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Abstract

We study the optimal approximation of the solution of an operator equa-
tion A(u) = f by four types of mappings: a) linear mappings of rank n; b)
n-term approximation with respect to a Riesz basis; c) approximation based
on linear information about the right hand side f ; d) continuous mappings.
We consider worst case errors, where f is an element of the unit ball of a
Sobolev or Besov space Br

q (Lp(Ω)) and Ω ⊂ Rd is a bounded Lipschitz do-
main; the error is always measured in the Hs-norm. The respective widths
are the linear widths (or approximation numbers), the nonlinear widths, the
Gelfand widths, and the manifold widths. As a technical tool, we also study
the Bernstein numbers. Our main results are the following. If p ≥ 2 then the
order of convergence is the same for all four classes of approximations. In
particular, the best linear approximations are of the same order as the best
nonlinear ones. The best linear approximation can be quite difficult to realize
as a numerical algorithm since the optimal Galerkin space usually depends on
the operator and of the shape of the domain Ω. For p < 2 there is a difference,
nonlinear approximations are better than linear ones. However, in this case, it
turns out that linear information about the right hand side f is again optimal.
Our main theoretical tool is the best n-term approximation with respect to
an optimal Riesz basis and related nonlinear widths. These general results are
used to study the Poisson equation in a polygonal domain. It turns out that
best n-term wavelet approximation is (almost) optimal. The main results of
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this paper are about approximation, not about computation. However, we also
discuss consequences of the results for the numerical complexity of operator
equations.

AMS subject classification: 41A25, 41A46, 41A65, 42C40, 65C99
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1 Introduction

We study the optimal approximation of the solution of an operator equation

(1) A(u) = f,

where A is a linear operator

(2) A : H → G

from a Hilbert space H to another Hilbert space G. We always assume that A is

boundedly invertible, and so (1) has a unique solution for any f ∈ G. We have in

mind the more specific situation of an elliptic operator equation which is given as

follows. Assume that Ω ⊂ Rd is a bounded Lipschitz domain and assume that

(3) A : Hs
0(Ω)→ H−s(Ω)

is an isomorphism, where s > 0. (For the definition of the Sobolev spaces Hs
0(Ω)

and H−s(Ω), we refer to the Subsections 5.7, 5.8 and 5.9). A standard case (for

second order elliptic boundary value problems for PDEs) is s = 1, but also other

values of s are of interest. Now we put H = Hs
0(Ω) and G = H−s(Ω). Since A is

boundedly invertible, the inverse mapping S : G→ H is well defined. This mapping

is sometimes called the solution operator—in particular if we want to compute the

solution u = S(f) from the given right-hand side A(u) = f .

We use linear and (different kinds of) nonlinear mappings Sn for the approxima-

tion of the solution u = A−1(f) for f contained in F ⊂ G. We consider the worst

case error

(4) e(Sn, F,H) = sup
‖f‖F≤1

‖A−1(f)− Sn(f)‖H ,
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where F is a normed (or quasi-normed) subspace of G. In our main results, F will

be a Sobolev or Besov space.1 Hence we use the following commutative diagram

G
S−→ H

I ↖ ↗ SF

F.

Here I : F → G denotes the identity and SF the restriction of S to F . In the specific

case (3) this diagram is given by

H−s(Ω)
S−→ Hs

0(Ω)

I ↖ ↗ St

B−s+t
q (Lp(Ω)),

where B−s+t
q (Lp(Ω)) denotes a Besov space compactly embedded into H−s(Ω), cf.

the Appendix for a definition, and St the restriction of S to B−s+t
q (Lp(Ω)). We are

interested in approximations that have the optimal order of convergence depending

on n, where n denotes the degree of freedom. In general our results are construc-

tive in a mathematical sense, because we can describe optimal approximations Sn

in mathematical terms. This does not mean, however, that these descriptions are

constructive in a practical sense, since it might be very difficult to convert those

descriptions into a practical algorithm. We will discuss this more thoroughly in Sec-

tion 3.4. As a consequence, most of our results give optimal benchmarks and can

serve for the evaluation of old and new algorithms. We study and compare four kinds

of approximation methods ; see Section 2.1 for details.

• We consider the class Ln of all continuous linear mappings Sn : F → H,

Sn(f) =
n∑

i=1

Li(f) · h̃i

with arbitrary h̃i ∈ H. The worst case error of optimal linear mappings is

given by the approximation numbers or linear widths

elinn (S, F,H) = inf
Sn∈Ln

e(Sn, F,H).

1Formally we only deal with Besov spaces. Because of the embeddings B−s+t
1 (Lp(Ω)) ⊂

W−s+t
p (Ω) ⊂ B−s+t

∞ (Lp(Ω)), which hold for 1 ≤ p ≤ ∞, t ≥ s, see [91], our results are valid
also for Sobolev spaces.
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• For a given basis B of H we consider the class Nn(B) of all (linear or nonlinear)

mappings of the form

Sn(f) =
n∑

k=1

ck hik ,

where the ck and the ik depend in an arbitrary way on f . We also allow that

the basis B to be chosen in a nearly arbitrary way. Then the nonlinear widths

enon
n,C(S, F,H) are given by

enon
n,C(S, F,H) = inf

B∈BC

inf
Sn∈Nn(B)

e(Sn, F,H).

Here BC denotes a set of Riesz bases for H where C indicates the stability of

the basis. These numbers are the main topic of our analysis.

• We also study methods Sn with Sn = ϕn ◦ Nn, where Nn : F → Rn is linear

and continuous and ϕn : Rn → H is arbitrary. This is the class of all (linear

or nonlinear) approximations Sn that use linear information of cardinality n

about the right hand side f . The respective widths are

rn(S, F,H) := inf
Sn

e(Sn, F,H),

they are closely related to the Gelfand numbers.

• Let Cn be the class of continuous mappings, given by arbitrary continuous

mappings Nn : F → Rn and ϕn : Rn → H. Again we define the worst case

error of optimal continuous mappings by

econt
n (S, F,H) = inf

Sn∈Cn

e(Sn, F,H),

where Sn = ϕn ◦Nn. These numbers are called manifold widths of S.

For problems (3) with F = Br
q (Lp(Ω)) our main results are the following. If p ≥ 2

then the order of convergence is the same for all four classes of approximations. In

particular, the best linear approximations are of the same order as the best nonlinear

ones. The best linear approximation can be quite difficult to realize as a numerical

algorithm since the optimal Galerkin space usually depends on the operator and

of the shape of the domain Ω. For p < 2 there is an essential difference, nonlinear

approximations are better than linear ones. However, in this case it turns out that

linear information about the right hand side f is optimal. Our main theoretical tool

is best n-term approximation with respect to an optimal Riesz basis and related non-

linear widths. The main results are about approximation, not about computation.
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However, we also discuss consequences of the results for the numerical complexity

of operator equations.

The paper is organized as follows:

1. Introduction

2. Linear and nonlinear widths

2.1 Classes of admissible mappings

2.2 Properties of widths and relations between them

3. Optimal approximation of elliptic problems

3.1 Optimal linear approximation of elliptic problems

3.2 Optimal nonlinear approximation of elliptic problems

3.3 The Poisson equation

3.4 Algorithms and complexity

4. Proofs

4.1 Properties of widths

4.2 Widths of embeddings of weighted sequence spaces

4.3 Widths of embeddings of Besov Spaces

4.4 Proofs of Theorems 2, 3, and 5

5. Appendix - Besov spaces

We add a few comments. The main results of our paper are contained in Section

3.2. They are further illustrated for the case of the Poisson equation in Section 3.3.

A discussion in connection with uniform approximation, adaptive/nonadaptive in-

formation, adaptive numerical schemes, and complexity is contained in Section 3.4.

All proofs are contained in Section 4. Of independent interest are the estimates of

the widths of embedding operators for Besov spaces, see Section 4.3.

Notation. We write a � b if there exists a constant c > 0 (independent of the

context dependent relevant parameters) such that

c−1 a ≤ b ≤ c a .

All unimportant constants will be denoted by c, sometimes with additional indices.

2 Linear and Nonlinear Widths

Widths represent concepts of optimality. In this section we shall discuss several

variants. Most important for us will be the nonlinear widths enon
n and the linear

widths elinn . We also study Gelfand and manifold widths and, as a vehicle of the

proofs, Bernstein widths.
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2.1 Classes of Admissible Mappings

Linear Mappings Sn

Here we consider the class Ln of all continuous linear mappings Sn : F → H,

(5) Sn(f) =
n∑

i=1

Li(f)hi

where the Li : F → R are linear functionals and hi are elements of H. We consider

the worst case error

(6) e(Sn, F,H) := sup
‖f‖F≤1

‖A−1(f)− Sn(f)‖H ,

where F is a normed (or quasi-normed) subspace of G. Accordingly, we seek the

optimal linear approximation, as well as the numbers

(7) elinn (S, F,H) = inf
Sn∈Ln

e(Sn, F,H),

usually called approximation numbers or linear widths of S : F → H, cf. [60, 72, 73,

85].

Nonlinear Mappings Sn

Let B = {h1, h2, . . . } be a subset of H. Then the best n-term approximation of an

element u ∈ H with respect to this set B is defined as

(8) σn(u,B)H := inf
i1,...,in

inf
c1,... cn

∥∥∥∥u− n∑
k=1

ck hik

∥∥∥∥
H

.

This subject is widely studied, see the surveys [29] and [84]. Now we continue by

looking for an optimal set B as has been done in Kashin [54], Donoho [38], Temlyakov

[82, 83, 84] and DeVore, Petrova, and Temlyakov [33]. Temlyakov [84] suggested to

consider the quantities

inf
B∈D

sup
‖u‖Y ≤1

σn(u,B)H ,

where D is a subset of the set of all bases of H. The particular case of D being

the set of all orthonormal bases has been discussed in [82, 83], while the set of

all unconditional, democratic bases is studied in [33]. See Remark 25 for a further

discussion. In this paper we work with Riesz bases, see, e.g., Meyer [62, page 21].

Definition 1. Let H be a Hilbert space. Then the sequence h1, h2, . . . of elements of

H is called a Riesz basis for H if there exist positive constants A and B such that,
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for every sequence of scalars α1, α2, . . . with αk 6= 0 for only finitely many k, we

have

(9) A
(∑

k

|αk|2
)1/2

≤
∥∥∥∑

k

αk hk

∥∥∥
H
≤ B

(∑
k

|αk|2
)1/2

and the vector space of finite sums
∑
αk hk is dense in H.

Remark 1. The constants A,B reflect the stability of the basis. Orthonormal bases

are those with A = B = 1. Typical examples of Riesz bases are the biorthogonal

wavelet bases on Rd or on certain Lipschitz domains, cf. Cohen [12, Sect. 2.6, 2.12].

In what follows

(10) B = {hi | i ∈ N}

will always denote a Riesz basis of H with A and B being the corresponding optimal

constants in (9).

For a given basis B we consider the class Nn(B) of all (linear or nonlinear) mappings

of the form

(11) Sn(f) =
n∑

k=1

ck hik ,

where the ck and the ik depend in an arbitrary way on f . By the arbitrariness of Sn

one obtains immediately

(12) inf
Sn∈Nn(B)

sup
‖f‖F≤1

‖A−1f − Sn(f)‖H = sup
‖f‖F≤1

σn(A−1f,B)H .

It is natural to assume some common stability of the bases under consideration. For

a real number C ≥ 1 we put

(13) BC :=
{
B : B/A ≤ C

}
.

We are ready to define the nonlinear widths enon
n,C(S, F,H) by

(14) enon
n,C(S, F,H) = inf

B∈BC

inf
Sn∈Nn(B)

e(Sn, F,H).

These numbers are the main topic of our analysis. We call them the widths of best

n-term approximation (with respect to the collection BC of Riesz basis of H).

Remark 2. i) It should be clear that the class Nn(B) contains many mappings

that are difficult to compute. In particular, the number n just reflects the di-

mension of a nonlinear manifold and has nothing to do with a computational

cost. In this paper we also are interested in lower bounds, such lower bounds

being strengthened if we admit a larger cass of approximations.
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ii) The inequality

(15) enon
n,C(S, F,H) ≤ elinn (S, F,H)

is trivial.

(iii) Because of the homogeneity of σn, i.e., σn(λu,B)H = |λ|σn(u,B)H , λ ∈ R, it

does not change the asymptotic behaviour of enon
n if we replace sup‖f‖F≤1 by

sup‖f‖F≤c for c > 0.

Continuous Mappings Sn

Linear mappings Sn are of the form Sn = ϕn ◦ Nn where both Nn : F → Rn and

ϕn : Rn → H are linear and continuous. If we drop the linearity condition then

we obtain the class of all continuous mappings Cn, given by arbitrary continuous

mappings Nn : F → Rn and ϕn : Rn → H. Again we define the worst case error of

optimal continuous mappings by

(16) econt
n (S, F,H) = inf

Sn∈Cn

e(Sn, F,H).

These numbers, or slightly different numbers, were studied by different authors, cf.

[30, 31, 40, 60]. Sometimes these numbers are called manifold widths of S, see [31],

and we will use this terminology here. The inequality

(17) econt
n (S, F,H) ≤ elinn (S, F,H)

is obvious.

Gelfand Widths and Minimal Radii of Information

We can also study methods Sn with Sn = ϕn ◦Nn, where Nn : F → Rn is linear and

continuous and ϕn : Rn → H is arbitrary. The respective widths are

(18) rn(S, F,H) := inf
Sn

e(Sn, F,H).

These numbers are called the n-th minimal radii of information, which are closely

related to Gelfand widths, see Lemma 1 below. The n-th Gelfand width of the linear

operator S : F → H is given by

(19) dn(S, F,H) := inf
L1,...,Ln

sup
{
‖Sf‖H : ‖f‖F ≤ 1, Li(f) = 0 , i = 1, . . . n

}
,

where the Li : F → R are continuous linear functionals.
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Bernstein Widths

A well-known tool for deriving lower bounds of widths consists in the investigation

of Bernstein widths, see [72, 73, 85].

Definition 2. The number bn(S, F,H), called the n-th Bernstein width of the opera-

tor S : F → H, is the radius of the largest (n+1)-dimensional ball that is contained

in S({‖f‖F ≤ 1}).

Remark 3. The literature contains several different definitions of Bernstein widths.

For example, Pietsch [71] gives the following version. Let Xn denote subspaces of F

of dimension n. Then

b̃n(S, F,H) := sup
Xn⊂F

inf
x∈Xn,x 6=0

‖Sx‖H
‖x‖F

.

As long as S is an injective mapping we obviously have bn(S, F,H) = b̃n+1(S, F,H).

2.2 Properties of Widths and Relations Between Them

Lemma 1. Let n ∈ N and assume that F ⊂ G is quasi-normed.

(i) We have dn ≤ rn ≤ 2dn if F is normed and dn � rn in general.

(ii) The inequality

(20) bn(S, F,H) ≤ min
(
econt

n (S, F,H), dn(S, F,H)
)

holds for all n.

Remark 4. The inequality bn ≤ econt
n is known, compare e.g. with [30], and the proof

technique (via Borsuk’s theorem) is often used for the proof of similar results.

The Bernstein widths bn can also be used to prove lower bounds for the enon
n,C . The

following inequality has been proved in [24].

Lemma 2. Assume that F ⊂ G is quasi-normed. Then

(21) enon
n,C(S, F,H) ≥ 1

2C
bm(S, F,H)

holds for all m ≥ 4C2 n.

More important for us will be a direct comparison of enon
n and econt

n . Best n-term

approximation yields a mapping

Sn(u) =
n∑

k=1

ck hik
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which is in general not continuous. However, it is known that certain discontinuous

mappings can be suitably modified in order to obtain a continuous n-term approx-

imation with an error which is only slightly worse, see, for example, [31] and [41].

