J ∈ N such that the cardinality |∇j | of ∇j satisfies

(45) C1 ≤ 2−jd |∇j| ≤ C2 for all j ≥ J .

Then bsp,q(∇), where 0 < q <∞, denotes the collection of all sequences a = (aj,λ)j,λ

of complex numbers such that

(46) ‖ a ‖bs
p,q

:=




∞∑

j=−1

2j(s+d(1/2−1/p))q

( ∑

λ∈∇j

| aj,λ|p
)q/p




1/q

<∞ .

For q = ∞, we use the usual modification

(47) ‖ a ‖bs
p,∞

:= sup
j=−1,0,1,...

2j(s+d(1/2−1/p))




∑

λ∈∇j

|aj,λ|p



1/p

<∞.

In our paper [9] we have dealt with several types of widths of embeddings of those

discrete Besov spaces. A few of the results we obtained there will be recalled now.
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Proposition 3. Let 0 < p, q ≤ ∞ and s ∈ R. Suppose that

(48) t > d
(1

p
− 1

2

)
+
.

It holds

econt
n (I, bs+t

p,q (∇), bs2,2(∇)) ≍ enon
n (I, bs+t

p,q (∇), bs2,2(∇)) ≍ n−t/d .

Remark 7. Of course, the constants in the above inequalities depend on ∇ (and

therefore on C1, C2 and J) as well as on s, t, p and q. But this will play no role in

what follows.

5.2.4 Frame Pairs for Sobolev Spaces on Domains

Now we turn to the construction of frame pairs for Sobolev spaces with some addi-

tional features.

Let s ∈ R be fixed and let

(49)

Ψ :=
{
ϕk, ϕ̃k : k ∈ Z

d
}

∪
{
ψi,j,k, ψ̃i,j,k : i = 1, . . . 2d − 1, j = 0, 1, 2 . . . , k ∈ Z

d
}
,

be a biorthogonal wavelet system such that the parameter r, controlling the smooth-

ness and the moment conditions, satisfies r > |s|, see Proposition 4 in the Appendix.

Here, as always in this subsection we shall use Hs(Ω) = Bs
2(L2(Ω)) in the sense of

equivalent norms, see the Appendix. We suppose

suppϕ , suppψi , supp ϕ̃ , supp ψ̃i ⊂ [−N,N ]d , i = 1, . . . 2d − 1 .

By B(x0, R) we denote a ball with radius R and center x0. We may assume Ω ⊂
B(x0, R) for some R > 0 and x0 ∈ Ω. Rychkov [33] has proved that in case of a

bounded Lipschitz domain there exists a linear and continuous extension operator

E ∈ L(Hs(Ω) → Hs(Rd)). In addition we may assume that

(50) supp Ef ⊂ B(x0, 2R)

holds for all f ∈ Hs(Ω). Now we turn to the wavelet decomposition of Ef . Defining

Λj :=
{
k ∈ Z

d : |2−jki − x0
i | ≤ 2R+ 2−jN , i = 1, . . . , d

}
, j = 0, 1, . . . ,

we obtain for given f ∈ Hs(Ω)

(51) Ef =
∑

k∈Λ0

〈Ef, ϕ̃k〉ϕk +
2d−1∑

i=1

∞∑

j=0

∑

k∈Λj

〈Ef, ψ̃i,j,k〉ψi,j,k (convergence in S ′)
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and

‖ Ef |Hs(Rd)‖ ≍
( ∑

k∈Λ0

|〈Ef, ϕ̃k〉|2
)1/2

+(52)

( 2d−1∑

i=1

∞∑

j=0

22js
( ∑

k∈Λj

|〈Ef, ψ̃i,j,k〉|2
))1/2

<∞ .

This can be rewritten by using

∇−1 := Λ0(53)

∇j :=
{

(i, k) : 1 ≤ i ≤ 2d − 1 , k ∈ Λj

}
, j = 0, 1, . . . ,(54)

ψj,λ := ψi,j,k, if λ = (i, k) ∈ ∇j , j ∈ N0, and ψj,λ := ϕk if λ = k ∈ ∇−1. Similarly in

case of the dual basis. Then (51), (52) read as

(55) Ef =

∞∑

j=−1

∑

λ∈∇j

〈Ef, ψ̃j,λ〉ψj,λ (convergence in S ′)

and

(56) ‖ f |Hs(Ω)‖ ≍ ‖ Ef |Hs(Rd)‖ ≍ ‖ (〈Ef, ψ̃j,λ〉)j,λ ‖bs
2,2(∇) .

Let XΩ denote the characteristic function of Ω. We put

(57) gj,λ := XΩ ψj,λ , j = −1, 0, 1, . . . , λ ∈ ∇j .

For M ∈ N we have

M∑

j=−1

∑

λ∈∇j

〈Ef, ψ̃j,λ〉 gj,λ =
( M∑

j=−1

∑

λ∈∇j

〈Ef, ψ̃j,λ〉ψj,λ

)
∣∣∣
Ω

and consequently

lim
M→∞

M∑

j=−1

∑

λ∈∇j

〈Ef, ψ̃j,λ〉 gj,λ = (Ef)|Ω = f

in Hs(Ω). Let E∗ denote the adjoint of E . Define

(58) hj,λ = E∗(ψ̃j,λ) , j = −1, 0, 1, . . . , λ ∈ ∇j .

