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Abstract. We study the L2 discrepancy of measurable subsets B(t) of R
d for

t ∈ D with D ⊆ R
τ(d) for some integer τ(d). We assume that t is distributed

according to the density ρ,
R

D
ρ(t) dt = 1. For specific cases of B(t), we ob-

tain various discrepancies including probably the most celebrated discrepancy
anchored at zero studied by Roth, or its analogue anchored at α, the quadrant
discrepancy anchored at α, the unanchored discrepancy, and the periodic ball
discrepancy. We show that the L2 discrepancy for sets B(t) corresponds to
multivariate integration for the Hilbert space with some reproducing kernel Kd

related to B and ρ. In particular, the L2 discrepancy of arbitrary n points in
the d dimensional case is the same as the worst case error of a linear algorithm
that uses these n points and approximates the integral of d variate functions
from the unit ball of the space H(Kd).

We survey a number of bounds on the weighted L2 discrepancy anchored
at 0 with the emphasis on the dependence on n and d. We present necessary
and sufficient conditions on the weights to guarantee that the weighted L2

discrepancy does not depend exponentially on d.

1. Introduction

The notion of discrepancy goes back to the work of Weyl [66] in 1916 and van
der Corput [13, 14] in the 1930s. Discrepancy is a quantitative measure of the uni-
formity of the distribution of points in the d dimensional Euclidean space. Today
we have various notions of discrepancy, and there are literally thousands of papers
studying different aspects of discrepancy. Research on discrepancy is very intensive,
and the reader is referred to the recent books [4, 6, 19, 34, 37, 49, 54]. Various no-
tions of discrepancy are widely used and studied in many areas such as number the-
ory, approximation, stochastic analysis, combinatorics, ergodic theory and numeri-
cal analysis. The notions of discrepancy are related to Sobolev spaces, Wiener mea-
sure, VC dimension and Ramsey theory; see [4, 6, 19, 20, 32, 34, 37, 38, 52, 53, 67].

To keep this paper relatively short, we limit ourselves to L2 discrepancy leaving
the case of Lp discrepancy for a general p ∈ [1,∞] untouched. The case p = ∞
corresponds to the star discrepancy and is usually the most challenging.

It is known that many standard L2 discrepancies are related to multivariate inte-
gration over specific reproducing kernel Hilbert spaces. We show that this relation
holds for a more general class of B-discrepancies. We define the B-discrepancy
as the L2 discrepancy for measurable subsets B(t) of R

d. Here t belongs to a set
D ⊆ R

τ(d) and is distributed according to some density ρ,
∫

D
ρ(t) dt = 1. Under

natural assumptions on B(t), see (2) and (26), we prove that the B-discrepancy of
arbitrary n points is the same as the worst case error of a linear algorithm using
the same points for multivariate integration defined for the Hilbert space H(Kd)
with the reproducing kernel Kd given by the formula

Kd(x, y) =

∫

D

1B(t)(x)1B(t)(y)ρ(t) dt, x, y ∈ Dd :=
⋃

t∈D

B(t). (1)
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For specific choices of B(t) we obtain the L2 discrepancy anchored at α ∈ [0, 1]d

which for α = 0 was studied by Roth [47, 48] and many others, the quadrant dis-
crepancy anchored at α ∈ [0, 1]d studied for the L∞ norm by Hickernell, Sloan and
Wasilkowski [26], the unanchored discrepancy proposed by Morokoff and Caflisch
in [36] and studied in [39], and finally the ball and periodic ball discrepancy studied
by Beck, Chen, Montgomery and Travaglini, see [3, 5, 10, 35, 56].

In particular, the L2 discrepancy anchored at 0 is related to multivariate in-
tegration for the Sobolev space anchored at 1 with the reproducing kernel given
by

Kd(x, y) =
d
∏

k=1

(1 − max{xk, yk}), x, y ∈ [0, 1]d.

We are not sure who first realized this relation but this result can be already easily
deduced from Hlawka’s identity [29] from 1961, see also Zaremba’s paper [69] from
1968.

It is also possible to show that the L2 discrepancy for sets B(t) is equal to the
average case error of multivariate integration for some normed space Gd equipped
with a zero-mean probability measure µd. We should take the space Gd such that
the linear functional f(x) is bounded for any x, and the measure µd such that its
covariance function is Kd given by (1). For all specific discrepancies mentioned
above, we may take Gd as the space of continuous functions with the maximum
norm, and µd as the zero-mean Gaussian measure with the covariance function Kd;
details can be found in [41]. Such a relation was first presented in [67].

One can also ask the converse question whether multivariate integration over
reproducing kernel Hilbert spaces is always related to L2 discrepancy for some
sets B(t). The answer is now no. This simply follows from the fact that not every
reproducing kernel has the form (1). Note that if Kd is given by (1) then Kd(x, y) ∈
[0, 1]. There are kernels which can take arbitrary values including negative values
as well. For example, the Korobov kernel takes negative values, see e.g. [49].

In this paper we also survey bounds on the L2 discrepancy anchored at 0 and,
in particular, their dependence on the dimension d. The lower and upper bounds
of Roth and Frolov [47, 48, 21] on the minimal discrepancy anchored at 0 of n
points are sharp as a function of n, but also depend on d and the exact form of the
dependence on d is not known. Even the asymptotic constants, i.e. when d ≥ 2
is fixed and n tends to infinity, are not known. The minimal discrepancy anchored
at 0 is at most equal to 3−d/2 and this bound is sharp for n = 0. The case n = 0
corresponds to the initial discrepancy anchored at 0 and is exponentially small
for large d. In terms of the corresponding integration problem this means that the
boundary conditions f(x) = 0, if one component of x is one for functions f from the
unit ball of the Sobolev space anchored at 1, imply that their integrals are at most
3−d/2. This may indicate that this L2 discrepancy and multivariate integration are
not properly normalized for large d. We can remove the boundary conditions and
switch to the weighted discrepancy anchored at 0, and to multivariate integration for
the weighted Sobolev space anchored at 1. Again the weighted discrepancy anchored
at 0 of arbitrary n points is the same as the worst case error of a linear algorithm
using n function values at the same n points for approximating the integrals for the
unit ball of the weighted Sobolev space anchored at 1.

The weights are used to moderate the influence of all groups of variables. We give
a brief introduction in Section 4. The choice of weights is a delicate problem. We
believe that the weights should be chosen such that the initial weighted discrepancy
anchored at 0 is roughly dq for some q ≥ 0. For specific weights, we may model
functions which are sums of functions of at most ω variables with ω independent of
d; this corresponds to the finite-order weights, see [18]. Or, we may model functions
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which depend on the successive variables in a diminishing way; this corresponds to
the product weights, see [51]. We discuss these in Section 7. The weights are
especially needed for large d which occurs in many applications including financial
mathematics, physics, chemistry and statistics. In such applications, d is often in
the hundreds or thousands. Another type of applications is path integration, where
d = ∞. Then a finite, but usually very large, d is obtained by approximation of a
path integral.

We present a number of estimates on the L2 weighted discrepancy anchored at 0,
and deduce from them tractability which is the subject of Section 7. More precisely,
we study the minimal number of points n = nγ(ε, d) for which the weighted L2

discrepancy anchored at 0 in the d dimensional case is at most ε, which corresponds
to the absolute error criterion, or at most ε times the initial discrepancy, which
corresponds to the normalized error criterion. The minimal n means that we choose
points tj optimally. The coefficients in the discrepancy formula can be also chosen
optimally or we may fix them to be n−1 as it is done for widely used QMC (Quasi
Monte Carlo) algorithms. Tractability means that nγ(ε, d) is not exponential in
ε−1 + d. There are different ways of measuring the lack of exponential dependence.
We discuss

• weak tractability when

lim
ε−1+d→∞

(ε−1 + d)−1 log nγ(ε, d) = 0;

• polynomial and strong polynomial tractability when nγ(ε, d) is bounded
polynomially in ε−1 and d, or only polynomially in ε−1,

• T -tractability and strong T -tractability when nγ(ε, d) is bounded by a mul-
tiple of some power of T (ε−1, d) or T (ε−1, 1). Here T is a non-decreasing
function of both arguments and T is not exponential, i.e.

lim
ε−1+d→∞

(ε−1 + d)−1 log T (ε−1, d) = 0.

In Section 7, we present a number of tractability results. In particular, we discuss
the relationship between weights and tractability, and conditions on the weights
under which weak, polynomial and strong tractability can be achieved. We also
cite conditions on T -tractability and strong T -tractability from [23]. Tractability
for other L2 discrepancies is only briefly mentioned and the reader is referred to
[41] for details.

The current paper is related to our paper [40], where a survey of results received
up to roughly the year 2000 may be found for Lp discrepancy and multivariate
integration including especially the case of the star discrepancy. For the reader’s
convenience and for completeness we repeat some parts of [40] and present a number
of estimates on L2 discrepancy already given in [40] with updates if there was
progress since 2000. A detailed account of the concepts and results presented here
may be found in [42].

Acknowledgements. The second author was partially supported by the National
Science Foundation under Grant DMS-0608727 and by the Humboldt Research
Award at the University of Jena. The authors thank William Chen, Ronald
Cools, Harald Niederreiter, Friedrich Pillichshammer, Volodya Temlyakov, Greg
Wasilkowski and Art Werschulz for their valuable comments concerning this paper.

