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Abstract

We study the approximation problem for C∞ functions f : [0, 1]d → R with respect to
a Wm

p -norm. Here, m = [m, m, . . . , m], d times, with the norm of the target space defined
in terms of up to m partial derivatives with respect to all d variables. The optimal order
of convergence is infinite, hence excellent, but the problem is still intractable and suffers
from the curse of dimensionality if m ≥ 1. This means that the order of convergence
supplies incomplete information concerning the computational difficulty of a problem.
For m = 0 and p = 2, we prove that the problem is not polynomially tractable, but that
it is weakly tractable.

1 Introduction

The (optimal) order of convergence, or rate of convergence, is an important concept of nu-
merical analysis and approximation theory. The order of convergence measures how fast the
minimal error e(n) of algorithms using n function values or linear functionals goes to zero.
Roughly speaking, if e(n) = Θ(n−α) then to guarantee that the error is ε, we must take
n = Θ(ε−1/α) for ε → 0. Hence, asymptotically in ε, the larger the order of convergence the
easier the problem. However, it is not clear what this means for a fixed ε > 0; how long do
we have to wait for the asymptotic behavior to occur?

∗This author was partially supported by the National Science Foundation under Grant DMS-0608727 and
by the Humboldt Research Award at the University of Jena.

1



In this paper we assume that the functions f : [0, 1]d → R are infinitely many times
differentiable with respect to all variables and that the sum of all normalized derivatives is
bounded in the Lp-norm, for some p ∈ [1,∞]. We approximate such functions with respect
to the Sobolev norm Wm

p ([0, 1]d) for m = [m,m, . . . ,m], d times, for some non-negative
integer m. This space is defined in Section 2. Here we only mention that the norm in the
target space is defined in terms of up to m partial derivatives with respect to all d variables.
We consider the worst case setting along with algorithms using arbitrary linear functionals
as information operations on f . Here, d can be arbitrarily large. To stress the importance of
d, we denote the minimal error e(n) by e(n, d).

Since the smoothness of the functions is unbounded, the optimal convergence rate of this
multivariate approximation problem is infinite. That is, for any d and arbitrarily large r we
have

e(n, d) = O(n−r) as n → ∞.

Despite this excellent asymptotic speed of convergence, we prove that

e(n, d) = 1 for all n = 0, 1, . . . , (m + 1)d − 1.

Let n(ε, d) denote the smallest number of linear functionals that is needed to find an algorithm
with error at most ε. The last result means that

n(ε, d) ≥ (m + 1)d for all ε ∈ (0, 1) and d ∈ N := {1, 2, . . . , }.

For m ≥ 1, we have exponential dependence on d, which is called the curse of dimensionality.
Hence, for m ≥ 1, the multivariate approximation problem is intractable.

So, we see that the only hope of non-exponential dependence on d is when m = 0. In
this case, we restrict ourselves to p = 2 and study multivariate approximation simply in the
L2-norm. Now the multivariate approximation problem is weakly tractable, i.e., n(ε, d) does
not depend exponentially on ε−1 + d. More precisely, we have

lim
ε−1+d→∞

ln n(ε, d)

ε−1 + d
= 0.

However, the problem remains polynomially intractable, i.e., no matter how large we choose
C, p and q, the inequality

n(ε, d) ≤ C ε−p d q

does not hold for some ε ∈ (0, 1) and d ∈ N.
These results illustrate that the optimal order of convergence does not tell us everything

about the difficulty of solving the problem. We may have an excellent order of convergence,
but an exponential dependence on d. Or equivalently, we must wait exponentially long to
enjoy the excellent asymptotic behavior.

We add in passing that similar results hold also for some other multivariate problems.
For example, consider multivariate integration studied in [5] for the Korobov space with the
smoothness parameter α > 1. In this case, algorithms can use only function values. Then

e(n, d) = O
(

n−p
)

as n → ∞, for all p < α.
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However,
e(n, d) = 1 for n = 0, 1, . . . , 2d − 1, (1)

which implies that
n(ε, d) ≥ 2d for all ε ∈ (0, 1).

That is, even for arbitrarily large α, despite an excellent order of convergence, this integration
problem is intractable. Further examples can be found in [9].

We finally add that this paper has been written before the publication of the book [3]. We
included the essence of this paper in [3] as Example 3.1.4 of Chapter 3 with the information
that this example is based on a paper submitted for publication. In meantime, our book has
been published sooner than the publication of this paper.