Then, taking into account the norm equivalences (56), it follows that (F ,G) satisfies

(11) and (12) for (Hs(Ω), bs2,2(∇)), where

F = {hj,λ : j = −1, 0, 1, . . . , λ ∈ ∇j} and(59)

G = {gj,λ : j = −1, 0, 1, . . . , λ ∈ ∇j} .(60)
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Instead of writing (H,w) we used here the notation (H, ℓ2,w), see Definition 1. To

obtain a frame pair, it remains to establish a suitable reconstruction operator. Due

to the norm equivalences stated in (52) and Proposition 4, it is clear that such an

operator R : ℓ2,w −→ Hs(Rd) exists on all of R
d. Therefore

R̃ : bs2,2(∇) −→ Hs(Ω), a = (aj,λ)(j,λ)∈∇ 7−→ χΩR(a)

does the job. We collect our findings in the following lemma.

Lemma 5. Let Ω ⊂ R
d be a bounded Lipschitz domain. Let Ψ be a wavelet system,

see (49), such that r > |s|, see Proposition 4. Let F and G be defined as in (57)-(60).

Then (F ,G) is a frame pair for (Hs(Ω), bs2,2(∇)), where ∇ = ∇(Ω) is defined in (53),

(54).

5.2.5 Stability of Frame Pairs

Next we need to investigate the stability of this frame pair constructed in the previ-

ous subsection. The symbol ∇ will always refer to ∇ = ∇(Ω) defined in (53), (54).

Let 0 < p, q ≤ ∞ and suppose t > d(1
p
− 1

2
)+. Furthermore, we require that the

parameter r of the wavelet system satisfies

(61) r > max
(
s+ t, dmax(0,

1

p
− 1) − s, dmax(0,

1

p
− 1) − (s+ t)

)
,

see Proposition 4. We choose a rectangular subset � of Ω such that dist (�, ∂Ω) > 0.

Then we define

(62) ∇∗
j :=

{
(i, k) ∈ Λj : suppψj,λ ⊂ �

}
, j = 0, 1, . . . ,

Of course, it may happen that ∇∗
j = ∅ if j is small. Let J ∈ N be a number such

that ∇∗
j 6= ∅ for all j ≥ J . Then we put

(63)

K :=
{
f ∈ D′(Ω) : there exists (aj,λ)j,λ ∈ bs+t

p,q (∇∗) s.t. f =
∞∑

j=J

∑

λ∈∇∗

j

aj,λ ψj,λ

}
.

Because of dist (�, ∂Ω) > 0 we can extend f by zero outside of Ω and obtain from

Proposition 4 that K ⊂ Bs+t
q (Lp(Ω)). Again making use of Proposition 4 we find

that

∥∥∥
∑

(j,λ)∈Λ

aj,λ ψj,λ

∥∥∥
Hs(Ω)

≍
∥∥∥

∑

(j,λ)∈Λ

aj,λ ψj,λ

∥∥∥
Hs(Rd)

≍ ‖ (aj,λ)(j,λ)∈Λ ‖bs
2,2(∇∗) ,

if Λ ⊂ ⋃∞
j=J ∇∗

j . Here the constants do not depend on Λ.
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Finally we have to show that K is sufficiently large or more exactly, that K ∈ KC

for some sufficiently large C. By definition of K the mapping

T : f 7→ (〈f, ψ̃j,λ〉)(j,λ)∈∇∗

j

belongs to L(K, bs+t
p,q (∇∗)). Moreover, it is invertible and T−1 ∈ L(bs+t

p,q (∇∗), K). Once

again we shall use the extension operator E . In addition we apply the fact that E
may be chosen such that E ∈ L(Bs+t

q (Lp(Ω)), Bs+t
q (Lp(R

d))), cf. Ryshkov [33]. Now

we extend T by defining

T : f 7→ (〈Ef, ψ̃j,λ〉)(j,λ)∈∇j
.

This extension is again bounded, cf. Proposition 4. Let us have a look at the com-

mutative diagram

bs+t
p,q (∇∗)

I1−−−→ bs2,2(∇)

T−1

y
xT

K
I2−−−→ Bs

2(L2(Ω)) .

Because of ∇∗
j ⊂ ∇j , j ≥ J , there is a natural embedding operator between these

sequence spaces, here denoted by I1. Since T ∈ L(Bs
2(L2(Ω)), bs2,2(∇)) we can apply

(21) and conclude

(64) econt
n (I1, b

s+t
p,q (∇∗), bs2,2(∇)) ≤ ‖ T−1 ‖ ‖ T ‖ econt

n (I2, K,B
s
2(L2(Ω))) .

Furthermore

econt
n (I1, b

s+t
p,q (∇∗), bs2,2(∇∗)) = econt

n (I1, b
s+t
p,q (∇∗), bs2,2(∇)) .

To explain this we split bs2,2(∇)) into bs2,2(∇∗) and its orthogonal complement U . Then

the claimed identity follows from the observation that optimal approximations Sn =

ϕn ◦Nn, see (5), of elements of bs+t
p,q (∇∗)) are obtained with ϕn : R

n → bs2,2(∇∗). The

behavior of the left-hand side in (64) is known, see Proposition 3. As a consequence

we obtain

c1 n
−t/d ≤ econt

n (I1, b
s+t
p,q (∇∗), bs2,2(∇∗)) = econt

n (I1, b
s+t
p,q (∇∗), bs2,2(∇))

≤ c2 e
cont
n (I2, K,B

s
2(L2(Ω)))(65)

with some positive c1, c2. Summarizing we have proved that the frame pair (F ,G)

from Lemma 5 is admissible in the sense of Definition 2 for C sufficiently large.