We prove that, under general assumptions, the numbers enon
n,C can be bounded from

below by the manifold widths econt
n .

Theorem 1. Let S : G → H be an isomorphism. Suppose that the embedding

F ↪→ G is compact. Then for all C ≥ 1 and all n ∈ N, we have

(22) econt
4n+1(S, F,H) ≤ 2C ‖S ‖2 ‖S−1 ‖2 enon

n,C(S, F,H) .

Finally we collect some further properties of the quantities econt
n and enon

n .

Lemma 3. (i) Let m,n ∈ N, and let F be a subset of the quasi-normed linear space

X, where X itself is a subset of the quasi-normed linear space Y . Let Ij denote

embedding operators. Then

(23) econt
m+n(I1, F, Y ) ≤ econt

m (I2, F,X) econt
n (I3, X, Y )

holds.

(ii) Let F be a quasi-normed subset of G and let I : F → G be the embedding. Then

(24) econt
n (I, F,G) ≤ ‖S−1‖ econt

n (S, F,H) ≤ ‖S−1‖ ‖S‖ econt
n (I, F,G)

and for any C ≥ ‖S−1‖ ‖S‖, we have

(25)

enon
n,C ‖S−1‖ ‖S‖(I, F,G) ≤ ‖S−1‖ enon

n,C(S, F,H) ≤ ‖S−1‖ ‖S‖ enon
n,C/(‖S−1‖ ‖S‖)(I, F,G) .

Remark 5. Let us point out the following which is part of the proof of Lemma 3. Let

B = {h1, h2, . . . } be a Riesz basis of G. Let Sn be an approximation of the identity

I : F → G. Then S(B) is a Riesz basis of H and S ◦ Sn is an approximation of

S : F → H satisfying

(26) ‖f − Sn(f)‖G ≤ ‖S−1‖ · ‖Sf − S ◦ Sn(f) ‖H ≤ ‖S−1‖ · ‖S ‖ · ‖ f − Sn(f) ‖G .

This makes clear that if B and Sn are order optimal for the triple I, F,G, then S(B)

and S ◦ Sn are order optimal for the triple S, F,H. Consequently, instead of looking

for good approximations of S : F → H it will be enough to study approximations of

the embedding I : F → G.
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Remark 6. The assertion in part (i) of the Lemma is essentially proved in [40]

but traced there to Khodulev. The inequality (23) can be made more transparent by

means of the diagram

X
I3−→ Y

I2 ↖ ↗ I1

F.

Remark 7. The approximation numbers elinn , the Gelfand widths dn, the manifold

widths econt
n and Bernstein widths bn are particular examples of s-numbers in the

sense of Pietsch [71], see [60] for the manifold widths. They have several properties

in common. Letting sn denote any of the numbers elinn , dn, econt
n and bn we have

(27) sn(T2 ◦ T1 ◦ T0) ≤ ‖T0 ‖ ‖T2 ‖ sn(T1) ,

where T0 ∈ L(E0, E), T1 ∈ L(E,F ), T2 ∈ L(F, F0) and E0, E, F, F0 are arbitrary

Banach spaces. For these four types of s-numbers the assertion remains true also

for quasi-Banach spaces.

Another property concerns additivity. For sn instead of elinn and dn we have

(28) s2n(T0 + T1) ≤ c
(
sn(T0) + sn(T1)

)
,

where T0, T1 ∈ L(E,F ), E,F are arbitrary quasi-Banach spaces, and c does not

depend on n, T0, T1, cf. [10]. In case that F is a Banach space, one can take c = 1.

3 Optimal Approximation of Elliptic Problems

Let s, t > 0. We consider the diagram

H−s(Ω)
S−→ Hs

0(Ω)

I ↖ ↗ St

B−s+t
q (Lp(Ω)),

where St denotes the restriction of S to B−s+t
q (Lp(Ω)) and I denotes the identity.

We assume (3) and we let S = A−1.

3.1 Optimal Linear Approximation of Elliptic Problems

Theorem 2. Let Ω ⊂ Rd be a bounded Lipschitz domain. Let 0 < p, q ≤ ∞, s > 0,

and

(29) t > d

(
1

p
− 1

2

)
+

.
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Then

elinn (S,B−s+t
q (Lp(Ω))), Hs

0(Ω)) �

{
n−t/d if 2 ≤ p ≤ ∞ ,

n−t/d+1/p−1/2 if 0 < p < 2 .

Remark 8. i) The restriction (29) is necessary and sufficient for the compact-

ness of the embedding I : B−s+t
q (Lp(Ω)) ↪→ H−s(Ω), cf. the Appendix, Propo-

sition 7.

ii) The proof is constructive. First of all one has to determine a linear mapping

Sn that approximates the embedding I : B−s+t
q (Lp(Ω))→ H−s(Ω) with the op-

timal order. How this can be done is described in Remark 28, Subsection 4.3.3.

Finally, the linear mapping S ◦ Sn realizes an in order optimal approximation

of St.

iii) There are hundreds of references dealing with approximation numbers of linear

operators. Most useful for us have been the monographs [43, 72, 73, 85, 81, 94],

as well as the references contained therein.

3.2 Optimal Nonlinear Approximation of Elliptic Problems

To begin with, we consider the manifold and the Gelfand widths. There we have a

rather final answer.

Theorem 3. Let Ω ⊂ Rd be a bounded Lipschitz domain. Let 0 < p, q ≤ ∞, s > 0,

and

t > d

(
1

p
− 1

2

)
+

.

Then

econt
n (S,B−s+t

q (Lp(Ω))), Hs
0(Ω)) � n−t/d .

If, in addition, p ≥ 1 (and t > d/2 if 1 ≤ p < 2), then

dn(S,B−s+t
q (Lp(Ω))), Hs

0(Ω)) � n−t/d .

From Theorem 1 and Theorem 3 we conclude that the order of enon
n,C is also at

least n−t/d. For the respective upper bound of the nonlinear widths enon
n,C we need a

few more restrictions with respect to the domain Ω. Let Ω be a bounded Lipschitz

domain in Rd and let s > 0. We assume that for any fixed triple (t, p, q) of parameters

the spaces B−s+t
q (Lp(Ω)) and H−s(Ω) allow a discretization by one common wavelet

system B∗, i.e. (107)–(112) should be satisfied with B−s+t
q (Lp(Ω)) and B−s

2 (L2(Ω)),

respectively, cf. Appendix 5.10. By assumption such a wavelet system belongs to

BC∗ for some 1 ≤ C∗ <∞.
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Theorem 4. Under the above conditions on Ω and if 0 < p, q ≤ ∞, s > 0, t >

d(1
p
− 1

2
)+, we have for any C ≥ C∗

enon
n,C(S,B−s+t

q (Lp(Ω))), Hs
0(Ω)) � n−t/d .

Remark 9. Comparing Theorems 3, 4 and Theorem 2 there is a clear message. For

p < 2 there are nonlinear approximations that are better in order than any linear

approximation.

Remark 10. The proof of the upper bound in Theorem 4 is constructive in a the-

oretical sense that we now describe. Given a right-hand side f ∈ B−s+t
q (Lp(Ω)) we

have to calculate all wavelet coefficients 〈f, ψ̃j,λ〉. The sequence of these coefficients

belongs to the space b−s+t
p,q (∇), cf. Subsection 4.2. With

a = (aj,λ)j,λ , aj,λ := 〈f, ψ̃j,λ〉 , for all j, λ ,

we find a good approximation Sn(a) of a with n components with respect to the

norm ‖ · |bs2,2(∇)‖ in Proposition 2. To get an optimal approximation of the solution

u = Sf in ‖ · |Hs(Ω)‖ we have to apply the solution operator to Sn(a). Hence

(30) un = (S ◦ Sn)(a) =
K∑

j=0

∑
λ∈Λ∗j

a∗j,λ Sψj,λ ,

where K = K(a, n), with a∗j,λ and Λ∗j as in Proposition 2 (cf. in particular (62)

and (65)), represents such a good approximation of u. To calculate un, a lot of

computations have to be done. The coefficients a∗j,λ are the largest in a weighted sense

(the weight depends on n and j, cf. the proof of Proposition 2 for explicit formulas).

Having these coefficients at hand one has finally to solve all the equations

(31) Auj,λ = ψj,λ , 0 ≤ j ≤ K, λ ∈ Λ∗j

to obtain uj,λ = Sψj,λ. The number of equations is O(n).

In this way we obtain a nonlinear approximation with respect to the Riesz basis

given by the Sψj,λ. Observe that this Riesz basis depends on the operator equation.

It would be much better to use a known Riesz basis, such as a wavelet basis, that

does not depend on A. See Theorem 5 for a step into that direction.

Remark 11. At least if Ω is a cube, all required properties are known to be satisfied if

in addition 1 < p, q <∞. The latter restriction allows to use duality arguments, cf.

Proposition 10 in Appendix 5.8. There also exist results for domains with piecewise

analytic boundary such as polygonal or polyhedral domains. One natural way as,
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e.g., outlined in [8] and [26], is to decompose the domain into a disjoint union of

parametric images of reference cubes. Then, one constructs wavelet bases on the

reference cubes and glues everything together in a judicious fashion. However, due

to the glueing procedure, only Sobolev spaces Hs with smoothness s < 3/2 can be

characterized. This bottleneck can be circumvented by the approach in [27]. There,

a much more tricky domain decomposition method involving certain projection and

extension operators is used. By proceeding in this way, norm equivalences for all

spaces Bt
q(Lp(Ω)) can be derived, at least for the case p > 1, see [27, Theorem 3.4.3].

However, the authors also mention that their results can be generalized to the case

p < 1, see [27, Remark 3.1.2].

Sobolev and Besov spaces on compact C∞-manifolds were already characterized

via spline bases and sequence spaces by Ciesielski and Figiel [11]. In that paper also

the isomorphism between function spaces and sequence spaces is used to obtain results

for various s-numbers.

Remark 12. Comparing Theorems 3 and 4 we see that the numbers enon
n,C, econt

n , and

dn have the same asymptotic behaviour, at least for p > 1. Using the relation dn � rn,

see Lemma 1, we actually can get the optimal order n−t/d with an approximation of

the form

(32) f 7→ S ◦ ϕn ◦Nn(f) ,

where

Nn : B−s+t
q (Lp(Ω))→ Rn

is linear (this mapping gives the information that is used about the right hand side),

and

ϕn : Rn → H−s(Ω)

is nonlinear. Note that neither Nn nor ϕn depend on S. The mapping ϕn ◦Nn gives

a good approximation of the embedding from B−s+t
q (Lp(Ω)) to H−s.

Remark 13. There is a further little difference between linear and nonlinear ap-

proximation. Let us consider the limiting case t = d(1/p − 1/2), where 0 < p < 2.

Then the embedding B−s+t
p (Lp(Ω)) ↪→ H−s(Ω) is continuous, not compact. As a

consequence

elinn (S,B−s+t
p (Lp(Ω))), Hs

0(Ω)) 6→ 0 if n→∞ ,

but

enon
n (S,B−s+t

p (Lp(Ω))), Hs
0(Ω))→ 0 if n→∞ ,

cf. Remark 26.
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3.3 The Poisson Equation

The next step is to discuss the specific case of the Poisson equation on a Lipschitz

domain Ω contained in R2:

−4u = f in Ω(33)

u = 0 on ∂Ω.

As usual, we study (33) in the weak formulation. Then, it can be shown that the

operator A = 4 : H1
0 −→ H−1 is boundedly invertible, see, e.g., [50] for details.

Hence Theorems 2 and 3 apply with s = 1; for the upper bound of Theorem 4 we

need some restrictions with respect to Ω. For the proof of Theorem 4 we used the

Riesz basis Sψj,λ, which depends on A. Now we want to approximate the solution

u by wavelets.

We shall restrict ourselves to the case that Ω is a simply connected polygonal domain.

The segments of ∂Ω are denoted by Γ1, . . . ,ΓN , where each Γl is open and the

segments are numbered in positive orientation. Furthermore, Υl denotes the endpoint

of Γl and ωl denotes the measure of the interior angle at Υl. Appropriate wavelet

systems can be constructed for such a domain, see Remark 11. Then we obtain the

following.

Theorem 5. Let Ω be a polygonal domain in R2. Let 1 < p ≤ 2 and let k ≥ 1 be a

nonnegative integer such that

mπ

ωl

6= k + 1− 2

p
for all m ∈ N, l = 1, . . . , N.

Then for an appropriate wavelet system B∗, the best n-term approximation of prob-

lem (33) yields

(34) sup
‖f |Bk−1

p (Lp(Ω))‖≤1

σn(u,B∗) ≤ cε n
−k/2+ε

where ε > 0 and cε do not depend on n.

Remark 14. This approximation differs greatly from the one described in Re-

mark 10. Here we can work with one given wavelet system to approximate the solution

u. We are not forced to work with the solutions of the system (31). A more detailed

discussion of these relationships, including possible numerical realizations of wavelet

methods, will follow in Section 3.4.
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3.4 Algorithms and Complexity

So far, we have studied the error e(Sn, F,H) of approximations Sn. We compared

the error of nonlinear Sn and linear Sn and proved results on the optimal rate of

convergence. We assume that (1) is a given fixed operator equation and hence, in

the case of (3), also Ω is fixed.

In this section we briefly discuss algorithms and their complexity, and for simplic-

ity we still assume that the operator equation (3) is given and fixed. Observe that

in practice it is important to construct also algorithms for more general problems:

We want to input information about Ω and A and the right hand side f , and we

want to obtain an ε-approximation of the solution u. In our more restricted case we

only have to input information concerning the right hand side f because Ω and A
are fixed.

As is usual in numerical analysis, we use the real number model of computation

(see [64] for the details and [66] and [67] for further comments). Any algorithm com-

putes and/or uses some information (consisting in finitely many numbers) describing

the right hand side f of (3). There are different ways how an algorithm may use

information concerning f , we describe two of them in turn.

1. The information used about f is very explicit if Sn is linear (5): Then the

algorithm uses L1(f), . . . , Ln(f) and we assume that we have an oracle (or

subroutine) for the Li(f). In practical applications the computation of a func-

tional Li(f) can be very easy or very difficult or anything between. One often

assumes that the cost of obtaining a value Li(f) is c where c > 0 is small or

large, depending on the circumstances.

As in (11), we can imagine Sn as the input-output mapping of a numerical

algorithm: on input f ∈ F we obtain the output Sn(f) = un =
∑n

k=1 ck hik .

More formally we should say that the output is

(35) out(f) = (i1, c1, i2, c2, . . . , in, cn)

but we identify out(f) with un. Of course we cannot consider arbitrary map-

pings Sn of the form (11) as the input-output mapping of an algorithm, since

not all such Sn are computable.

We still assume that we only have an oracle for the computation of linear

functionals Li(f). Then it is not so clear what the information cost of (11) is,

since (11) only describes the (desired) output of an algorithm, it is not an algo-

rithm by itself. We need an algorithm that uses information L1(f), . . . , LN(f),

where N might be bigger than n, to produce the ik and the ck of out(f). The

information cost of such a procedure would be cN .
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2. One also can assume that a good approximation fn can easily be precomputed

with negligible cost. Hence the algorithm starts with an approximation

(36) fn =
n∑

k=1

ck gik ,

such as a best n-term approximation (or a greedy approximation) of f with

respect to a basis {gi, : i ∈ N}.

This is a good place for a short remark about adaption. The use of adaptive

methods is quite widespread but we want to stress that the notion of adaptive meth-

ods is not uniformly used in the literature. Some confusion is almost unavoidable if

such different notions are mixed. To avoid such confusion, we do not use the notion

of an “adaptive method”. Instead we speak first about adaptive (or nonadaptive)

information and then about adaptive numerical schemes.

