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Abstract

We prove that L∞-approximation of C∞-functions defined on [0, 1]d is in-
tractable and suffers from the curse of dimensionality. This is done by showing
that the minimal number of linear functionals needed to obtain an algorithm
with worst case error at most ε ∈ (0, 1) is exponential in d. This holds despite
the fact that the rate of convergence is infinite.

1 Introduction and Result

The rate (order) of convergence is an important concept of numerical analysis and ap-
proximation theory. The rate of convergence measures how fast the minimal error e(n)
of algorithms using n function values or linear functionals goes to zero. Roughly speak-
ing, if e(n) = Θ(n−α), then the rate is α. To guarantee that the error is ε, we must
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take n = Θ(ε−1/α) as ε tends to 0. Hence, asymptotically in ε, the larger the rate of
convergence the easier the problem. However, it is not clear what this means for a
fixed positive ε and how long we have to wait for the asymptotic behavior.

In this paper we assume that Fd is a normed linear space of functions f : [0, 1]d → R

that are infinitely differentiable with respect to all variables and the norm of f ∈ Fd is
given as the largest absolute value of all derivatives of f , i.e.,

‖f‖Fd
= sup

α
‖Dαf‖∞ < ∞. (1)

We approximate such functions with respect to the L∞-norm. We consider the worst
case setting (for the unit ball of Fd) and algorithms using arbitrary linear functionals as
information operations on f . Here, d can be arbitrarily large. To stress the importance
of d, we denote the minimal error e(n) by e(n, d). Finally, let n(ε, d) denote the smallest
number of linear functionals that is needed to find an algorithm with worst case error
at most ε.

The optimal rate of convergence of this multivariate approximation problem is infi-
nite since the functions have unbounded smoothness. That is, for any d and arbitrarily
large r we have

e(n, d) = O(n−r) as n → ∞.

This implies that
n(ε, d) = O(ε−1/r) as ε → 0.

Hence for all d, we have an excellent asymptotic speed of convergence with respect
to n. Furthermore, L∞-approximation is asymptotically easy with respect to ε, since
n(ε, d) grows at most sub-linearly in ε−1.

Obviously, the factors in the last two O bounds may depend on d. Despite the
positive asymptotic results, it is not clear if the dependence on d is polynomial or
exponential. This leads us to the notion of tractability.

Tractability means that n(ε, d) does not depend exponentially on ε−1 and d. More
precisely, a problem is weakly tractable if

lim
ε−1+d→∞

ln n(ε, d)

ε−1 + d
= 0,

and intractable if this relation does not hold. If n(ε, d) depends exponentially on d, we
say that a problem suffers from the curse of dimensionality.

Furthermore, a problem is polynomially tractable if there exist non-negative num-
bers C, p and q such that

n(ε, d) ≤ C ε−p d q for all ε ∈ (0, 1) and d ∈ N.

If q = 0 above then a problem is strongly polynomially tractable. For detailed discussion
of tractability, the reader is referred to [3].
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The L∞-approximation problem presented here was studied by Huang and Zhang
in [1]. They proved that this problem is not strongly tractable. Their main result says
that

lim
d→∞

e(n, d) = 1

for each fixed n. These authors also conjectured that the problem is not polynomially
tractable, see also Open Problem 2 of [3]. In this paper we prove the conjecture of
Huang and Zhang. In fact, we prove that not only is the problem not polynomially
tractable, but also that the problem is not weakly tractable. This also partially solves
Open Problem 2 of [3] in the case of multivariate approximation.

Using the technique of [6], see also Section 5.4 of [3], we prove the following theorem.

Theorem 1. For L∞-approximation defined over Fd we have

e(n, d) = 1 for all n = 0, 1, . . . , 2⌊d/2⌋ − 1.

Therefore

n(ε, d) ≥ 2⌊d/2⌋ for all ε ∈ (0, 1) and d ∈ N,

and L∞-approximation is intractable and suffers from the curse of dimensionality.

This result illustrates that the rate of convergence does not tell us everything about
the difficulty of solving the problem. We may have an excellent rate of convergence
and exponential dependence on d. Equivalently, we must wait exponentially long to
enjoy the excellent asymptotic behavior.

Similar results can be found in a few papers. For an approximation problem for
C∞-functions equipped with different norms than considered here, it was shown in [4],
see also Section 3.1.4 of [3], that the rate of convergence and tractability are not related.
If the infinite smoothness is replaced by an arbitrarily large smoothness, then a similar
result for multivariate approximation can be found in [6], see also Section 5.4 of [4]. A
similar result for multivariate integration can be found in [5].