2 The problem

We consider functions from the class C∞([0, 1]d) of infinitely differentiable functions defined
on the d-dimensional cube [0, 1]d. Let f ∈ C∞([0, 1]d). Obviously for any multi-index

β = [β1, β2, . . . , βd] ∈ N
d
0 with N0 := {0, 1, 2, . . . },

the function

Dβf :=
∂β1+β2+···+βd

∂β1x1∂β2x2 · · · ∂βdxd
f

also belongs to C∞([0, 1]d). For any p ∈ [1,∞] we also have ‖Dβf‖Lp < ∞, where Lp is the
classical space of functions defined on [0, 1]d, i.e., for p ∈ [1,∞) we have

‖f‖Lp =

(
∫

[0,1]d
|f(x)|p dx

)1/p

,

whereas for p = ∞, we have
‖f‖L∞

= ess sup
x∈[0,1]d

|f(x)|.

We restrict the class C∞([0, 1]d) by taking the linear space

F = Fd,p :=

{

f ∈ C∞([0, 1]d)

∣

∣

∣

∣

‖f‖F :=

(

∑

β∈Nd
0

1

β!
‖Dβf‖p

Lp

)1/p

< ∞
}

,

with β! =
∏d

j=1 βj !.
Hence, we deal with infinitely differentiable functions for which the sum of all normalized

derivatives is bounded in Lp. This class is nonempty since f ≡ 1 belongs to F . Furthermore,
all multivariate polynomials belong to F since the series with respect to β for a polynomial
consists of only finitely many positive terms. In any case, we hope the reader agrees that F
seems to be a “very small” set of functions.
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For a given non-negative integer m, we consider the space G = Gd,m,p given by

G =

{

f ∈ Wm

p ([0, 1]d)

∣

∣

∣

∣

‖f‖G :=

(

∑

β∈Nd
0 : |βj |≤m

1

β!
‖Dβf‖p

Lp

)1/p

< ∞
}

.

Hence, G is the Sobolev space Wm
p ([0, 1]d) of functions whose partial derivatives up to order

m in each variable belong to Lp([0, 1]
d). Note that for m = 0, the space Gd,0,p is just

Lp([0, 1]
d).

For any m and for all f ∈ F we have ‖f‖G ≤ ‖f‖F . Let Pd,m denote the linear space of
polynomials of d variables that are of degree at most m in each variable. Clearly, dim(Pd,m) =
(m + 1)d and

‖f‖F = ‖f‖G for all f ∈ Pd,m.

Hence, the norms in F and G are the same for this (m + 1)d-dimensional subspace. As we
shall see this property will be very important for our analysis.

For the classes Fd,p and Gd,m,p, we consider the multivariate approximation problem
APPd with APPd : Fd,p → Gd,m,p given by

APPdf = f.

This is clearly a well-defined problem. Since

‖APPd‖ := sup
f∈Fd,p, ‖f‖F ≤ 1

‖APPdf‖Gd,m,p
= 1,

it is properly normalized. We approximate APPdf by algorithms An that may now use not
only function values but also arbitrary linear functionals, i.e.,

An(f) = ϕn (L1(f), L2(f), . . . , Ld(f)) , (2)

where ϕn : R
n → Gd,m,p is some linear or non-linear mapping, and Lj is an arbitrary

continuous linear functional whose choice may adaptively depend on the already computed
values L1(f), L2(f), . . . , Lj−1(f). The worst case error of An is defined by

ewor(An) = sup
f∈Fd,p, ‖f‖Fd,p

≤1
‖APPdf − An(f)‖Gd,m,p

.

The minimal number of information operations needed to solve the problem to within ε is
given by

n(ε, d) = nwor(ε,APPd, Fd,p, Gd,m,p) = min {n : ∃An such that ewor(An) ≤ ε } .

Tractability means that n(ε, d) does not depend exponentially on ε−1 and d. More pre-
cisely, we call a problem weakly tractable if

lim
ε−1+d→∞

ln n(ε, d)

ε−1 + d
= 0

holds and intractable if this relation does not hold. Furthermore, a problem is polynomially

tractable if there exist non-negative numbers C, p and q such that

n(ε, d) ≤ C ε−p d q for all ε ∈ (0, 1) and d ∈ N.

If q = 0 above, then the problem is strongly polynomially tractable. For detailed discussion
of tractability, the reader is referred to [3].
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3 On the order of convergence

We first discuss the optimal order of convergence. Let

e(n, d) = inf
An

ewor(An)

be the minimal worst case error that can be achieved by using algorithms An of the form (2)
based on n arbitrary linear functionals.

It is easy to see that for any d ∈ N and any r > 0 we have

e(n, d) = O
(

n−r
)

as n → ∞. (3)

To prove this, consider first the spaces Cs := Cs([0, 1]d) of s times continuously differentiable
functions with the norm

‖f‖s = max
x∈[0,1]d

max
β: |β|≤s

|Dβf(x)|,

where |β| =
∑d

i=1 βi. Now take

s2 = d(r + m), and s1 = dm.

