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Abstract

We study the optimal approximation of the solution of an operator equa-

tion A(u) = f by linear and different types of nonlinear mappings. In our

earlier papers we only considered the error with respect to a certain Hs-norm

where s was given by the operator since we assumed that A : Hs
0(Ω) →

H−s(Ω) is an isomorphism. The most typical case here is s = 1. It is well

known that for certain regular problems the order of convergence is improved

if one takes the L2-norm. In this paper we study error bounds with respect

to such a weaker norm, i.e., we assume that Hs
0(Ω) is continuously embedded

into a space X and we measure the error in the norm of X. A major exam-

ple is X = L2(Ω) or X = Hr(Ω) with r < s. We prove this better rate of

convergence also for non-regular problems.
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1 Introduction

We continue our work from [9, 10, 11]1. There we studied the optimal approximation

of the solution of an operator equation

A(u) = f, (1)

where A is a linear operator

A : H → G (2)

from a Hilbert space H to another Hilbert space G. We always assume that A is

boundedly invertible, and so (1) has a unique solution for any f ∈ G. We have in

mind the more specific situation of an elliptic operator equation which is given as

follows. Assume that Ω ⊂ R
d is a bounded Lipschitz domain and assume that

A : Hs
0(Ω) → H−s(Ω) (3)

is an isomorphism, where s > 0. A standard case (for second order elliptic boundary

value problems for PDEs) is s = 1, but also other values of s are of interest. Now

we put H = Hs
0(Ω) and G = H−s(Ω). Since A is boundedly invertible, the inverse

mapping S : G→ H is well defined. We call S the solution operator.

We use linear and (different kinds of) nonlinear mappings Sn for the approxima-

tion of the solution u = S(f) for f contained in F ⊂ G. We consider the worst case

error

e(Sn, F,X) = sup
‖f‖F≤1

‖S(f) − Sn(f)‖X , (4)

where F is a normed (or quasi-normed) subspace of G and H is continuously em-

bedded into the Banach space X. Here Sn : F → X denotes an approximation of S

and n denotes the degrees of freedom. In our main results, F and X are Sobolev or

Besov spaces.2 Hence we use the following commutative diagram

F
SF−−−→ X

I1

y
xI2

G
S

−−−→ H .

1The present paper is complete in the sense that we repeat certain definitions and results. Still

we recommend our earlier papers for a more detailed discussion. For the definition of the function

spaces, see, e.g., [10]
2Formally we deal with Besov spaces. Because of the embeddings B−s+t

1 (Lp(Ω)) ⊂ W−s+t
p (Ω) ⊂

B−s+t
∞ (Lp(Ω)), which hold for 1 ≤ p ≤ ∞, t ≥ s, see [39], our results are valid also for Sobolev

spaces.
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Here I : F → G denotes the identity and SF the restriction of S to F . In the specific

case (3) this diagram is given by

B−s+t
q (Lp(Ω))

SF−−−→ Hr(Ω)

I1

y
xI2

H−s(Ω)
S

−−−→ Hs
0(Ω) ,

where F := B−s+t
q (Lp(Ω)) denotes a Besov space compactly embedded into H−s(Ω)

and SF the restriction of S to B−s+t
q (Lp(Ω)). We are interested in approximations

that have the optimal order of convergence depending on n, where n denotes the

degree of freedom. In general our results are constructive in a mathematical sense,

because we can describe optimal approximations Sn in mathematical terms. This

does not mean, however, that these descriptions are constructive in a practical sense,

since it might be difficult to convert those descriptions into a practical algorithm.

As a consequence, most of our results give optimal benchmarks and can serve for

the evaluation of old and new algorithms.

We consider the worst case setting for deterministic algorithms. Randomized

algorithms and algorithms for the quantum computer where recently studied by

Heinrich [21, 22, 23].

This paper is organized as follows. In Section 2, we recall some general results

concerning all the different widths that are used in this paper. In Section 3, we study

quite general elliptic boundary value problems in Lipschitz domains. It turns out

that for regular elliptic problems in Hilbert spaces the linear widths, the nonlinear

widths and the manifold widths show the same asymptotic behavior. In contrary

to this, nonregular problems behave quite different in the sense that in general

no lower bounds can be derived. In Section 4, the results are generalized to the

case where the right-hand sides belong to quasi-Banach spaces. Then, in Section 5,

the abstract machinery derived so far is applied to a concrete problem, i.e., to the

Poisson equation in Lipschitz domains. It turns out that in contrary to the general

situation in this case also lower bounds can be derived. Moreover, special emphasis

is layed on best n-term wavelet approximation. By employing regularity results for

the solution in Besov spaces, we determine the approximation order of best n-term

wavelet approximation in various different norms. It turns out, that for a large range

of parameters, and in particular for weak norms, best n-term wavelet approximation

indeed realizes the optimal order of convergence. This is one of the main results of

this paper.
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2 General Inequalities

For the definition of the linear widths elinn , the manifold widths econt
n and the the

nonlinear widths enon
n,C we refer to the Appendix at the end of this paper.

We start with a result that is well known, see [29].

Proposition 1. Assume that F and X are Hilbert spaces and S : F → X is linear

and continuous. Then

elinn (S, F,X) = econt
n (S, F,X). (5)

The following result is an improvement of a similar result (Theorem 1) of [10].

Theorem 1. Assume that F is quasi-normed and X is a Hilbert space and S : F →

X is linear and compact. Then for all C ≥ 1 and all n ∈ N, we have

econt
4n+1(S, F,X) ≤ 2C enon

n,C(S, F,X) . (6)

Proof. This is a worst case result for the unit ball of F and we have to prove

the following. Assume that there is a Riesz basis B ∈ BC (for definitions see the

appendix) of X such that

sup
‖f‖F≤1

‖S(f) − σn(S(f))‖ = α,

where σn(S(f)) is the best n-term approximation of S(f) by elements from B in the

norm of X. Then we have to prove that there are continuous mappings N : F →

R
4n+1 and ϕ : R

4n+1 → X such that

sup
‖f‖F≤1

‖ϕ(N(f)) − S(f)‖ ≤ 2Cα.

For the proof we use Proposition 1 from [10] and apply it to the set S(F1) ⊂ X,

where F1 is the unit ball of F . We obtain continuous mappings Ñ : X → R
4n+1 and

ϕ : R
4n+1 → X such that

sup
‖f‖F≤1

‖ϕ(Ñ(S(f))) − S(f)‖ ≤ 2Cα.