• Nonadaptive information: The algorithm uses certain functionals L1, L2, . . . , Ln

and for each input f ∈ F the algorithm needs L1(f), L2(f), . . . , Ln(f). Hence

the functionals Li do not depend on f . In this case we say that the algorithm

uses nonadaptive information.

• Adaptive information: The algorithm uses L1(f) and, depending on this num-

ber, the next functional L2 is chosen. In general, the chosen functional Lk

may depend on the values L1(f), . . . , Lk−1(f) that are already known to the

algorithm. Observe that Lk cannot depend in an arbitrary way on f since the

algorithm can only use the known information about f . In this case we say

that the algorithm uses adaptive information.

We give an example. Assume that a certain Sn of the form (11) can be realized

in such a way that we first compute L1(f), . . . , LN(f), where the Li do not depend

on f ∈ F . In the latter parts of the algorithm we only use the Li(f) for the n

largest values of |Li(f)|, together with the corresponding values of i, to compute the

output out(f). Such an algorithm uses nonadaptive information (of cardinality N),

the information cost is cN .

There is a large stream of results, giving conditions under which adaptive in-

formation is superior (or not superior) compared to nonadaptive information; we

mention the pioneering paper by Bakhvalov [2], the results on operator equations

by Gal and Micchelli [44] and by Traub and Woźniakowski [86], and the survey [65].

For example, it is known that adaptive information does not help (up to a factor of

2) for linear operator equations and the worst case error with respect to the unit ball
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of a normed space F . If F is only quasi-normed then the proofs must be modified,

with a possible change of the constant 2. Nevertheless nonadaptive information is

almost as good as adaptive information.

How much information is needed about the right hand side f ∈ F in order that

we can solve the equation (1) with an error ε? This question is answered by the

minimal radii of information rn(S, F,H) (or the closely related Gelfand numbers).

These numbers are a good measure for the information complexity of the operator

equation. In contrast, the output complexity of the problem is measured by the

nonlinear widths enon
n,C(S, F,H). These numbers measure the cost of just outputting

the approximation (with respect to an optimal basis B ∈ BC). It is quite remarkable

that, under general conditions, we obtain the same order

rn(S, F,H) � dn(S, F,H) � enon
n,C(S, F,H) � n−t/d,

see Theorem 3 and Theorem 4.

Now we discuss adaptive numerical schemes for the numerical treatment of el-

liptic partial differential equations. Usually, these operator equations are solved by

a Galerkin scheme, i.e., one defines an increasing sequence of finite dimensional ap-

proximation spaces GΛl
:= span{ηµ : µ ∈ Λl}, where GΛl

⊂ GΛl+1
, and projects the

problem onto these spaces, i.e.,

〈AuΛl
, v〉 = 〈f, v〉 for all v ∈ GΛl

.

To compute the actual Galerkin approximation, one has to solve a linear system

AΛl
cΛl

= fΛl
, AΛl

= (〈Aηµ′ , ηµ〉)µ,µ′∈Λl
, (fΛ)µ = 〈f, ηµ〉, µ ∈ Λl.

Then the question arises how to choose the approximation spaces in a suitable way,

since doing that in a somewhat clumsy fashion would yield huge linear systems and

a very unefficient scheme. One natural way would be to use an updating strategy,

i.e., one starts with a small set Λ0, tries to estimate the (local) error, and only in

regions where the error is large the index set is refined, i.e., further basis functions

are added. Such an updating strategy is usually called an adaptive numerical scheme

and it is characterized by the following facts: the sequence of approximation spaces

is not a priori fixed but depends on the unknown solution u of the operator equation,

and the whole scheme should be self-regulating, i.e., it should work without a priori

information on the solution. In principle, such an adaptive scheme consists of the
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following three steps:

solve − estimate − refine

AΛl
cΛl

= fΛl
‖u− uΛl

‖ =? add functions

a posteriori if necessary.

error estimator

Note that the second step is highly nontrivial since the exact solution u is unknown,

so that clever a posteriori error estimators are needed. These error estimators should

be local, since we want to refine (i.e. add basis functions) only in regions where the

local error is large. Then another challenging task is to show that the refinement

strategy leads to a convergent scheme and to estimate its order of convergence, if

possible.

Recent developments indicate the promising potential of adaptive numerical schemes,

see, e.g., [1, 3, 4, 5, 39, 80, 93] for finite element methods. However, to further ex-

plain the ideas and to make comparisons as simple as possible, we shall restrict

ourselves to adaptive schemes based on wavelets. For simplicity, we shall mainly

discuss the approach in [21]; for more sophisticated versions the reader is referred

to [13, 14, 15, 22]. The first step clearly must be the development of an a posteriori

error estimator. Using the fact that A is boundedly invertible and the usual norm

equivalences, compare with (112), we obtain

‖u− uΛ‖Hs � ‖A(u− uΛ)‖H−s(37)

� ‖f −A(uΛ)‖H−s

� ‖rΛ‖H−s

�
( ∑

(j,λ)∈J\Λ

2−2sj|〈rΛ, ψj,λ〉|2
)1/2

=

( ∑
(j,λ)∈J\Λ

δ2
j,λ

)1/2

,

where the residual weights δj,λ can be computed as

δj,λ = 2−sj

∣∣∣∣fj,λ −
∑

(j′,λ′)∈Λ

〈Aψj′,λ′ , ψj,λ〉uj′,λ′

∣∣∣∣ with fj,λ = 〈f, ψj,λ〉.

From (37), we observe that the sum of the residual weights gives rise to an efficient

and reliable a posteriori error estimator. Each residual weight δj,λ can be interpreted

as a local error indicator, so that the following natural refinement strategy suggests
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itself: Add wavelets in regions where the residual weights are large; that is, try

to catch the bulk of the residual expansion in (37). Indeed, it can be shown that

this strategy produces a convergent adaptive scheme, in principle. However, we are

faced with a serious problem: the index set J will not have finite cardinality, so that

neither the error estimator nor the adaptive refinement strategy can be implemented.

Nevertheless, there exist implementable variants, see again [13, 21] for details. We

start with the set

Jj,λ,ε : {(j′, λ′)| |〈Aψj′,λ′ , ψj,λ〉| ε-significant}

and define

aj,λ(Λ, ε) := 2−sj|
∑

(j′,λ′)∈Λ∩Jj,λ,ε

〈Aψj′,λ′ , ψj,λ〉uj′,λ′|.

(The expresssion ‘ε-significant’ can be made precise by using the locality and the

cancellation properties of a wavelet basis). By employing the aj,λ(Λ, ε) we obtain

another error erstimator:

‖u− uΛ‖Hs ≤ c ·
(( ∑

(j,λ)∈J\Λ

a2
j,λ

)1/2

+ ε‖f‖H−s +inf
v∈ṼΛ

‖F − v‖H−s

)
.

Here ṼΛ denotes the approximation space spanned by the dual wavelets corre-

sponding to Λ, see Section 5.3 for details. Now, playing the same game for the

aj,λ(Λ, ε) instead of the δj,λ, we end up with a convergent and implementable adap-

tive strategy. To this end, the starting index set Λ has to be determined such that

infv∈ṼΛ
‖f − v‖H−s ≤ c · eps and ε(f, eps, θ) has to be computed. Then, there exists

a constant κ ∈ (0, 1) such that whenever Λ̃ ⊂ J, Λ ⊂ Λ̃ is chosen so that

(38)

 ∑
(j,λ)∈Λ̃\Λ

aj,λ(Λ, ε)
2

1/2

≥ (1− θ)

 ∑
(j,λ)∈J\Λ

aj,λ(Λ, ε)
2

1/2

either

(39) ‖u− uΛ̃‖ ≤ κ‖u− uΛ‖, κ ∈ (0, 1)

or

(40)

 ∑
(j,λ)∈J\Λ

aj,λ(Λ, ε)
2

1/2

≤ eps

which implies that

(41) ‖u− uΛ‖ ≤ eps · c.

For the proof and further details, the reader is again refered to [21].
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Remark 15. i) In order to avoid unnecessary technical and notational difficul-

ties, we have not presented the explicit form of the function ε(f, eps, θ). It

depends in a complicated, but nevertheless computable way on the final accu-

racy eps, the control parameter θ , the H−s–norm of the right–hand side f ,

and on the stability and ellipticity constants of the problem. For details, we

refer again to [21].

ii) The norm ‖·‖ in (39) and (41) clearly denotes the energy norm ‖v‖ := 〈Av, v〉,
which is equivalent to the Sobolev norm Hs, see again [50] for details.

iii) Eqs. (39), (40) and (41) obviously imply that the adaptive strategy in (38)

converges. Indeed, the error is reduced by a factor of κ at each step until the

sum of the significant coefficients in (40) is smaller than the final accuracy,

which by (41) means that the same property holds for the current Galerkin

approximation.

iv) Although the sum in the right-hand side of (38) formally still contains unfinitely

many coefficients, it can be checked that this sum in fact runs over a finite set,

so that the adaptive strategy is implementable.

Let us now compare this concept of adaptivity with the notion of adaptive infor-

mation explained above:

• From the discussion presented above, we have seen that adaptive wavelet

schemes are not performed by gaining more and more information from the

right-hand side f in an adaptive fashion. Instead they use the residual which

depends on the right-hand side, the operator, and the domain. Moreover, we

see that the starting index set Λ is determined by the wavelet expansion of

the right-hand side. That is, Λ is given by some kind of best n-term approxi-

mation of f , which is assumed to be available or to be easily computable. In

this sense, the adaptive wavelet schemes require nonlinear information about

the problem.

• In the wavelet setting, the benchmark for the performance is the approximation

order of the best n-term approximation of the solution, i.e., the numbers

(42) sup
‖f‖F≤1

σn(A−1f,B)H .

It has been shown quite recently in [13] that a judicious variant of the algo-

rithm outlined above gives rise to the same order of approximation as best

n-term approximation, while the number of arithmetic operations that are
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needed stays proportional to the number of unknowns. Here the authors im-

plicitly assume that certain subroutines for fast matrix-vector multiplications,

approximations of the right-hand sides and for thresholding are available, and

that all these routines have to realize a given approximation rate. Moreover,

it is assumed that the solution u is contained in some Besov space Bα
p (Lp(Ω)),

and hence F is a suitable subset of A(Bα
p (Lp(Ω))), i.e., the admissible class of

right hand sides depends on the operator A. Observe that, for given F and B,

the numbers enon
n,C(S, F,H) might be much smaller than the numbers in (42)

since it is, in general, not clear whether a wavelet basis is optimal.

• The performance of an adaptive scheme is not compared with an arbitrary

linear scheme. The reason for that is simple, and has already been explained

earlier. It is indeed true that linear approximation often produces the same

order as nonlinear (best n-term) approximations, see Theorem 2 and Theorem

4. However, for nonregular problems, it would be necessary to precompute the

optimal basis S(gi) in advance, which is mostly too expensive and should be

avoided in practice, see [24] for further details. One usually compares adaptive

schemes with uniform methods for then a precomputation is not necessary.

Therefore the use of an adaptive wavelet scheme is justified if it performs bet-

ter than any uniform scheme. It is known that the order of approximation of

uniform schemes is determined by the Sobolev regularity H t(Ω) of the object

we want to approximate whereas the approximation order of best n-term ap-

proximation depends on the regularity in the specific Besov scale Bt
τ (Lτ (Ω)),

where
1

τ
=
t− s
d

+
1

2
,

see [20, 29] for details. Therefore adaptive schemes are justified if the Besov

regularity of the exact solution is higher than its Sobolev regularity. For elliptic

boundary value problems, there exist now many results in this direction, see,

e.g., [16, 17, 18, 19, 23].

• In approximation theory, an approximation scheme that comes from a sequence

of linear spaces that are uniformly refined is also called linear approximation

scheme, which sometimes causes misunderstandings because these schemes are

only special cases of the linear schemes considered, e.g., in Theorem 4. To avoid

this confusion, we used the term uniform methods instead of linear methods.

Remark 16. In this paper we study the complexity of solving elliptic partial differen-

tial equations. We only deal with the deterministic setting. The randomized setting,

where also the use of random numbers is allowed, is studied by Heinrich [51]. The
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complexity of solving elliptic PDE in the quantum model of computation (where one

can use a certain nonclassical randomness) is studied in [52].

4 Proofs

4.1 Properties of Widths

Proof of Lemma 1. Step 1. Part (i) is proved in [87] for the case where F is normed.

The general case is similar.

Step 2. To prove part (ii), we assume that S({‖f‖F ≤ 1}) contains an (n + 1)-

dimensional ball B ⊂ H of radius r and that Nn : F → Rn is continuous. Since

S−1(B) is an (n+ 1)-dimensional bounded symmetric neighborhood of 0, it follows

from the Borsuk Antipodality Theorem, see [28, paragraph 4], that there exists an

f ∈ ∂S−1(B) with Nn(f) = Nn(−f) and hence

Sn(f) = ϕn(Nn(f)) = ϕn(Nn(−f)) = Sn(−f)

for any mapping ϕn : Rn → G. Observe that ‖f‖F = 1. Because of ‖S(f)−S(−f)‖ =

2r and Sn(f) = Sn(−f) we obtain that the maximal error of Sn on {±f} is at least r.

This proves

bn(S, F,H) ≤ econt
n (S, F,H) .

Since we did not use the continuity of ϕn also bn(S, F,H) ≤ dn(S, F,H) follows.

Proof of Lemma 3. Step 1. Proof of (i). A corresponding assertion with X and

Y normed linear spaces has been proved in [40]. This proof carries over without

changes.

Step 2. Proof of (25). Let B = {h1, h2, . . . } be a Riesz basis of G with Riesz constants

A,B > 0. Let this basis B and a corresponding mapping Sn be optimal with respect

to I, F,G (up to some ε > 0 if necessary). Then the image of B under the mapping

S is a Riesz basis of H with Riesz constants A′ = A/‖S−1‖ and B′ = B ‖S‖. From

‖Sf − (S ◦ Sn)f ‖H ≤ ‖S‖ ‖ f − Sn(f) ‖G

it follows that

enon
n,C ‖S−1‖ ‖S‖(S, F,H) ≤ ‖S‖ enon

n,C(I, F,G) .

Replacing C by C/(‖S−1‖ ‖S‖), the right-hand side in (25) follows.

Now, let B ⊂ H be a Riesz basis with Riesz constants A,B > 0. Let B and a
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corresponding Sn be optimal with respect to S, F,H (again up to some ε > 0 if

necessary). From

‖ If − (S−1 ◦ Sn)f ‖G ≤ ‖S−1‖ ‖Sf − Sn(f) ‖H

it follows that

enon
n,C ‖S−1‖ ‖S‖(I, F,G) ≤ ‖S−1‖ enon

n,C(S, F,H) .

The proof of (24) follows from (27).

Next we turn to the proof of Theorem 1. It is convenient for us to start with a

simplified situation. For this we assume that K ⊂ H is compact. We define

(43) enon
n,C(K,H) = inf

B∈BC

sup
u∈K

σ(u,B)

and

(44) econt
n (K,H) = inf

Nn,ϕn

sup
u∈K
‖ϕn(Nn(u))− u‖,

where the infimum runs over all continuous mappings ϕn : Rn → H and Nn : K →
Rn. We prove the following result.

Proposition 1. Let K ⊂ H be compact. Then

(45) econt
4n+1(K,H) ≤ 2C enon

n,C(K,H).

Proof. Let B ∈ BC be given. SinceK is compact, we only need finitely many elements

of B, in the sense that

(46) sup
u∈K
‖u− LN(u)‖ ≤ ε

for

(47) LN(u) =
N∑

j=1

ajhj.

Here LN is the orthogonal projection onto the space that is generated by h1, . . . , hN .