2. B-discrepancy

We first define a general L2 discrepancy which covers many classical examples
of L2 discrepancy and later we relate it to multivariate integration.
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Let D ⊆ R
τ(d) be a measurable set and let ρ : D → R be a non-negative

measurable function such that
∫

D
ρ(t) dt = 1. Here, τ : N → N is a given function,

so τ(d) is a given positive integer.
We assume that for any t ∈ D we have a measurable set B(t) ⊆ R

d, and let
vol(B(t)) denote its Lebesgue measure (volume). We also assume that vol(B(·)) is
a measurable function, and

∫

D

(vol(B(t)))2ρ(t) dt < ∞. (2)

For given points t1, t2, . . . , tn ∈ R
d and coefficients a1, a2, . . . , an ∈ R, we ap-

proximate the volume of B(t) by a weighted sum of the points tj which are in the
set B(t), so that

disc(t) := vol(B(t)) −
n
∑

j=1

aj1B(t)(tj).

The L2 B-discrepancy of points tj and coefficients aj, or in short B-discrepancy, is
the weighted L2 norm of the function disc(·); more precisely, it is

discB
2 ({tj}, {aj}) =







∫

D



vol(B(t)) −
n
∑

j=1

aj1B(t)(tj)





2

ρ(t) dt







1/2

.

By direct integration we then have

(discB
2 ({tj}, {aj}))2 =

∫

D

(vol(B(t)))2ρ(t) dt

− 2
n
∑

j=1

aj

∫

D

vol(B(t))1B(t)(tj)ρ(t) dt

+
n
∑

i,j=1

aiaj

∫

D

1B(t)(ti)1B(t)(tj)ρ(t) dt. (3)

A popular choice of coefficients aj is aj = n−1 which corresponds, as we shall see,
to quasi Monte Carlo (QMC ) algorithms for multivariate integration.

A major problem of L2 discrepancy is to find tj and aj for which disc2({tj}, {aj})
is minimized. Let

disc
B

2 (n, d) = inf
t1,...,tn∈Rd

discB
2 ({tj}, {n−1})

and

discB
2 (n, d) = inf

t1,...,tn∈R
d[0,1)d

a1,...,an∈R

discB
2 ({tj}, {aj})

denote the minimal L2 discrepancy when we use n points in dimension d. For

disc
B

2 (n, d) we choose optimal tj for aj = n−1 whereas for disc2(n, d) we also choose
optimal aj .

For n = 0 we do not use any points tj or coefficients aj , and obtain the initial
B-discrepancy

disc
B

2 (0, d) = discB
2 (0, d) =

(∫

D

(vol(B(t)))2ρ(t) dt

)1/2

.

We now present some examples of B-discrepancy.

Discrepancy Anchored at the Origin. Take D = [0, 1]d with τ(d) = d and
ρ(t) = 1. Then B(t) = [0, t) corresponds to the L2 discrepancy anchored at 0.
This is probably the most popular choice of L2 discrepancy studied in many papers



L2 DISCREPANCY AND MULTIVARIATE INTEGRATION 5

including the fundamental contributions of Roth; see [47, 48]. In this case, we drop

the superscript B and denote discB
2 = disc2. Now (3) becomes

(disc2({tj}, {aj}))2 =
1

3d
− 1

2d−1

n
∑

j=1

aj

d
∏

k=1

(1 − t2j,k)

+

n
∑

i,j=1

aiaj

d
∏

k=1

(1 − max{ti,k, tj,k}). (4)

This formula was first given by Warnock [57]. Hence, disc2
2({ti}, {ai}) can be com-

puted using O(dn2) arithmetic operations. Faster algorithms for computing dis-
crepancy for relatively small d have been found by Heinrich; see [20, 24]. The
initial discrepancy is now

disc2(0, d) = disc2(0, d) =

(

∫

[0,1]d
t21 . . . t2d dt

)1/2

= 3−d/2, (5)

which is exponentially small in d. This suggests perhaps that for large d, the L2

discrepancy is not properly normalized. We shall see later how we cope with this
problem.

Discrepancy Anchored at α. As before, we take D = [0, 1]d, with τ(d) = d and
ρ(t) = 1. For α = (α1, . . . , αd) ∈ [0, 1]d, let

B(t) = [min{α1, t1}, max{α1, t1}) × . . . × [min{αd, td}, max{αd, td}).
In particular, if αk ≤ tk for all k ∈ [d] := {1, . . . , d}, we have B(t) = [α, t), whereas
if αk ≥ tk for all k ∈ [d], we have B(t) = [t, α). This corresponds to the L2

discrepancy anchored at α, and is denoted by discB
2 = discα

2 . The volume of B(t)
is now given by

vol(B(t)) =
d
∏

k=1

(max{αk, tk} − min{αk, tk}),

and the initial discrepancy is
(

∫

[0,1]d
(vol(B(t)))2 dt

)1/2

=
d
∏

k=1

(

1

3
− αk(1 − αk)

)1/2

∈ [12−d/2, 3−d/2].

Hence, it is exponentially small in d for all α. The formula (3) now becomes

(discα
2 ({tj}, {aj}))2 =

d
∏

k=1

(

1

3
− αk(1 − αk)

)

− 2

n
∑

j=1

aj

d
∏

k=1

tj,k(2αk − tj,k)1[0,αk)(tj,k) + (1 − tj,k)(1 + tj,k − 2αk)1[αk,1](tj,k)

2

+
n
∑

i,j=1

aiajΞ(α, ti, tj),

where Ξ(α, ti, tj) denotes the product

d
∏

k=1

(min{ti,k, tj,k}1[0,αk)2(ti,k, tj,k) + (1 − max{ti,k, tj,k})1[αk,1]2(ti,k, tj,k)).

This can be computed using O(dn2) arithmetic operations. Obviously, for α = 0
this notion coincides with the L2 discrepancy mentioned before.
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Quadrant Discrepancy Anchored at α. Again we take D = [0, 1]d, with τ(d) =
d and ρ(t) = 1. For α = (α1, . . . , αd) ∈ [0, 1]d, let

B(t) = [w1(t), z1(t)) × . . . × [wd(t), zd(t)),

where [wk(t), zk(t)) = [0, tk) if tk < αk, and [wk(t), zk(t)) = [tk, 1) if tk ≥ αk. In
other words, the set of points t ∈ [0, 1]d is partitioned into 2d quadrants according
to whether tk < αk or tk ≥ αk. The set B(t) denotes the box with one corner at t
and the opposite corner defined by the unique vertex of [0, 1]d that lies in the same
quadrant as t. For the special case α = 1, we have B(t) = [0, t) for t ∈ [0, 1)d,
as for the L2 discrepancy anchored at 0. The general situation now corresponds
to L2 same-quadrant discrepancy with anchor at α, or in short, the L2 quadrant

discrepancy at α. We denote discB
2 = discα,quad

2 . For α = (1/2, . . . , 1/2), this type of
discrepancy was studied by Hickernell [25] who calls it the centred discrepancy. For
a general α, the quadrant discrepancy was studied in the L∞ norm by Hickernell,
Sloan and Wasilkowski [26], and we presented its L2 analogue above. The volume
of B(t) is

vol(B(t)) =
d
∏

k=1

(

tk1[0,αk)(tk) + (1 − tk)1[αk,1](tk)

)

,

and the initial discrepancy is given by

(

∫

[0,1]d
(vol(B(t)))2 dt

)1/2

=

d
∏

k=1

(

1

3
− αk(1 − αk)

)1/2

∈ [12−d/2, 3−d/2].

Again, it is exponentially small in d. The formula (3) now becomes

(discα,quad
2 ({tj}, {aj}))2 =

d
∏

k=1

(

1

3
− αk(1 − αk)

)

− 2
n
∑

j=1

aj

d
∏

k=1

(α2
k − t2j,k)1[0,αk)(tj,k) + (tj,k − αk)(2 − tj,k − ak)1[αk,1](tj,k)

2

+

n
∑

i,j=1

aiaj

d
∏

k=1

|ti,k − αk| + |tj,k − αk| − |ti,j − tj,k|
2

.

Extreme or Unanchored Discrepancy. In this case, we have τ(d) = 2d and
ρ(t) = 1, with D = {(x, y) ∈ [0, 1]2d : x ≤ y}. Then for t = (x, y) and B(t) = [x, y)

we have the L2 extreme or unanchored discrepancy, denoted by discB
2 = discex

2 .
This type of L2 discrepancy was introduced by Morokoff and Caflisch in [36]. These
authors prefer to use the unanchored discrepancy since it does not prefer a particular
vertex, like the L2 discrepancy anchored at the origin or at α. Now (3) becomes

(discex
2 ({tj}, {aj}))2

=
1

12d
− 1

2d−1

n
∑

j=1

aj

d
∏

k=1

tj,k(1 − tj,k) +

n
∑

i,j=1

aiaj

d
∏

k=1

(min{ti,k, tj,k} − ti,ktj,k).

For n = 0, we obtain the initial L2 unanchored discrepancy discex
2 (0, d) = 12−d/2

which is exponentially small in d, as all discrepancies before.

Ball Discrepancy. We now take τ(d) = d+1, and define D = {[c, r] : c ∈ R
d, r ≥

0}. The weight function ρ may be defined as ρ(c, r) = 1 for [c, r] ∈ [0, 1]d+1 and
zero otherwise. We may also consider the case for which ρ is the density function
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of the Gaussian measure on R
d × R+,

ρ(c, r) = 2(2π)−(d+1)/2 exp

(

−r2

2
− 1

2

d
∑

k=1

c2
k

)

.