Note that the norm of the space Cs1 is stronger than the norm of Gd,m,p. That is, Cs1 ⊆ Gd,m,p

and there exists a number C dependent on d,m and p such that ‖f‖Gd,m,p
≤ C ‖f‖s1

for all
f ∈ Cs1.

Note that for any positive k, the class Fd,p is a subset of the Sobolev space W k
p ([0, 1]d). If

the embedding condition k − s2 > d/p holds then W k
p ([0, 1]d) and Fd,p can both be regarded

as subsets of Cs2.
It is well-known that we can approximate functions from Cs2 in the norm of Cs1, and

then in the norm of Gd,m,p, by algorithms using n function values with worst case error of
order n−(s2−s1)/d. This result was probably first observed by Bakhvalov [1] for m = 0, which
gives s1 = 0. For general s1, which is needed for m ≥ 1, this result can be found, for instance,
in the book of Triebel [8, p. 348].

Take k = s2 + 1 + d/p. Then we conclude that functions from Fd,p can be approximated
in the norm of Gd,m,p with worst case error of order n−r, as claimed.

Since r can be arbitrarily large, the optimal order of convergence of the multivariate
approximation problem for the class Fd,p is formally infinite. This implies that for a fixed d,
the minimal number of information operations goes to infinity slower then any power of ε−1.
That is, for any fixed d and any positive η we have

nwor(ε,APPd, Fd,p, Gd,m,p) = o(ε−η) as ε → 0.

Again, this is very encouraging but one could say that this is possible only because the
class Fd,p is so small.
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4 Intractability for m ≥ 1

But how about tractability? How long do we have to wait to see this nice convergence of
e(n, d) to zero? We claim that

e(n, d) = 1 for all n = 0, 1, . . . , (m + 1)d − 1. (4)

First of all, observe that the zero algorithm An(f) = 0 has worst case error at most 1 since
APPd is properly normalized. Hence, e(n, d) ≤ 1. To prove the reverse inequality, take an
arbitrary algorithm An(f) = ϕn(L1(f), . . . , Ln(f)) that uses adaptive linear functionals Lj.
We now show that ewor(An) ≥ 1.

For b = [b1, b2, . . . , bd] ∈ {0, 1, . . . ,m}d, define the functions

fb(x) =

d
∏

j=1

(

xj −
1

2

)bj

.

The functions fb are polynomials of degree at most m in each variable. Each b yields a new
polynomial fb and the set {fb} consists of (m + 1)d linearly independent polynomials. Note
also that ‖fb‖F = ‖fb‖G since all terms Dβfb are zero if there is an index βj > m, and hence
the summation for the F -norm is the same as the summation for the G-norm. Let

g(x) =
∑

b∈{0,1,...,m}d

ab fb(x)

for some real numbers ab. Again for any choice of ab we have ‖g‖F = ‖g‖G.
We choose the scalars ab such that L1(g) = 0. Based on this zero value, the second linear

functional L2 is chosen, and we add the second equation for the scalars ab by requiring that
L2(g) = 0. We do the same for all chosen linear functionals Lj based on the zero information,
and we have n homogeneous linear equations for {ab},

∑

b∈{0,1,...,m}d

ab Lj(fb) = 0 for j = 1, 2, . . . , n .

Since we have (m+1)d > n unknowns, we can choose a non-zero vector {ab} = {a∗b} satisfying
these n equations. The function g with a∗b is non-zero since the fb’s are linearly independent.
Then ‖g‖Fd,p

is well-defined and positive. We finally define two functions

fk = (−1)k
g

‖g‖Fd,p

for k ∈ {0, 1}.

Note that
fk ∈ Fd,p and ‖fk‖Fd,p

= ‖fk‖Gd,m,p
= 1.

Furthermore, Lj(fk) = 0 for all j = 1, 2, . . . , n and therefore An(fk) = ϕ(0, . . . , 0) does not
depend on k. Hence,

ewor(An) ≥ max
f0,f1

(‖f0 − ϕ(0, 0, . . . , 0)‖G, ‖f1 − ϕ(0, 0, . . . , 0)‖G)

≥ 1
2 (‖f0 − ϕ(0, 0, . . . , 0)‖G + ‖f1 − ϕ(0, 0, . . . , 0)‖G)

≥ 1
2‖f0 − f1‖G = 1.
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This completes the proof of (4).

The essence of (4) is that the use of fewer than (m + 1)d arbitrary linear functionals is
not enough to reduce the error. Hence, if we want to guarantee that the error is at most
ε < 1, then we have to use at least (m + 1)d linear functionals. This means that

nwor(ε,APPd, Fd,p, Gd,m,p) ≥ (m + 1)d for all ε ∈ [0, 1). (5)

Hence if m ≥ 1 then we have the curse of dimensionality and the multivariate approximation
problem for the classes Fd,p and Gd,m,p is intractable. This means that the set Fd,m is not so
small after all.