Hence we obtain the claim with N = Ñ ◦ S.

In many applications one studies problems with “finite smoothness” and then, as

a rule, one has the estimate

elin2n(S, F,X) ≍ elin
n (S, F,X). (7)

Formula (7) especially holds for the operator equations that we study in Section 3.

Then we conclude that approximation by optimal linear mappings yields the same

order of convergence as the best n-term approximation.
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Corollary 1. Assume that S : F → X with Hilbert spaces F and X, with (7)

holding. Then, for any C ≥ 1, we have

elinn (S, F,X) = econt
n (S, F,X) ≍ enon

n,C(S, F,X). (8)

Remark 1. Just by definition one has

max
(
econt

n (S, F,X), enon
n,C(S, F,X)

)
≤ elinn (S, F,X) .

Now (8) reads as: in the context of Hilbert spaces optimal linear methods are as

good as the optimal nonlinear methods. However, the optimal linear methods are

not always of practical relevance, which means, they can not be translated into

a good algorithm, for instance because of too much precalculations. For a more

detailed discussion we refer to [10].

Finally we recall the multiplicativity of certain s-numbers.

Lemma 1. Let m,n ∈ N, and let S2 : F → Y and S1 : Y → X with quasi-normed

linear spaces F , Y , and X. Then

econt
m+n(S1 ◦ S2, F,X) ≤ econt

m (S2, F, Y ) econt
n (S1, Y,X) (9)

holds. The same inequality holds for the linear widths (approximation numbers) elinn .

Remark 2. For the proof of (9) we refer to [14]. There the proof is given in a more

specific context, however, the method carries over to the present situation. In this

generality the lemma is formulated in [10]. For the linear widths we refer to [30].

3 Elliptic Problems I

In this section, we study the more special case where Ω ⊂ R
d is a bounded Lips-

chitz domain and A = S−1 : Hs
0(Ω) → H−s(Ω) is an isomorphism, where s > 0.

Furthermore, we restrict ourselves to the case where the right-hand side belongs to

a space H−s+t(Ω) (t > 0) and the error will be measured with respect to a suitable

Hr(Ω)-norm. For the definition of Hs(Ω) and Hs
0(Ω) we refer to [40] and to the

appendix in [10]. Obviously, we are working in a Hilbert space context.

3.1 Regular Problems

The notion of regularity is important for the theory and the numerical treatment

of operator equations, see [20]. For us it will be convenient to use the following

definition.
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Definition 1. Let s, t > 0. An isomorphism A : Hs
0(Ω) → H−s(Ω) is Hs+t-regular

if also

A : Hs
0(Ω) ∩Hs+t(Ω) → H−s+t(Ω) (10)

is an isomorphism.

A classical example is the Poisson equation in a C∞-domain with s = 1.

Lemma 2. Let Ω be a bounded C∞-domain. Then the associated Poisson problem

is given by

−△u = f in Ω

u = 0 on ∂Ω .

Let A denote the mapping which sends u to f . Then A is H1+t-regular for every

t > 0. Furthermore, with S := A−1 and C ≥ 1, we have

elinn (S,H−1+t(Ω), L2(Ω)) ≍ econt
n (S,H−1+t(Ω), L2(Ω)) (11)

≍ enon
n,C(S,H−1+t(Ω), L2(Ω)) ≍ n(−1−t)/d . (12)

Remark 3. This result is known. We refer to [2] and [20, Chapter 9] for the regular-

ity part and to [42] for the approximation part. We also refer to the next Theorem 2

and Subsection 5.1, where we prove a more general result.

We shall prove that (11), (12) extend to all Hr-norms with r < 1 + t. Moreover,

the optimal rate can be obtained by using Galerkin spaces that do not depend on

the particular operator A. With nonlinear approximations we cannot obtain a better

rate of convergence.

Theorem 2. Let A be Hs+t-regular and −∞ < r < s + t with t > 0. Then, for all

C ≥ 1, we have

elinn (S,H−s+t(Ω), Hr(Ω)) ≍ econt
n (S,H−s+t(Ω), Hr(Ω)) (13)

≍ enon
n,C(S,H−s+t(Ω), Hr(Ω)) ≍ n(r−s−t)/d ,

and the optimal order can be obtained by subspaces of Hr(Ω) that do not depend on

the operator S = A−1.

Proof. Consider first the identity (embedding) I : Hs+t(Ω) → Hr(Ω). Under the

restriction r < s+ t it is known that

elinn (I,Hs+t(Ω), Hr(Ω)) ≍ n(r−s−t)/d .

6



This is a classical result (going back to Kolmogorov (1936), see [26]) for s, t ∈ N, see

also [31]. For the general case (s, t > 0 and arbitrary bounded Lipschitz domains)

see [17] and [39]. We obtain the same order for I : Hs+t(Ω)∩Hs
0(Ω) → Hr(Ω). Here

only the estimate from below needs a further comment. Let B ⊂ Ω be a ball such

that dist (B, ∂Ω) > 0. The restriction to B of any distribution belonging to Hs(Ω)

belongs to Hs(B) and

‖u |Hs(B)‖ ≤ ‖u |Hs(Ω)‖ . (14)

This implies

elinn (I,Hs+t(B), Hr(B)) ≤ elinn (I,Hs+t(Ω) ∩Hs
0(Ω), Hr(Ω)) .

Since

elinn (I,Hs+t(B), Hr(B)) ≍ n(r−s−t)/d

the claimed assertion follows.

We assume (10), and hence S : H−s+t(Ω) → Hs+t(Ω) ∩ Hs
0(Ω) is an isomorphism.

It is elementary to prove that linear isomorphisms do not change the asymptotic

behaviour of linear widths. Consequently we obtain the same order of the elinn for I

and for I ◦ S|H−s+t(Ω). Together with Corollary 1 this proves (13). Assume that the

linear mapping

Sn(f) :=
n∑

i=1

gi Li(f)

is good for the mapping I : Hs+t(Ω)∩Hs
0(Ω) → Hr(Ω), i.e., we consider a sequence

of such approximations with the optimal rate. Here we assume gi ∈ Hr(Ω), i =

1, . . . , n. Then the linear mappings

Sn(Sf) =
n∑

i=1

gi Li(Sf)

achieve the optimal rate for the mapping S : H−s+t(Ω) → Hs+t(Ω) →֒ Hr(Ω) since

‖S(f) − Sn(Sf) |Hr(Ω)‖ ≤ c n(r−s−t)/d ‖S(f) |Hs+t(Ω)‖

≤ c n(r−s−t)/d ‖S ‖ ‖ f |H−s+t(Ω)‖ ,

where c is independent of n.