The functionals aj are linear and continuous. Moreover, we know that

(48) A

(
N∑

j=1

|αj|2
)1/2

≤ ‖
N∑

j=1

αjhj‖ ≤ B

(
N∑

j=1

|αj|2
)1/2
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with B/A ≤ C. We may assume that A = 1. For a suitable B ∈ BC we obtain

(49) sup
u∈K

∥∥∥∥ n∑
k=1

ck hik − LN(u)

∥∥∥∥ ≤ enon
n,C(K,H) + ε.

Let β > 0. We define a modification of LN by

(50) L∗N(u) =
N∑

j=1

a∗jhj

where a∗j = aj if |aj| ≥ 2β and a∗j = 0 if |aj| ≤ β. To make the a∗j continuous we

define

a∗j = 2 sgn(aj) · (|aj| − β)

for |aj| ∈ (β, 2β). We prove certain statements about L∗N and denote the best n-term

approximation of u by un.

Assume that for u ∈ K, there are m > n of the aj, see (47), such that |aj| ≥ β.

Then we obtain

‖un − LN(u)‖ ≥ (m− n)1/2β

and with (49) we obtain

(51) m− n ≤ 1

β2
(enon

n,C(K,H) + ε)2.

Now we consider the sum
∑

|aj |<β a
2
j for u ∈ K. We distinguish between those j that

are used for un (there are only n of those j) and the other indices and obtain∑
|aj |2<β

a2
j ≤ nβ2 + (enon

n,C(K,H) + ε)2.

Now we are ready to estimate ‖L∗N(u)−LN(u)‖ for u ∈ K. Observe that |a∗j−aj| ≤ β

for any j. We obtain

‖L∗N(u)− LN(u)‖ ≤ B(mβ2 + nβ2 + (enon
n,C(K,H) + ε)2)1/2.

Using the estimate (51) for m, we obtain

‖L∗N(u)− LN(u)‖ ≤ B(2nβ2 + 2(enon
n,C(K,H) + ε)2)1/2.

Now we define β by

nβ2 = (enon
n,C(K,H) + ε)2

and obtain the final error estimate (where we replace, for general A, the number B

by B/A)

‖L∗N(u)− LN(u)‖ ≤ 2B

A
(enon

n,C(K,H) + ε).
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In addition we obtain

m ≤ 2n

and therefore L∗N yields a continuous 2n-term approximation of u ∈ K with error

at most

sup
u∈K
‖L∗N(u)− u‖ ≤ 2B

A
(enon

n,C(K,H) + ε) + ε.

The mapping L∗N is continuous and the image is a complex of dimension 2n, see, e.g.,

[31]. Hence we have an upper bound for the so-called Aleksandrov widths, see [31]

and [79]. By the famous theorem of Nöbeling, any such mapping can be factorized

as L∗N = ϕ4n+1 ◦ N4n+1 where N4n+1 : K → R4n+1 and ϕ4n+1 : R4n+1 → H are

continuous. Hence the result is proved.

Proof of Theorem 1. The unit ball of F is a compact subset of G by assumption.

From Proposition 1, we derive that

econt
4n+1(I, F,G) ≤ 2C enon

n,C(I, F,G) .

Next we apply Lemma 3(ii), and obtain

econt
n (S, F,H) ≤ ‖S‖ econt

n (I, F,G),

as well as

enon
n,C(I, F,G) ≤ ‖S−1‖ enon

n,C/(‖S−1‖ ‖S‖)(S, F,H) .

Combining these inequalities, we are done.

4.2 Widths of Embeddings of Weighted Sequence Spaces

Having the wavelet characterization of Besov spaces in mind, cf. Subsections 5.3

and 5.4, we introduce the following scale of sequence spaces.

Definition 3. Let 0 < p, q ≤ ∞ and let s ∈ R. Let ∇ := (∇j)j be a sequence of

subsets of finite cardinality of the set {1, 2, . . . , 2d− 1}×Zd. We suppose that there

exist 0 < C1 ≤ C2 and J ∈ N such that the cardinality |∇j| of ∇j satisfies

(52) C1 ≤ 2−jd |∇j| ≤ C2 for all j ≥ J .

Then bsp,q(∇), where 0 < q <∞, denotes the collection of all sequences a = (aj,λ)j,λ

of complex numbers such that

(53) ‖ a ‖bs
p,q

:=

 ∞∑
j=0

2
j(s+ d(

1

2
− 1

p
))q( ∑

λ∈∇j

| aj,λ|p
)q/p


1/q

<∞ .
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For q =∞, we use the usual modification

(54) ‖ a ‖bs
p,∞ := sup

j=1,2,...
2
j(s+ d(

1

2
− 1

p
))
∑

λ∈∇j

|aj,λ|p
1/p

<∞.

If there is no danger of confusion we shall write bsp,q instead of bsp,q(∇).

Remark 17. In what follows, we shall let ej,λ denote the elements of the canonical

orthonormal basis of b02,2. Let σ ∈ R. It is obvious that the linear mapping Lσ defined

by

Lσ ej,λ := 2−σj ej,λ for all j, λ ,

extends to an isomorphism from bsp,q onto bs+σ
p,q (simultaneously for all s, p, q) with

‖Lσ ‖ = 1.

In the framework of these sequence spaces it is very easy to prove embedding theo-

rems, cf. [57].

Lemma 4. Let 0 < p0, p1, q0, q1 ≤ ∞, s ∈ R, and t ≥ 0.

(i) The embedding

bs+t
p0,q0

(∇) ↪→ bsp1,q1
(∇)

exists (as a set theoretic inclusion) if and only if it is continuous if and only if either

(55) t > d

(
1

p0

− 1

p1

)
+

or

t = d

(
1

p0

− 1

p1

)
+

and q0 ≤ q1 .

(ii) The embedding

bs+t
p0,q0

(∇) ↪→ bsp1,q1
(∇)

is compact if and only if (55) holds.

The main result of this subsection consists in the following:

Theorem 6. Let 0 < p, p0, p1 ≤ ∞, 0 < q, q0, q1 ≤ ∞, and s ∈ R.

(i) Suppose that

(56) t > d
(1

p
− 1

2

)
+

holds. Then, for any C ≥ 1, we have

enon
n,C(I, bs+t

p,q , b
s
2,2) � nt/d .
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(ii) Suppose that (56) holds. Then we have

elinn (I, bs+t
p,q , b

s
2,2) �

{
n−t/d if 2 ≤ p ≤ ∞,
n−t/d+1/p−1/2 if 0 < p < 2.

(iii) Suppose that (55) holds. Then we have

econt
n (I, bs+t

p0,q0
, bsp1,q1

) � n−t/d .

Remark 18. In part (i) there is an interesting limiting case. Suppose 0 < p < 2

and t = d(1/p− 1/2). Then the embedding bs+t
p,p ↪→ bs2,2 exists, cf. Lemma 4, and(

∞∑
n=1

[
nt/d σn(a,B)bs

2,2

]p 1

n

)1/p

<∞ if and only if a ∈ bs+t
p,p .

In view of Lemma 4(ii), this shows that limn→∞ enon
n,C(S, F,H) = 0 does not imply

compactness of S.

The proof of Theorem 6 requires some preparations. It will be given in Subsections

4.2.2–4.2.4.

4.2.1 The Bernstein Widths of the Identity Operator

We concentrate on the estimate from below. For later use we treat a more general

situation.

Lemma 5. Let 0 < p0, p1, q0, q1 ≤ ∞, s ∈ R and t > 0 such that (55) holds. Then

there exists a positive constant c such that

(57) bn(I, bs+t
p0,q0

, bsp1,q1
) ≥ c

{
n−t/d if 0 < p0 ≤ p1 ≤ ∞ ,

n−t/d+1/p0−1/p1 if 0 < p1 < p0 ≤ ∞ .

holds for all n.

Proof. The Bernstein numbers are monotonic in n. So it will be enough to prove

the assertion for sufficiently large n. Consequently, we may assume that there is a

natural number N ≥ J , as well as positive constants c1 and c2, such that

c1 2Nd ≤ n ≤ c2 2Nd .
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Step 1. Let 0 < p0 ≤ p1. Using Hölder’s inequality we find

‖
∑

λ∈∇N

bλ eN,λ|bs+t
p0,q0
‖ = 2N(s+t+d/2−d/p0)

( ∑
λ∈∇N

|bλ|p0

)1/p0

≤ 2N(s+t+d/2−d/p0) |∇N |1/p0−1/p1

( ∑
λ∈∇N

|bλ|p1

)1/p1

≤ C2 2Nt ‖
∑

λ∈∇N

bλ eN,λ |bsp1,q1
‖

≤ c3 n
t/d ‖

∑
λ∈MN

bλ eN,λ |bsp1,q1
‖ ,

where C2 corresponds to (52). Consequently, the unit ball in bs+t
p0,q0

contains the n-

dimensional ball (spanned by the vectors eN,λ, λ ∈ ∇N) with radius c−1
3 n−t/d. This

proves

bn(I, bs+t
p0,q0

, bsp1,q1
) ≥ c n−t/d

for some positive constant c independent of n.

Step 2. If p0 > p1, then Hölder’s inequality (used in the second line of the estimate

in Step 1) will be replaced by the monotonicity of the `r-norms and we obtain

‖
∑

λ∈∇N

bλ eN,λ |bs+t
p0,q0
‖ = 2N(s+t+d/2−d/p0)

( ∑
λ∈∇N

|bλ|p0

)1/p0

≤ 2N(s+t+d/2−d/p0)
( ∑

λ∈∇N

|bλ|p1

)1/p1

≤ c5 2N(t+d/p1−d/p0)

∥∥∥∥ ∑
λ∈∇N

bλ eN,λ |bsp1,q1

∥∥∥∥ .
This time the unit ball in bs+t

p0,q0
contains the n-dimensional ball with radius

c−1
5 2−N(t+d/p1−d/p0).

This proves our claims.

Remark 19. In the one-dimensional periodic situation, estimates of the Bernstein

numbers from above are also known, due to Tsarkov and Maiorov, cf. [85, Thm. 12,

p. 194]. Let 1 ≤ p ≤ ∞ and s > 0. By W̊ s
p we denote the collection of all 2π-

periodic functions f with Weyl derivative of order s belonging to Lp(T) and satisfying∫ π

−π
f(x) dx = 0. Then

bn(I, W̊ t
p0
, Lp1) �


n−t if 1 ≤ p0 ≤ p1 ≤ ∞ or

1 ≤ p1 ≤ p0 ≤ 2 and t > 0 ,

n−t+1/p0−1/p1 if 2 ≤ p1 < p0 ≤ ∞ and t > 1/p0 ,

n−t+1/p0−1/2 if 1 ≤ p1 ≤ 2 ≤ p0 ≤ ∞ and t > 1/p0 .

This should be compared with Lemma 5 for s = 0 and d = 1.
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4.2.2 Best m-Term Approximation in the Framework of Sequence Spaces

We prepare the proof of part (i) of Theorem 6. Also, here we treat a more general

situation. Let B denote the canonical basis (ej,λ)j,λ in b02,2(∇). Then our aim in

this subsection consists in a characterization of the behaviour of the best m-term

approximation of a given element a ∈ bs+t
p0,q0

with respect to B.

The main result of this subsection reads as follows:

Theorem 7. Let 0 < p0, p1, q0, q1 ≤ ∞, s ∈ R and t > 0 such that (55) holds. Then

we have

(58) sup
{
σn(a,B)bs

p1,q1
: ‖ a‖bs+t

p0,q0
≤ 1
}
� n−t/d .

We start with some preparations. Let U denote the unit ball in bs+t
p0,∞. Then

a =
∞∑

j=0

∑
λ∈∇j

aj,λ ej,λ and sup
j=0,1,...

2j(s+t+d(1/2−1/p0))
( ∑

λ∈∇j

|aj,λ|p0

)1/p0

≤ 1 .

The following lemma will be of some use:

Lemma 6. Let 0 < p0 ≤ p1 and suppose that

(59) t > d
( 1

p0

− 1

p1

)
.

For all a ∈ U and all n ≥ 1 there exists a natural number K := K(a, n) such that

∥∥∥a− K∑
j=0

∑
λ∈∇j

aj,λ ej,λ

∣∣∣bsp1,q1

∥∥∥ ≤ n−t/d

holds.

Proof. We define

Tj :=
∑
λ∈∇j

aj,λ ej,λ , j = 0, 1 . . . .

Then one has

a−
K∑

j=0

∑
λ∈∇j

aj,λ ej,λ =
∑
j>K

Tj.

Since of 0 < p0 ≤ p1 ≤ ∞, the monotonicity of the `q-norms and a ∈ U lead to

‖Tj |bsp1,q1
‖ ≤ 2j(s+d/2−d/p1)

( ∑
λ∈∇j

|aj,λ|p0

)1/p0

≤ 2−j(t+d(1/p0−1/p1)).
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Let u = min(1, p1, q1). Consequently, using (59) and chosing K large enough, we

find ∥∥∥∑
j≥K

Tj

∣∣∣bsp1,q1

∥∥∥u

≤
∑
j≥K

‖Tj |bsp1,q1
‖u ≤

∑
j≥K

2−ju
[
t+d(1/p0−1/p1)

]
≤ C1 2−Ku(t+d(1/p0−1/p1)) ≤ n−tu/d.

This proves the claim.

The basic step in deriving an upper estimate of σn(a,B) is the following proposition.

Again U denotes the unit ball in bs+t
p0,∞.

Proposition 2. Let 0 < p0 ≤ p1 ≤ ∞. Let a ∈ U , n ∈ N, and let K = K(a, n) be

as in Lemma 6. Then there exists an approximation

(60) Sna :=
K∑

j=0

∑
λ∈∇j

a∗j,λ ej,λ

of a, which satisfies the following:

i) The coefficients a∗j,λ depend continuously on a.

ii) The number of nonvanishing entries is bounded by c · n.

iii) ‖ a− Sna |bsp1,q1
‖ ≤ c n−t/d , n = 1, 2, . . . .

Here c can be chosen independent of a and n.

Proof. Observe that it will be enough to prove the claim for natural numbers n =

2Nd, where N ∈ N. We define

δ :=
t− d

(
1/p0 − 1/p1

)
2
(
1/p0 − 1/p1

) ,

εj :=

 0 if 1 ≤ j ≤ N

n−1/p02−jd(1/2−1/p0)2−jt2(j−N)δ/p0 if j > N ,
(61)

Λ∗j :=
{
λ ∈ ∇j : |aj,λ| 2sj ≥ εj

}
, j = 0, 1, . . . .(62)
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Then, if j > N ,

|Λ∗j | =
∑
λ∈Λ∗j

1 ≤
∑
λ∈Λ∗j

2jsp0
|aj,λ|p0

εp0

j

(63)

≤
∑
λ∈∇j

n 2jd(1/2−1/p0)p02jtp02−(j−N)δ2jsp0|aj,λ|p0

= n 2−(j−N)δ
∑
λ∈∇j

2j(s+t+d(1/2−1/p0))p0 |aj,λ|p0

≤ n 2−(j−N)δ ‖ a |bs+t
p0,∞‖p0

≤ n 2−(j−N)δ .

Now a typical method to approximate a would be to choose a∗j,λ = aj,λ , j ∈ Λ∗j and

zero otherwise. However, this selection does not depend continuously on a. Therefore

we use the following variant. Let gj denote the following piecewise linear and odd

function,

(64) gj(x) :=


0 if 0 ≤ x ≤ 2−jsεj ,

x if x ≥ 2 · 2−jsεj ,

linear if x ∈ (2−jsεj, 2 · 2−jsεj) .

Then we set

(65) a∗j,λ := gj(aj,λ)

and consider the associated approximation (60). Let us prove that Sn will do the

job.

Step 1. We shall prove (i). Observe

∣∣∣ K⋃
j=0

Λ∗j

∣∣∣ ≤ c1

N∑
j=0

2jd +
K∑

j=N+1

n 2−(j−N)δ ≤ c2 n ,

cf. (63). The constant c2 is independent of a,K, and n. This proves (i) and (ii).