We briefly compare the results of this paper to the results of [4]. The paper [4] is
most relevant to the current paper. The norms studied in [4] are more general than
here. In particular, functions are approximated with respect to a Wm

p -norm of the
Sobolev space. Then intractability and the curse of dimensionality of approximation
were established for m ≥ 1 and all p ∈ [1,∞]. For m = 0, the case p = 2 was only
studied and weak tractability and the lack of polynomial tractability were established.
It was mentioned as an open problem to verify weak tractability for, in particular,
p = ∞. This open problem is solved here in the negative, i.e., weak tractability does
not hold. This also partially solves Open Problem 5 of [4] in case of p = ∞.

The choice of the domain [0, 1]d is not important. In fact, the curse of dimensionality
is present for all domains of the form [c1, c2]

d with ℓ = c2−c1 > 0. However, our bounds
show that the curse of dimensionality may be delayed if ℓ is small, see Remark 2.

3



The choice of the L∞ norm can be also replaced by the Lp norm with p ∈ [1,∞).
The curse of dimensionality is still present for all p and all domains [c1, c2]

d with ℓ > 0,
see Remark 3.

We briefly comment on the proof technique used in this paper. We consider a
subspace of polynomials that are linear in each variable. This subspace is obviously of
dimension 2d and has the property that the norms in the source and target spaces are
the same if the length of the univariate domain interval is sufficient large. In fact, it is
enough to assume that ℓ ≥ 2(p + 1)1/p. If this inequality holds then the nth minimal
worst case errors are just 1 as long as n < 2d. If ℓ is smaller than 2(p + 1)1/p then
we group variables to enlarge the domain, and show that the nth minimal worst case
errors are still 1 for all n < 2⌊d/k⌋ with k = ⌈2(p + 1)1/p/ℓ⌉.

Finally, we add a few words about multivariate integration defined for the class Fd.
It is conjectured in [8] that multivariate integration is not polynomially tractable.
J. O. Wojtaszczyk [7] proved that this problem is not strongly tractable. Both polyno-
mial and weak tractability of multivariate integration are still open. However, we show
the curse of dimensionality for a related space Vd if quadratures with only non-negative
coefficients are used, see Remark 4.

2 Proof

First, we precisely define how we approximate functions f from Fd and what we mean
by the nth minimal error and the minimal number of information evaluations.

We approximate a function f from Fd by algorithms An,d that may use arbitrary
linear functionals, i.e.,

An,d(f) = ϕn (L1(f), L2(f), . . . , Ln(f)) , (2)

where ϕn : R
n → L∞([0, 1]d) is some linear or non-linear mapping, and Lj is an

arbitrary continuous linear functional whose choice may adaptively depend on the
previously computed values L1(f), L2(f), . . . , Lj−1(f). The worst case error of An,d is
defined by

ewor(An,d) = sup
‖f‖Fd

≤1

‖f − An,d(f)‖∞,

and the nth minimal error by

e(n, d) = inf
An,d

ewor(An,d).

The minimal number of information operations needed to solve the problem to within ε
is given by

n(ε, d) = min {n : e(n, d) ≤ ε } .
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We use the technique of [6], see also Section 5.4 of [3]. For this technique it is
enough to identify a linear space Vd ⊆ C∞([0, 1]d) with dim Vd = k and

‖f‖Fd
= ‖f‖∞ for all f ∈ Vd

to conclude that
e(k − 1, d) = 1. (3)

We now define an appropriate space Vd. For d = 1, we start with the elementary
fact that for all g : [−1, 1] → R of the form g(x) = ax + b we have

sup
α

‖Dαg‖∞ = ‖g‖∞ = |a| + |b|,

where Dαg = g(α) for α ∈ N0. It is useful to observe that the same equality

sup
α

‖Dαg‖∞ = ‖g‖∞ (4)

holds for g(x) = ax + b on any interval I = [c1, c2] ⊆ R with length c2 − c1 ≥ 2.
Indeed, (4) is equivalent to the following inequality. For arbitrary real a, b, c1, c2 with
c2 − c1 ≥ 2 we have |a| ≤ max(|ac1 + b|, |ac2 + b|). This holds for a = 0, and for a 6= 0,
we can divide both sides by |a| and we need to show that 1 ≤ max(|c1 − t|, |c2 − t|)
for t = −b/a. Obviously, t that minimizes the maximum is t = (c2 − c1)/2 and then
we need to have 1 ≤ (c2 − c1)/2 which holds due to the assumption. Observe that the
condition c2 − c1 ≥ 2 is generally necessary.