Then for t = (c, r), let B(t) = {x ∈ R
d : ‖x − c‖p ≤ r} be the ball at centre c and

radius r in the lp norm, i.e.

‖x − c‖p =

(

d
∑

k=1

|xk − ck|p
)1/p

, p ∈ [1,∞),

and
‖x − c‖∞ = max

j∈[d]
|xj − cj |.

This situation corresponds to the L2 ball discrepancy in the lp norm. We shall only
consider the case p = ∞ in Section 6. Here as an aside, we also follow Chen and
Travaglini [12] and define a periodic ball discrepancy in the ℓp case, denoted by

discB
2 = discpball

2 , as follows. For x, y ∈ [0, 1]d, let

‖x − y‖∗p =

(

d
∑

k=1

|xk − yk|p∗

)1/p

,

where |xk − yk|∗ = min{|xk − yk|, 1 − |xk − yk|}. Observe that

‖x − y‖∗p ≤ d1/p

2
, x, y ∈ [0, 1]d.

Now we let τ(d) = d + 1 and define

D =

{

(c, r) : c ∈ [0, 1]d, 0 ≤ r ≤ d1/p

2

}

.

For t = (c, r), we consider the set B(t) = {x ∈ [0, 1]d : ‖x − c‖∗p ≤ r}. Formulas for
the periodic ball discrepancy in the case p = 2 can be found in [12] in terms of the
Fourier coefficients of the characteristic function of the ball of radius r. At the end
of Section 3, we shall briefly discuss estimates for the discrepancy in this case.

3. Bounds for the L2 Discrepancy

We briefly review bounds on the minimal L2 discrepancy. These bounds are
similar for the L2 discrepancy anchored at α, the L2 quadrant discrepancy anchored
at α and the L2 unanchored discrepancy, see [39, 40]. That is why we restrict
ourselves only to the L2 discrepancy anchored at 0 and to the L2 periodic ball
discrepancy.

We begin with the minimal L2 discrepancy anchored at 0. It is easy to find the
exact values of disc2(n, d) and disc2(n, d) for d = 1 which are of exact order n−1.
For d ≥ 1, the exact value of disc2(n, d) is only known for n = 1, see [44]. For
a fixed d and n ≥ 2 we only know bounds. More precisely, there exist positive
numbers cd and Cd such that

cd
(log n)(d−1)/2

n
≤ disc2(n, d) ≤ disc2(n, d) ≤ Cd

(log n)(d−1)/2

n
. (6)

The lower bound is a celebrated result of Roth [47] proved in 1954 for aj = n−1. For
arbitrary aj, using essentially the same proof technique, the lower bound was proved
by Chen [8, 9]. The upper bound was proven by Roth [48] in 1980 and independently
by Frolov [21] again for aj = n−1. The original proofs of upper bounds were not
fully constructive. Today we have constructive proofs due to Chen and Skriganov
[11]. The same upper bounds can be also achieved by using randomized digital nets
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in prime base as shown by Chen [7] and elaborated in a recent paper by Cristea,
Dick and Pillichshammer [16], see also Dick and Pillichshammer [17].

The essence of (6) is that modulo a logarithmic factor, the L2 discrepancy be-
haves asymptotically in n like n−1 independently of d. The power of the logarithmic
factor is (d− 1)/2 and as long as d is not too large this factor is negligible. On the
other hand, if d is large, say d = 360 as in some financial applications, the factor
(log n)(d−1)/2 is very essential. Indeed, the function n−1(log n)(d−1)/2 is increasing
for n ≤ exp((d − 1)/2). The latter number for d = 360 is exp(179.5) ≈ 9 · 1077.
Obviously, it is impossible to use n so large, and therefore for large d, the good
asymptotic behavior of disc2(n, d) cannot be really utilized for practical purposes.

For large d, the numbers cd and Cd from (6) are also very important. We do not
know much about them. However, we know that the asymptotic constant

Ad = lim sup
n→∞

disc2(n, d)
n

(log n)(d−1)/2

is super-exponentially small in d.
For large d and a relatively small n, we need other estimates on disc2(n, d). By

a simple averaging argument with respect to tj and for aj = n−1, we have

disc2(n, d) ≤
(

∫

[0,1]nd

(disc2({tj}, {n−1}))2 dt1 . . . dtn

)1/2

≤ 2−d/2

n1/2
. (7)

The last estimate looks very promising since we have an exponentially small depen-
dence on d through the factor 2−d/2. However, we should keep in mind that even
the initial L2 discrepancy is 3−d/2 which is much smaller than 2−d/2 for large d.
From the last estimate we can easily conclude by applying Chebyshev’s inequality
that for any number c > 1, the set of sample points

Ac = {{tj} ∈ [0, 1]dn : disc2({tj}, {n−1}) ≤ c 2−d/2n−1/2}
has Lebesgue measure at least 1 − c−2. Hence, for c = 10 we have a set of points
{tj} of measure at least 0.99 for which the L2 discrepancy is at most 10·2−d/2n−1/2.
Surprisingly enough, we still do not know how to construct such points. Of course,
such points can be found computationally. Indeed, it is enough to take points
t1, . . . , tn randomly, as independent and uniformly distributed points over [0, 1]d,
and compute their discrepancy with aj = n−1. If their discrepancy is at most

10 ·2−d/2n−1/2 we are done. If not, we repeat random selection of points t1, . . . , tn.
Then after a few such selections we will get the desired points since the failure of k
trials is c−2k, or 10−2k for c = 10, which is exponentially small in k.

The bound (6) justifies the definition of low discrepancy sequences, and points
which we do not cover here, for the coefficients aj equal n−1. Namely, the sequence
{tj} is a low discrepancy sequence if there is a positive number Cd such that

disc2({tj}, {n−1}) ≤ Cd
(log n)d

n
for all n ≥ 2. (8)

That is, the L2 discrepancy of low discrepancy sequences enjoys almost the same
asymptotic as the minimal L2 discrepancy with the only difference being in the
power of the logarithmic factor. The search for low discrepancy sequences has been
a very active research area, and many beautiful and deep constructions have been
obtained. Such sequences usually bear the name of their authors. Today we know
low discrepancy sequences (and points) of Faure, Halton, Hammersley, Niederreiter,
Sobol and Tezuka, as well as (t, m, s) points and (t, m) nets, and lattice or shifted
lattice points as their counterparts for the periodic case; see [4, 6, 19, 34, 37, 49, 54].

There are also points and sequences satisfying (8) with more general coefficients
aj than n−1. An example is provided by hyperbolic points, see [52, 58], although in
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this case we have (log n)3d/2 instead of (log n)d in (8). Explicit bounds on the L2 dis-
crepancy for hyperbolic points can be found in [58]. In particular, hyperbolic points
t1, . . . , tn and coefficients a1, . . . , an were constructed such that disc2({tj}, {aj}) ≤ ε
with

n ≤ min

{

3.304

ε

(

1.77959 + 2.714
log ε−1 − 1.12167

d − 1

)3(d−1)/2

, 7.26

(

1

ε

)2.454
}

.

Observe an intriguing dependence on d in the first term of the minimum. For a
fixed large d, and ε tending to zero, we have

n = O

(

(

2.714

d − 1

)3(d−1)/2
(log ε−1)3(d−1)/2

ε

)

.

On the other hand, we also have a polynomial bound on n in ε−1 for all d. Again
it looks more surprising than it is since the initial L2 discrepancy is exponentially
small in d. It is not known if the exponent 2.454 for the second term of the minimum
is sharp. Clearly, it has to be at least one but it is very likely that it may be lower.

The last estimate can be rewritten as

disc2(n, d) ≤ 2.244

n0.408
for all n and d,

and is obtained by hyperbolic points. This bound suggests that we should try to
find the smallest number (or the infimum) of positive p for which there exists a
positive C such that

disc2(n, d) ≤ Cn−1/p for all n and d. (9)

We stress that the last estimate holds for all n and d; hence neither C nor p depends
on n and d. Such a value of p is denoted by p∗ and called the exponent p∗ of the
L2 discrepancy; see [59].

The bound p∗ ≥ 1 is obvious, since for d = 1, we have

disc2(n, 1) = Θ(disc2(n, 1)) = Θ(n−1).

For aj = n−1, it is proved by Matoušek [33] that p ≥ 1.0669 in (9). This means
that the case of arbitrary d is harder than the univariate case and the presence of
the logarithmic factors in (6) cannot be entirely neglected. The upper bound

p∗ ≤ 1.4779

is established in [59], but its proof is non-constructive. The best constructive bound
currently known is p = 2.454 from the estimate for hyperbolic points; see [58]. It
was shown by Plaskota [45] that using hyperbolic points, or more generally nested
sparse grids points, leads to p ≥ 2.1933. To obtain p < 2.1933, we must therefore
use other constructions than nested sparse grids points.

There are two challenging problems concerning the exponent of L2 discrepancy.
The first is to find p∗, and the second is to construct points tj for which (9) holds
with p < 2.

We now address the problem of the exponentially small initial L2 discrepancy.
One way to omit this problem is to switch to the normalized case. By the normalized
L2 discrepancy we mean

disc2({tj}, {aj})
disc2(0, d)

.