Remark 4. The same gi are good for all Hs+t(Ω)-regular problems on H−s+t(Ω);

only the linear functionals, given by Li ◦S|H−s+t , depend on the operator A. For the

numerical realization we can use the Galerkin method with the space Vn generated

by g1, . . . , gn.
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3.2 Nonregular Problems

The next result shows that linear approximations also give at least (!) the rate

n(r−s−t)/d in the nonregular case. An important difference, however, is the fact that

now the Galerkin space may depend on the operator A. Again we allow arbitrary s

and t > 0 and arbitrary bounded Lipschitz domains. We also prove that nonlinear

approximation methods do not yield a better rate of convergence.

Theorem 3. Let Ω ⊂ R
d be a bounded Lipschitz domain. Assume that r < s and

t, s > 0. Let S : H−s(Ω) → Hs
0(Ω) be an isomorphism, with no further assumptions.

Then

elinn (S,H−s+t(Ω), Hr(Ω)) ≺ n(r−s−t)/d . (15)

Proof. Consider first the identity (or embedding) I : H−s+t(Ω) → H−s(Ω). It is

known that

elinn (I,H−s+t(Ω), H−s(Ω)) ≍ n−t/d.

Again this is a classical result, for the general case (with s, t > 0 and Ω an arbitrary

bounded Lipschitz domain), see [39].

By assumption we have that S : H−s(Ω) → Hs
0(Ω) is an isomorphism, so that

elinn have the same order for I and for S ◦ I, more exactly

elinn (I,H−s+t(Ω), H−s(Ω)) ≍ elinn (S ◦ I,H−s+t(Ω), Hs
0(Ω)) = elinn (S,H−s+t(Ω), Hs

0(Ω))

n ∈ N. Next we apply Lemma 1 and obtain

elin2n(I ◦ S,H−s+t(Ω), Hr(Ω)) ≤ elinn (S,H−s+t(Ω), Hs
0(Ω)) elinn (I,Hs

0(Ω), Hr(Ω))

≤ c n−t/d n−(s−r)/d , n ∈ N ,

where c does not depend on n.

It seems to be natural that nonregular problems should be at least as difficult as

regular ones and hence we should always have

elinn (S,H−s+t(Ω), Hr(Ω)) ≍ n(r−s−t)/d,

as in the regular case. However, this is in general not the case and one can construct

(artificial) examples where, under the assumptions of Theorem 3, the sequence elinn

converges to zero arbitrarily fast.

Lemma 3. Let s, t > 0 and assume r < s. Let (δn)n be a sequence of positive

numbers tending monotonically to zero. Then there exists a linear isomorphism S :

H−s(Ω) → Hs
0(Ω) such that

elinn (S,H−s+t(Ω), Hr(Ω)) ≤ δn , n ∈ N .
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Proof. Let F := H−s+t(Ω). As above we can write SF : H−s+t(Ω) → Hr(Ω) as

SF = I2 ◦ S ◦ I1 where I1 : H−s+t(Ω) → H−s(Ω) and I2 : Hs(Ω) → Hr(Ω), while S

is the isomorphism from H−s(Ω) to Hs
0(Ω). It follows that I1 is of the form

I1 : en 7→ σnẽn, σn ≍ n−t/d

and

I2 : e∗n 7→ σ̃nēn, σ̃n ≍ n(r−s)/d ,

where the families (en)n, (ẽn)n, (e∗n)n and (ēn)n are suitable complete orthonormal

systems of the spaces H−s+t, H−s, Hs
0 and Hr, respectively.

Now it is enough to consider those S : H−s(Ω) → Hs
0(Ω) that are of the form

S : ẽn 7→ e∗π(n),

where π : N → N is a permutation. Then the singular values of SF = I2 ◦ S ◦ I1 are

given by σn · σ̃π(n) and we can define π in such a way that the (ordered) values are

smaller than the given sequence (δn)n of positive numbers.

Remark 5. Corollary 1 is applicable in our situation, i.e., if we assume (3) and (7).

Then we have F = H−s+t(Ω) and X = Hr(Ω) and obtain

elinn (S,H−s+t(Ω), Hr(Ω)) = econt
n (S,H−s+t(Ω), Hr(Ω)) ≍ enon

n,C(S,H−s+t(Ω), Hr(Ω)) ,

(16)

i.e., linear approximation is as good as nonlinear approximation.

Theorem 3 yields also upper bounds for econt
n and enon

n,C , respectively. Lemma 3

makes clear that without further assumptions concerning S there is no hope for

lower bounds, hence the bounds of Theorem 3 are not always optimal but we still

have (16).

4 Elliptic Problems II

Now we are leaving the Hilbert space context. In contrast to Section 3 we allow now

that our right-hand side f belongs to a Besov space B−s+t
q (Lp(Ω)) under certain

restrictions on t. We consider the commutative diagram

B−s+t
q (Lp(Ω))

SF−−−→ Hr(Ω)

I1

y
xI2

H−s(Ω)
S

−−−→ Hs
0(Ω) ,
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where F := B−s+t
q (Lp(Ω)) and I1 and I2 are identity operators. To make this diagram

meaningful we need to have the continuity of the embeddings

B−s+t
q (Lp(Ω)) →֒ H−s(Ω) and Hs

0(Ω) →֒ Hr(Ω) ,

respectively. This is guaranteed by

t > d max
(
0,

1

p
−

1

2

)
and s ≥ r . (17)

Theorem 4. Let Ω ⊂ R
d be a bounded Lipschitz domain and A as in (3), S = A−1.

Let 0 < p, q ≤ ∞, s > 0, and let (17) be satisfied. Then there exists a constant c

such that

elinn (S,B−s+t
q (Lp(Ω)), Hr(Ω)) ≤ c

{
n− t+s−r

d if 2 ≤ p ≤ ∞ ,

n− t+s−r

d
+1/p−1/2 if 0 < p < 2 ,

as well as

econt
n (S,B−s+t

q (Lp(Ω)), Hr(Ω)) ≤ c n− t+s−r

d

holds for all n ∈ N.