5 Multivariate approximation for m = 0

Since for m ≥ 1 we have intractability and the curse of dimensionality, we consider m = 0
with the hope that the curse of dimensionality is no longer present. In this case we restrict
ourselves to p = 2 and analyze the multivariate approximation problem in detail.

We will need a couple of known general results, see, e.g., the books [3, 6, 7] where these
results can be found. For m = 0 and p = 2, the space Gd,0,2 is just the Hilbert space
L2 = L2([0, 1]

d) with the inner product

〈f, g〉L2
=

∫

[0,1]d
f(x)g(x) dx,

whereas F = Fd,2 is the unit ball of the Hilbert space with the inner product

〈f, g〉F =
∑

β ∈Nd
0

1

β!

〈

Dβf,Dβg
〉

L2

.

Let Wd = APP∗
d APPd : Fd,2 → Fd,2, where APP∗

d : L2 → Fd,2 is the adjoint operator of
APPd. Obviously Wd is a self-adjoint positive semi-definite operator. It is well-known that
limn→∞ e(n, d) = 0 iff Wd is compact. Since we already know that the limit of e(n, d) is zero,
we conclude that Wd is compact. Hence, Fd,2 has an orthonormal basis of the eigenfunctions
ηd,j of Wd, i.e.,

Wdηd,j = λd,j ηd,j

with 〈ηd,j, ηd,k〉F = δj,k. We may assume that the non-negative eigenvalues λd,j are ordered,
i.e.,

λd,1 ≥ λd,2 ≥ · · · ≥ λd,n ≥ · · · ≥ 0.

Obviously limn→∞ λd,n = 0. Since we now allow algorithms using arbitrary linear functionals,
it is well-known that

e(n, d) =
√

λd,n+1 for all n = 0, 1, . . . ,

and that the algorithm

An(f) =

n
∑

j=1

〈f, ηd,j〉F ηd,j
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has worst case error equal to e(n, d). We stress that although the algorithm An is linear and
uses non-adaptive information, it minimizes the worst case error in the class of all non-linear
algorithms using n arbitrary adaptive linear functionals.

5.1 Periodic case

We now restrict our attention to functions from the space F = Fd,2 that are periodic. By a
periodic function f ∈ Fd,2 we mean that for d = 1 we have f (β)(1) = f (β)(0) for all β ∈ N0,
whereas for d ≥ 1, we have (Dβf)(x) = (Dβf)(y) if |xi − yi| ∈ {0, 1} for all i. That is, the
values of all derivatives are the same if a component xi = 0 of x is changed into xi = 1.
Hence, let

F per
d,2 = { f ∈ Fd,2 | f is periodic }.

The space F per
d,2 is equipped with the same norm as Fd,2. For example, for j ∈ Nd

0, the
functions

d
∏

k=1

ηjk
(xj) with ηjk

(x) = sin(2πjkx) or ηjk
(x) = cos(2πjkx)

belong to F per
d,2 . Note that the approximation problem is still properly normalized for the

subspace F per
d,2 since ‖APPd‖F per

d,2
→L2

= 1.

The subspace F per
d,2 is much smaller than Fd,2. So if we establish a negative result for F per

d,2 ,
then the same result will be also true for the larger class Fd,2. Obviously, positive results for
F per

d,2 do not have to be true for Fd,2.

To verify tractability of the approximation problem defined over the subspace F per
d,2 , we

need to find the eigenpairs of Wd. It will be instructive to consider first the univariate case
d = 1. Define η1(x) = 1, and for k = 1, 2, . . . , define

η2k(x) =
√

2 e−2(π k)2 sin(2π k x), η2k+1(x) =
√

2 e−2(π k)2 cos(2π k x).

It is easy to check that the sequence {ηk} is orthonormal in the subspace F per
1,2 , i.e., 〈ηk, ηs〉F1,2

=
δk,s. Define

K1(x, y) =
∞
∑

j=1

ηj(x)ηj(y) for x, y ∈ [0, 1].

We claim that K1 is the reproducing kernel of F per
1,2 . That is, in particular, K1(·, y) ∈ F per

1,2

for all y ∈ [0, 1], and f(y) = 〈f,K1(·, y)〉F1,2
for all f ∈ F per

1,2 and all y ∈ [0, 1]. Indeed, it is
enough to check the last property. Observe that for arbitrary β ∈ N and k ≥ 1, we have

〈

f (β), η
(β)
2k

〉

L2

η2k(y) +
〈

f (β), η
(β)
2k+1

〉

L2

η2k+1(y)

= (2πk)2β
(

〈f, η2k〉L2
η2k(y) + 〈f, η2k+1〉L2

η2k+1(y)
)

.
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Therefore,

〈f,K1(·, y)〉F1,2
=

∞
∑

j=1

〈f, ηj〉F1,2
ηj(y) =

∞
∑

j=1

∞
∑

β=0

1

β!