Lemma 6. Let Ω ⊂ R
d be a bounded Lipschitz domain. Let � be a rectangular

subset of Ω such that dist (�, ∂Ω) > 0. Let s ∈ R, 0 < p, q ≤ ∞ and t > d(1
p
− 1

2
)+.

25



Let Ψ be a wavelet system, see (49), such that r satisfies (61), see Proposition 4.

Let F and G be defined as in (57)-(60). Then the frame pair (F ,G) is stable with

respect to the set K defined in (63), i.e. it belongs to PC(K), and it also belongs to

KC ⊂ Bs+t
q (Lp(Ω)) if C is sufficiently large.

5.2.6 Proof of Theorem 4

To prove Theorem 4 we shall use the frame pair from Lemmata 5 and 6.

Let Λ ⊂ ∇ be a set of cardinality n. Then

σn(f, (F ,G))Bs
2
(L2(Ω)) ≤

∥∥∥
∑

(j,λ)6∈Λ

〈f, E∗ψ̃j,λ〉 gj,λ

∥∥∥
Bs

2
(L2(Ω))

≤ c1 ‖ (〈f, E∗ψ̃j,λ〉)(j,λ)6∈Λ ‖bs
2,2
,

where we have once again used (17). By O we denote the canonical orthonormal

basis of b02,2(∇) and by ej,λ its elements, respectively. For a ∈ bs2,2(∇) we put

σn

(
a,O)bs

2,2
:= inf

|Λ|≤n

∥∥∥
∑

(j,λ)6∈Λ

aj,λ ej,λ

∥∥∥
bs
2,2(∇)

.

If Λ contains the n largest terms 2js |〈f, E∗ψ̃j,λ〉| then

σn(f, (F ,G))Bs
2
(L2(Ω)) ≤ c1 σn

(
(〈f, E∗ψ̃j,λ〉)(j,λ)∈∇,O

)

bs
2,2

follows. Next we shall use the following abbreviations: let F1 = Bs+t
q (Lp(Ω)) and

F2 = bs+t
p,q (∇). Using Proposition 3 with respect to ∇ and a simple homogeneity

argument we find

sup
‖f‖F1

≤1

σn(f, (F ,G))Bs
2
(L2(Ω)) ≤ c2 sup

‖a‖F2
≤1

σn(a,O)bs
2,2

≤ c3 n
−t/d ,

since

‖ (〈f, E∗ψ̃j,λ〉)j,λ∈∇‖bs+t
p,q

≍ ‖ f ‖Bs+t
q (Lp(Ω)) .

This completes the proof of Theorem 4.

Remark 8. The advantage of our frame construction consists in the fact that it

is universal for all bounded Lipschitz domains. The disadvantage of our frame con-

struction lies in the use of the operator E∗. This limits its value in case of concrete

calculations. There are other frame constructions in the literature. Let us mention

here the constructions given in [4], [47] and [6]. We add a few comments to these

frames:
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• The frame pairs constructed in [4] allow a discretization of Besov spaces on

domains Ω under certain restrictions, both with respect to the domains and

with respect to the parameters of the Besov space. In particular, only the case

1 ≤ p ≤ ∞, 0 < q ≤ ∞ and s > 0 is considered. With (F ,G) denoting the

frame pairs constructed in the aforementioned paper we obtain

sup
‖f‖F1

≤1

σn(f, (F ,G))H−s(Ω) ≍ n−t/d

where

F1 := B−s+t
q (Lp(Ω)) , t− s > 0 , 1 ≤ p, q ≤ ∞ .

Generalization to the case 0 < q, p < 1 have been given in [15].

• The frames constructed in [47] allow a discretization of Besov spaces on Lip-

schitz domains Ω under the restrictions 0 < p, q ≤ ∞ and s < 0. The frame

pairs consist of either wavelets originating from a wavelet basis on R
d or di-

lated and shifted versions of the associated scaling function. They all have the

property that their support is contained in Ω. Furthermore, these dilated and

shifted copies of the scaling functions show up only near the boundary. Inside

a box contained in Ω and with some distance to the boundary the frame pair

reduces to a biorthogonal wavelet subsystem. The same construction can be

made to discretize the Besov spaces B̃s
q(Lp(Ω)) if s > dmax(0, 1/p − 1), see

the Appendix for a definition. Hence, with (F ,G) denoting the frame pair of

[47] we obtain

sup
‖f‖F1

≤1

σn(f, (F ,G))H−s(Ω) ≍ n−t/d,

where

F1 :=

{
B−s+t

q (Lp(Ω)) if t− s < 0

B̃−s+t
q (Lp(Ω)) if t− s > dmax(0, 1

p
− 1).

• The frame pairs constructed in [6] allow a discretization of Hs(Ω)-spaces with

s > 0. This construction works for domains with piecewise analytic boundary

and is based on an overlapping partition of the domain by means of sufficiently

smooth parametric images of the unit cube. On the reference cube, a tensor

product biorthogonal wavelet basis employing the boundary adapted wavelets on

the interval from [10] is constructed. Under certain conditions, the union of all

the parametric images of these bases gives rise to frame pair for Hs(Ω), s > 0.