In other words, we normalize by the initial value of the L2 discrepancy, which is
3−d/2. We now define

n(ε, d) = min{n : disc2(n, d) ≤ ε disc2(0, d)} (10)
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and
n(ε, d) = min{n : disc2(n, d) ≤ ε disc2(0, d)} (11)

as the minimal number of points necessary to reduce the initial discrepancy by a
factor ε respectively with the coefficients aj = n−1 and with optimally chosen aj .
We ask whether n(ε, d) and n(ε, d) behave polynomially in ε−1 and d or at least not
exponentially in ε−1 and d. We stress that polynomial bounds on the absolute value
of the L2 discrepancy, which we presented so far, are useless for the normalized case
since we now have to compare the minimal L2 discrepancy to ε3−d/2 instead of ε.

The problem how n(ε, d) and n(ε, d) depend on d has been solved and we now
report its solution. First of all, notice that it follows directly from (5) and (7) that

n(ε, d) ≤
(

3

2

)d

ε−2. (12)

It was shown in [68], see also [51], that

n(ε, d) ≥
(

9

8

)d

(1 − ε2). (13)

The bound (13) is also valid if all coefficients aj are non-negative. Hence, we have
exponential dependence on d.

For arbitrary aj , it was shown in [39] that for any positive ε0 < 1 there exists a
positive c such that

c 1.0628d ≤ n(ε, d) ≤
(

3

2

)d

ε−2 (14)

for all d and ε ∈ (0, ε0). Hence, n(ε, d) goes to infinity exponentially fast in d. The
upper bounds in (12) and in (14) coincide. We do not know whether arbitrary aj

are better than positive aj or the same as n−1.

Finally, we briefly turn to the minimal L2 periodic ball discrepancy discpball
2 (n, d).

The lower bound is due to Beck [3] and Montgomery [35] and states that for an
arbitrary d there is a positive cd such that

discpball
2 (n, d) ≥ cdn

−1/2−1/2d

for all n. This bound is essentially sharp as shown by Beck and Chen [5]; see also
Chen [10] and Travaglini [56]. Note that for large d, the exponent of n−1 is close to
1/2 which is the worst possible exponent for all B-discrepancy for which the sets
B(t) are subsets Dd with vol(Dd) < ∞; see Section 5.

4. Weighted L2 Discrepancy

As we shall see later, the L2 discrepancy anchored at 0 is related to multivariate
integration for functions satisfying some boundary conditions which are probably
not very common in practical computation. To remove these boundary conditions
we need to consider a little more general L2 discrepancy. Furthermore, for large
d, the integrands may depend differently on groups of variables. To address this
property, we need to consider weighted L2 discrepancy.

By u we denote an arbitrary subset of [d] = {1, . . . , d}. We are given a sequence

γ = {γd,u}d=1,2,...;u⊆[d]

of non-negative weights. For simplicity, we assume that γd,u ∈ [0, 1].

For a vector t ∈ [0, 1]d, we denote by tu the vector from [0, 1]|u|, where |u| is the
cardinality of u, with the components of t whose indices are in u. For example, for
d = 7 and u = {2, 4, 5, 6} we have tu = (t2, t4, t5, t6). Then

dtu =
∏

k∈u

dtk.
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By (tu, 1) we mean the vector from [0, 1]d with the same components as t for indices
in u and with the rest of components being replaced by 1. For our example, we
have (tu, 1) = [1, t2, 1, t4, t5, t6, 1]. Recall that for given points t1, . . . , tn ∈ [0, 1)d

and real coefficients a1, . . . , an, we have

disc2((tu, 1)) =
∏

k∈u

tk −
n
∑

j=1

aj1[0,tu)((tj)u).

The weighted L2 discrepancy anchored at 0, or simply the L2 weighted discrepancy,
is then defined as

disc2,γ({tj}, {aj}) =





∑

u⊆[d]

γd,u

∫

[0,1]|u|

(disc2((tu, 1)))2 dtu





1/2

. (15)

If γd,u = 0 for all u with |u| < d and γd,[d] = 1, then the L2 weighted discrepancy
reduces to the L2 discrepancy. It is easy to obtain an explicit formula for the
L2 weighted discrepancy. Using Warnock’s formula (4), we see immediately that
(disc2,γ({tj}, {aj}))2 is given by

∑

u⊆[d]

γd,u





1

3|u|
− 1

2|u|−1

n
∑

j=1

aj

∏

k∈u

(1 − t2j,k) +

n
∑

i,j=1

aiaj

∏

k∈u

(1 − max{ti,k, tj,k})



 .

The standard (unweighted) case corresponds to γ = {1}, i.e. γd,u = 1 for all u ⊆ [d].
In this case, one can show that (disc2,{1}({tj}, {aj}))2 is given by

(

4

3

)d

− 2

n
∑

j=1

aj

d
∏

k=1

3 − t2j,k
2

+

n
∑

i,j=1

aiaj

d
∏

k=1

(2 − max{ti,k, tj,k}).

As before, for an arbitrary sequence γ = {γd,u}, let

disc2,γ(n, d) = inf
t1,...,tn∈[0,1)d

disc2,γ({tj}, {n−1}) (16)

and

disc2,γ(n, d) = inf
t1,...,tn∈[0,1)d

a1,...,an∈R

disc2,γ({tj}, {aj}) (17)

be the minimal weighted L2 discrepancies. For n = 0, we obtain

(disc2,γ(0, d))2 = (disc2,γ(0, d))2 =
∑

u⊆[d]

γd,u3
−|u|.

Observe that for the unweighted case γd,u = 1, we have disc2(0, d) = (4/3)d/2,
which is exponentially large in d. Hence, the initial L2 discrepancy is exponentially
small in d whereas the unweighted L2 discrepancy is exponentially large in d. Both
cases seem to be ill-normalized. We believe that the choice of the weight sequence
γ should be such that the initial weighted L2 discrepancy is roughly dq for some
q ≥ 0.

How small is the minimal weighted discrepancy? We can average the square of
the weighted L2 discrepancy for uniformly and independently distributed tj over
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[0, 1]d and coefficients aj = n−1. We obtain
∫

[0,1]nd

(disc2,γ({tj}, {n−1}))2 dt1 . . . dtn

=
∑

u⊆[d]

γd,u

(

1

3|u|
− 1

2|u|−1

(

2

3

)|u|

+
1

n

(

1

2

)|u|

+
n − 1

n

(

1

3

)|u|
)

=
1

n

∑

u⊆[d]

γd,u

(

(

1

2

)|u|

−
(

1

3

)|u|
)

.

By the mean value theorem we conclude that

disc2,γ(n, d) ≤ disc2,γ(n, d) ≤ 1

n1/2





∑

u⊆[d]

γd,u(2−|u| − 3−|u|)





1/2

. (18)

Applying Chebyshev’s inequality we also conclude that the set of sample points

Ac =











{tj} : disc2({tj}, {n−1}) ≤ c n−1/2





∑

u⊆[d]

γd,u(2−|u| − 3−|u|)





1/2










has Lebesgue measure at least 1 − c−2. For the unweighted case γd,u = 1, we have

disc2,γ(n, d) ≤ disc2,γ(n, d) ≤ n−1/2

(

(

3

2

)d

−
(

4

3

)d
)1/2

≤ n−1/2

(

3

2

)d/2

.

Lower bounds on the weighted L2 discrepancy can be found in [39]. The con-
sequences of the upper and lower bounds on the weighted L2 discrepancy will be
discussed later after we have presented relations between the weighted L2 discrep-
ancy and multivariate integration for some Sobolev spaces.

As for the normalized L2 discrepancy, we let

nγ(ε, d) = min{n : disc2,γ(n, d) ≤ ε disc2,γ(0, d)}

and

nγ(ε, d) = min{n : disc2,γ(n, d) ≤ ε disc2,γ(0, d)}
be the minimal number of points necessary to reduce the initial weighted discrep-
ancy by a factor ε respectively with the coefficients aj = n−1 and with optimally
chosen aj . For the unweighted case, γ = {1}, it was shown in [39] that for any
positive ε0 < 1 there exists a positive c such that

c 1.0463d ≤ n{1}(ε, d) ≤ n{1}(ε, d) ≤
(

9

8

)d

ε−2 (19)

for all d and ε ∈ (0, ε0).
Hence, for the normalized L2 discrepancy as well as for the normalized weighted

L2 discrepancy with γd,u = 1, we have an exponential dependence on d, and the
corresponding n(ε, d) and n{1}(ε, d) go exponentially fast with d to infinity. It is
now natural to ask what necessary and sufficient conditions on the weight sequence
γ = {γd,u} guarantee no exponential dependence on d, and what we have to assume
about γ to guarantee, say, polynomial dependence on d, or no dependence on d at
all. We will study these questions later.
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5. Multivariate Integration

We consider multivariate integration for real functions defined on a measur-
able set Dd ⊂ R

d and which belong to a Hilbert space with a reproducing kernel
Kd : Dd × Dd → R. This space is denoted by H(Kd) and its inner product by
〈·, ·〉H(Kd). The basic information about such spaces can be found in [1]. Here, we
only mention that Kd(·, x) ∈ H(Kd) for all x ∈ Dd, that (Kd(xi, xj))i,j=1,...,m is a
m × m symmetric positive semi-definite matrix and this holds for any choice of m
and xi, xj ∈ Dd. Furthermore, and this is probably the most important property,
for any function f ∈ H(Kd) and any x ∈ Dd, we have

f(x) = 〈f, Kd(·, x)〉H(Kd).