〈

f (β), η
(β)
j

〉

L2

ηj(y)

=

∞
∑

j=1

〈f, ηj〉L2
ηj(y) +

∞
∑

β,k=1

〈

f (β), η
(β)
2k

〉

L2

η2k(y) +
〈

f (β), η
(β)
2k+1

〉

L2

η2k+1(y)

β!

= 〈f, η1〉L2
+

∞
∑

k=1

e(2πk)2
(

〈f, η2k〉L2
η2k(y) + 〈f, η2k+1〉L2

η2k+1(y)
)

= 〈f, 1〉L2
+ 2

∞
∑

k=1

〈f, sin 2πk·〉L2
sin(2πky) + 〈f, cos 2πk·〉L2

cos(2πky).

The last series is the Fourier series for f evaluated at y. Since f is periodic and differentiable,
this is equal to f(y).

It now follows that the sequence {ηk} is an orthonormal basis of the subspace F per
1,2 .

Indeed, it is enough to show that if f ∈ F per
1,2 and 〈f, ηj〉F1,2

= 0 for all j then f = 0.

Orthogonality of f to all ηj implies that 〈f,K1(·, y)〉F1,2
= 0, and therefore f(y) = 0. Since

this holds for all y ∈ [0, 1], we have f = 0, as claimed.
Note that for k 6= s, we have

0 = 〈ηk, ηs〉L2
= 〈APP1ηk,APP1ηs〉L2

= 〈ηk,APP∗
1APP1ηs〉F = 〈ηk,W1ηs〉F .

This means that W1ηs is orthogonal to all ηk except k = s. Hence,

W1ηs = λsηs,

and λs = 〈ηs, ηs〉L2
. This yields

λ1 = 1 and λ2k = λ2k+1 = e−(2π k)2 for k = 1, 2, . . . .

For d ≥ 2, it is easy to see that F per
d,2 is the tensor product of d copies of F per

1,2 and Wd is
the d-fold tensor product of W1. This implies that the eigenpairs of Wd are

Wd ηd,j = λd,jηd,j ,

where j = [j1, j2, . . . , jd] ∈ N
d and1

ηd,j(x) =

d
∏

k=1

ηjk
(xk) and λd,j =

d
∏

k=1

λjk
.

Hence, the eigenvalues for the d-dimensional case are given as the products of the eigenvalues
for the univariate case. To find out the nth optimal error e(n, d), we must order the sequence

1Knowing the eigenvalues of Wd, it is possible to apply general results, such as Theorems 5.1 and 6.1 of
[2] and Theorem 3.1 of [10], to conclude the behavior of n(ε, d). We prefer, however, to derive the bounds on
n(ε, d) directly and obtain sharp bounds and asymptotic constants for a fixed d.
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{λj1λj2 · · ·λjd
}j∈Nd . The square root of the (n+1)st largest eigenvalue is then e(n, d). Thus,

e(n, d) ≤ ε iff n is at least the cardinality of the set of all eigenvalues λd,j > ε2. If we denote
n(ε, d) := nwor(ε,APPd, F

per
d,2 , L2) as the minimal number of linear functionals needed to solve

the problem to within ε, then

n(ε, d) =
∣

∣

{

j = [j1, j2, . . . , jd] ∈ N
d : λj1λj2 · · ·λjd

> ε2
}
∣

∣.

Clearly, n(ε, d) = 0 for all ε ≥ 1 since the largest eigenvalue is 1. It is also easy to see that
n(ε, d) = 1 for all ε ∈ (e−2π2

, 1) since the second largest eigenvalue is λ2 = e−4π2

. For d = 1,
note that e−(2πk)2 > ε2 iff k ≤ ⌈

√
2 ln ε−1/(2π)⌉ − 1. This yields that

n(ε, 1) = 2

⌈

1

2π

√
2 ln ε−1

⌉

− 1 =

√
2

π

√

ln
1

ε
+ O(1) as ε → 0.

For d ≥ 1, we have the formula

n(ε, d + 1) =

∞
∑

j=1

n

(

ε
√

λj

, d

)

= n(ε, d) + 2

∞
∑

k=1

n
(

ε e2(πk)2 , d
)

,

which relates the cases for d + 1 and d. The last two series are only formally infinite, since
for large j and k the corresponding terms are zero. More precisely, to obtain a positive
n(ε e2(πk)2 , d) we need to assume that ε e2(πk)2 < 1. Let

kε =

⌈√
2

2π

√

ln
1

ε

⌉

− 1.

Then

n(ε, d + 1) = n(ε, d) + 2

kε
∑

k=1

n
(

ε e2(πk)2 , d
)

.