• Of course, all the examples of biorthogonal wavelet bases on polyhedral do-

mains also fit into our setting. One natural way as, e.g., outlined in [1] and
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[11], is to decompose the domain into a disjoint union of parametric images of

reference cubes. Then one constructs wavelet bases on the reference cubes and

glues everything together in a judicious fashion. However, due to the glueing

procedure, only Sobolev spaces Hs with smoothness s < 3/2 can be charac-

terized. This bottleneck can be circumvented by the approach in [12]. There, a

much more tricky domain decomposition method involving certain projection

and extension operators is used. By proceeding in this way, norm equivalences

for all spaces Bt
q(Lp(Ω)) can be derived, at least for the case p > 1, see [12,

Theorem 3.4.3]. However, the authors also mention that their results can be

generalized to the case p < 1, see [12, Remark 3.1.2].

5.3 Proof of Theorem 3

Periodic Besov spaces have analoguous properties than the Besov spaces defined on

smooth domains or on R
d. Our general reference for these classes is [34]. A definition

of periodic Besov spaces is given in the Appendix.

5.3.1 Widths of Periodic Besov Spaces

As a preparation of the proof of Theorem 3 we shall investigate the widths of em-

beddings of periodic Besov spaces, a topic which is also of self-contained interest.

In [9] we reduced the corresponding problem for the nonperiodic Besov spaces on a

Lipschitz domain to that one for the discrete Besov spaces. It would be of interest to

construct an isomorphism between these periodic spaces Bs
q(Lp(T)) and bsp,q as well,

see Subsection 5.2.3. Periodic wavelet constructions exist in the literature. However,

up to our knowledge, those characterizations of periodic Besov spaces are estab-

lished only with additional restrictions for the parameters. So we employ a different

strategy here.

Theorem 5. Let 0 < p, q ≤ ∞, s ∈ R and suppose that

t >
(1

p
− 1

2

)

+

holds. Then there exists a constant C∗ such that for any C ≥ C∗ we have

eframe
n,C (I, Bs+t

q (Lp(T)), Bs
2(L2(T))) ≍ n−t .

Proof. Step 1. Preparations. For the estimate from above we shall use a connection

between periodic and weighted spaces. Let ̺κ(x) := (1 + |x|2)−κ/2, x ∈ R, κ > 0.

We define

(66) Bs
q(Lp(R, ̺κ)) :=

{
f ∈ S ′(R) : f ̺κ ∈ Bs

q(Lp(R))
}
,
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endowed with the natural quasi-norm

‖ f |Bs
q(Lp(R, ̺κ))‖ := ‖ f ̺κ |Bs

q(Lp(R))‖ .

Here S ′(R) denotes the collection of the tempered distributions on R. As a combina-

tion of Franke’s characterization of weighted spaces, see Theorem 5.1.3 in [34], and

a result of Triebel [41] we find that f ∈ Bs
q(Lp(T)) if and only if f is a 2π-periodic

distribution in S ′(R) which belongs to Bs
q(Lp(R, ̺κ)) with κ > (1/p). Moreover,

there exist positive constants c1, c2 such that

c1 ‖ f |Bs
q(Lp(R, ̺κ))‖ ≤ ‖ f |Bs

q(Lp(T)‖ ≤ c2 ‖ f |Bs
q(Lp(R, ̺κ))‖

holds for all such f .

Step 2. Let ψ ∈ C∞
0 (R) be a smooth cut-off function such that ψ(x) = 1 if |x| ≤ π

and ψ(x) = 0 if |x| ≥ 2π. We shall study the mapping T : f 7→ ψ · f . Let J =

[−3π, 3π]. Obviously

‖ f ψ |Bs
q(Lp(J))‖ ≤ ‖ f ψ |Bs

q(Lp(R))‖ = ‖ f ψ ̺κ (1/̺κ) ψ(·/2) |Bs
q(Lp(R))‖

≤ c3 ‖ (1/̺κ) ψ(·/2) |Cµ(R)‖ ‖ f ψ ̺κ |Bs
q(Lp(R))‖

≤ c4 ‖ f ψ |Bs
q(Lp(R, ̺κ))‖ .

where µ has to be chosen sufficiently large, cf. e.g. [42, 2.8] or [32, 4.7]. Since ψ

is a pointwise multiplier for these weighted Besov spaces as well we end up with

T ∈ L(Bs
q(Lp(T)), Bs

q(Lp(J))). Moreover, T is a bijection onto a closed subspace

of Bs
q(Lp(J)), denoted by T s

q (Lp(J)), simultenuously for all parameters. Now we

consider the commutative diagram:

Bs+t
q (Lp(T))

I1−−−→ Bs+t
2 (L2(T))

T

y
xT−1

T s+t
q (Lp(J))

I2−−−→ T s
2 (L2(J)) .

Lemma 3 yields

eframe
n, eC

(I1, B
s+t
q (Lp(T)), Bs

2(L2(T))) ≤ ‖T‖ ‖T−1‖ eframe
n,C (I2, T

s+t
q (Lp(J)), T s

2 (L2(J)))

with C̃ = C ‖T−1‖ ‖T‖. Now we employ Lemma 4 and obtain

eframe
n,C (I2, T

s+t
q (Lp(J)), T s

2 (L2(J))) ≤ eframe
n,C (I2, T

s+t
q (Lp(J)), Bs

2(L2(J))) .