Let d ≥ 1. Assume that g : [−1, 1]d → R is of the form

g(x) =
∑

i∈{0,1}d

aix
i. (5)

Here, i = [i1, i2, . . . , id] with ij ∈ {0, 1} and xi =
∏d

j=1 x
ij
j .

Then g is linear in each variable, i.e., if all variables but xj are fixed then g is linear
in xj. Therefore we can conclude from (4) that again

sup
α

‖Dαg‖∞ = ‖g‖∞, (6)

where now α = [α1, α2, . . . , αd] with αj ∈ N0, and

Dαg =
∂|α1|+···+|αd|

∂xα1

1 · · · ∂xαd

d

g.

We stress that for the last conclusion we used the domain [−1, 1]d instead of [0, 1]d and
again that (6) also holds for any cube [c1, c2]

d with c2 − c1 ≥ 2.
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To consider the domain [0, 1]d which is the common domain of functions from Fd,
we take s = ⌊d/2⌋, and consider functions f : [0, 1]2s → R of the form

f(x) =
∑

i∈{0,1}s

ai(x1 + x2)
i1(x3 + x4)

i2 · · · (x2s−1 + x2s)
is . (7)

Since 2s ≤ d, we have f ∈ F2s ⊆ Fd. The last inclusion is understood in the following
sense. Let d1 < d2. If f ∈ Fd1

then f can be also regarded as a function of d2

variables that is independent of xd1+1, xd1+2, . . . , xd2
. Note that in this case we have

‖f‖Fd1

= ‖f‖Fd2

.
We are ready to define the linear space Vd as the set of functions of the form (7)

with arbitrary coefficients ai. Clearly, dim(Vd) = 2s and Vd ⊆ F2s ⊆ Fd. We claim that

‖f‖Fd
= ‖f‖∞ for all f ∈ Vd.

Indeed, let zj = x2j−1 +x2j ∈ [0, 2] for j = 1, 2, . . . , s. For f ∈ Vd of the form (7) define

gf (z) =
∑

i∈{0,1}s

aiz
i1
1 zi2

2 · · · zis
s

which is of the form (5).
Note that for f ∈ Vd and α = [α1, α2, . . . , α2s] we have Dαf = 0 if α2j−1 + α2j = 2

for some j ∈ [1, s]. Furthermore for all α such that α2j−1 + α2j ≤ 1 for all j ∈ [1, s],
we have

Dαf(x) = Dβgf (z),

where β = [β1, β2, . . . , βs] with βj = α2j−1 if α2j−1 = 1 or βj = α2j if α2j = 1, or βj = 0
if α2j−1 = α2j = 0. This yields that

‖f‖Fd
= sup

α
‖Dαf‖∞ = sup

β
‖Dβgf‖∞ = ‖gf‖∞ = ‖f‖∞,

as claimed.
Hence, we can use (3) with k = 2s = 2⌊d/2⌋ and the proof is completed.

Remark 2 (More general domains). Similarly, we can obtain an intractability result
for the space Fd of functions defined as before, except that the domain of functions is
now an arbitrary cube [c1, c2]

d with ℓ = c2 − c1 > 0.
Choose k = ⌈2/ℓ⌉ such that kℓ ≥ 2. Then we can use functions of the form

g(x) =
∑

i∈{0,1}s

ai(x1+x2+· · ·+xk)
i1(xk+1+xk+2+. . . x2k)

i2 · · · (x(k−1)s+1+x(k−1)s+2+xks)
is

to conclude that for s = ⌊d/k⌋ we obtain

e(n, d) = 1 for n < 2⌊d/k⌋.
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Hence we get intractability for an arbitrary cube, i.e, for arbitrary ℓ. However, for
small ℓ the curse of dimensionality is “delayed”. For ℓ ≥ 2 we obtain

e(n, d) = 1 for n < 2d.

The last bound 2d can be improved for larger ℓ. For example, if ℓ ≥ 8 then we can
start for d = 1 with polynomials

g(x) = a + bx + cx2.

We then obtain1 ‖g‖F1
= ‖g‖∞, and hence

e(n, d) = 1 for n < 3d.

Remark 3 (The Lp-norm). Using the same proof technique we can show the curse of
dimensionality for a modified approximation problem defined as follows. For p ∈ [1,∞]
and d ∈ N, let Fd,p be the class of functions f : [c1, c2]

d → R that are infinitely
differentiable and for which

‖f‖Fd,p
= sup

α
‖Dαf‖Lp

< ∞.