The space H(Kd) is the completion of linear combinations of functions of the form

m
∑

j=1

ajKd(·, xj)

for any m, real aj and xj ∈ Dd.
We illustrate the reproducing kernel Hilbert spaces for two examples with Dd =

[0, 1]d. For the first example and d = 1, we take a number β ∈ [0, 1] and let

Kβ
1 (x, y) =

|x − β| + |y − β| − |x − y|
2

, x, y ∈ [0, 1].

Note that for β = 0, we have K0
1(x, y) = (x + y − |x − y|)/2 = min{x, y}, whereas

for β = 1, we have K1
1 (x, y) = (1 − x + 1 − y − |x − y|)/2 = 1 − max{x, y}. For

an arbitrary β, the kernel Kβ
1 has the property that it vanishes for x ≤ β ≤ y and

y ≤ β ≤ x.

The space H(Kβ
1 ) consists of absolutely continuous functions vanishing at β and

whose first derivatives are in L2([0, 1]). In other words,

H(Kβ
1 ) = {f : [0, 1] → R : f(β) = 0, f is absolutely continuous, f ′ ∈ L2([0, 1])}

with the inner product for f, g ∈ H(Kβ
1 ) given by

〈f, g〉H(Kβ
1 ) =

∫ 1

0

f ′(x)g′(x) dx.

For d ≥ 1 and a vector β ∈ [0, 1]d, we define H(Kβ
d ) to be the d fold tensor

product of H(K
βj

1 ), i.e.

H(Kβ
d ) = H(Kβ1

1 ) ⊗ . . . ⊗ H(Kβd

1 ),

with the reproducing kernel given by

Kβ
d (x, y) =

d
∏

k=1

Kβk

1 (xk, yk), x, y ∈ [0, 1]d.

The space H(Kβ
d ) consists of functions such that f(x) = 0 if there exists an

index j ∈ [d] such that xj = βj , and which are one time differentiable with respect
to all variables, and the resulting partial derivatives are in L2([0, 1]d). The inner

product for f, g ∈ H(Kβ
d ) is given by

〈f, g〉H
K

β
d

=

∫

[0,1]d

∂d

∂x1 . . . ∂xd
f(x)

∂d

∂x1 . . . ∂xd
g(x) dx.

The space H(Kβ
d ) is called the Sobolev space anchored at β.
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As a second example of a reproducing kernel Hilbert space, take an arbitrary
weight sequence γ = {γd,u} with γd,u ≥ 0. Define the reproducing kernel as

Kβ
d,γ(x, y) =

∑

u⊆[d]

γd,uKβ
u
(x, y),

with

Kβ
u
(x, y) =

∏

k∈u

Kβ
1 (xk, yk) =

∏

k∈u

|xk − βk| + |yk − βk| − |xk − yk|
2

for x, y ∈ [0, 1]d. For the unweighted case γd,u = {1}, we have

Kβ
d,{1}(x, y) =

d
∏

k=1

(1 + Kβ
1 (xk, yk))

=

d
∏

k=1

(

1 +
|xk − βk| + |yk − βk| − |xk − yk|

2

)

.

The Hilbert space H(Kβ
d,γ) is the sum of tensor product Hilbert space H(Kβ

u )
for all u for which γd,u is positive. For all positive γd,u, the inner product for
f, g ∈ H(Kd,γ) is given by

〈f, g〉H(Kβ

d,γ
) =

∑

u⊆[d]

γ−1
d,u

∫

[0,1]|u|

∂|u|

∂xu

f(xu, β)

∫

[0,1]|u|

∂|u|

∂xu

g(xu, β) dxu,

with the notation

∂xu =
∏

k∈u

∂xk and dxu =
∏

k∈u

dxk.

Here, (xu, β) denotes the vector with d components, with the j-th component equal
to xj if j ∈ u and equal to βj if j 6∈ u. In particular, for u = ∅ we have (x∅, β) = β,

whereas for u = [d] we have (x[d], β) = x. For u = ∅, we have Kβ
∅ = 1 and

H(Kβ
∅ ) = span(1). The term in the inner product corresponding to u = ∅ is equal

to γ−1
d,∅f(β)g(β).

We have a unique decomposition of functions f from H(Kβ
d,γ), in the form

f =
∑

u⊆[d]

fu, fu ∈ H(Kβ
u
),

and the terms fu are mutually orthogonal so that

‖f‖2
H(Kd,γ) =

∑

u⊆[d]

γ−1
d,u‖fu‖2

H(Kβ
u
)
.

If some γd,u = 0, then we assume that the corresponding term fu = 0 and
interpret 0/0 as 0. Hence, the inner product is the sum of terms for positive γd,u

with all fu = 0 if γd,u = 0.
Observe that fu depends only on variables in u. In particular, f∅(x) = f(β) and

f{j}(x) = f(β1, . . . , βj−1, xj , βj+1, . . . , βd) − f(β). It is shown in [31] that for any
u ⊆ [d], we have

fu(x) =
∑

v⊆u

(−1)|u|−|v|f(xv, β).

In general, when some γd,u = 0, the Hilbert space H(Kβ
d,γ) is not a tensor

product space. However, if γd,u = 1, or more generally if

γd,u =
∏

k∈u

γd,k
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for some γd,k ∈ [0, 1], then

Kβ
d,γ(x, y) =

d
∏

k=1

(1 + γd,kKβ
1 (xk, yk))

=

d
∏

k=1

(

1 +
γd,k(|xk − βk| + |yk − βk| − |xk − yk)

2

)

is of the product form and this implies that H(Kβ
d,γ) is a tensor product space.

The space H(Kβ
d,γ) is called the weighted Sobolev space anchored at β.

We now define multivariate integration for functions from a general reproducing
kernel Hilbert space H(Kd). We need to assume that the space H(Kd) consists
of integrable functions. To guarantee that multivariate integration is a bounded
linear functional, we need to assume that the function

hd(x) =

∫

Dd

Kd(y, x) dy, x ∈ Dd, (20)

belongs to H(Kd). For f ∈ H(Kd), we define multivariate integration as approxi-
mation of

Id(f) =

∫

Dd

f(x) dx. (21)

Since f(x) = 〈f, Kd(·, x)〉H(Kd), we can rewrite Id(f) as

Id(f) =

〈

f,

∫

Dd

Kd(·, x) dx

〉

H(Kd)

= 〈f, hd〉H(Kd).

Multivariate integration corresponds to the inner product with the generator hd.
Clearly,

‖Id‖ := sup
‖f‖H(Kd)≤1

|Id(f)| = ‖hd‖H(Kd) =

(

∫

[0,1]2d

Kd(x, y) dxdy

)1/2

.

We approximate Id(f) by computing function values f(xj) at some sample points
xj . In general, these points can be chosen adaptively, i.e. the choice of xj may
depend on the already computed function values f(xi) for i = 1, . . . , j − 1. Fur-
thermore, knowing f(xj) for, say, j = 1, . . . , n, we may take φ(f(x1), . . . , f(xn))
as an approximation of Id(f) for some, in general, nonlinear function φ. It turns
out that adaptation as well as nonlinear choices of φ do not help, as proven by
Bakhvalov (adaptation) and by Smolyak (nonlinear φ); see the original paper of
Bakhvalov [2] which presents both results. These results can be also found in, for
example, [55]. Hence, without loss of generality, we may restrict ourselves to linear
and non-adaptive approximations of the form

Qn,d(f) =
n
∑

j=1

ajf(tj) (22)

for some real aj and, a priori, non-adaptively given tj from [0, 1]d. Usually, Qn,d is
called a linear algorithm. If we let aj = n−1, then

Qn,d(f) =
1

n

n
∑

j=1

f(tj) (23)

is called a QMC (quasi-Monte Carlo) algorithm and these formulas are often used
in numerical computational practice as approximations of multivariate integrals
especially when d is large.
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The worst case error of Qn,d is defined as the largest error between Id(f) and
Qn,d(f) over the unit ball of H(Kd); more precisely,

ewor(Qn,d; H(Kd)) = sup
f∈H(Kd)

‖f‖H(Kd)≤1

|Id(f) − Qn,d(f)|.

Due to linearity of Id−Qn,d, the worst case error is obviously the same as the norm
‖Id − Qn,d‖. Furthermore, for any f ∈ H(Kd) of arbitrary norm, we have

|Id(f) − Qn,d(f)| ≤ ewor(Qn,d; H(Kd))‖f‖H(Kd).

At first glance, it may seem surprising but there is an explicit formula for the
worst case error ewor(Qn,d; H(Kd)). Indeed, we have

Qn,d(f) =

〈

f,

n
∑

j=1

ajKd(·, tj)
〉

H(Kd)

,

which yields

Id(f) − Qn,d(f) = 〈f, hd,n〉H(Kd), hd,n = hd −
n
∑

j=1

ajKd(·, tj).

From this we easily conclude that

ewor(Qn,d; H(Kd)) = ‖Id − Qn,d‖ = ‖hd,n‖H(Kd).

Using properties of the reproducing kernel Kd, we have

‖hd,n‖2
H(Kd) = ‖hd‖2

H(Kd) − 2

n
∑

j=1

ajhd(tj) +

n
∑

i,j=1

aiajKd(ti, tj).