This, together with a monotonicity arguments leads to

eframe
n, eC

(I1, B
s+t
q (Lp(T)), Bs

2(L2(T))) ≤ ‖T‖ ‖T−1‖ eframe
n,C (I2, B

s+t
q (Lp(J)), Bs

2(L2(J))) .
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The estimate from above is finished by using Theorem 4 with Ω = J and d = 1.

Step 3. Let J = (−1/2, 1/2). Then there exists a linear extension operator E :

Bs
q(Lp(J)) → Bs

q(Lp(R)), see [33]. Let ψ be as above. We define

Tf(x) :=

{
Ef(x)ψ(6x) if − π ≤ x ≤ π ,

2π-periodic extension otherwise .

We claim that T ∈ L(Bs
q(Lp(J)), Bs

q(Lp(T))) for all parameter constellations. To see

that we first construct an appropriate decomoposition of unity. We put

ϕ(x) :=
ψ(x)∑∞

k=−∞ ψ(x− 2πk)
, x ∈ R .

It follows that

1 =

∞∑

m=−∞

ϕ(x− 2πm) for all x ∈ R

and suppϕ ⊂ {x ∈ R : ψ(x/2) = 1}. Hence, with t = min(1, p, q) and κ > 1/t ≥ 1/p,

we obtain

‖ Tf |Bs
q(Lp(T))‖t ≤ ct2 ‖ (Tf) ̺κ |Bs

q(Lp(R))‖t

= ct2 ‖
∞∑

m=−∞

ϕ(· − 2πm) (Tf) ̺κ |Bs
q(Lp(R))‖t

≤ ct2

∞∑

m=−∞

‖ϕ(· − 2πm) (Tf) ̺κ |Bs
q(Lp(R))‖t

= ct2

∞∑

m=−∞

‖ϕ(· − 2πm)ψ
( · − 2πm

2

)
(Tf) ̺κ |Bs

q(Lp(R))‖t

≤ c3

∞∑

m=−∞

‖ϕ(· − 2πm) ̺κ |Cµ(R)‖t ‖ψ
( · − 2πm

2

)
(Tf) |Bs

q(Lp(R))‖t ,

where we used again assertions on pointwise multipliers, see, e.g., [42, 2.8] or [32,

4.7]. The shift-invariance of ‖ · |Bs
q(Lp(R))‖ and the periodicity of Tf imply

‖ψ
( · − 2πm

2

)
(Tf) |Bs

q(Lp(R))‖ = ‖ψ( · /2) (Tf) |Bs
q(Lp(R))‖

for all m ∈ Z. Furthermore, elementary calculations yield

‖ϕ(· − 2πm) ̺κ |Cµ(R)‖ ≤ c4 ̺κ(2πm)

with c4 independent of m. Altogether this proves

‖ Tf |Bs
q(Lp(T))‖ ≤ c5 ‖ψ( · /2) (Tf) |Bs

q(Lp(R))‖
( ∞∑

m=−∞

̺(2πm)t
)1/t

≤ c6 ‖ψ( · /2) (Tf) |Bs
q(Lp(R))‖ .
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Taking into account the identity

ψ(x/2)Tf(x) = ψ(x/2)
( 2∑

m=−2

Ef(x− 2πm)ψ(6(x− 2πm))
)

we have

‖ψ( · /2) (Tf) |Bs
q(Lp(R))‖ ≤ c7

2∑

m=−2

‖ψ( · /2) Ef(x− 2πm)ψ(6(x− 2πm)) |Bs
q(Lp(R))‖

≤ c8

2∑

m=−2

‖ Ef(x− 2πm)ψ(6(x− 2πm)) |Bs
q(Lp(R))‖

≤ c9‖ Ef ψ(6( · )) |Bs
q(Lp(R))‖

≤ c10‖ Ef |Bs
q(Lp(R))‖

≤ c10 ‖E‖ ‖ f |Bs
q(Lp(J))‖ ,

which proves the claim. Moreover, T is a bijection onto a closed subspace ofBs
q(Lp(T)).

This subspace will be denoted by T s
q (Lp(T)). Now we can argue as in Step 2. The

commutative diagram

Bs+t
q (Lp(J))

I1−−−→ Bs+t
2 (L2(J))

T

y
xT−1

T s+t
q (Lp(T))

I2−−−→ T s
2 (L2(T))

implies

eframe
n, eC

(I1, B
s+t
q (Lp(J)), Bs

2(L2(J))) ≤ ‖T‖ ‖T−1‖ eframe
n,C (I2, B

s+t
q (Lp(T)), Bs

2(L2(T))) .

with C̃ = C ‖T−1‖ ‖T‖. The estimate from below is finished by using Theorem 4

with Ω = J and d = 1.

Now we consider some subspaces of Bs
q(Lp(T)). Let

(67) Zs
q (Lp(T)) :=

{
f ∈ Bs

q(Lp(T)) : 〈f, 1〉T = 0
}
.

Observe that the function g(x) = 1 belongs to D(T), the collection of all complex-

valued, 2π-periodic and infinitely differentiable function. Since

D(T) →֒ Bs
q(Lp(T)) →֒ D′(T)

the scalar product 〈f, 1〉T is well-defined for all f ∈ Bs
q(Lp(T)), cf. [34, 3.5.1].
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Corollary 1. Let 0 < p, q ≤ ∞, s ∈ R and suppose that

t >
(1

p
− 1

2

)
+

holds. Then there exists a constant C∗ such that for any C ≥ C∗ we have

eframe
n,C (I, Zs+t

q (Lp(T)), Zs
2(L2(T))) ≍ n−t .