Proof. Obviously, SF = I2 ◦S ◦ I1. The linear widths as well as the manifold widths

of S ◦ I1 have been estimated in [10]. The multiplicativity of these numbers, see

Lemma 1, and

elinn (I1, H
s
0(Ω), Hr(Ω)) ≍ n(r−s)/d

as well as

econt
n (I1, H

s
0(Ω), Hr(Ω)) ≍ n(r−s)/d ,

see Lemma 1, yield the claim.

Remark 6. Since r < s and B−s+t
q (Lp(Ω)) →֒ H−s(Ω) is compact Theorem 1 yields

econt
4n+1(S,B

−s+t
q (Lp(Ω)), Hr(Ω)) ≤ c enon

n,C(S,B−s+t
q (Lp(Ω)), Hr(Ω)) ,

n ∈ N. This can be complemented by the obvious inequality enon
n,C ≤ elinn .

5 The Poisson Equation

In this section we discuss our results for the specific case of the Poisson equation

−△u = f in Ω (18)

u = 0 on ∂Ω
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on a bounded Lipschitz domain Ω contained in R
d, d ≥ 2. Here, as always in this

paper, we understand Lipschitz domain in the sense of Stein’s notion of domains

with minimal smooth boundary, cf. [34, VI.3].

In the particular situation of the Poisson problem the scale Hs
0(Ω) (defined to be

the closure of the test functions in Ω with respect to the norm ‖ · ‖Hs(Ω)), is not the

correct one, at least in general. Here we are forced to work with the scale

Hs
∂Ω(Ω) :=

{
u ∈ Hs(Ω) : tru = 0

}
, (19)

where tr means the trace with respect to ∂Ω. In such a generality the definition of the

trace needs some care. Here we follow [25] and [38], see also [24]. First we associate

to u ∈ Hs(Ω) a function Eu ∈ Hs(Rd), an extension of u, and afterwards we take the

restriction of Eu to the boundary ∂Ω. The technical details of this procedure, even

in a more general context, are explained, e.g., in [25, pp. 205-209], [38, 9.1] or [41,

5.1.1]. For Lipschitz domains Ω the boundary ∂Ω is a so-called d-set with d = n− 1.

It turns out that this procedure is reasonable if s > 1/2. Similarly, if s > 1/p, one

defines the more general scales Bs
q,∂Ω(Lp(Ω)) and Hs

p,∂Ω(Ω), respectively. Here, by

Hs
p(Ω) we denote the classical Bessel potential spaces, for their definition and basic

properties we refer to [37] and [24].

Concerning the relations between the two scales Hs
0(Ω) and Hs

∂Ω(Ω) we remark the

following. Obviously, we always have

Hs
0(Ω) →֒ Hs

∂Ω(Ω) .

Under more restrictive conditions we even have equality. Let H̊s
p(Ω) and B̊

s+1/p
q (Lp(Ω))

denote the closure of the test functions in Ω with respect to the corresponding norms.

Proposition 2. Let Ω be a bounded Lipschitz domain. Let 1 < p < ∞, 1 ≤ q < ∞

and 0 < s < 1. Then

H̊s+1/p
p (Ω) = H

s+1/p
p,∂Ω (Ω) and B̊s+1/p

q (Lp(Ω)) = B
s+1/p
q,∂Ω (Lp(Ω)) . (20)

Remark 7. (i) As a consequence of Proposition 2 we obtain in case s ≥ 1

Hs
p,∂Ω(Ω) = Hs

p(Ω) ∩ H̊1
p (Ω) ,

which means for p = 2

Hs
∂Ω(Ω) = Hs

2,∂Ω(Ω) = Hs(Ω) ∩H1
0 (Ω) ,

(all to be understood in the sense of equivalent norms).

(ii) A proof of the above proposition may be found in [38, Prop. 19.5]. However, it

is based on some results of Netrusov, see [1, Sect. 10] and the references given there.

For smooth domains we refer to [16] and [41, Thm. 5.21].
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5.1 The Poisson Equation in Smooth Domains

For a better understanding and for later use we first consider the Poisson problem

in C∞ domains. The following is an extension of Lemma 2.

Theorem 5. Let Ω be a bounded C∞-domain.

(i) Let t > −1/2 and r < t + 1. Then for the associated Poisson problem (18) it

holds: the mapping A : u → f is a linear isomorphism of H t+1
∂Ω (Ω) onto H t−1(Ω).

Furthermore, with S = A−1 and C ≥ 1 arbitrary we have

elinn (S,H t−1(Ω), Hr(Ω)) = econt
n (S,H t−1(Ω), Hr(Ω))

≍ enon
n,C(S,H t−1(Ω), Hr(Ω)) ≍ n(r−t−1)/d .

(ii) Let 0 < p, q ≤ ∞,

t >
1

p
− 1 + (d− 1) max

(
0,

1

p
− 1

)
(21)

and

r < t+ 1 − d max
(
0,

1

p
−

1

2

)
. (22)

Then for the solution operator S of the Poisson problem (18) it holds: the mapping

A : u→ f is a linear isomorphism of Bt+1
q,∂Ω(Lp(Ω)) onto Bt−1

q (Lp(Ω)). Furthermore,

elinn (S,Bt−1
q (Lp(Ω)), Hr(Ω)) ≍

{
n(r−t−1)/d+1/p−1/2 if 0 < p ≤ 2 ,

n(r−t−1)/d if 2 ≤ p ≤ ∞ ,

as well as

econt
n (S,Bt−1

q (Lp(Ω)), Hr(Ω)) ≍ n(r−t−1)/d .

Proof. The fact that the mapping A : u → f is a linear isomorphism under the

given restrictions is well-known in the literature. We refer to [32, Thm. 3.5.3], but

see also [18], [37, 4.3.3] and the references given there.