We now show by induction on d that

n(ε, d) = Θ

(

(

ln
1

ε

)d/2
)

as ε → 0. (6)

This is clearly true for d = 1. If it is true for d, then using the formula for n(ε, d + 1) we
easily see that we can bound n(ε, d + 1) from above by O((ln 1/ε)(d+1)/2) since kε is of order
(ln 1/ε)1/2. We can estimate n(ε, d+1) from below by taking kε/2 terms and using the lower
bound on n(ε e2(πk)2 , d), which again yields an estimate of order (ln 1/ε)(d+1)/2 .

Let us pause and ask what (6) means. From one point of view, this estimate of n(ε, d)
is quite positive since we have weak dependence on ε only through ln 1/ε. But if d is large,
(6) may suggest that we have an exponential dependence on d, and the problem may be
intractable. As we already know, the factors in the big theta notation are very important
and so we can claim nothing based solely on (6). We need more information about how
n(ε, d) behaves. We now prove that

Cd := lim
ε→ 0

n(ε, d)

(ln 1/ε)d/2
=

1

(2π)d/2 Γ(1 + d/2)
, (7)
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establishing the asymptotic behavior of n(ε, d) as ε tends to zero.
For d = 1, we have already shown the formula C1 =

√
2/π. Assume that Cd is the

asymptotic constant for d, and consider the case d + 1. For every positive δ there exists
εd = εd,δ ∈ (0, 1) such that for all ε ∈ (0, εd], we have

n(ε, d) = Cd(1 + g(ε))

(

ln
1

ε

)d/2

with |g(ε)| ≤ δ, and lim
ε→0

g(ε) = 0.

Define

k∗
ε =

⌈ √
2

2π

√

ln
εd

ε

⌉

− 1.

Note that kε − k∗
ε = O(1) as ε → 0. We have

n(ε, d + 1) = Cd (1 + g(ε))

(

ln
1

ε

)d/2

+2Cd

k∗

ε
∑

k=1

(

(1 + g
(

ε e2(πk)2
))

(

ln
1

ε
− 2(π k)2

)d/2

+2

kε
∑

k=k∗

ε+1

n(ε e2(πk)2 , d).

Note that for k ∈ [k∗
ε + 1, kε] we have n(ε e2(πk)2 , d) ≤ n(εd, d), and therefore

kε
∑

k=k∗

ε+1

n(ε e2(πk)2 , d) ≤ (kε − k∗
ε) n(εd, d) = O((ln ε−1)d/2).

Now consider the terms for which k ∈ [1, k∗
ε ]. Then ε e2(πk)2 ≤ εd. For ε tending to zero, we

have

k∗

ε
∑

k=1

(

1 + g
(

ε e2(πk)2
))

(

ln
1

ε
− 2(πk)2

)d/2

= (1 + o(1))

∫ k∗

ε

1

(

ln
1

ε
− 2(πx)2

)d/2

dx

=
1 + o(1)√

2 π

(

ln
1

ε

)(d+1)/2 ∫ 1

0
(1 − x2)d/2 dx

=
1 + o(1)√

2 π

(

ln
1

ε

)(d+1)/2
1
2 B(1

2 , 1 + d/2),

where B(x, y) is the beta function and is related to the Gamma function by B(x, y) =
Γ(x)Γ(y)/Γ(x + y). This proves that

n(ε, d + 1) = Cd+1(1 + o(1))(ln 1/ε)(d+1)/2

as ε goes to zero, with

Cd+1 =
B(1

2 , 1 + d/2) Cd√
2π

=
Γ(1/2) Γ(1 + d/2)√
2 π Γ(1 + (d + 1)/2)

Cd.

11



Solving this recurrence, we obtain

Cd+1 =
Γ(1

2)d Γ(3
2)

(
√

2π)d Γ(1 + (d + 1)/2)
C1 =

1

(2π)(d+1)/2 Γ(1 + (d + 1)/2)
,

which agrees with the asymptotic formula (7).
We stress that the asymptotic constant Cd in (7) is super exponentially small in d due

to the presence of Γ(1 + d/2) in the denominator. This property raises our hopes that we
can beat the apparent exponential dependence on d. Indeed, assume for a moment that the
limit in (7) is uniform in d. That is, suppose that there exists a positive ε0 such that for all
ε ∈ (0, ε0) and all d, we have

n(ε, d) ≤ 2Cd

(

ln
1

ε

)d/2

=
2
(

ln ε−1
)d/2

(2π)d/2 Γ(1 + d/2)
.

It can be easily checked that xd/2/Γ(1 + d/2) ≤ exp(x) for all x ≥ 1. Therefore

n(ε, d) ≤ 2

(2π)d/2

1

ε
.