We want to choose coefficients aj and sample points xj such that the worst case
error of Qn,d is minimized. Let

ewor(n, H(Kd)) = inf{ewor(Qn,d; H(Kd)) : Qn,d with arbitrary xj},
with aj = 1/n, and

ewor(n, H(Kd)) = inf{ewor(Qn,d; H(Kd)) : Qn,d with arbitrary xj and aj}.
There are many papers on the behaviour of ewor(n, H(Kd)) and ewor(n, H(Kd))

for various spaces H(Kd). The special emphasis is on finding sharp estimates of
these quantities in terms of n and d. That is, we would like to know how fast they go
to zero as n approaches infinity, and what their dependence on d is. In particular,
we want to know if they depend polynomially on d or at least non-exponentially
on d. We report on such estimates in Section 7 on tractability.

6. Relations between Multivariate Integration and Various Notions

of L2 Discrepancy

In this section we show that B-discrepancy is closely related to multivariate inte-
gration defined over a reproducing kernel Hilbert space H(Kd) with the reproducing
kernel dependent on B.

Recall that B-discrepancy is defined for measurable sets B(t) ⊆ R
d for t ∈ D ⊆

R
τ(d) for which (2) holds. Recall that

Dd =
⋃

t∈D

B(t).

Note that for the L2 discrepancy anchored at α, quadrant discrepancy anchored
at α or unanchored discrepancy, we have Dd = [0, 1]d, whereas for the L2 ball
discrepancy we may have Dd = R

d. Define multivariate integration for functions
from H(Kd) with Kd : Dd × Dd → R, with kernel Kd yet to be specified, by (21).
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This can be written as Id(f) = 〈f, hd〉H(Kd), with hd given by (20). Then the worst
case error of a linear algorithm (22) is

ewor(Qn,d) = sup
f∈H(Kd)

‖f‖H(Kd)≤1

|Id(f) − Qn,d(f)| = ‖hd,n‖H(Kd),

with

‖hd,n‖2
H(Kd)

=

∫

D2
d

Kd(x, y) dxdy − 2

n
∑

j=1

aj

∫

Dd

Kd(x, tj) dx +

n
∑

i,j=1

aiajKd(ti, tj). (24)

We want to make this worst case error equal to the B-discrepancy for the same
points tj and coefficients aj . If we compare the worst case formula (24) with the
formula (3) for the B-discrepancy we see that the candidate for the reproducing
kernel is

Kd(x, y) =

∫

D

1B(t)(x)1B(t)(y)ρ(t) dt, x, y ∈ Dd. (25)

Observe that Kd(x, y) is well defined and Kd(x, y) ∈ [0, 1]. It is easy to check
that Kd is a reproducing kernel. Indeed, it is symmetric with Kd(x, y) = Kd(y, x).
Consider the m×m matrix M = (Kd(xi, xj))i,j=1,...,m for arbitrary points xj ∈ Dd.
Then M is symmetric and it is also positive semi-definite since

(Ma, a) =

m
∑

i,j=1

Kd(xi, xj)aiaj =

∫

D





m
∑

j=1

aj1B(t)(tj)





2

ρ(t) dt ≥ 0.

In order to make sure that multivariate integration for H(Kd) is well defined we
need to assume that the function

hd(x) =

∫

Dd

Kd(y, x) dy =

∫

D

vol(B(t))1B(t)(x)ρ(t) dt (26)

belongs to H(Kd).
This choice of Kd will make the third terms in (24) and in (3) equal. We obviously

need to check that the first and second terms coincide. For the first term of (24),
we have

∫

D2
d

Kd(x, y) dxdy =

∫

D

(∫

Dd

1B(t)(x) dx

)(∫

Dd

1B(t)(y) dy

)

ρ(t) dt

=

∫

D

(vol(B(t)))2ρ(t) dt,

which agrees with the first term in (3). For the second term of (24), we have
∫

Dd

Kd(x, tj) dx =

∫

D

(∫

Dd

1B(t)(x) dx

)

1B(t)(tj)ρ(t) dt

=

∫

D

vol(B(t))1B(t)(tj)ρ(t) dt,

which agrees with the second term in (3).

As before, we can obtain the minimal B-discrepancy discB
2 (n, d) and the mini-

mal worst case errors ewor(n, H(Kd)) of multivariate integration by taking optimal

sample points tj and optimal coefficients aj . Clearly discB
2 (n, d) = ewor(n, H(Kd)).

It is easy to show that the minimal B-discrepancy, or equivalently the minimal
multivariate integration errors, is at most of order n−1/2 if we consider sets B(t)
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such that B(t) ⊆ Bd for all t ∈ D with Bd ⊂ R
d and vol(Bd) < ∞. Indeed, take

an algorithm

Qn,d(f) =
vol(Bd)

n

n
∑

j=1

f(tj)

for some sample points tj ∈ Bd. Then the square of the worst case error is given
by (24) with aj = vol(Bd)/n, and takes the form

∫

D2
d

Kd(x, y) dxdy − 2 vol(Bd)

n

n
∑

j=1

∫

Dd

Kd(x, tj) dx +
vol2(Bd)

n2

n
∑

i,j=1

Kd(ti, tj).

Observe that if x 6∈ Bd or if y 6∈ Bd, then Kd(x, y) = 0. Therefore the above can
be rewritten as
∫

B2
d

Kd(x, y) dxdy − 2 vol(Bd)

n

n
∑

j=1

∫

Bd

Kd(x, tj) dx +
vol2(Bd)

n2

n
∑

i,j=1

Kd(ti, tj).

Denote this by f(t1, . . . , tn). We now compute the average value of f assuming that
tj are independent and uniformly distributed over Bd. Using the standard proof
technique which is also used for the study of Monte Carlo algorithms, we obtain

1

(vol(Bd))n

∫

Bn
d

f(t1, . . . , td) dt1 . . .dtd

=
1

n

(

vol(Bd)

∫

Bd

Kd(x, x) dx −
∫

B2
d

Kd(x, y) dxdy

)

=
1

n

(

vol(Bd)

∫

D

vol(B(t))ρ(t) dt −
∫

D

(vol(B(t)))2ρ(t) dt

)

≤ (vol(Bd))
2

n
.

By the mean value theorem, we conclude that there exists at least one choice of the
sample points tj for which the worst case error of Qn,d is at most the square root
of the last value. Hence

ewor(n, H(Kd)) ≤
1√
n

(

vol(Bd)

∫

Bd

Kd(x, x) dx

)1/2

≤ vol(Bd)√
n

.

We summarize the analysis of this section in the following theorem.

Theorem.

(i) The worst case error of Qn,d in the space H(Kd) with the reproducing kernel
Kd given by (25) is the same as the B-discrepancy.

(ii) We also have

discB
2 (n, d) = ewor(n, H(Kd)).

(iii) If B(t) ⊆ Bd for all t ∈ D and vol(Bd) < ∞, then

discB
2 (n, d) ≤ n−1/2 vol(Bd).

It seems interesting to check what kind of reproducing kernels we obtain for
various notions of L2 discrepancy. For the L2 discrepancy anchored at the origin,
we have D = [0, 1]d, ρ(t) = 1 and B(t) = [0, t). Therefore

Kd(x, y) =

d
∏

k=1

(1 − max(xk, yk)) .

This corresponds to the Sobolev space anchored at 1.
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Consider next the L2 discrepancy anchored at α. We now have D = [0, 1]d and
ρ(t) = 1. For d = 1, we have B(t) = [t, α) for t ≤ α, and B(t) = [α, t) for t > α. A
little calculation then gives

K1(x, y) = min{x, y}1[0,α)2((x, y)) + (1 − max{x, y})1[α,1)2((x, y)).

For α = 0, we obtain the previous case, whereas for α = 1, we have K1(x, y) =
min{x, y} for (x, y) ∈ [0, 1) and K(x, y) = 1 if max{x, y} = 1. This corresponds to
the Sobolev space anchored at 0; formally for functions defined over [0, 1) and with
zero value at 1.

Consider now α ∈ (0, 1). Then H(K1) is the space of functions f defined over
[0, 1] such that f vanishes at 0 and 1. Furthermore, f restricted to [0, α) is absolutely
continuous with f ′ ∈ L2([0, α)), and f restricted to [α, 1] is absolutely continuous
with f ′ ∈ L2([α, 1]). However, the function f may be discontinuous at α. The
inner product for f, g ∈ H(K1) is

〈f, g〉H(K1) =

∫ α

0

f ′(x)g′(x) dx +

∫ 1

α

f ′(x)g′(x) dx =

∫ 1

0

f ′(x)g′(x) dx.

Despite many similarities to the subspace of the Sobolev space, the property that
f may be discontinuous at α makes this space different from the Sobolev space.

For d ≥ 1, we use the tensor product property and obtain

Kd(x, y)

=

d
∏

k=1

(min{xk, yk}1[0,αk)2((xk, yk)) + (1 − max{xk, yk})1[αk,1)2((xk, yk))).

We now turn to the L2 quadrant discrepancy anchored at α. Again we have
D = [0, 1]d and ρ(t) = 1. For d = 1, we have B(t) = [0, t) for t < α, and
B(t) = [t, 1) for t ≥ α. A little calculation then gives

K1(x, y) =
|x − α| + |y − α| − |x − y|

2
.

This and the tensor product property of Q(t) yields

Kd(x, y) =

d
∏

k=1

|xk − αk| + |yk − αk| − |xk − yk|
2

.

Hence, H(Kd) is the Sobolev space anchored at α.
We discuss next the unanchored discrepancy. We have τ(d) = 2d, D = {(x, y) ∈

[0, 1]2d : x ≤ y}, ρ(t) = 1 and B(t) = [t1, t2) for t = (t1, t2) with t1, t2 ∈ [0, 1]d and
t1 ≤ t2. For d = 1, a little calculation gives

K1(x, y) = min{x, y} − xy.