The rest of the proof is oriented on that one given for Theorem 2. Under the restric-

tion (22)

elinn (I, Bt+1
q (Lp(Ω)), Hr(Ω)) ≍

{
n(r−t−1)/d+1/p−1/2 if 0 < p ≤ 2 ,

n(r−t−1)/d if 2 ≤ p ≤ ∞ ,

see e.g. [39]. We obtain the same order for I : B̊t+1
q (Lp(Ω)) → Hr(Ω) by reasonings

as used in proof of Theorem 2. Because of

B̊t+1
q (Lp(Ω)) →֒ Bt+1

q,∂Ω(Lp(Ω)) →֒ Bt+1
q (Lp(Ω))

12



we also obtain the same order with respect to I : Bt+1
q,∂Ω(Lp(Ω)) → Hr(Ω). Since

S : Bt−1
q (Lp(Ω)) → Bt+1

q,∂Ω(Lp(Ω)) is an isomorphic map we conclude that the order

of elinn for I and for I ◦SF coincide. The arguments with respect to econt
n are the same

starting with

econt
n (I, Bt+1

q (Lp(Ω)), Hr(Ω)) ≍ n(r−t−1)/d ,

see [10]. It follows that this remains true if Bt+1
q (Lp(Ω)) is replaced by Bt+1

q,∂Ω(Lp(Ω)).

This proves (ii). Part (i) can be proved in the same way. In addition one has to use

Corollary 1 to derive the behaviour of enon
n,C .

We also have a supplement to part (ii) of Theorem 5. For this we need an addi-

tional restriction concerning the admissible domains Ω.

Theorem 6. Let 0 < p, q ≤ ∞, and t, r as in (21), (22). Let Ω be a bounded C∞-

domain such that Bt+1
q (Lp(Ω)) as well as Hr(Ω) can be discretized by one common

wavelet system B∗ belonging to BC∗ for some 1 ≤ C∗ <∞. Then, if C ≥ C∗,

enon
n,C(S,Bt−1

q (Lp(Ω)), Hr(Ω)) ≍ n(r−t−1)/d .

Proof. Theorem 1 and Theorem 5 yield the lower bound. The upper bound follows

by applying the same arguments as in proof of Theorem 5 together with [10, Lem. 3,

Thm. 10].

Remark 8. (i) In all the assertions in this subsection where Besov spaces are in-

volved the microscopic parameter q does not play an important role. Only the con-

stants behind ≍ depend on it. As a consequence of simple continuous embeddings

we obtain

elinn (S, F t−1
q (Lp(Ω)), Hr(Ω)) ≍

{
n(r−t−1)/d+1/p−1/2 if 0 < p ≤ 2 ,

n(r−t−1)/d if 2 ≤ p ≤ ∞ ,

as well as

enon
n,C(S, F t−1

q (Lp(Ω)), Hr(Ω)) ≍ econt
n (S, F t−1

q (Lp(Ω)), Hr(Ω)) ≍ n(r−t−1)/d ,

where F t
q (Lp(Ω)) denotes the Triebel-Lizorkin space. Specialization to q = 2 and

restriction to 1 < p < ∞ leads to corresponding results for the scale of Bessel

potential spaces H t
p(Ω) since H t

p(Ω) = F t
2(Lp(Ω)) in the sense of equivalent norms.

(ii) Based on the regularity theory for the Poisson equation in the framework of

Besov-Lizorkin-Triebel spaces in [18] and [37, Chapt. 4], see also [32, Chapt. 3], one

can extend the results from Theorem 5 also to the situation where Hr(Ω) is replaced

by a general Besov space. But this would be restricted to the quantities elinn and econt
n .

13



5.2 The Poisson Equation in Lipschitz Domains

It is a classical assertion that (18) also in the context of Lipschitz domains fits

into our setting with s = 1. Indeed, if we consider the weak formulation of this

problem, it can be checked that (18) induces a boundedly invertible operator A =

△ : H1
0 (Ω) −→ H−1(Ω), see [20, Chapter 7.2] for details. However, in this specific

situation much more can be said.

5.2.1 Estimates from Below

To obtain estimates from below we make a comparison with the Poisson problem

for C∞ domains.

Lemma 4. Let Ω be a bounded Lipschitz domain and let C ≥ 1. Then, under the

same conditions as in Theorem 5

elinn (S,Bt−1
q (Lp(Ω)), Hr(Ω)) ≥ c

{
n(r−t−1)/d+1/p−1/2 if 0 < p ≤ 2 ,

n(r−t−1)/d if 2 ≤ p ≤ ∞ ,

(23)

as well as

econt
n (S,Bt−1

q (Lp(Ω)), Hr(Ω)) ≥ c n(r−t−1)/d (24)

and

enon
n,C(S,Bt−1

q (Lp(Ω)), Hr(Ω)) ≥ c n(r−t−1)/d (25)

for some positive c independent of n ∈ N.

Proof. Let B ⊂ Ω be a ball such that dist (B, ∂Ω) = a > 0. Furthermore, let

E : Bt−1
q (Lp(B)) → Bt−1

q (Lp(R
d)) be a linear and continuous extension operator,

see e.g. [33]. Let B̃ := {x ∈ R
d : dist (x,B) < a/2} and let ψ ∈ C∞

0 (Rd) such that

ψ(x) = 1 if x ∈ B and ψ(x) = 0 if x 6∈ B̃. If u is the solution of (18) on B with

right-hand side f̃ ∈ Bt−1
q (Lp(B)) then the function h := ψ · Eu solves the Poisson

problem

−∆h = f in Ω and h = 0 on ∂Ω

with some f . Of course, since h = ψ · Eu = u on B we obtain by using the Poisson

equation

f̃ = f|B .

To derive f ∈ Bt−1
q (Lp(Ω)) we apply the elliptic regularity theory with respect

to B, see the previous subsection. This implies u ∈ Bt+1
q (Lp(B)), hence ψ Eu ∈

Bt+1
q (Lp(R

d)) since ψ is a pointwise multiplier forBt+1
q (Lp(R

d)), see e.g. [32, 4.7.1]

or [37, 2.8.2]. Consequently f belongs to Bt−1
q (Lp(Ω)). Let SΩ denote the solution

14



operator with respect to our Poisson problem on Ω and similarly SB with respect

to B. Now we turn to the approximation of these operators.

Step 1. Let Sn : Bt−1
q (Lp(Ω)) → Hr(Ω) be an element of Ln, see the Appendix for a

definition of the set Ln. Hence

Snf =
n∑

i=1

Li(f)hi ,

where hi ∈ Hr(Ω) and the Li are linear functionals defined on Bt−1
q (Lp(Ω)). Then

we define its restriction S̃n as

S̃nf̃ :=
n∑

i=1

Li

(
− ∆(ψ E(SB f̃))

)
hi|B .