Hence, we have strong polynomial tractability if (7) holds uniformly in d.
We now return to the proof of (7) with the new task of checking whether εd can be

uniformly bounded from below. Unfortunately, this is not true. It is enough to take ε2 ∈
[λ4, λ2) to realize that we can take d − 1 indices ji = 1 and the remaining index ji = 2 to
obtain the eigenvalue λd,j = λ2 > ε2. Hence n(ε, d) ≥ d, which contradicts strong polynomial
tractability.

In fact, polynomial tractability does not even hold, i.e., there is no upper bound of the
form

n(ε, d) ≤ C ε−p dq ∀ ε ∈ (0, 1), d ∈ N.

This follows from the general observation that as long as the largest eigenvalue is 1 and the
second largest eigenvalue λ2 for d = 1 is positive, then there is no polynomial tractability.
Indeed, for an arbitrary integer k and arbitrary d > k , consider the eigenvalues λj1λj2 · · ·λjd

with d−k indices ji equal to 1 and k indices ji equal to 2. Then we have at least
(d
k

)

= Θ(dk)

eigenvalues equal to λk
2 . It is enough to take, say, ε2 = λk

2/2 to realize that n(
√

λk
2/2, d) is

at least of order d k. Since k can be arbitrary, this contradicts not only strong polynomial
tractability, but also polynomial tractability.

Well, we are back to square one. Despite the exponentially small asymptotic constants,
we have polynomial intractability of the multivariate problem for m = 0. Hence, the only
remaining hope for a positive result is to weaken the notion of polynomial tractability, and
in particular, to check if weak tractability holds. Here we will finally report good news.

As in [10], let λj1λj2 · · · λjd
> ε2 and let k be the number of indices ji ≥ 2. Then (d−k)+

indices are equal to 1. Note that λk
2 > ε2 implies that

k ≤ a(ε) :=

⌈

2 ln ε−1

ln λ−1
2

⌉

− 1.
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So we have at least (d − a(ε))+ indices equal to 1. Observe also that ji ≤ n(ε, 1). Thus
(

d

(d − a(ε))+

)

≤ n(ε, d) ≤
(

d

(d − a(ε))+

)

n(ε, 1)a(ε).

For a fixed ε and for d tending to infinity, we have

n(ε, d) = Θ
(

d ⌈2 ln ε−1/ ln λ−1
2 ⌉−1

)

with the factors in the big-theta notation depending now on ε−1.
For arbitrary d and ε ∈ (0, 1) we conclude that

n(ε, d) ≤ (d + a(ε))a(ε)

a(ε)!

(

2

⌈

1

2π

√

2 ln
1

ε

⌉

− 1

)a(ε)

.

This implies that

lim
ε−1+d→∞

ln n(ε, d)

ε−1 + d
= 0,

which means that weak tractability indeed holds.
Hence, we have mixed news for the periodic case of the approximation problem. We have

polynomial intractability, which obviously implies polynomial intractability for the original
non-periodic case. But we have weak tractability for the periodic case, but it is not yet clear
whether this good property extends to the non-periodic case.

5.2 Weak tractability

We now show that weak tractability holds not only for the original non-periodic case, but it
also holds for a much larger space of less smooth functions. Namely, define

F 1
d,2 = Gd,1,2 = W 1

2 ([0, 1]d)

as the Sobolev space of functions whose partial derivatives up to order one in each variable
belong to L2 = L2([0, 1]

d). The norm in F 1
d,2 is defined as in Gd,1,2. Clearly

Fd,2 ⊆ F 1
d,2 and ‖f‖F 1

d,2
≤ ‖f‖Fd,2

for all f ∈ Fd,2.

Again, consider first the case d = 1, and the subspace F̃ 1
1,2 of periodic functions from F 1

d,2.
Periodicity now means that f(1) = f(0). Proceeding as before, it is easy to check that the
functions η1 = 1, and

η2k(x) =

√
2

√

1 + (2πk)2
sin(2πkx), η2k+1(x) =

√
2

√

1 + (2πk)2
cos(2πkx)

are orthonormal in F̃ 1
1,2, and the function

K1(x, y) =

∞
∑

j=1

ηj(x)ηj(y)

13



is the reproducing kernel of F̃ 1
1,2. Therefore the sequence {ηj} forms a basis of F̃ 1

1,2. The

eigenvalues λper
j of W1 = APP∗

1APP1 : F̃ 1
1,2 → F̃ 1

1,2 are

λper
1 = 1 and λper

2k = λper
2k+1 =

1

1 + (2πk)2
for k = 1, 2, . . . .

We now turn to the space F 1
1,2 of non-periodic functions. Define

g(x) = x − 1
2 +

∞
∑

k=1

1

πk(1 + (2πk)2)
sin(2πkx) for x ∈ [0, 1].