Proof. The upper estimate can be established as above. For the estimate from below

we start with f ∈ Bs
q(Lp(J)) and J = [−1/2,−1/4]. The operator T has to be

replaced by

T̃ f(x) :=

{
Ef(x)ψ(14(x+ 1/2)) − Ef(−x)ψ(14(−x+ 1/2)) if − π ≤ x ≤ π ,

2π-periodic extension otherwise .

Hence 〈T̃ f, 1〉T = 0 which is clear for f ∈ D(T). Since D(T) is dense in D′(T) it

follows in general.

5.3.2 Besov Spaces on the Unit Circle

There is a simple transformation of the interval [0, 2π) onto the unit circle given by

t 7→ (cos t, sin t) , 0 ≤ t < 2π .

For a given distribution f ∈ D′(Γ) we define

(68) h(t) := f(cos t, sin t) , t ∈ R .

Observe that ϕ ∈ D(Γ) implies ϕ(cos t, sin t) ∈ D(T). Hence, if f ∈ D′(Γ) then

h ∈ D′(T).

Definition 3. Let s ∈ R and 0 < p, q ≤ ∞. Then Bs
q(Lp(Γ)) is the collection of all

distributions f ∈ D′(Γ) such that the corresponding distribution h is contained in

Bs
q(Lp(T)). We put

‖ f |Bs
q(Lp(Γ))‖ := ‖ h |Bs

q(Lp(T))‖.

Lemma 7. In the sense of equivalent norms we have H1/2(Γ) = B
1/2
2 (L2(Γ)) as well

as H−1/2(Γ) = B
−1/2
2 (L2(Γ)).

Proof. It holds

B
1/2
2 (L2(T)) =

{
h ∈ L2(T) :

∫ 2π

0

∫ 2π

0

|h(x) − h(y)|2
|x− y|2 dx dy <∞

}
,
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see e.g. [34, 3.5.4]. Furthermore, the norms ‖ h |Bs
q(Lp(T))‖ and

‖ h |L2(T)‖ +
(∫ 2π

0

∫ 2π

0

|h(x) − h(y)|2
|x− y|2 dx dy

)1/2

are equivalent. Now it remains to observe that

‖ f |L2(Γ)‖ +
(∫

Γ

∫

Γ

|f(x) − f(y)|2
|x− y|2 dΓx dΓy

)1/2

≍ ‖ h |L2(T)‖ +
(∫ 2π

0

∫ 2π

0

|h(x) − h(y)|2
|x− y|2 dx dy

)1/2

since there exist positive constants c1, c2 such that

c1 |x− y|2 ≤ (cosx− cos y)2 + (sin x− sin y)2 ≤ c2 |x− y|2

for all x, y ∈ [0, 2π]. This proves H1/2(Γ) = B
1/2
2 (L2(Γ)) in the sense of equivalent

norms. The second assertion follows from (H1/2(Γ))′ = H−1/2(Γ) (just by definition)

and the duality relation (B
1/2
2 (L2(T)))′ = B

−1/2
2 (L2(T)), see [34, 3.5.6].

5.3.3 Proof of Theorem 3

We consider the commutative diagram

Y
t+1/2
q (Lp(Γ))

I1−−−→ H1/2(Γ)

T

y
xT−1

Z
t+1/2
q (Lp(T))

I2−−−→ Z
1/2
2 (L2(T))

Here the operator T is chosen to be the mapping f 7→ h. Since T is a bijection

considered as a mapping defined on D′(Γ) with values in D′(T) we obtain that

T is an isomorphism belonging to L(B
t+1/2
q (Lp(Γ)), B

t+1/2
q (Lp(T))). Consequently,

T : Y
t+1/2
q (Lp(Γ)) → Z

t+1/2
q (Lp(T)) is an isomorphism as well. Lemma 3 yields

(69)

eframe
n, eC

(I1, Y
t+1/2
q (Lp(Γ)), H1/2(Γ)) ≤ ‖T‖ ‖T−1‖ eframe

n,C (I2, Z
t+1/2
q (Lp(T)), Z

1/2
2 (L2(T)))

with C̃ = C ‖T−1‖ ‖T‖. As a consequence of the commutative diagram

Z
t+1/2
q (Lp(T))

I1−−−→ Z
1/2
2 (L2(T))

T−1

y
xT

Y
t+1/2
q (Lp(Γ))

I2−−−→ H1/2(Γ)

Lemma 3, and inequality (69) we conclude

eframe
n, eC

(I1, Y
t+1/2
q (Lp(Γ)), H1/2(Γ)) ≍ eframe

n,C (I2, Z
t+1/2
q (Lp(T)), Z

1/2
2 (L2(T))) .
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¿From Corollary 1 we derive

eframe
n,C (I1, Y

t+1/2
q (Lp(Γ)), H1/2(Γ)) ≍ n−t

for C sufficiently large. Now the assertion follows from the commutative diagram

(27) and Lemma 2.

6 Appendix – Besov Spaces

Here we collect some properties of Besov spaces which have been used in the text

before. For general information on Besov spaces we refer to the monographs [28, 29,

30, 32, 42, 43, 46]. A collection of results for Besov as well as Sobolev spaces on

domains can be found in [9]. There detailed references are given.