By construction (Snf)|B = S̃nf̃ . Furthermore, S̃n belongs to the same class as Sn

itself (of course, with respect to the new pair (Bt−1
q (Lp(B)), Hr(B)). Because of

SΩf|B = u = SB f̃ we find

(SΩf − Snf)|B = SB f̃ − S̃nf̃ .

From this we conclude

‖(SΩf − Snf)|B |Hr(B)‖ = inf
{
‖g|Hr(Rd)‖ : g ∈ Hr(Rd) , g|B = (SΩf − Snf)|B

}

≤ inf
{
‖g|Hr(Rd)‖ : g ∈ Hr(Rd) , g|Ω = SΩf − Snf

}

= ‖SΩf − Sn |H
r(Ω)‖ .

But this implies

elinn (S,Bt−1
q (Lp(B)), Hr(B)) ≤ elinn (S,Bt−1

q (Lp(Ω)), Hr(Ω)) .

Step 2. Let Sn : Bt−1
q (Lp(Ω)) → Hr(Ω) be an element of Cn, see the Appendix for a

definition of the set Cn. Then Snf = ϕ(Nn(f)), where Nn : Bt−1
q (Lp(Ω)) → R

n and

ϕ : R
n → Hr(Ω) are continuous mappings. We define

S̃nf̃ := ϕ
(
Nn

(
− ∆(ψ E(SB f̃))

))
|B
.

With

ϕ̃ := ϕ|B and Ñn := Nn

(
− ∆(ψ E(SB · ))

we immediately see that S̃n = ϕ̃ ◦ Ñn ∈ Cn. As above it follows (Snf)|B = S̃nf̃ . Now

we may argue as in Step 1.

Next we apply Theorem 5. This proves (23) as well as (24). Finally, we employ

Theorem 1 and (24) to conclude (25).

15



5.2.2 Estimates from Above

It is well-known that the solution operator S is an isomorphism of H t−1(Ω) onto

H t+1
0 (Ω) as long as −1/2 < t < 1/2, see [24, Thm. 0.5] and Proposition 2. We

consider the commutative diagram

Bt−1
q (Lp(Ω))

SF−−−→ Hr(Ω)

I1

y
xI2

H t−u−1(Ω)
S

−−−→ H t+1−u
0 (Ω) ,

where F := Bt−1
q (Lp(Ω)) and I1 and I2 are identity operators. This diagram becomes

meaningful if

u > d max
(
0,

1

p
−

1

2

)
and r < t+ 1 − u , (26)

since these two inequalities are guaranteeing the embeddings Bu+t−1
q (Lp(Ω)) →֒

H t−1−u(Ω) and H t+1−u
0 (Ω) →֒ Hr(Ω).

In the next theorem we need an u that satisfies (26) as well as −1/2 < t−u < 1/2.

Such an u clearly exists if

max
(
t−

1

2
, d max

(
0,

1

p
−

1

2

))
< min

(
t+

1

2
, t+ 1 − r

)
. (27)

Theorem 7. Let Ω ⊂ R
d be a bounded Lipschitz domain. Let 0 < p, q ≤ ∞, and let

(27) be satisfied.

(i) Then

elinn (S,Bt−1
q (Lp(Ω)), Hr(Ω)) ≍

{
n−(t+1−r)/d if 2 ≤ p ≤ ∞ ,

n−(t+1−r)/d+1/p−1/2 if 0 < p < 2 ,
(28)

as well as

econt
n (S,Bt−1

q (Lp(Ω)), Hr(Ω)) ≍ n−(t+1−r)/d . (29)

(ii) If in addition 2 ≤ p ≤ ∞, then we also have

enon
n,C(S,Bt−1

q (Lp(Ω)), Hr(Ω)) ≍ n−(t+1−r)/d , (30)

for all C ≥ 1.

Proof. In part (i) the estimates from above are consequences of the multiplicativity

of elinn and econt
n , see Lemma 1. The estimates from below in part (i) are consequences

of Lemma 4. Finally, part (ii) follows from Theorem 1 and the obvious inequality

enon
n,C ≤ elinn .
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Here is another variant of Theorem 7 but restricted to Bessel potential spaces.

Our point of departure is the following fundamental result of Jerison and Kenig, see

[24, Thm. 1.1]. Let Ω be a bounded Lipschitz domain in R
d, d ≥ 3. There exists

µ, 0 < µ ≤ 1, depending only on the Lipschitz character of Ω such that for every

f ∈ H t−1
p (Ω) there is a unique solution u ∈ H̊ t+1

p (Ω) to the Poisson problem (18)

provided the pair (t+1, 1/p) belongs to the open hexagon Hµ. Here (t+1, 1/p) ∈ Hµ

if one of the following holds:

(a) p0 < p < p′0 and 1
p
< t+ 1 < 1 + 1/p;

(b) 1 < p ≤ p0 and 3
p
− 1 − µ < t+ 1 < 1 + 1

p
;

(c) p′0 ≤ p <∞ and 1
p
< t+ 1 < 3

p
+ µ,

see also Figure 1 below. The value of p0 is fixed by

1

p0

:=
1

2
+
µ

2
.

Moreover, the estimate

‖u |H t+1
p (Ω)‖ ≤ c ‖ f |H t−1

p (Ω)‖

holds with c independent of f . A similar result holds true with d = 2, see [24,

Thm. 1.3], but with a different definition of Hµ. For d = 2 and 0 < µ ≤ 1/2 the

set Hµ is defined to be the collection of all pairs (t + 1, 1/p) such that one of the

following holds:

(a) p0 < p < p′0 and 1
p
< t+ 1 < 1 + 1/p;

(b) 1 < p ≤ p0 and 2
p
− 1

2
− µ < t+ 1 < 1 + 1

p
;

(c) p′0 ≤ p <∞ and 1
p
< t+ 1 < 2

p
+ 1

2
+ µ

and the value of p0 is fixed by 1
p0

:= 1
2

+ µ.

We wish to add two comments. The first one concerns µ in case of C1 domains.

In both cases (d ≥ 3 as well as d = 2) p0 may be chosen to be 1, see [24,

Thm. 1.1, Thm. 1.3]. The second one concerns the spaces H̊ t+1
p (Ω). It is easily

seen that the hexagon Hµ is a subset of the strip

{(s, 1/p) : 1 < p <∞, 1/p < s < 1 + 1/p} .

Hence H̊ t+1
p (Ω) = H t+1

p,∂Ω(Ω), see Proposition 2.