For d ≥ 1, using the tensor product property we obtain

Kd(x, y) =

d
∏

k=1

(min{xk, yk} − xkyk).

The space H(Kd) consists of periodic functions which satisfy boundary conditions
f(x) = 0 if there exists xk ∈ {0, 1} for some k ∈ [d], and which are one time
differentiable with respect to all variables. The inner product for f, g ∈ H(Kd) is
now given by

〈f, g〉H(Kd) =

∫

[0,1]d

∂d

∂x1 . . . ∂xd
f(x)

∂d

∂x1 . . . ∂xd
g(x) dx.

Observe that the space H(Kd) is a subspace of the Sobolev space H(K0
d) anchored

at 0 or at 1. This result was originally obtained in [39].
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We finally turn to the ball discrepancy in the l∞ case. We now have

D = R
d × R+ = {[c, r] : c ∈ R

d, r ≥ 0},
and we take ρ(c, r) = 1 for t = [c, r] ∈ [0, 1]d+1 and zero otherwise. The sets B(t)
are taken as the balls1

B(t) =

{

x ∈ R
d : max

k∈[d]
|xk − ck| ≤ r

}

.

Observe that x ∈ B(t) is equivalent to xk − r ≤ ck ≤ xk + r for all k ∈ [d]. Hence,
x, y ∈ B(t) and c ∈ [0, 1]d yield

cj ∈ [max{0, xk − r, yk − r}, min{1, xk + r, yk + r}].
This easily implies2

Kd(x, y) =

∫ 1

0

d
∏

k=1

(min{1, xk + r, yk + r} − max{0, xk − r, yk − r})+ dr.

From this formula we conclude that Kd(x, y) = 0 if there exists k such that xk ≥ 2
or yk ≥ 2. Similarly, Kd(x, y) = 0 if there exists k such that xk ≤ −1 or yk ≤ −1.
This means that the space H(Kd) consists of functions that vanish outside (−1, 2)d.

For the periodic ball discrepancy in the ℓ∞ case, we obtain x ∈ B(t) iff

xj − r ≤ cj ≤ xj + r or cj ≤ xj + r − 1 or cj ≥ 1 − r + xj for all j. (27)

For given xj , yj ∈ [0, 1] and r ∈ [0, 1/2], let

ℓ(xj , yj, r) =

∫ 1

0

1|xj−cj|∗≤r(xj) 1|yj−cj |∗≤r(yj) dcj .

Then (27) yields that ℓ(xj , yj , r) depends only on α = |xj − yj |∗ and r, i.e.,
ℓ(xj , yj , r) = ℓ(α, r), and ℓ(α, r) = 0 if r ≤ α/2, ℓ(α, r) = 2r − α if α/2 ≤ r ≤
1/2 − α/2, and ℓ(α, r) = −1 + 4r if 1/2 − α/2 ≤ r ≤ 1/2. Hence, we obtain the
reproducing kernel

Kd(x, y) =

∫ 1/2

0

d
∏

j=1

ℓ(|xj − yj |∗, r) ρ̃(r) dr.

Observe that Kd(x, y) only depends on the |xj − yj|∗ and is, in particular, of the
form Kd(x, y) = kd(x − y). In the case ρ̃ = 2 · 1[0,1/2] and d = 1 we obtain the

kernel K1(x, y) = 1
2 − |x − y|∗ + |x − y|2∗.

7. Tractability

Tractability of multivariate problems is an active research area in information-
based complexity; see the forthcoming book [41]. It would be too much to cover
completely the subject of tractability for multivariate integration, or equivalently,
for L2 discrepancy. Instead, we only mention a few recent results mostly, for L2

(weighted) discrepancy anchored at 0. We hope it will be enough to raise the
interest of the readers for this area. We now define a few notions of tractability.
We will do it for multivariate integration but due to the intimate relations between
multivariate integration and the L2 discrepancy it will be obvious that the same
holds for the L2 discrepancy.

Recall that ewor(n, H(Kd)), and ewor(n, H(Kd)), denote the minimal worst case
errors for multivariate integration in the reproducing kernel Hilbert space H(Kd)
for optimally chosen sample points and coefficients aj = n−1, and for optimally
chosen coefficients aj , respectively. For simplicity we write e(n, d) to denote either

1Note that these “balls” are actually aligned rectangular boxes.
2For real number z, we write z+ = max{z, 0}.



L2 DISCREPANCY AND MULTIVARIATE INTEGRATION 21

of them. For n = 0, the two are the same, and e(0, d) = ‖Id‖ denotes the initial
error.

For the absolute error criterion, we want to find the smallest n for which e(n, d)
is at most ε. For the normalized error criterion, we want to find the smallest n for
which e(n, d) is at most εe(0, d); in other words, we want to reduce the initial error
by a factor ε. Let CRId = 1 if we consider the absolute error, and CRId = e(0, d)
if we consider the normalized error. Let

n(ε, d) = min{n : e(n, d) ≤ ε CRId}
denote the minimal number of sample points which is necessary to solve the problem
to within ε. Since each of e(n, d) and CRId may take two different values, we have
four different cases of n(ε, d).

Tractability means that n(ε, d) does not depend exponentially on ε and d. There
are obviously many different ways to measure the lack of exponential behaviour
but we restrict ourselves to only three cases. By the multivariate problem INT =
{Id}d=1,2,..., we mean multivariate integration Id defined on the reproducing kernel
Hilbert space H(Kd) for varying d = 1, 2, . . ..

We say that INT is weakly tractable iff

lim
ε−1+d→∞

log n(ε, d)

ε−1 + d
= 0.

Hence n(ε, d) is much smaller than aε−1+d for large ε−1 + d, and this holds for any
a > 1. Weak tractability implies that n(ε, d) may go to infinity but slower than
exponentially in ε−1 + d.

We say that INT is polynomially tractable iff there are three non-negative num-
bers C, p, q such that

n(ε, d) ≤ Cε−pdq, ε ∈ (0, 1), d = 1, 2, 3, . . . .

Polynomial tractability means that n(ε, d) may grow not faster than polynomially
in ε−1 and d. If q = 0 in the bound above, so that

n(ε, d) ≤ Cε−p, ε ∈ (0, 1), d = 1, 2, 3, . . . ,

then we say that INT is strongly polynomially tractable, and the infimum of p
satisfying the last bound is called the exponent of strong polynomial tractability.

We also admit different, always non-exponential, behavior of n(ε, d). As in [22],
let T : [1,∞)× [1,∞) → [1,∞) be a non-decreasing function of the two arguments
such that

lim
x+y→∞

log T (x, y)

x + y
= 0.

We say that INT is T -tractable iff there are two non-negative numbers C, t such
that

n(ε, d) ≤ C(T (ε−1, d))t, ε ∈ (0, 1), d = 1, 2, 3, . . . ,

and that INT is strongly T -tractable iff there are two non-negative number C, t such
that

n(ε, d) ≤ C(T (ε−1, 1))t, ε ∈ (0, 1), d = 1, 2, 3, . . . .

The infimum of t satisfying the last estimate is called the exponent of strong T -
tractability.

For T (x, y) = xy, polynomial tractability and T -tractability are the same. In-
teresting choices of T include T (x, y) = exp((1 + log x)(1 + log y)), and T (x, y) =
exp((x+y)a) for any a ∈ (0, 1). These two examples deal with T tending to infinity
faster than a polynomial of any degree.
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Polynomial tractability or T -tractability implies weak tractability. The lack of
weak tractability implies the lack of polynomial and T -tractability. The lack of
weak tractability is called intractability.

To distinguish the case when e(n, d) = ewor(n, H(Kd)), i.e. when we use QMC
algorithms for approximating the multivariate integrands, instead of tractability, we
will use the term QMC-tractability. Obviously, QMC-tractability implies tractabil-
ity. To review our (elaborated) notation, note that we have weak, polynomial,
strong polynomial, T and strong T -tractability when we use arbitrary coefficients
aj , and all these concepts for QMC-tractability if we use aj = n−1. Furthermore,
all these concepts are defined for the absolute or normalized error criterion.

We are ready to present a number of tractability results for multivariate integra-
tion. We first briefly discuss the L2 discrepancy anchored at 0 which, as we now
know, corresponds to multivariate integration for the Sobolev space anchored at 1.

We first consider the absolute error criterion. Note that we can now use the
Theorem with B = [0, 1]d, and conclude that INT is strongly polynomially QMC-
tractable with the exponent at most 2. From (9) we conclude that INT is strongly
polynomially tractable with the exponent at most 1.4779. We stress that both the
exponents of strong tractability are not known and it is also not known if they
are different. By Matoušek’s result [33], we know that the exponent of strong
polynomial QMC-tractability must be at least 1.0669.

We now consider the normalized error criterion still for the L2 discrepancy an-
chored at 0. Since the initial error 3−d/2 is exponentially small in d, the tractability
results are quite different. The bound (14) shown in [39] means that INT is now
intractable.

We switch to the L2 weighted discrepancy defined in Section 4 for a non-zero
weight sequence γ = {γd,u} with γd,u ∈ [0, 1]. It is clear that this discrepancy
corresponds to multivariate integration for the weighted Sobolev space anchored
at 1. For the absolute error criterion, let

fγ(d) =
∑

u⊆[d]

γd,u(2
−|u| − 3−|u|),

whereas for the normalized error criterion, let

fγ(d) =

∑

u⊆[d]

γd,u(2
−|u| − 3−|u|)

∑

u⊆[d]

γd,u3−|u|
.