In most of the references given above Besov as well as Sobolev spaces are treated as

classes of complex-valued functions (distributions). In the framework of information

based complexity it is common to deal with real-valued functions (distributions), cf.

e.g. (5). Here we make use of the following point of view: all spaces in the Appendix

are spaces of complex-valued distributions. Then, finally we consider the restrictions

to the real-valued subspaces.

6.1 Wavelet Characterizations

For the construction of biorthogonal wavelet bases as considered below we refer to

the recent monograph of Cohen [3, Chapt. 2]. Let ϕ be a compactly supported scaling

function of sufficiently high regularity and let ψi, i = 1, . . . 2d − 1 be corresponding

wavelets. More exactly, we suppose for some N > 0 and r ∈ N

supp ϕ , supp ψi ⊂ [−N,N ]d , i = 1, . . . , 2d − 1 ,

ϕ, ψi ∈ Cr(Rd) , i = 1, . . . , 2d − 1 ,∫
xα ψi(x) dx = 0 for all |α| ≤ r , i = 1, . . . , 2d − 1 ,

and

ϕ(x− k), 2jd/2 ψi(2
jx− k) , j ∈ N0 , k ∈ Z

d ,

is a Riesz basis in L2(R
d). We shall use the standard abbreviations

ψi,j,k(x) = 2jd/2 ψi(2
jx− k) and ϕk(x) = ϕ(x− k) .
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Further, the dual Riesz basis should fulfill the same requirements, i.e., there exist

functions ϕ̃ and ψ̃i, i = 1, . . . , 2d − 1, such that

〈ϕ̃k, ψi,j,k〉 = 〈ψ̃i,j,k, ϕk〉 = 0 ,

〈ϕ̃k, ϕℓ〉 = δk,ℓ (Kronecker symbol) ,

〈ψ̃i,j,k, ψu,v,ℓ〉 = δi,u δj,v δk,ℓ ,

supp ϕ̃ , supp ψ̃i ⊂ [−N,N ]d , i = 1, . . . , 2d − 1 ,

ϕ̃, ψ̃i ∈ Cr(Rd) , i = 1, . . . , 2d − 1 ,∫
xα ψ̃i(x) dx = 0 for all |α| ≤ r , i = 1, . . . , 2d − 1 .

For f ∈ S ′(Rd) we put

(70) 〈f, ψi,j,k〉 = f(ψi,j,k) and 〈f, ϕk〉 = f(ϕk) ,

whenever this makes sense.

Proposition 4. Let s ∈ R and 0 < p, q ≤ ∞. Suppose

(71) r > max
(
s, d max(0,

1

p
− 1) − s

)
.

Then Bs
q(Lp(R

d)) is the collection of all tempered distributions f such that f is

representable as

f =
∑

k∈Zd

ak ϕk +
2d−1∑

i=1

∞∑

j=0

∑

k∈Zd

ai,j,k ψi,j,k (convergence in S ′)

with

‖ f |Bs
q(Lp(R

d))‖∗ :=
( ∑

k∈Zd

|ak|p
)1/p

+

( 2d−1∑

i=1

∞∑

j=0

2j(s+d( 1

2
− 1

p
))q

( ∑

k∈Zd

|ai,j,k|p
)q/p

)1/q

<∞ ,

if q <∞ and

‖ f |Bs
∞(Lp(R

d))‖∗ :=
( ∑

k∈Zd

|ak|p
)1/p

+ sup
i=1,... ,2d−1

sup
j=0,...

2j(s+d( 1

2
− 1

p
))
( ∑

k∈Zd

|ai,j,k|p
)1/p

<∞ .

The representation is unique and

ai,j,k = 〈f, ψ̃i,j,k〉 and ak = 〈f, ϕ̃k〉

hold. Further I : f 7→ {〈f, ϕ̃k〉, 〈f, ψ̃i,j,k〉} is an isomorphic map of Bs
q(Lp(R

d))

onto the sequence space (equipped with the quasi-norm ‖ · |Bs
q(Lp(R

d))‖∗), i.e. ‖ ·
|Bs

q(Lp(R
d))‖∗ may serve as an equivalent quasi-norm on Bs

q(Lp(R
d)).

A proof of Proposition 4 has been given in [47], see also [25] for a homogeneous

version. A different proof, but restricted to s > d(1
p
−1)+, is given in [3, Thm. 3.7.7].

However, there are many forerunners with some restrictions on s, p and q.
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6.2 Besov Spaces on Domains

Let Ω ⊂ R
d be an bounded open nonempty set. Then we define Bs

q(Lp(Ω)) to

be the collection of all distributions f ∈ D′(Ω) such that there exists a tempered

distribution g ∈ Bs
q(Lp(R

d)) satisfying

f(ϕ) = g(ϕ) for all ϕ ∈ D(Ω) ,

i.e. g|Ω = f in D′(Ω). We put

‖ f |Bs
q(Lp(Ω))‖ := inf ‖ g |Bs

q(Lp(R
d))‖ ,

where the infimum is taken with respect to all distributions g as above.

6.3 Sobolev Spaces on Domains

Let Ω be a bounded Lipschitz domain. Let m ∈ N. As usual Hm(Ω) denotes the

collection of all functions f such that the distributional derivatives Dαf of order

|α| ≤ m belong to L2(Ω). The norm is defined as

‖ f |Hm(Ω)‖ :=
∑

|α|≤m

‖Dαf |L2(Ω)‖ .