Since our mapping A is an isomorphism under the given restriction we can apply

the same type of arguments as in proof of Theorem 5.
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Theorem 8. Let Ω be a bounded Lipschitz domain.

(i) Suppose (t+ 1, 1/2) ∈ Hµ. Then, with S := A−1, and C ≥ 1 arbitrary we have

elinn (S,H t−1(Ω), Hr(Ω)) = econt
n (S,H t−1(Ω), Hr(Ω))

≍ enon
n (S,H t−1(Ω), Hr(Ω)) ≍ n(r−t−1)/d .

(ii) Let 0 < p, q ≤ ∞. Suppose (t+ 1, 1/p) ∈ Hµ and

r < t+ 1 − d max(0,
1

p
−

1

2
) . (31)

Then for the solution operator S of the Poisson problem (18) it holds

elinn (S,H t−1
p (Ω)), Hr(Ω)) ≍

{
n(r−t−1)/d+1/p−1/2 if 0 < p ≤ 2 ,

n(r−t−1)/d if 2 ≤ p ≤ ∞ ,

as well as

econt
n (S,H t−1

p (Ω), Hr(Ω)) ≍ n(r−t−1)/d .

Proof. Again we use the factorization of S : H t−1
p (Ω) → Hr

0(Ω) into S : H t−1
p (Ω) →

H t+1
p,∂Ω(Ω) = H̊ t+1

p (Ω) and I : H̊ t+1
p (Ω) → Hr

0(Ω). The result follows from

elinn (I, H̊ t+1
p (Ω), Hr(Ω)) ≍

{
n(r−t−1)/d+1/p−1/2 if 1 < p ≤ 2 ,

n(r−t−1)/d if 2 ≤ p <∞ ,

and

econt
n (I, H̊ t+1

p (Ω), Hr(Ω)) ≍ n(r−t−1)/d .

For spaces without the ◦ on the top these estimates can be found e.g. in [39] and

[10]. The result with ◦ can be proved by considering the spaces defined on a ball

contained in Ω (estimate from below). The estimate from above is obvious.

Again we also have a supplement to part (ii) of Theorem 5. As above we need an

additional restriction concerning the admissible domains Ω.

Theorem 9. Let Ω be a bounded Lipschitz domain. Suppose (t + 1, 1/p) ∈ Hµ and

r as in (31). Furthermore, we assume that Bt+1
q (Lp(Ω)) as well as Hr(Ω) can be

discretized by one common wavelet system B∗ belonging to BC∗ for some 1 ≤ C∗ <

∞. Then, if C ≥ C∗,

enon
n,C(S,H t−1

p (Ω), Hr(Ω)) ≍ n(r−t−1)/d .

18



Proof. Theorem 1 and Theorem 8 yield the lower bound. The upper bound follows

by applying the same arguments as in proof of Theorem 5 together with [10, Lem. 3,

Thm. 10] and

Bt+1
1 (Lp(Ω)) →֒ H t−1

p (Ω) →֒ Bt+1
∞ (Lp(Ω)) ,

see [37, 2.3.2, 2.5.6].

Remark 9. It seems to be easier to characterize Besov spaces by wavelets instead

of Bessel potential spaces with p 6= 2. For that reason we formulated Theorem 9 by

using Besov spaces as well.

5.3 Best n-term Wavelet Approximation of the Solution of

the Poisson Equation

For non-smooth domains optimal Galerkin spaces may depend on the operator A.

This is inconvenient. In this subsection we will investigate the approximation power

of best n-term approximation with respect to one fixed wavelet system. This does

not mean that we have an algorithm realizing this order of approximation. A few

further remarks will be given at the end of this subsection.

5.3.1 Besov Regularity of the Solution of the Poisson Equation

First we investigate additional regularity properties of the solution of the Poisson

equation with respect to Besov spaces with small p, sometimes called Besov regu-

larity of the solution.

It makes sense to decompose the (α, 1/q)-plane in dependence of the regularity of

the right-hand side f . We concentrate on the case d ≥ 3. For given Ω the associated

hexagon Hµ is given by the following collection of points ABCDEF :

A := (0, 0), B := (1/p0, 1/p0), C := (1, 2 − µ),

D := (1, 1), E := (1/p′0, 1 + 1/p′0), F := (0, µ) ,

see Subsection 5.2.2.
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We shall decompose our considerations into four cases indicated by the regions I−IV

in Figure 1. The starting point will be always the regularity of the right-hand side

f ∈ H t−1
p (Ω). However, the hexagon reflects the regularity of the solution. This

means we consider

• Case I: the pair (t+ 1, 1/p) ∈ Hµ = I;

• Case II: the pair (t+ 1, 1/p) ∈ II;

• Case III: the pair (t+ 1, 1/p) ∈ III;

• Case IV: the pair (t+ 1, 1/p) ∈ IV .

The simplest case is Case I. Then Theorem 1.1 in [24] and the chain of continuous

embeddings

u ∈ H t+1
p (Ω) →֒ Bt+1

∞ (Lτ (Ω)) →֒ Bt+1−ε
τ (Lτ (Ω)) , 0 < τ ≤ p , ε > 0 ,

yield the following.

Lemma 5. Let Ω be a bounded Lipschitz domain in R
d and Hµ the associated

hexagon. Let ε > 0. Then the solution u of the Poisson problem (18) with right-

hand side f ∈ H t−1
p (Ω), (t+ 1, 1/p) ∈ Hµ, belongs to all spaces Bα−ε

τ (Lτ (Ω)), where

α ≤ t+ 1 and 0 < τ ≤ p.
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More interesting and more complicated is the situation with respect to the other

regions. The most interesting Case II has been investigated in [7, Thm. 4.1]. Cases

III and IV can be reduced to Case II and Case I, respectively, by using obvious

embeddings (monotonicity of H t−1
p (Ω) with respect to p).

Lemma 6. Let Ω be a bounded Lipschitz domain in R
d. Let Hµ denote the associated

hexagon and p0 the specific number occurring in the definition of Hµ. Let ε > 0.

(i) Case II. Let 1 < p < p′0 and let t ≥ 1/p. Then the solution u of the Poisson

problem (18) with right-hand side f ∈ H t−1
p (Ω) belongs to all spaces Bα−ε

τ (Lτ (Ω)),

where

(α, 1/τ) ∈
({

(β, 1/q) : β ≤ min(t+ 1, 1 + 1/q) ,
d− 1

d+ 1
< q ≤ p

}

∪
{

(β, 1/q) : β ≤ min
(
t+ 1,

2d

d− 1

)
, 0 < q ≤

d− 1

d+ 1

})
.