Step 2. Proof of (iii). We have

a− Sna = a−
K∑

j=0

∑
λ∈∇j

aj,λ ej,λ +
K∑

j=0

T ∗j =: Σ1 + Σ2,

where

T ∗j =
∑
λ∈∇j

(
aj,λ − a∗j,λ

)
ej,λ.
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From Lemma 6, we can conclude that ‖Σ1 |bsp1,q1
‖ ≤ n−t/d for K large enough.

Therefore it remains to estimate ‖T ∗j |bsp1,q1
‖. Since |gj(x) − x| ≤ |x| and a∗j,λ =

aj,λ for |aj,λ| ≥ 2εj2
−js, we obtain

| aj,λ − a∗j,λ |p1 ≤ |aj,λ|p1

≤ |aj,λ|p0|aj,λ|p1−p0

≤ |aj,λ|p0(2εj)
p1−p02−js(p1−p0) .

This will be used to estimate the norm of T ∗j as follows:

‖T ∗j |bsp1,q1
‖ = 2j(s+d(1/2−1/p1))

( ∑
k∈∇j

|aj,λ − a∗j,λ|p1

)1/p1

≤ c1 2jd(1/2−1/p1) 2jsp0/p1ε
1−p0/p1

j

( ∑
k∈∇j

|aj,λ|p0

)1/p1

≤ c1 ε
1−p0/p1

j 2jd/22−jtp0/p12−jdp0/(2p1)

( ∑
λ∈∇j

2j(s+t+d(1/2−1/p0))p0|aj,λ|p0

)1/p1

≤ c2 ε
1−p0/p1

j 2−j(t+d/2−dp1/(2p0))p0/p1 ‖ a |bs+t
p0,∞‖p0/p1

≤ c2 ε
1−p0/p1

j 2−j(t+d/2−dp1/(2p0))p0/p1 ,

where again c2 does not depend on a and n. For j > N we continue by employing

the concrete value of εj and obtain

‖T ∗j |bsp1,q1
‖ ≤ c2

(
n−1/p02−jd(1/2−1/p0)2−jt2(j−N)δ/p0

)1−p0/p1

2−j(t+d/2−dp1/(2p0))p0/p1

= c2 n
1/p1−1/p0 2−Nδ(1/p0−1/p1)2−j(t−d(1/p0−1/p1)−δ/p0+δ/p1) .

By construction T ∗j = 0 if j ≤ N , by definition, we have

t− d
( 1

p0

− 1

p1

)
> δ

( 1

p0

− 1

p1

)
.

Hence, with u = min(1, p1, q1), we have

‖Σ2 |bsp1,q1
‖u ≤ cu2

(
n1/p1−1/p0 2−Nδ(1/p0−1/p1)

)u
K∑

j=N+1

2−ju(t−d(1/p0−1/p1)−δ/p0+δ/p1)

≤ c3

(
n1/p1−1/p0 2−Nδ(1/p0−1/p1)

)u

2−Nu(t−d(1/p0−1/p1)−δ/p0+δ/p1)

= c3

(
n1/p1−1/p0

)u

2−Nu(t−d(1/p0−1/p1)) ,

with c3 independent of K,n and a. Recalling that 2Nd = n, we end up with

‖Σ2 |bsp1,q1
‖ ≤ c3 n

−t/d .

This finishes the proof of Proposition 2.
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For completeness and better reference we formulate the counterpart of Proposition 2

in the case p0 ≥ p1.

Proposition 3. Let 0 < p1 ≤ p0 ≤ ∞. Let a ∈ U (the unit ball in bs+t
p0,∞) and

2Nd ≤ n ≤ 2(N+1)d. Then the approximation

(66) Sna :=
N∑

j=0

∑
λ∈∇j

aj,λ ej,λ

of a satisfies the following:

i) The coefficients aj,λ depend continuously on a.

ii) The number of nonvanishing entries is bounded by c · n.

iii) ‖ a− Sna |bsp1,q1
‖ ≤ c n−t/d , n = 1, 2, . . . .

Here, c can be chosen independent of a and n.

Proof. The proof is elementary.

Proof of Theorem 7. The estimate from above follows from Propositions 2 and

3, as well as the continuous embedding bs+t
p0,q0

↪→ bs+t
p0,∞. For the estimate from below,

it will be enough to consider n = 2Nd, where N ≥ J and N ∈ N. Let K be the

smallest natural number such that C1 2Kd ≥ 2 (here C1 is the same constant as in

(52)). Then

n ≤ C1 2(N+K)d

2
≤ 1

2
|∇N+K | .

Let Γ ⊂ ∇N+K with |Γ| = n. We define

a = |∇N+K |−1/p0 2−(N+K)(s+t+d(1/2−1/p0))
∑

λ∈∇N+K

eN+K,λ .

Consequently ‖ a ‖bs+t
p0,q0

= 1 for any q0. Furthermore, we find

‖a− Sna‖bs
p1,q1

≥
∥∥∥ ∑

λ∈∇N+K\Γ

|∇N+K |−1/p0 2−(N+K)(s+t+d(1/2−1/p0)) eN+K,λ

∥∥∥
bs
p1,q1

= |∇N+K |−1/p0 2−(N+K)(t+d(1/p1−1/p0))|∇N+K \ Γ|1/p1

≥ C
1/p1

1

21/p1 C
1/p0

2

2−(N+K)t

=
C

1/p1

1

21/p1 C
1/p0

2

2−Kt n−t/d ,
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(also C2 has the same meaning as in (52)). It is clear that an optimal Γ with |Γ| = n

has to be a subset of ∇N+K . This completes the proof of the estimate from below.

Proof of Theorem 6(i). The estimate from above is covered by Theorem 7; the

estimate from below follows from Theorem 1 and Theorem 6(iii).

Remark 20. Stepanets [78] has investigated the quantities

σn(a,B)bs
p1,q1

for the specific case

s = d

(
1

p1

− 1

2

)
, with p1 = q1.

In this special case, the associated nonlinear withs related to quite general smoothness

spaces are studied. He proved explicit formulas from which the asymptotic behavior

could be derived.

4.2.3 The Manifold Widths of the Identity

Proof of Theorem 6(iii). Without loss of generality we may choose s = 0, cf.

Lemma 3(ii) and Remark 17.

Step 1. The estimate from above. In the case p1 = q1 = 2 we may use Propositions

1, 2 and 3 to get the desired inequality. However, for the general case we have to

modify the argument. We follow the arguments used in [31]. Let U denote the unit

ball in btp0,q0
. As explained there Propositions 2 and 3 guarantee that

an(U, b0p1,q1
) ≤ c n−t/d ,

where an denotes the Alexandroff-co-width, cf. [31] for details. But

econt
2n+1(U, b

0
p1,q1

) ≤ an(U, b0p1,q1
) ,

cf. [31] and [40]. Let us mention that in the literature quoted the target space was

always a normed linear space. But the arguments carry over to quasi-normed linear

spaces.

Step 2. The estimate from below. Lemmas 1 and 5 yield the lower estimate in case

0 < p0 ≤ p1 ≤ ∞.
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Now, let p1 < p0 ≤ ∞. Let ε > 0. We consider the diagram

b0p1,q1

I3−→ b−d(1/p1−1/p0)−ε
p0,∞

I2 ↖ ↗ I1

btp0,q0
,

where I1, I2 and I3 are identity operators. Then (23) yields

econt
2n (I1, b

t
p0,q0

, b−d(1/p1−1/p0)−ε
p0,∞ ) ≤ econt

n (I2, b
t
p0,q0

, b0p1,q1
) econt

n (I3, b
0
p1,q1

, b−d(1/p1−1/p0)−ε
p0,∞ )

which implies that

c1 n
−t/d−1/p1+1/p0−ε/d ≤ c2 e

cont
n (I2, b

t
p0,q0

, b0p1,q1
) n−1/p1+1/p0−ε/d

for some positive c1 and c2 (independent of n), see Lemmata 5, 1, and Step 1.

Remark 21. It is clear from the proof given above that the knowledge of the Bern-

stein widths is not enough to establish the estimate from below of econt
n . Here the

multiplicativity of the numbers econt
n , cf. (23), is crucial. This seems to be over-

looked in [31].

4.2.4 The Approximation Numbers of the Identity

Proof of Theorem 6(ii). Step 1. Let 2 ≤ p ≤ ∞. From Proposition 3 we obtain

the estimate from above with Sn given by (66). The estimate from below is covered

by (58).

Step 2. Let 0 < p < 2. Without loss of generality we assume s = 0. Let Sn be defined

by (66). The estimate from above is easily derived by using the monotonicity of the

`r-norms and t+ d(1/2− 1/p) > 0:

‖ a− Sna |b02,2‖2 ≤
∞∑

j=N+1

( ∑
λ∈∇j

|aj,λ|p
)2/p

≤
( ∞∑

j=N+1

2−2j(t+d(1/2−1/p))
)(

sup
j≥N+1

2j(t+d(1/2−1/p))
( ∑

λ∈∇j

|aj,λ|p
)1/p

)2

≤ c 2−2N(t+d(1/2−1/p))‖ a |btp,∞‖2

≤ c
(
n−t/d−1/2+1/p‖ a |btp,q‖

)2

,

where c does not depend on n and a. For the estimate from below, we use the obvious

fact that the optimal approximation of an element in a Hilbert space is given by the
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partial sum with respect to an orthonormal basis. Hence, if S̃n is a linear operator

of rank at most n then

‖ a− S̃na|b0,0‖ ≥ ‖ a− Sna|b0,0‖ ,

where Sn is defined by (66). We put

a :=
N+1∑
j=0

ej,λj
,

where λj ∈ ∇j can be chosen arbitrarily. Then

‖ a |btp,q‖ =
(N+1∑

j=0

2j(t+d(1/2−1/p))q
)1/q

≥ 2N(t+d(1/2−1/p))

for some positive c independent of n and

‖ a− Sna|b02,2‖ = 1 .

This implies

‖ I − Sn |btp,q‖ ≥
1

2N(t+d(1/2−1/p))
,

which finishes the proof of the lower bound.

Remark 22. Notice that in any case, an order-optimal approximation is given by

an appropriate partial sum, see (66).

4.2.5 The Gelfand Widths of the Identity

What we will do here relies on a result of Gluskin [45, 46] about the Gelfand widths

of the embedding `mp → `m2 which we now recall. Let 1/p+ 1/p′ = 1. For all natural

numbers m and n, where n ≤ m, it holds that

(67)

dn(I, `mp , `
m
2 ) �


(m− n+ 1)

1
2
− 1

p if 2 ≤ p ≤ ∞ ,

1 if 1 ≤ p < 2 and 1 ≤ n ≤ m2/p′ ,

m1/p′ n−1/2 if 1 ≤ p < 2 and m2/p′ ≤ n ≤ m.

A simple monotonicity argument leads to the following supplement to p = 1. There

exists a constant c, independent of m and n, such that

(68) dn(I, `mp , `
m
2 ) ≤ c n−1/2
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if 0 < p < 1 and 1 ≤ n ≤ m.

The Gelfand widths are examples of so-called s-numbers, cf. [72, 73] and [10]. Fol-

lowing Pietsch [72, 2.2.4, p. 80] we associate with the sequence of Gelfand widths

the following operator ideals. Let F and E be quasi-Banach spaces and denote by

L(F,E) the class of all linear continuous operators T : F → E. Then, for 0 < p <∞,

we put

L(c)
r,∞ :=

{
T ∈ L(F,E) : sup

n∈N
n1/r dn(T ) <∞

}
.

Equipped with the quasi-norm

λr(T ) := sup
n∈N

n1/r dn(T ),

the set L(c)
r,∞ becomes a quasi-Banach space. For such quasi-Banach spaces there

always exist a real number % ∈ (0, 1] and an equivalent quasi-norm, here denoted by

‖ · |L(c)
r,∞‖, such that

(69) ‖T1 + T2 |L(c)
r,∞‖% ≤ ‖T1 |L(c)

r,∞‖% + ‖T2 |L(c)
r,∞‖%

holds for all T1, T2 ∈ L(c)
r,∞.

To shorten notation we shall use the abbreviation Im
p,q for the identity I : `mp → `mq .

It is not complicated to check that (67), (68) imply the following estimates for

‖ Im
p,2 |L

(c)
r,∞‖, cf. [58].

Lemma 7. Let 0 < r <∞.

(i) Let 2 ≤ p ≤ ∞. Then

(70) ‖ Im
p,2 |L(c)

r,∞‖ � m1/r−1/p+1/2

holds.

(ii) Let 1 < p < 2. Then

(71) ‖ Im
p,2 |L(c)

r,∞‖ �

{
m1/r−1/p+1/2 if 0 < r ≤ 2 ,

m2/(rp′) if 2 < r <∞ ,

holds.

(iii) Let 0 < p ≤ 1. Then there exists a constant c such that

(72) ‖ Im
p,2 |L(c)

r,∞‖ ≤ c

{
m1/r−1/2 if 0 < r ≤ 2 ,

1 if 2 < r <∞ ,

holds for all m ∈ N.
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To prove the estimates of the Gelfand numbers from above, it turns out to be useful

to split the identity I into two parts id1, id2 and to treat them independently. In

fact, we shall investigate ‖ idi |L(c)
ri,∞‖, i = 1, 2, where r1 and r2 are chosen in different

ways. For basic properties of the Gelfand numbers we refer to Remark 7 and [10,

2.3].

Theorem 8. Let 0 < q ≤ ∞.

(i) Let 1 ≤ p < 2 and suppose that t > d/2. Then

dn(I, bs+t
p,q , b

s
2,2) � n−t/d .

(ii) Let 2 < p ≤ ∞ and suppose that t > 0. Then

dn(I, bs+t
p,q , b

s
2,2) � n−t/d .

(iii) Let 0 < p < 1 and suppose that

(73) t > d
(1

p
− 1

2

)
.

Then there exist two constants c1 and c2 such that

c1 n
−t/d ≤ dn(I, bs+t

p,q , b
s
2,2) ≤ c2n

−t/d−1+1/p .

Proof. Without loss of generality we may assume s = 0. To see this consider the

diagram

bs+t
p,q

I1−−−→ bs2,2

L−s

y xLs

btp,q
I2−−−→ b02,2 ,

where Ls denotes the isomorphism introduced in Remark 17. The multiplicativity

of the Gelfand numbers implies that

dn(I1, b
s+t
p,q , b

s
2,2) ≤ ‖L−s ‖ ‖Ls ‖ dn(I2, b

t
p,q, b

0
2,2) ,

compare with Remark 7. Changing L−s into Ls and vice versa in the diagram above

we end up with

dn(I1, b
s+t
p,q , b

s
2,2) = dn(I2, b

t
p,q, b

0
2,2).

Step 1. Estimate from above. We concentrate on natural numbers n = 2Nd for

N ∈ N (the remaining can be treated by the monotonicity of the dn). Let idj denote

the projection given by(
idj a

)
m,λ

:=

{
aj,λ if m = j ,

0 otherwise .
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We split the identity I into a sum I = id1 + id2 depending on N , where

id1 :=
N∑

j=0

idj and id2 :=
∞∑

j=N+1

idj .

Later on we shall apply the following observation. Consider the diagram

btp,q(∇)
idj−−−→ b02,2(∇)

P

y xQ

`
|∇j |
p

I
|∇j |
p,2−−−→ `

|∇j |
2 .

where P and Q are defined as follows. Let a = (a`,λ)`,λ. Then

(P (a))λ := aj,λ .

For b = (bλ)λ we define

(Q(b))`,λ :=

{
aj,λ if j = ` ,

0 otherwise .

Obviously,

‖P ‖ = 2−j(t+d(1/2−1/p)) and ‖Q ‖ = 1 .