For the unweighted case γ = {1}, the initial error of (4/3)d/2 ≥ 1 indicates that
multivariate integration for the absolute error is now much more difficult than for
the normalized error. This and (19) yield intractability of INT in both the absolute
and normalized error criteria.

For both the error criteria, we must therefore consider decaying weights to obtain
tractability. Due to the definition of fγ depending on the error criteria, we can
consider simultaneously the absolute and normalized error criteria. From (18), we
conclude that

n(ε, d) ≤
⌈

fγ(d)

ε2

⌉

.

Hence

lim
d→∞

log fγ(d)

d
= 0
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implies weak QMC-tractability of INT, and

lim sup
d→∞

log fγ(d)

log d
< ∞

implies polynomial QMC-tractability of INT as well as T -QMC-tractability if we
choose T (x, y) = exp((1 + log x)(1 + log y)). For T (x, y) = exp((x + y)a) with
a ∈ (0, 1), we obtain T -QMC-tractability if

lim sup
d→∞

log fγ(d)

da
< ∞.

Observe also that
sup

d
fγ(d) < ∞

implies strong polynomial QMC-tractability with the exponent of strong tractabil-
ity at most 2.

We now consider special weights.
The weights are called finite-order weights if there is some integer ω independent

of d such that γd,u = 0 whenever |u| > ω; see [18]. Then we may have O(dω) non-
zero weights, and this implies fγ(d) = O(dω) for the absolute error criterion, with
the factor in the O-notation independent of d and γ. For the normalized error, we
have

fγ(d) ≤

∑

u⊆[d]
|u|≤ω

γd,u2
−|u|

∑

u⊆[d]
|u|≤ω

γd,u3
−|u|

=

∑

u⊆[d]
|u|≤ω

(

3

2

)|u|

γd,u3−|u|

∑

u⊆[d]
|u|≤ω

γd,u3
−|u|

≤
(

3

2

)ω

.

This means that we have polynomial QMC-tractability for the absolute error cri-
terion, and strong polynomial QMC-tractability for the normalized error criterion.

The weights are called finite-diameter weights if there is some integer ω inde-
pendent of d such that γd,u = 0 whenever diam(u) ≥ ω, where

diam(u) = max
k,m∈u

|k − m|,

as defined by Creutzig [15]. Finite-diameter weights are a special case of finite-order
weights but now we can have only O(d) non-zero weights. Hence fγ(d) = O(d)
for the absolute error and fγ(d) = O(1) for the normalized error. Again, we have
polynomial QMC-tractability for the absolute error criterion, and strong polynomial
QMC-tractability for the normalized error criterion.

For finite-order weights, we know the bounds on the worst case errors of the
QMC algorithms using the Niederreiter, Halton or Sobol sample points, see [50].
This implies

n(ε, d) ≤ dτ (Cd log d)ω

ε
(log ε−1 + log(Cd log d))ω,

where τ = ω for the absolute error and τ = 0 for the normalized error, and C is an
absolute constant greater than 1, independent of ε−1 and d.

Note that modulo logarithms we have the best dependence on ε−1 since for
d = 1, we have n(ε, 1) = Ω(ε−1). The last bound is especially interesting since the
construction of the sample points do not depend on the finite-order weights. Still
we have only polynomial dependence on d.

We may also use a shifted lattice rule

Qn,d(f) =
1

n

n−1
∑

j=0

f

({

j

n
z + ∆

})

,
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where the generator vector z ∈ {1, . . . , n−1}d can be computed by the component-
by-component (CBC) algorithm with cost O(dn log n) and ∆ ∈ [0, 1)d; see [43].
Then there exists a vector ∆ such that for n ≤ Cαε−2/αdω(1−1/α), the worst case
error of Qn,d is at most ε for the normalized error criterion. Here α ∈ [1, 2) and
Cα is a positive number depending only on α; see [50]. This implies that for the
normalized error criterion, we have

n(ε, d) ≤ Cαε−2/αdω(1−1/α).

Note that for α = 1 we have strong polynomial QMC-tractability, whereas for α
close to 2 we have the best possible dependence on ε−1 and polynomial dependence
on d. However, in this case, the choice of z and ∆ depends on the finite-order
weights.

We add that finite-order weights imply polynomial or even strong polynomial
tractability for many other multivariate linear and selected non-linear problems in
the worst case and average case settings. The reader is referred to papers [27, 61,
62, 63, 64, 65] as well to the forthcoming book [41].

We now consider product weights which were the first type of weights studied
for multivariate integration and other multivariate problems; see [51]. The weights
are called product weights if

γd,u =
∏

k∈u

γd,k,

where 0 ≤ γd,d ≤ γd,d−1 ≤ . . . ≤ γd,1 ≤ 1. The essence of product weights is that
γd,k moderates the importance of the k-th variable and the groups of u variables are
moderated by the product of weights of variables from u. The successive variables
are ordered according to their importance, with the first variable being the most
important and so on.

For product weights, the initial discrepancy is

d
∏

k=1

(

1 +
1

3
γd,k

)1/2

.

It is even uniformly bounded in d if

sup
d

d
∑

k=1

γd,k < ∞,

and is polynomial in d if

d
∑

k=1

γd,k = O(dq)

for some q. We also have for the absolute error,

fγ(d) =
d
∏

k=1

(

1 +
1

2
γd,k

)

,

and for the normalized error,

fγ(d) =

d
∏

k=1

1 + 1
2γd,k

1 + 1
3γd,k

∈
[

d
∏

k=1

(

1 +
1

8
γd,k

)

,

d
∏

k=1

(

1 +
1

6
γd,k

)

]

.

This shows that the absolute error criterion is harder than the normalized error
criterion.
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For the absolute and normalized error criterion, we obtain strong polynomial
QMC-tractability if

lim sup
d→∞

d
∑

k=1

γd,k < ∞,

and polynomial QMC-tractability if

lim sup
d→∞

1

log d

d
∑

k=1

γd,k < ∞;

see [51]. These conditions are also necessary for both the absolute and normal-
ized error criteria for strong polynomial QMC-tractability and polynomial QMC-
tractability, for γd,k independent of d; see again [51]. The same conditions are also
necessary for strong tractability and polynomial tractability, as proved in [39] for
γd,k independent of d, and in [23] for general γd,k.

From [23], we have for both the absolute and normalized error criteria that

• weak tractability holds iff

lim
d→∞

1

d

d
∑

k=1

γd,k = 0;

• T -tractability holds iff

lim sup
d→∞

1

log(1 + T (1, d))

d
∑

k=1

γd,k < ∞, and lim sup
ε−1→∞

log ε−1

log(1 + T (ε−1, 1))
< ∞;

• strong T -tractability holds iff

lim sup
d→∞

d
∑

k=1

γd,k < ∞, and lim sup
ε−1→∞

log ε−1

log(1 + T (ε−1, 1))
< ∞.

There are also results relating the exponent of strong tractability to how fast
product weights go to zero. The reader is referred to the papers [16, 17, 28, 30, 46,
60]. Details can also be found in [41].

So far we discussed the L2 discrepancy anchored at 0. Similar results hold for
the L2 discrepancy anchored at α, for the L2 quadrant discrepancy, and for the
unanchored discrepancy. The main technical tool for lower bounds is the property
that the corresponding reproducing kernels are decomposable or have finite rank
decomposable parts which allows us to use the results from [39]. Details are given
in [41].

We finish this section by briefly addressing tractability for the B-discrepancy.
For simplicity we consider only the absolute error criterion. As before, let B(t) ⊂
Bd for all t ∈ D, where Bd ⊂ R

d and vol(Bd) < ∞. From the Theorem, it is
obvious that we have strong polynomial QMC-tractability with the exponent at
most 2 if vol(Bd) is uniformly bounded in d, and polynomial QMC-tractability
if vol(Bd) is polynomially bounded in d. We leave to the reader the problem of
analyzing tractability for the normalized error criterion as well as to generalize the
B-discrepancy to the weighted case and study its tractability.

References

[1] N. Aronszajn. Theory of reproducing kernels. Trans. Amer. Math. Soc., 68 (1950), 337–404.
[2] N.S. Bakhvalov. On the optimality of linear methods for operator approximation in convex

classes of functions. Comput. Math. Math. Phys., 11 (1971), 244–249.
[3] J. Beck. Irregularities of distribution I. Acta Math., 159 (1987), 1–49.
[4] J. Beck, W.W.L. Chen. Irregularities of Distribution (Cambridge Tracts in Mathematics 89,

Cambridge University Press, 1987).



26 ERICH NOVAK AND HENRYK WOŹNIAKOWSKI
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[18] J. Dick, I.H. Sloan, X. Wang, H. Woźniakowski. Liberating the weights. J. Complexity, 20

(2004), 593–623.
[19] M. Drmota, R.F. Tichy. Sequences, Discrepancies and Applications (Lecture Notes in Math-

ematics 1651, Springer-Verlag, 1997).
[20] K. Frank, S. Heinrich. Computing discrepancies of Smolyak quadrature rules. J. Complexity,

12 (1996), 287–314.
[21] K.K. Frolov. Upper bounds on the discrepancy in metric Lp, 2 ≤ p < ∞. Dokl. Akad. Nauk

SSSR, 252 (1980), 805–807; English translation in Soviet Math. Dokl., 21 (1980), 840–842.
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