It is well-known that Hm(Rd) = Bm
2 (L2(R

d)) in the sense of equivalent norms, cf.

e.g. [42]. As a consequence of the existence of a bounded linear extension operator

for Sobolev spaces on bounded Lipschitz domains, cf. [35, p. 181], it follows

Hm(Ω) = Bm
2 (L2(Ω)) (equivalent norms) ,

for such domains. For fractional s > 0 we introduce the classes by complex interpo-

lation. Let 0 < s < m, s 6∈ N. Then, following [26, 9.1], we define

Hs(Ω) :=
[
Hm(Ω), L2(Ω)

]
Θ
, Θ = 1 − s

m
.

This definition does not depend on m in the sense of equivalent norms, cf. [45]. The

outcome Hs(Ω)

coincides with Bs
2(L2(Ω)), cf. [9] for further details.

6.4 Spaces on Domains and Boundary Conditions

We concentrate on homogeneous boundary conditions. Here it makes sense to intro-

duce two further scales of function spaces (distribution spaces).
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Definition 4. Let Ω ⊂ R
d be an open nontrivial set. Let s ∈ R and 0 < p, q ≤ ∞.

(i) Then B̊s
q(Lp(Ω)) denotes the closure of D(Ω) in Bs

q(Lp(Ω)), equipped with the

quasi-norm of Bs
q(Lp(Ω)).

(ii) Let s ≥ 0. Then Hs
0(Ω) denotes the closure of D(Ω) in Hs(Ω), equipped with the

norm of Hs(Ω).

(iii) By B̃s
q(Lp(Ω)) we denote the collection of all f ∈ D′(Ω) such that there is a

g ∈ Bs
q(Lp(R

d)) with

(72) g|Ω = f and supp g ⊂ Ω ,

equipped with the quasi-norm

‖ f |B̃s
q(Lp(Ω))‖ = inf ‖ g |Bs

q(Lp(R
d))‖ ,

where the infimum is taken over all such distributions g as in (72).

Remark 9. For a bounded Lipschitz domain it holds B̊s
q(Lp(Ω)) = B̃s

q(Lp(Ω)) =

Bs
q(Lp(Ω)) if

0 < p, q <∞ , max
(1

p
− 1, d

(1

p
− 1

))
< s <

1

p
,

cf. [19, Cor. 1.4.4.5] and [45]. Hence,

Hs
0(Ω) = B̊s

2(L2(Ω)) = B̃s
2(L2(Ω)) = Bs

2(L2(Ω)) = Hs(Ω)

if 0 ≤ s < 1/2.

6.5 Sobolev Spaces with Negative Smoothness

In what follows duality has to be understood in the framework of the dual pairing

(D(Ω),D′(Ω)).

Definition 5. Let Ω ⊂ R
d be a bounded Lipschitz domain. For s > 0 we define

H−s(Ω) :=





(
Hs

0(Ω)
)′

if s− 1
2
6= integer ,

(
B̃s

2(L2(Ω))
)′

otherwise .

Remark 10. If Ω ⊂ R
d is a bounded Lipschitz domain then

Hs
0(Ω) = B̃s

2(L2(Ω)) , s > 0 , s− 1

2
6= integer ,

holds. Furthermore

(73) H−s(Ω) = B−s
2 (L2(Ω)) , s > 0 ,

to be understood in the sense of equivalent norms. Again we refer to [9] for detailed

references.
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6.6 Besov Spaces on the Torus

Here our general reference is [34, Chapt. 3]. Since we are using also spaces with

negative smoothness s < 0 and/or p, q < 1 we shall give a definition, which relies on

Fourier analysis.

Let D(T ) denote the collection of all complex-valued infinitely differentiable func-

tions on T (i.e. 2π-periodic). By D′(T ) we denote its dual. Any f ∈ D′(T ) can be

identified with its Fourier series
∑∞

k=−∞ ck(f) eikx where ck(f) = (2π)−1 f(e−ikx).

Next we need a smooth dyadic decompositions of unity. Let ϕ ∈ C∞
0 (R) be a function

such that ϕ(x) = 1 if |x| ≤ 1 and ϕ(x) = 0 if |x| ≥ 2. Then we put

(74) ϕ0(x) := ϕ(x), ϕj(x) := ϕ(2−jx) − ϕ(2−j+1x) , j ∈ N .

It follows
∞∑

j=0

ϕj(x) = 1 , x ∈ R ,

and

supp ϕj ⊂
{
x ∈ R

d : 2j−2 ≤ |x| ≤ 2j+1
}
, j = 1, 2, . . . .

By means of these functions we define the Besov classes.

Definition 6. Let s ∈ R and 0 < p, q ≤ ∞. Then Bs
q(Lp(T)) is the collection of all

periodic tempered distributions f such that

‖ f |Bs
q(Lp(T))‖ =

( ∞∑

j=0

2sjq ‖
∞∑

k=−∞

ϕj(k) ck(f) eikx |Lp(T)‖q

)1/q

<∞

if q <∞ and

‖ f |Bs
∞(Lp(T))‖ = sup

j=0,1,...
2sj ‖

∞∑

k=−∞

ϕj(k) ck(f) eikx |Lp(T)‖ <∞

if q = ∞.

Remark 11. i) These classes are quasi-Banach spaces. They do not depend on

the chosen function ϕ (up to equivalent quasi-norms).

(ii) There is a number of different characterizations of periodic Besov spaces, cf.

e.g. [34, Chapt. 3]. In particular we wish to refer to the characterization by

differences [34, 3.5.4].
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