Then property (27) for the Gelfand numbers yields

dn(idj, b
s+t
p,q , b

s
2,2) ≤ ‖P ‖ ‖Q ‖ dn(I

|∇j |
p,2 )

≤ 2−j(t+d(1/2−1/p)) dn(I
|∇j |
p,2 ) .(74)

Substep 1.1. The estimate of dn(id1, btp,q, b
0
2,2), n = 2Nd. First we suppose 2 ≤ p ≤ ∞.

Thanks to (69), (70), and (74) we find

‖ id1 |L(c)
r,∞‖% ≤

N∑
j=0

‖ idj |L(c)
r,∞‖%

≤
N∑

j=0

2−j(t+d(1/2−1/p))% ‖ I |∇j |
p,2 |L(c)

r,∞‖%

≤ c1

N∑
j=0

2−j(t+d(1/2−1/p))% 2jd(1/r−1/p+1/2)%

≤ c2 2N(d/r−t)%(75)

if d > t r. Choosing r small enough, we derive from the definition of L(c)
r,∞ that

(76) dn(id1) = d2Nd

(id1) ≤ c3 2−Nt = c3 n
−t/d .
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Now we consider the case 1 ≤ p < 2. As above, but using (71) instead of (70), we

find

‖ id1 |L(c)
r,∞‖ ≤ c2 2N(d/r−t)

if 1/r > t/d and 1/r ≥ 2. Choosing r small enough, we obtain

(77) d2Nd

(id1) ≤ c4 2−Nt .

Finally, we investigate the case 0 < p < 1. As above, we obtain

(78) d2Nd

(id1) ≤ c5 2−N(t+d−d/p) = c5 n
−t/d−1+1/p .

Substep 1.2. The estimate of dn(id2, btp,q, b
0
2,2), where n = 2Nd.

Again we split our considerations into the three cases p ≥ 2 and 1 ≤ p < 2 and

0 < p < 1. First, let 2 ≤ p ≤ ∞. Using (69), (70), and (74), we find that

‖ id2 |L(c)
r,∞‖% ≤

∞∑
j=N+1

‖ idj |L(c)
r,∞‖%

≤
∞∑

j=N+1

2−j(t+d(1/2−1/p))% ‖ I |∇j |
p,2 |L(c)

r,∞‖%

≤ c1

∞∑
j=N+1

2−j(t+d(1/2−1/p))% 2jd(1/r−1/p+1/2)%

≤ c2 2N(d/r−t)%(79)

if t r > d. Choosing r large enough (t > 0 by assumption), we derive

(80) d2Nd

(id2) ≤ c3 2−Nt .

Now we consider 1 ≤ p < 2. Similarly

‖ id2 |L(c)
r,∞‖ ≤ c3 2N(d/r−t) if

1

2
≤ 1

r
<
t

d
.

Since t > d/2, such a choice is always possible. Consequently,

(81) d2Nd

(id2) ≤ c4 2−Nt .

Finally, let 0 < p < 1. Then

(82) d2Nd

(id1) ≤ c5 2−N(t+d−d/p) if
t

d
+ 1− 1

p
>

1

r
≥ 1

2
.

Such a choice is always possible if (73) holds.

Substep 1.3. The additivity of the Gelfand widths yields

d2n(id) ≤ dn(id1) + dn(id2) .
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In view of this inequality, the estimate from above of the Gelfand widths follows

from (76)–(82).

Step 2. Estimate from below. Since bn ≤ c dn, cf. Lemma 1(i), we may use Lemma

5 here to derive the lower bound in the case 0 < p ≤ 2. For p > 2, we shall use

a different argument. Again we restrict ourselves to a subsequence of the natural

numbers n, where
|∇N |

2
≤ n <

|∇N |
2

+ 1 , N ∈ N .

Consider the diagram

`
|∇N |
p

I1−−−→ `
|∇N |
2

P

y xQ

btp,q(∇)
I2−−−→ b02,2(∇) ,

where I1 and I2 denote identities and this time P and Q are defined as follows. Let

b = (bλ)λ∈∇N
. Then

(P (b))j,λ :=

{
bλ if j = N ,

0 otherwise .

For a = (aj,λ)j,λ we define

(Q(a))λ := aN,λ , λ ∈ ∇N .

Obviously,

‖P ‖ = 2N(t+d(1/2−1/p)) and ‖Q ‖ = 1 .

Then property (27) for the Gelfand numbers yields that

dn(I1, `
|∇N |
p , `

|∇N |
2 ) ≤ ‖P ‖ ‖Q ‖ dn(I2, b

t
p,q(∇), b02,2(∇))

which, in view of Gluskin’s estimates (67), implies that

c 2Nd(1/2−1/p) ≤ 2N(t+d(1/2−1/p)) dn(I2, b
t
p,q, b

0
2,2)

for some positive c (independent of N). This completes the estimate from below.

Remark 23. The use of operator ideals in such a connection and the associated

splitting technique applied in Step 1 has some history, cf. [9, 58, 56]. Closest to us

is [56], where these methods have been used in connection with entropy numbers.

4.3 Widths of Embeddings of Besov Spaces

Here we do not formulate a general result, since the restrictions on the domains are

different for different widths.
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4.3.1 The Manifold Widths of the Identity

The main result of this subsection consists in the following non-discrete counterpart

of Theorem 6.

Theorem 9. Let Ω be a bounded Lipschitz domain. Let 0 < p0, p1 ≤ ∞, 0 < q0, q1 ≤
∞, and s ∈ R. Suppose that (55) holds. Then we have

(83) econt
n (I, Bs+t

q0
(Lp0(Ω)), Bs

q1
(Lp1(Ω))) � n−t/d .

Remark 24. Theorem 9 has several forerunners. We would like to mention De-

Vore, Howard, and Micchelli [30], DeVore, Kyriazis, Leviatan, and Tikhomirov [31],

and Dung and Thanh [40]. In these papers, the authors consider the quantities

econt
n (I, Bt

q0
(Lp0(Ω)), Lp1(Ω)). Note that from the continuous embeddings

B0
1(Lp(Ω)) ↪→ Lp(Ω) ↪→ B0

∞(Lp(Ω)) , 1 ≤ p ≤ ∞ ,

we obtain as a direct consequence of Theorem 9

(84) econt
n (I, Bt

q0
(Lp0(Ω)), Lp1(Ω)) � n−t/d ,

as long as 1 ≤ p1 ≤ ∞ and t > (1/p0 − 1/p1)+. So, Theorem 9 covers the results

obtained before. However, let us mention that we used the ideas from [31] for our

estimate from above and the ideas from [40] to derive the estimate from below (here

on the level of sequence spaces).

Proof of Theorem 9. Let E denote a universal bounded linear extension operator

corresponding to Ω, see Proposition 6 in Subsection 5.5. Let diam Ω be the diameter

of Ω and let x0 be a point in Rd such that

Ω ⊂ {y : |x0 − y| ≤ diam Ω} .

Without loss of generality, we assume that

supp Ef ⊂ {y : |x0 − y| ≤ 2 diam Ω} .

Let ∇ be defined as in (99) and (100) (with Ω replaced by the ball with radius

2 diam Ω and center x0). Let R denote the restriction operator with respect to Ω.

Let T denote the continuous linear operator that associates to f its wavelet series;

T−1 is the inverse operator. Here we assume that we can characterize the Besov

spaces Bs+t
p0,q0

(Rd), as well as Bs
p1,q1

(Rd), in the sense of Proposition 5 in Subsection

5.3. Then we consider the diagram
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Bs+t
q0

(Lp0(Ω))
E−→ Bs+t

q0
(Lp0(Rd))

T−→ bs+t
p0,q0

(∇)

(85) I1 ↓ ↓ I2

Bs
q1

(Lp1(Ω))
R←− Bs

q1
(Lp1Rd))

T−1

←− bsp1,q1
(∇) .

Observe that I1 = R ◦ T−1 ◦ I2 ◦ T ◦ E . From (85) and (27) for econt, we derive that

econt
n (I1, B

s+t
q0

(Lp0(Ω)), Bs
q1

(Lp1(Ω)) ≤ ‖E‖ ‖T‖ ‖T−1‖ econt
n (I2, b

s+t
p0,q0

(∇), bsp1,q1
(∇)) .

For the converse inequality, we choose ∇∗ = (∇∗j)j such that

suppψj,λ ⊂ Ω , λ ∈ ∇∗j , j = −1, 0, 1, . . . ,

and infj 2−jd |∇∗j | > 0. Then we consider the diagram

(86)

bs+t
p0,q0

(∇∗) I2−−−→ bsp1,q1
(∇∗)

T−1

y xT

Bs+t
q0

(Lp0(Ω))
I1−−−→ Bs

q1
(Lp1(Ω)) ,

and conclude that

econt
n (I2, b

s+t
p0,q0

(∇∗), bsp1,q1
(∇∗)) ≤ ‖T‖ ‖T−1‖ econt

n (I1, B
s+t
q0

(Lp0(Ω)), Bs
q1

(Lp1(Ω))) .

Now Theorem 6 yields the desired result.

4.3.2 The Widths of Best m-Term Approximation of the Identity

Let Ω be a bounded Lipschitz domain in Rd. We assume that for any fixed triple

(t, p, q) of parameters the spaces Bs+t
q (Lp(Ω)) and Bs

2(L2(Ω)) allow a discretization

by one common wavelet system B∗. More exactly, we assume that (107)–(112) are

satisfied simultaneously for both spaces, cf. Appendix 5.10. From this, it follows that

B∗ ∈ BC∗ for some 1 ≤ C∗ <∞.

Theorem 10. Let Ω be as above. Let 0 < p ≤ ∞, 0 < q ≤ ∞, s ∈ R and

t > d
(1

p
− 1

2

)
+

holds. Then, for any C ≥ C∗ we have

enon
n,C(I, Bs+t

q (Lp(Ω)), Bs
2(L2(Ω))) � n−t/d .
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Remark 25. i) Periodic versions on the d-dimensional torus T d may be found in

Temlyakov [82, 83] with Bs
2(L2(Ω)) replaced by Lp1(T

d) and p1, p, q ≥ 1. Furthermore,

more general classes of functions are investigated there (anisotropic Besov spaces,

functions of dominating mixed smoothness). Finally, let us mention that estimates

from below for the quantities

inf
B∈O

sup
‖u‖

Bt
q1

(Lp1 (Td))
≤1

σn(u,B)L2(T d),

where O is the set of all orthonormal bases, have been given by Kashin (p1 = q1 =

∞, d = 1) and Temlyakov [82, 83] (general anisotropic case). Instead of the manifold

widths these authors use entropy numbers.

ii) We stress that, in this paper, we study the approximation in some Hilbertian

smoothness space Bs
2(L2(Ω)) while most known results from the literature concern

approximation in an Lp(Ω)-space.

Remark 26. We also recall the following limiting case. Let 0 < p < 2 and t =

d(1/p− 1/2). Then the embedding Bs+t
p (Lp(Ω)) ↪→ Bs

2(L2(Ω)) is continuous but not

compact, cf. Proposition 7. Here we have(
∞∑

n=1

[
nt/d σn(u,B∗)Bs

2(L2(Ω)

]p 1

n

)1/p

<∞ if and only if u ∈ Bs+t
p (Lp(Ω)) .

A proof can be found in [20, Prop. 1], but the argument there is mainly based on

DeVore and Popov [34], see also [32].

Proof of Theorem 10. Let B∗ be a wavelet basis as in Appendix 5.10. Let B
denote the canonical orthonormal basis of b02,2(∇). We equip the Besov space with

the equivalent quasi-norm (112). Observe,

σn(f,B∗)Bs
p1,q1

(Ω) ≤ c σn((〈f, ψ̃j,λ〉)j,λ,B)bs
p1,q1

(∇) ,

where c is one of the constants in (111). By means of Theorem 6 and Remark 2(iii),

this implies the estimate from above. The estimate from below follows by combining

Theorem 1 and Theorem 9.

The simple arguments used in the proof of Theorem 10 allow us to carry over

Remark 26 to the sequence space level, see Remark 18, and Theorem 7 to the level

of function spaces.

Theorem 11. Let Ω and B∗ be as above. Let 0 < p0, p1, q0, q1 ≤ ∞, s ∈ R and t > 0

such that (55) holds. Then we have

sup
{
σn(u,B∗)Bs

q1
(Lp1 (Ω)) : ‖u|Bs+t

q0
(Lp0(Ω))‖ ≤ 1

}
� n−t/d .
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Remark 27. i) For earlier results in this direction we refer to Kashin [54], Os-

wald [68], Donoho [38] and DeVore, Petrova and Temlyakov [33].

ii) Not all orthonormal systems are of the same quality, see Donoho [38]. Let us

mention the following result of DeVore and Temlyakov [36]. Let B# denote the

trigonometric system in Rd. By Bs
q(Lp(Td)) we mean the periodic Besov spaces

defined on the d-dimensional torus Td. Then we put

t(p0, p1) :=


d
(
1/p0 − 1/p1

)
+

if 0 < p0 ≤ p1 ≤ 2 or 1 ≤ p1 ≤ p0 ≤ ∞ ,

d max
(
1/p0, 1/2

)
otherwise .

If 1 ≤ p1 ≤ ∞, 0 < p0, q0 ≤ ∞, and t > t(p0, p1), then

sup
{
σn(u,B#)Lp1 (Td) : ‖u |Bt

q0
(Lp0(Td))‖ ≤ 1

}
�


n−t/d if p0 ≥ max(p1, 2) ,

n−t/d+1/p0−1/2 if p0 ≤ max(p1, 2) = 2 ,

n−t/d+1/p0−1/p1 if p0 ≤ max(p1, 2) = p1 .

4.3.3 The Approximation Numbers of the Identity

Theorem 12. Let Ω be a bounded Lipschitz domain. Let 0 < p ≤ ∞, 0 < q ≤ ∞,

and s ∈ R. Suppose that

t > d
(1

p
− 1

2

)
+

holds. Then we have

elinn (I, Bs+t
q (Lp(Ω)), Bs

2(L2(Ω))) �

{
n−t/d if 2 ≤ p ≤ ∞ ,

n−t/d+1/p−1/2 if 0 < p < 2 .

Proof. The statement is a consequence of Theorem 6(ii), Proposition 6, (101) and

(102).

Remark 28. (i) The proof is constructive. An order-optimal linear approxima-

tion is obtained by taking an appropriate partial sum of the wavelet series of

Ef , where E is the linear universal extension operator from Proposition 6, cf.

Remark 22 for the discrete case.

(ii) This result is well-known. It can be derived from [91] and [43, 3.3.2]. There

and in [7] information can also be found about what is known for the general

situation, i.e., in which Bs
2(L2(Ω)) is replaced by Bs

q1
(Lp1(Ω)). However, let

us mention that there are many references which had dealt with this problem

before; we refer to [81, Thm. 1.4.2] and [85, Thm. 9, p.193] and the comments

given there.
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4.3.4 The Gelfand Widths of the Identity

Theorem 13. Let Ω ⊂ Rd be a bounded Lipschitz domain and let 0 < q ≤ ∞.

(i) Let 1 ≤ p < 2 and suppose that t > d/2. Then

dn(I, Bs+t
q (Lp(Ω)), Bs

2(L2(Ω))) � n−t/d .

(ii) Let 2 < p ≤ ∞ and suppose that t > 0. Then

dn(I, Bs+t
q (Lp(Ω)), Bs

2(L2(Ω))) � n−t/d .

(iii) Let 0 < p < 1 and suppose that

t > d
(1

p
− 1

2

)
.

Then there exists two constants c1 and c2 such that

c1 n
−t/d ≤ dn(I, Bs+t

q (Lp(Ω)), Bs
2(L2(Ω))) ≤ c2n

−t/d−1+1/p .