It is easy to check that g belongs to F 1
1,2 and is orthogonal to all ηj . Note that g(1) =

−g(0) = 1
2 , hence g /∈ F̃ 1

1,2. For f ∈ F 1
1,2, let

hf (x) = f(x) − [f(1) − f(0)] g(x).

Then hf ∈ F̃ 1
1,2. Hence,

f = [f(1) − f(0)] g + hf for all f ∈ F 1
1,2. (8)

This proves that the reproducing kernel of F 1
1,2 is

Knon−per
1 (x, y) =

g(x)

‖g‖F 1
1,2

g(y)

‖g‖F 1
1,2

+
∞
∑

j=1

ηj(x)ηj(y).

The decomposition (8) suggests that we first compute L1(f) = f(1) − f(0) and then
approximate the function hf = f − L1(f)g. Note that

〈f, ηj〉F 1
1,2

= L1(f) 〈g, ηj〉F 1
1,2

+ 〈hf , ηj〉F 1
1,2

= 〈hf , ηj〉F 1
1,2

and
‖f‖2

F 1
1,2

= L1(f)2‖g‖2
F 1

1,2
+ ‖hf‖2

F 1
1,2

.

Hence, approximation of functions from the unit ball of F 1
1,2 with n information evaluations

is not harder than approximation of periodic functions from the unit ball of F̃ 1
1,2 with n − 1

information evaluations, and not easier than the periodic case with n evaluations.
Let λnon−per

j denote the ordered sequence of eigenvalues of

W non−per
1 = APP∗

1APP1 : F 1
1,2 → F 1

1,2

for the non-periodic case. We have

W1f (x) =

∫ 1

0
Knon−per

1 (x, y)f(y) dy,

14



which easily yields from the form of Knon−per
1 that all eigenvalues λper

j for the periodic case
are also the eigenvalues for the non-periodic case, and we have one extra eigenvalue

λ =
‖g‖2

L2([0,1])

‖g‖2
L2([0,1]) + ‖g′‖2

L2([0,1])

< 1.

Therefore λnon−per
1 = 1, and λnon−per

2 < λnon−per
1 , as well as

λper
j ≤ λnon−per

j ≤ λper
j−1 for all j ≥ 2.

Hence, λnon−per
j = Θ(j−1).

We turn to the case d ≥ 2. Since F 1
d,2 is the d fold tensor product of F 1

1,2, the eigenvalues

of Wd = APP∗
dAPPd : F 1

d,2 → F 1
d,2 are products of λnon−per

j1
· · ·λnon−per

jd
for ji ∈ N. In

Chapter 5 of [3] we prove that linear tensor product problems are weakly tractable as long
as the eigenvalues for d = 1 satisfy the following two conditions:

• the second largest eigenvalue is smaller than the largest eigenvalue,

• the nth largest eigenvalue goes to zero faster than (ln n)−2(ln ln n)−2.

These two assumptions hold in our case, and therefore the approximation problems for the
space F 1

d,2 as well as for the smaller space Fd,2 are weakly tractable.
In fact, in this case we can say more on n(ε, d) due to Theorems 5.1 and 6.1 of [2], see

also Chapter 8 of [3]. Namely, there exist positive numbers t and Ct such that

n(ε, d) ≤ Ct exp
(

t ln(ε−1) (1 + ln(d))
)

for all ε ∈ (0, 1], d ∈ N.

Furthermore, the infimum over t for which the last estimate holds is

max

(

2,
2

ln(1/λnon−per
2 )

)

.

This obviously also implies weak tractability, and in addition tells us much more about the
behavior of n(ε, d).

6 Summary

We summarize our results for the multivariate approximation problem

APPd : Fd,p → Gd,m,p, d ∈ N.

15



Theorem 1

• The order of convergence is infinite for any p and m, see (3).

• For m ≥ 1 and any p, the problem is intractable, see (5).

• For m = 0 and p = 2, the problem is not polynomially tractable, but it is weakly
tractable.

We end this paper with an open problem which is also presented in [3]: For m ≥ 1, we
have intractability for any p, whereas for m = 0 and p = 2 we have weak tractability but
polynomial intractability. This leaves the case m = 0 and p 6= 2.

Furthermore, the partially positive result for m = 0 and p = 2 was obtained by assuming
that algorithms use arbitrary linear functionals. It is not clear what happens if we allow
algorithms that can only use function values.

• Consider multivariate approximation as before with m = 0 and p 6= 2, and algorithms
using arbitrary linear functionals. Verify whether weak or polynomial tractability hold.

• Consider multivariate approximation as before with m = 0 and arbitrary p ∈ [1,∞],
and algorithms using only function values. Verify whether weak tractability holds.

This problem for p = ∞ has been recently solved in [4] by proving that multivariate approx-
imation even for arbitrary linear functionals is still intractable.
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