Obviously, we assume that c2 > c1.
We want to approximate f from Fd,p in the Lp norm, i.e., the worst case error of

an algorithm An,d given by (2) is now given by

ewor
p (An,d) = sup

‖f‖Fd,p
≤1

‖f − An,d(f)‖Lp
,

and the nth minimal error by

ep(n, d) = inf
An,d

ewor
p (An,d).

Note that for p = ∞, we have the case studied before.
It is easy to check that for the subspace Vd of linear (in each variable) polynomials

g we have
‖g‖Fd,p

= ‖g‖Lp

1Assume that the domain is [−4, 4]. We need to show that

max(‖g′‖∞, ‖g′′‖∞) ≤ ‖g‖∞.

We have two cases. Case 1: 8|c| < |b|. Then the last inequality is equivalent to 8|c| + |b| ≤ max(|a +
16c|, 4|b|). Since 8|c|+ |b| < 2|b| we are done. Case II: 8|c| ≥ |b|. Then we need to show that |b|+8|c| ≤
max(|a+16c|+4|b|, |a−b2/(4c)|). Dividing by |c| we have 8+ |b/c| ≤ max(|16+a/c|, |a/c−(b/c)2/4|).
This is obvious if a/c ≥ 0. If a/c < 0 and |a/c| ≤ 8 + 3|b/c|, then the first term of the maximum is
at least 8 + |b/c|; if a/c < 0 and |a/c| > 8 + 3|b/c|, then the second term does the job.
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whenever ℓ := c2 − c1 ≥ 2(p + 1)1/p. If this inequality holds then

ep(n, d) = 1 for n < 2d.

If ℓ < 2(p + 1)1/p then we define k = ⌈2(p + 1)1/p/ℓ⌉ such that kℓ ≥ 2(p + 1)1/p. Using
the same reasoning as in Remark 2 we conclude that

ep(n, d) = 1 for n < 2⌊d/k⌋.

Hence, we have the curse of dimensionality for any value of p and for any domain.

Remark 4 (Integration). We now consider multivariate integration
∫
[0,1]d

f(x) dx for

f ∈ Vd. Here, Vd is the same 3d-dimensional space of quadratic polynomials over [0, 1]d

as in Remark 2 and as in [2]. We use a tensor product norm, and we start for d = 1
with a norm

‖f‖2 =
k∑

j=0

‖Djf‖2
L2

,

where k ≥ 2 is fixed. Of course, we can also take k = ∞. Observe that the unit ball of
Vd contains a function with ‖f‖∞ > 1, hence it is not contained in the unit ball of Fd.

For positive quadrature formulas Qn(f) =
∑n

i=1 aif(xi) with non-negative ai, it
was proved in [2] that

ewor(Qn)2 ≥ 1 − n · cd, (8)

with c = 0.9985. Hence the integration problem is intractable on Vd for positive
quadrature formulas. In particular, the problem is intractable for quasi-Monte Carlo
methods for the space Vd. However, it is not known whether positive quadrature
formulas are optimal for Vd and whether a lower bound of the form (8) also holds for
general quadrature formulas, i.e., for quadrature formulas with some negative ai. It is
also not known whether (8) holds for Fd instead of Vd.

Remark 5 (Borsuk-Ulam theorem). The lower error bounds of this paper hold for
algorithms of the form (2) with linear functionals Lj. For the proof technique we
identified a linear space

Vd ⊆ Fd with dim Vd = k and ‖f‖Fd
= ‖f‖Gd

(9)

to conclude that e(k − 1, d) ≥ 1.
Assuming (9), we claim that the same lower bound ewor(Ak−1,d) ≥ 1 also holds for

arbitrary approximations Ak−1,d of the form

Ak−1,d = ϕ ◦ N, where N : Fd → R
k−1 is continuous (10)

(but otherwise arbitrary) and ϕ : R
k−1 → Gd is arbitrary.
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This follows from the Borsuk-Ulam theorem, which states that for any continuous
N : Vd → R

k−1 there is an f ∈ Vd with ‖f‖∞ = 1 and N(f) = N(−f). Hence
Ak−1,d(f) = Ak−1,d(−f), and so

ewor(Ak−1,d) ≥ max(‖f − Ak−1,d(f)‖∞, ‖ − f − Ak−1,d(−f)‖∞)

= max(‖f − Ak−1,d(f)‖∞, ‖f + Ak−1,d(f)‖∞)

≥ ‖f‖∞ = 1,

as claimed. Hence the lower error bound also holds for other approximations, such as
n-term approximations, as long as they can be written in the form (10).
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