Proof. Consider the diagram

Bs+t
q0

(Lp0(Ω))
I1−−−→ Bs

2(L2(Ω))

T

y xT−1

bs+t
p0,q0

(∇)
I2−−−→ bs2,2(∇) ,

where T and T−1 are defined as in the proof of Theorem 9. Since I1 = T−1 ◦ I2 ◦ T ,

it is enough to combine property (27) for the Gelfand numbers and Theorem 8 to

derive the estimates from above. For the estimates from below, one uses the diagram

bs+t
p0,q0

(∇∗) I1−−−→ bs2,2(∇∗)

T

y xT−1

Bs+t
q0

(Lp0(Ω))
I2−−−→ Bs

2(L2(Ω)) ,

where ∇∗ is defined as in proof of Theorem 9. This completes the proof.

Remark 29. Partial results concerning Gelfand numbers of embedding operators

may be found in the monographs Pinkus [73, Chapt. VII, Thm. 1.1], Tikhomirov [85,

Thm. 39, p. 206], and Triebel [88, 4.10.2]. Let T be a compact operator in L(F,E),

where F,E are arbitrary Banach spaces and let dn(T, F,E) denote the Kolmogorov

numbers. Then

dn(T ′) = dn(T ) , n ∈ N ,

holds, cf. [10, Prop. 2.5.6] or [71]. For Kolmogorov numbers the asymptotic be-

haviour is also known in certain situations, cf. [73, Chapt. VII, Thm. 1.1], [85,

Thm. 10, p. 193], [88, 4.10.2], and [81].
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4.4 Proofs of Theorems 2, 4, and 5

4.4.1 Proof of Theorem 2

For s > 0 we have H−s(Ω) = B−s
2 (L2(Ω)). Hence, Theorem 12 yields

elinn (I, B−s+t
q (Lp(Ω)), H−s(Ω)) �

{
n−t/d if 0 < p ≤ 2 ,

n−t/d+1/p−1/2 if 2 < p ≤ ∞ .

Since S : H−s(Ω) → Hs
0(Ω) is an isomorphism, we obtain the desired result from

property (27) for the approximation numbers.

4.4.2 Proof of Theorem 4

Since of H−s(Ω) = B−s
2 (L2(Ω)), Theorem 10 yields that

enon
n,C(I, B−s+t

q (Lp(Ω)), H−s(Ω)) � n−t/d

Since S : H−s(Ω) → Hs
0(Ω) is an isomorphism, Lemma 3(ii) implies the desired

result.

4.4.3 Proof of Theorem 5

All what we need from the wavelet basis is the following estimate for the best n-term

approximation in the H1-norm:

(87) ‖u− Sn(f) ‖H1(Ω) ≤ c ‖u |Bt+1
τ (Lτ (Ω))‖n−t/2, where

1

τ
=
t

2
+

1

2
,

see, e.g., [20] (however we could instead use Theorem 11). We therefore have to esti-

mate the Besov norm Bα
τ (Lτ (Ω)). Since 1 < p ≤ 2, the embedding

Bk−1
p (Lp(Ω)) ↪→ W k−1

p (Ω) holds, cf. e.g. [89, 2.3.2, 2.5.6]. Hence our right–hand

side f is contained in the Sobolev space W k−1
p (Ω). Therefore we may employ the

fact that u can be decomposed into a regular part uR and a singular part uS, i.e.,

u = uR + uS, where uR ∈ W k+1
p (Lp(Ω)) and uS only depends on the shape of the

domain and can be computed explicitly, cf. Grisvard [49, Thm. 2.4.3]. We introduce

polar coordinates (rl, θl) in the vicinity of each vertex Υl and introduce the functions

Sl,m(rl, θl) :=


ζl(rl)r

λl,m

l sin(mπθl/ωl) if λl.m := mπ/ωl 6= integer ,

ζl(rl)r
λl,m

l [log rl sin(mπθl/ωl) + θl cos(mπθl/ωl)] otherwise .

Here ζ1, . . . , ζN denote suitable C∞ truncation functions and m is a natural number.

Then for f ∈ W k−1
p (Ω), one has

(88) uS =
N∑

l=1

∑
0<λl,m<k+1−2/p

cl,m Sl.m ,
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provided that no λl,m is equal to k + 1− 2/p. This means that the finite number of

singularity functions that is needed depends on the scale of spaces we are interested

in, i.e., on the smoothness parameter k. According to (87), we have to estimate the

Besov regularity of both, uS and uR, in the specific scale

Bt+1
τ (Lτ (Ω)), where

1

τ
=
t

2
+

1

2
.

Since uR ∈ W k+1
p (Ω), the boundedness of Ω implies the embedding

W k+1
p (Ω) ↪→ Bk+1−δ

q (Lq(Ω)), with δ > 0 , 0 < q ≤ p , k + 1 > 2
(1

q
− 1

2

)
.

Hence

(89)

uR ∈ Bk+1−δ
τ (Lτ (Ω)), with

1

τ
=

(k − δ)
2

+
1

2
for arbitrarily small δ > 0 .

Moreover, it has been shown in [16] (see also Remark 31) that the functions Sl,m

defined above satisfy

(90) Sl,m(rl, θl) ∈ B1/2+2/q
q (Lq(Ω)), for all 0 < q <∞ .

By combining (89) and (90) we see that

u ∈ Bk+1−δ
τ (Lτ (Ω)), where

1

τ
=

(k − δ)
2

+
1

2
for arbitrarily small δ > 0.

To derive an estimate uniformly with respect to the unit ball in Bk−1
p (Lp(Ω)) we

argue as follows. We put

N := span
{
Sl,m(rl, θl) : 0 < λm,l < k + 1− 2/p , l = 1, . . . , N

}
.

Let γl be the trace operator with respect to the segment Γl. Grisvard has shown

that ∆ maps

H :=
{
u ∈ W k+1

p (Ω) : γlu = 0 , l = 1, . . . , N
}

+ N

onto W k−1
p (Ω), cf. [48, Thm. 5.1.3.5]. This mapping is also injective, see

[48, Lemma 4.4.3.1, Rem. 5.1.3.6]. We equip the space H with the norm

‖u ‖H := ‖uR + uS ‖H = ‖uR ‖W k+1
p (Ω) +

N∑
l=1

∑
0<λl,m<k+1−2/p

|cl,m| ,

see (88). Then H becomes a Banach space. Furthermore, ∆ : H → W k−1
p (Ω) is

continuous. Banach’s continuous inverse theorem implies that the solution operator

is continuous, considered as a mapping from W k−1
p (Ω) onto H. Finally, observe that

‖uR + uS ‖Bk+1−δ
τ (Lτ (Ω)) ≤ C

(
‖uR ‖W k+1

p (Ω) +
N∑

l=1

∑
0<λl,m<k+1−2/p

|cl,m|
)
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with some constant C independent of u.

5 Appendix – Besov spaces

Here we collect some properties of Besov spaces that have been used in the text

before. Detailed references will be given. For general information on Besov spaces,

we refer to the monographs [62, 63, 69, 74, 89, 90].

5.1 Besov Spaces on Rd and Differences

Nowadays Besov spaces are widely used in several branches of mathematics. Prob-

ably the most common way to introduce these classes makes use of differences. For

M ∈ N, h ∈ Rd, and f : Rd → C we define

∆M
h f(x) :=

M∑
j=0

(
M

j

)
(−1)M−j f(x+ jh).

Let 0 < p ≤ ∞. The corresponding modulus of smoothness is then given by

ωM(t, f)p := sup
|h|<t

‖∆M
h f ‖Lp(Rd) , t > 0 .

One approach to introduce Besov spaces is the following.

Definition 4. Let s > 0 and 0 < p, q ≤ ∞. Let M be a natural number satisfying

M > s. Then Λs
q(Lp(Rd)) is the collection of all functions f ∈ Lp(Rd) such that

| f |Λs
q(Lp(Rd)) :=

(∫ ∞

0

[
t−s ωM(t, f)p

]q dt
t

)1/q

<∞

if q <∞ and

| f |Λs
∞(Lp(Rd)) := sup

t>0
t−s ωM(t, f)p <∞

if q =∞. These classes are equipped with a quasi-norm by taking

‖ f ‖Λs
q(Lp(Rd)) := ‖ f ‖Lp(Rd) + | f |Λs

q(Lp(Rd)) .

Remark 30. It turns out that these classes do not depend on M , cf. [35].

Remark 31. Let % ∈ C∞
0 (Rd) be a function such that %(0) 6= 0. By means of the

above definition it is not complicated to show that a function

fα(x) := |x|α %(x) , x ∈ Rd , α > 0 ,
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belongs to Λ
α+d/p
∞ (Lp(Rd)) and that this is best the possible (if α is not an even

natural number), cf. [74, 2.3.1] for details. A minor modification shows that

fα,β(x) := |x|α (log |x|)β %(x) , x ∈ Rd , α, β > 0 ,

belongs to Λ
α+d/p−ε
∞ (Lp(Rd)) for all ε, 0 < ε < α+ d/p.

5.2 Besov Spaces on Rd and Littlewood-Paley Characteriza-

tions

Since we are using also spaces with negative smoothness s < 0 and/or p, q < 1 we

shall give a further definition, which relies on Fourier analysis. We use it here for

introductory purposes. This approach makes use of smooth dyadic decompositions

of unity. Let ϕ ∈ C∞
0 (Rd) be a function such that ϕ(x) = 1 if |x| ≤ 1 and ϕ(x) = 0

if |x| ≥ 2. Then we put

(91) ϕ0(x) := ϕ(x), ϕj(x) := ϕ(2−jx)− ϕ(2−j+1x) , j ∈ N .

It follows
∞∑

j=0

ϕj(x) = 1 , x ∈ Rd ,

and

supp ϕj ⊂
{
x ∈ Rd : 2j−2 ≤ |x| ≤ 2j+1

}
, j = 1, 2, . . . .

Let F and F−1 denote the Fourier transform and its inverse, both defined on S ′(Rd).

For f ∈ S ′(Rd) we consider the sequence F−1[ϕj(ξ)Ff(ξ)](x), j ∈ N0, of entire

analytic functions. By means of these functions, we define the Besov classes.

Definition 5. Let s ∈ R and 0 < p, q ≤ ∞. Then Bs
q(Lp(Rd)) is the collection of

all tempered distributions f such that

‖ f |Bs
q(Lp(Rd))‖ =

( ∞∑
j=0

2sjq ‖F−1[ϕj(ξ)Ff(ξ)]( · ) |Lp(Rd)‖q
)1/q

<∞

if q <∞ and

‖ f |Bs
∞(Lp(Rd))‖ = sup

j=0,1,...
2sj ‖F−1[ϕj(ξ)Ff(ξ)]( · ) |Lp(Rd)‖ <∞

if q =∞.

Remark 32. i) If no confusion is possible we drop Rd in notations.
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ii) These classes are quasi-Banach spaces. They do not depend on the chosen

function ϕ (up to equivalent quasi-norms). If t = min(1, p, q), then

‖ f + g |Bs
q(Lp)‖t ≤ ‖ f |Bs

q(Lp)‖t + ‖ g |Bs
q(Lp)‖t

holds for all f, g ∈ Bs
q(Lp).

Proposition 4. [89, 2.5.12]. Let 0 < p, q ≤ ∞ and s > d max(0, 1/p− 1). Then we

have coincidence of Λs
q(Lp) and Bs

q(Lp) in the sense of equivalent quasi-norms.

Remark 33. i) For s ≤ d max(0, 1/p − 1) we have Λs
q(Lp) 6= Bs

q(Lp). E.g., the

Dirac distribution δ belongs to B
d(1/p−1)
∞ (Lp), cf. [74, 2.3.1].

ii) Smooth cut-off functions are pointwise multipliers for all Besov spaces. More

exactly, let ψ ∈ D. Then the product ψ f belongs to Bs
q(Lp) for any f ∈ Bs

q(Lp)

and there exists a constant c such that

‖ψ f |Bs
q(Lp)‖ ≤ c‖ f |Bs

q(Lp)‖

holds, see e.g. [89, 2.8], [74, 4.7].

5.3 Wavelet Characterizations

For the construction of biorthogonal wavelet bases as considered below, we refer to

the recent monograph of Cohen [12, Chapt. 2]. Let ϕ be a compactly supported

scaling function of sufficiently high regularity and let ψi, where i = 1, . . . 2d − 1, be

the corresponding wavelets. More exactly, we suppose for some N > 0 and r ∈ N

supp ϕ , supp ψi ⊂ [−N,N ]d , i = 1, . . . , 2d − 1 ,

ϕ, ψi ∈ Cr(Rd) , i = 1, . . . , 2d − 1 ,∫
xα ψi(x) dx = 0 for all |α| ≤ r , i = 1, . . . , 2d − 1 ,

and

ϕ(x− k), 2jd/2 ψi(2
jx− k) , j ∈ N0 , k ∈ Zd ,

is a Riesz basis in L2(Rd). We shall use the standard abbreviations

ψi,j,k(x) = 2jd/2 ψi(2
jx− k) and ϕk(x) = ϕ(x− k) .
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Further, the dual Riesz basis should fulfill the same requirements, i.e., there exist

functions ϕ̃ and ψ̃i, i = 1, . . . , 2d − 1, such that

〈ϕ̃k, ψi,j,k〉 = 〈ψ̃i,j,k, ϕk〉 = 0 ,

〈ϕ̃k, ϕ`〉 = δk,` (Kronecker symbol) ,

〈ψ̃i,j,k, ψu,v,`〉 = δi,u δj,v δk,` ,

supp ϕ̃ , supp ψ̃i ⊂ [−N,N ]d , i = 1, . . . , 2d − 1 ,

ϕ̃, ψ̃i ∈ Cr(Rd) , i = 1, . . . , 2d − 1 ,∫
xα ψ̃i(x) dx = 0 for all |α| ≤ r , i = 1, . . . , 2d − 1 .

For f ∈ S ′(Rd) we put

(92) 〈f, ψi,j,k〉 = f(ψi,j,k) and 〈f, ϕk〉 = f(ϕk) ,

whenever this makes sense.

Proposition 5. Let s ∈ R and 0 < p, q ≤ ∞. Suppose

(93) r > max
(
s,

2d

p
+
d

2
− s
)
.

Then Bs
q(Lp) is the collection of all tempered distributions f such that f is repre-

sentable as

f =
∑
k∈Zd

ak ϕk +
2d−1∑
i=1

∞∑
j=0

∑
k∈Zd

ai,j,k ψi,j,k (convergence in S ′)

with

‖ f |Bs
q(Lp)‖∗ :=

(∑
k∈Zd

|ak|p
)1/p

+

( 2d−1∑
i=1

∞∑
j=0

2j(s+d(1/2−1/p))q
(∑

k∈Zd

|ai,j,k|p
)q/p

)1/q

<∞ ,

if q <∞ and

‖ f |Bs
∞(Lp)‖∗ :=

(∑
k∈Zd

|ak|p
)1/p

+ sup
i=1,... ,2d−1

sup
j=0,...

2j(s+d(1/2−1/p))
(∑

k∈Zd

|ai,j,k|p
)1/p

<∞ .

The representation is unique and

ai,j,k = 〈f, ψ̃i,j,k〉 and ak = 〈f, ϕ̃k〉

hold. Further I : f 7→ {〈f, ϕ̃k〉, 〈f, ψ̃i,j,k〉} is an isomorphic map of Bs
q(Lp(Rd)) onto

the sequence space equipped with the quasi-norm ‖ · |Bs
q(Lp)‖∗, i.e., ‖ · |Bs

q(Lp)‖∗

may serve as an equivalent quasi-norm on Bs
q(Lp).
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Remark 34. i) The restriction (93) guarantees that (92) makes sense for all

f ∈ Bs
q(Lp).

ii) It is immediate from this proposition that the functions ϕk, ψi,j,k, k ∈ Zd, 1 ≤
i ≤ 2d − 1, j ∈ N0 form a basis for Bs

q(Lp) if max(p, q) < ∞. By the same

reasoning the functions

ϕk, 2−js ψi,j,k, k ∈ Zd, 1 ≤ i ≤ 2d − 1, j ∈ N0 ,

form a Riesz basis for Bs
2(L2).

iii) If the wavelet basis is orthonormal (in L2), then this proposition is proved in

Triebel [92]. But the comments made in Subsection 3.4 of the quoted paper

make clear that this extends to the situation considered in Proposition 5. A

different proof, but restricted to s > d(1/p− 1)+, is given in [12, Thm. 3.7.7].

However, there are many forerunners with some restrictions concerning s, p

and q. We refer to [6] and [62].

5.4 Besov Spaces on Domains – the Approach via Restric-

tions

There are at least two different approaches to define function spaces on domains.

One approach uses restrictions to Ω of functions defined on Rd. So, all calculations

are done on Rd. The other approach introduces theses spaces by means of local

quantities defined only in Ω. For numerical purposes the second approach is more

promising whereas for analytic investigations the first one looks more elegant. Here

we discuss both, since both were used.

Let Ω ⊂ Rd be an bounded open nonempty set. Then we define Bs
q(Lp(Ω)) to

be the collection of all distributions f ∈ D′(Ω) such that there exists a tempered

distribution g ∈ Bs
q(Lp(Rd)) satisfying

f(ϕ) = g(ϕ) for all ϕ ∈ D(Ω) ,

i.e. g|Ω = f in D′(Ω). We put

‖ f |Bs
q(Lp(Ω))‖ := inf ‖ g |Bs

q(Lp(Rd))‖ ,

where the infimum is taken with respect to all distributions g as above.

Let diam Ω be the diameter of the set Ω and let x0 be a point with the property

Ω ⊂
{
y : |x0 − y| ≤ diam Ω

}
.
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Such a point we shall call a center of Ω. Since smooth cut-off functions are pointwise

multipliers, cf. Remark 33, we can associate with any f ∈ Bs
q(Lp(Ω)) a tempered

distribution g ∈ Bs
q(Lp) such that g|Ω = f in D′(Ω),

C ‖ g |Bs
q(Lp)‖ ≤ ‖ f |Bs

q(Lp(Ω))‖ ≤ ‖ g |Bs
q(Lp)‖(94)

supp g ⊂ {x ∈ Rd : |x− x0| ≤ 2 diam Ω} .(95)

Here 0 < C < 1 does not depend on f (but on Ω, s, p, q).

Now we turn to decompositions by means of wavelets. We use the notation from the

preceeding subsection. Define

(96) Λj :=
{
k ∈ Zd : |ki−x0

i | ≤ 2j diam Ω+N , i = 1, . . . , d
}
, j = 0, 1, . . . .

Then given f and taking g as above, we find that

(97) g =
∑
k∈Λ0

〈g, ϕ̃k〉ϕk +
2d−1∑
i=1

∞∑
j=0

∑
k∈Λj

〈g, ψ̃i,j,k〉ψi,j,k (convergence in S ′)

and

‖ g |Bs
q(Lp)‖ �

(∑
k∈Λ0

|〈g, ϕ̃k〉|p
)1/p

+(98)

( 2d−1∑
i=1

∞∑
j=0

2jq(s+d( 1
2
− 1

p
))
(∑

k∈Λj

|〈g, ψ̃i,j,k〉|p
)q/p

)1/q

<∞ .

The following more handy notation is also used. We put

∇−1 := Λ0(99)

∇j :=
{

(i, k) : 1 ≤ i ≤ 2d − 1 , k ∈ Λj

}
, j = 0, 1, . . . ,(100)

ψj,λ := ψi,j,k, if λ = (i, k) ∈ ∇j, j ∈ N0, and ψj,λ := ϕk if λ = k ∈ ∇−1. For the dual

basis, (97) and (98) read as

(101) g =
∞∑

j=−1

∑
λ∈∇j

〈g, ψ̃j,λ〉ψj,λ (convergence in S ′)

and

(102) ‖ g |Bs
q(Lp)‖ �

( ∞∑
j=−1

2jq(s+d( 1
2
− 1

p
))
( ∑

λ∈∇j

|〈g, ψ̃j,λ〉|p
)q/p

)1/q

<∞ .
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5.5 Lipschitz Domains, Embeddings, and Interpolation

We call a domain Ω a special Lipschitz domain (see Stein [77]), if Ω is an open set

in Rd and if there exists a function ω : Rd−1 → R such that

Ω =
{

(x′, xd) ∈ Rd : xd > ω(x′)
}

and

|ω(x′)− ω(y′) | ≤ C |x′ − y′| for all x′, y′ ∈ Rd−1 ,

and some constant C > 0. We call a domain Ω a bounded Lipschitz domain if Ω is

bounded and its boundary ∂Ω can be covered by a finite number of open balls Bk,

so that, possibly after a proper rotation, ∂Ω ∩ Bk for each k is a part of the graph

of a Lipschitz function.

Proposition 6. Let Ω ∈ Rd be a bounded Lipschitz domain with center x0. Then

there exists a universal bounded linear extension operator E for all values of s, p,

and q, i.e.,

(Ef)|Ω = f for all f ∈ Bs
q(Lp(Ω)) ,

and

‖ E : Bs
q(Lp(Ω))→ Bs

q(Lp(Rd)) ‖ <∞ .

In addition we may assume

(103) supp Ef ⊂ {x ∈ Rd : |x− x0| ≤ 2 diam Ω} .

Remark 35. Proposition 6 has been proved by Rychkov [75]. Property (103) follows

from Remark 33.

Let us now discuss some embedding properties of Besov spaces that are needed

for our purposes.

Proposition 7. Let Ω ⊂ Rd be an bounded open set. Let 0 < p0, p1, q0, q1 ≤ ∞ and

let s, t ∈ R. Then the embedding

I : Bs+t
q0

(Lp0(Ω))→ Bs
q1

(Lp1(Ω))

is compact if and only if

(104) t > d
( 1

p0

− 1

p1

)
+
.

Remark 36. Sufficiency is proved e.g. in [43]. The necessity of the given restrictions

is almost obvious, but see Lemma 4 and [57] for details.
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Sometimes Besov spaces or Sobolev spaces of fractional order are introduced by

means of interpolation (real and/or complex). Here we state following, cf. [91]. As

usual, ( · , · )Θ,q and [ · , · ]Θ denote the real and the complex interpolation functor,

respectively.

Proposition 8. Let Ω be a bounded Lipschitz domain. Let 0 < q0, q1 ≤ ∞ and let

s0, s1 ∈ R. Let 0 < Θ < 1.

(i) Let 0 < p, q ≤ ∞. Suppose s0 6= s1 and put s = (1−Θ) s0 + Θ s1. Then(
Bs0

q0
(Lp(Ω)), Bs1

q1
(Lp(Ω))

)
Θ,q

= Bs
q(Lp(Ω)) (equivalent quasi-norms) .

(ii) Let 0 < p0, p1 ≤ ∞. We put s = (1−Θ) s0 + Θ s1,

1

p
=

1−Θ

p0

+
Θ

p1

and
1

q
=

1−Θ

q0
+

Θ

q1
.

Then[
Bs0

q0
(Lp0(Ω)), Bs1

q1
(Lp1(Ω))

]
Θ

= Bs
q(Lp(Ω)) (equivalent quasi-norms) .

5.6 Besov Spaces on Domains – Intrinsic Descriptions

For M ∈ N, h ∈ Rd, and f : Rd → C we define

∆M
h f(x) :=


M∑

j=0

(
M
j

)
(−1)M−j f(x+ jh) if x, x+ h, . . . , x+Mh ∈ Ω ,

0 otherwise .

The corresponding modulus of smoothness is then given by

ωM(t, f)p := sup
|h|<t

‖∆M
h f ‖Lp(Ω) , t > 0 .

The approach by differences coincides with that using restrictions as can be seen by

the recent result of Dispa [37].

Proposition 9. Let Ω be a bounded Lipschitz domain. Let M ∈ N. Let 0 < p, q ≤ ∞
and d max(0, 1/p− 1) < s < M . Then

Bs
q(Lp(Ω)) =

{
f ∈ Lmax(p,1)(Ω) :

‖f‖� := ‖f‖Lp(Ω) +

(∫ 1

0

[
t−s ωM(t, f)p

]q dt
t

)1/q

<∞
}

in the sense of equivalent quasi-norms.
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5.7 Sobolev Spaces on Domains

Let Ω be a bounded Lipschitz domain. Let m ∈ N. As usual Hm(Ω) denotes the

collection of all functions f such that the distributional derivatives Dαf of order

|α| ≤ m belong to L2(Ω). The norm is defined as

‖ f |Hm(Ω)‖ :=

(∑
|α|≤m

‖Dαf |L2(Ω)‖2
)1/2

.

It is well-known that Hm(Rd) = Bm
2 (L2(Rd)) in the sense of equivalent norms, cf.

e.g. [89]. As a consequence of the existence of a bounded linear extension operator

for Sobolev spaces on bounded Lipschitz domains, cf. [77, p. 181], it follows that

Hm(Ω) = Bm
2 (L2(Ω)) (equivalent norms)

for such domains. For fractional s > 0 we introduce the classes by complex interpo-

lation. Let 0 < s < m, s 6∈ N. Then, following [59, 9.1], we define

Hs(Ω) :=
[
Hm(Ω), L2(Ω)

]
Θ
, Θ = 1− s

m
.

This definition does not depend on m in the sense of equivalent norms. This follows

immediately from[
Hm(Ω), L2(Ω)

]
Θ

=
[
Bm

2 (L2(Ω)), B0
2(L2(Ω))

]
Θ

= Bs
2(L2(Ω)) , Θ = 1− s

m
.

(all in the sense of equivalent norms), cf. Proposition 8.

5.8 Function Spaces on Domains and Boundary Conditions

We concentrate on homogeneous boundary conditions. Here it makes sense to intro-

duce two further scales of function spaces (distribution spaces).

Definition 6. Let Ω ⊂ Rd be an open nontrivial set. Let s ∈ R and 0 < p, q ≤ ∞.

(i) Then B̊s
q(Lp(Ω)) denotes the closure of D(Ω) in Bs

q(Lp(Ω)), equipped with the

quasi-norm of Bs
q(Lp(Ω)).

(ii) Let s ≥ 0. Then Hs
0(Ω) denotes the closure of D(Ω) in Hs(Ω), equipped with the

norm of Hs(Ω).

(iii) By B̃s
q(Lp(Ω)) we denote the collection of all f ∈ D′(Ω) such that there is a

g ∈ Bs
q(Lp(Rd)) with

(105) g∣∣Ω = f and supp g ⊂ Ω ,

equipped with the quasi-norm

‖ f |B̃s
q(Lp(Ω))‖ = inf ‖ g |Bs

q(Lp(Rd))‖ ,

where the infimum is taken over all such distributions g as in (105).
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Remark 37. For a bounded Lipschitz domain B̊s
q(Lp(Ω)) = B̃s

q(Lp(Ω)) = Bs
q(Lp(Ω))

holds if

0 < p, q <∞ , max
(1

p
− 1, d

(1

p
− 1
))

< s <
1

p
,

cf. [48, Cor. 1.4.4.5] and [91]. Hence,

Hs
0(Ω) = B̊s

2(L2(Ω)) = B̃s
2(L2(Ω)) = Bs

2(L2(Ω)) = Hs(Ω)

if 0 ≤ s < 1/2.

Often it is more convenient to work with a scale B
s

q(Lp(Ω)), originally introduced

in [91].

Definition 7. Let Ω ⊂ Rd be an open nontrivial set. Let s ∈ R and 0 < p, q ≤ ∞.

Then we put

B
s

q(Lp(Ω)) :=

{
Bs

q(Lp(Ω) if s < 1/p ,

B̃s
q(Lp(Ω)) if s ≥ 1/p .

This scale B
s

q(Lp(Ω)) is well-behaved under interpolation and duality, cf. [91].

Proposition 10. Let Ω be a bounded Lipschitz domain. Let 1 < p, p0, p1, q, q0, q1 <

∞ and let s0, s1 ∈ R. Let 0 < Θ < 1.

(i) Suppose s0 6= s1 and put s = (1−Θ) s0 + Θ s1. Then(
B

s0

q0
(Lp(Ω)), B

s1

q1
(Lp(Ω))

)
Θ,q

= B
s

q(Lp(Ω)) (equivalent quasi-norms) .

(ii) We put s = (1−Θ) s0 + Θ s1,

1

p
=

1−Θ

p0

+
Θ

p1

and
1

q
=

1−Θ

q0
+

Θ

q1
.

Then[
B

s0

q0
(Lp0(Ω)), B

s1

q1
(Lp1(Ω))

]
Θ

= B
s

q(Lp(Ω)) (equivalent quasi-norms) .

(iii) With s ∈ R and

1 =
1

p
+

1

p′
and 1 =

1

q
+

1

q′

we find (
B

s

q(Lp(Ω))
)′

= B
−s

q′ (Lp′(Ω)) .

Here the duality must be understood in the framework of the dual pairing (D(Ω),D′(Ω).
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5.9 Sobolev Spaces with Negative Smoothness

Definition 8. For s > 0 we define

H−s(Ω) :=


(
Hs

0(Ω)
)′

if s− 1
2
6= integer ,

(
B̃s

2(L2(Ω))
)′

otherwise .

Remark 38. Let Ω ⊂ Rd be a bounded Lipschitz domain. Then

Hs
0(Ω) = B̃s

2(L2(Ω)) , s > 0 , s− 1

2
6= integer ,

cf. [48, Cor. 1.4.4.5] and Proposition 9. From Remark 37 and Proposition 10 we

conclude the identity

(106) H−s(Ω) = B−s
2 (L2(Ω)) , s > 0 ,

to be understood in the sense of equivalent norms.
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Remark 39. [88, 4.3.2]. Let Ω be a bounded open set with a smooth boundary. Then

B̊s
q(Lp(Ω)) = B̃s

q(Lp(Ω)) holds if

1 < p, q <∞ ,
1

p
− 1 < s <∞ , s− 1

p
6= integer .

5.10 Wavelet Characterization of Besov Spaces on Domains

It is a difficult task to construct wavelet bases on domains, see [12, 2.12] and the

references given there. Under certain conditions on the domain Ω such constructions

with properties similar to (101), (102) are known in the literature, see Remark 11

above.

Let Ω be a bounded open set in Rd. Let p, q and s be fixed such that s > dmax(0, 1/p−
1). We suppose that there exist sets ∇j ⊂ {1, 2, . . . , 2d − 1} × Zd, with

(107) 0 < inf
j=−1,0,...

2−jd |∇j| ≤ sup
j=−1,0,...

2−jd |∇j| <∞ ,

and functions ψj,λ, ψ̃j,λ, λ ∈ ∇j, j = −1, 0, 1, . . ., such that

(108) suppψj,λ, supp ψ̃j,λ ⊂ Ω , λ ∈ ∇j ,

(109) 〈ψ̃i,j,k, ψu,v,`〉 = δi,u δj,v δk,` ,

and such that f ∈ Bs
q(Lp(Ω)) if and only if

(110) f =
∞∑

j=−1

∑
λ∈∇j

〈f, ψ̃j,λ〉ψj,λ (convergence in D′) ,

and

(111) ‖ f ‖♣Bs
q(Lp(Ω)) � ‖ f ‖Bs

q(Lp(Ω)) .

where

(112) ‖ f ‖♣Bs
q(Lp(Ω)) :=

 ∞∑
j=−1

2j(s+d( 1
2
− 1

p
))q

( ∑
λ∈∇j

|〈f, ψ̃j,λ〉|p
)q/p

1/q

<∞ .
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