(ii) Case III. Let d ≥ 3. Let p′0 ≤ p <∞ and suppose

t+ 1 ≥ 1 +
1

p′0
.

Then the solution u of the Poisson problem (18) with right-hand side f ∈ H t−1
p (Ω)

belongs to all spaces Bα−ε
τ (Lτ (Ω)), where

(α, 1/τ) ∈
({

(β, 1/q) : β ≤ min(t+ 1, 1 + 1/q) ,
d− 1

d+ 1
< q ≤ p′0

}

∪
{

(β, 1/q) : β ≤ max
(
t+ 1,

2d

d− 1

)
, 0 < q ≤

d− 1

d+ 1

})
.

(iii) Case IV. Let d ≥ 3. Let p′0 ≤ p <∞ and suppose

1 +
1

p′0
> t+ 1 ≥

3 − µ

1 + µ

1

p
+ µ .

Then the solution u of the Poisson problem (18) with right-hand side f ∈ H t−1
p (Ω)

belongs to all spaces Bα−ε
τ (Lτ (Ω)), where

(α, 1/τ) ∈
({

(β, 1/q) : β ≤ t+ 1, 0 < q ≤ q∗
}
,

where
1

q∗
:= (t+ 1 − µ)

1 + µ

3 − µ
.

Remark 10. The upper boundary is always given by a polygon in the (α, 1/q)-plane.

We shall call this boundary polygon of maximal regularity of u.
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5.3.2 Best n-term Approximation of the Solution of the Poisson Equa-

tion

The regularity information about u will be combined with the following result on

best n-term wavelet approximation. Here we always consider a pair of spaces. The

function u belongs to some Besov space Bβ
q (Lp(Ω)) and we want to approximate it

with respect to the norm of the space Hr(Ω). As a general assumption we use that

both spaces can be characterized by one common wavelet system B∗, see [10, Section

5.10]. By assumption such a wavelet system belongs to BC∗ for some 1 ≤ C∗ < ∞.

Sufficient conditions for certain special domains are known, we refer to [3, 41].

Proposition 3. Let Ω and B∗ be as above. Let 0 < τ ≤ ∞, r ∈ R and

u > d max
(
0,

1

τ
−

1

2

)
.

Then we have

sup
{
σn(u,B∗)Hr(Ω) : ‖u|Br+u

τ (Lτ (Ω))‖ ≤ 1
}
≍ n−u/d .

Remark 11. In this form the proposition is proved in [10] (recallHr(Ω) = Br
2(L2(Ω))

in the sense of equivalent norms). Rather extended surveys on nonlinear approxi-

mation are [12] and [35, 36], but see also [28].

Our strategy consists in using Proposition 3 with

u = ε+ d
(1

τ
−

1

2

)
, τ < 2 ,

and ε > 0 small. We consider the half-line
{

(β, 1/q) : β = r + d
(1

q
−

1

2

)
, 0 < q < 2

}
.

This time we have to study where this half-line and the polygon of maximal regu-

larity of u meet in a (β, 1/q)-plane, see Lemma 5, 6. There will be several different

cases. To make the situation more transparent we only consider the case p = 2.

However, all other cases can be treated in the same way. First we combine Proposi-

tion 3 and Lemma 5.

Case 1. Let −1/2 < t < 1/2, i.e. (t + 1, 1/2) ∈ Hµ. Let r < t + 1. Then the line

β = r + d(1/q − 1/2) meets the line β = t+ 1 for some q < 2. This implies

sup
{
σn(u,B∗)Hr(Ω) : ‖ f |H t−1(Ω)‖ ≤ 1

}
≤ c n− t+1−r

d
+ε ,

for some c independent of n.

Case 2. We continue with t ≥ 1/2. Lemma 6 (i) tells us that in case p = q = 2 the

22



regularity of u in limited by 3/2 in the Hu-scale. However, in [24] is proved, that for

any u > 3/2 there exists a Lipschitz domain Ω such that f ∈ C∞(Ω) but u 6∈ Hu(Ω).

So we restrict us to r < 3/2. We need some further decompositions. First we treat

t large.
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Case 2.1. Let t > 1 + 2/(d− 1), i.e., t+ 1 > 2d/(d− 1). This means the polygon of

maximal regularity is given by

β =

{
1 + 1/q if d−1

d+1
≤ q ≤ 2 ,

2d
d−1

if 0 < q ≤ d−1
d+1

,

see Lemma 6(ii). Let

P ∗ := (α∗, 1/τ ∗) , α∗ :=
2d

d− 1
,

1

τ ∗
:=

d+ 1

d− 1
.

At this point the Jerison-Kenig line β = 1 + 1/q, 0 < q < ∞, and the line β =

d(1
q
− 1), 0 < q < ∞, intersect. Next we study the intersection of the half-line

β = r+ d(1/q− 1/2), 0 < q < 2, with the Jerison-Kenig line β = 1 + 1/q. The cross

P# = (α, 1/τ) has the coordinates

α :=
3
2
d− r

d− 1
and

1

τ
:=

1 − r + d/2

d− 1
.

Case 2.1.1. If −d/2 ≤ r < 3/2 the point P# is located to the left of P ∗. By means

of Proposition 3 it follows

sup
{
σn(u,B∗)Hr(Ω) : ‖ f |H t−1(Ω)‖ ≤ 1

}
≤ c n−

3
2−r

d−1
+ε .
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In Figure 2 above we have plotted the case r = 0 (Case 2.1.1) and r < −d/2 (Case

2.1.2).

Case 2.1.2. Next we consider the case −∞ < r < −d/2. Now P# is located to the

right of P ∗. In this situation Proposition 3 yields

sup
{
σn(u,B∗)Hr(Ω) : ‖ f |H t−1(Ω)‖ ≤ 1

}
≤ c n− 2

d−1
+ r

d
+ε .

Case 3. Let 1/2 ≤ t ≤ 1 + 2/(d − 1). This time the polygon of maximal regularity

is given by

β =

{
1 + 1/q if 1

t
≤ q ≤ 2 ,

t+ 1 if 0 < q ≤ 1
t
,

see Lemma 6 (ii). The line β = t + 1 meets the Jerison-Kenig line at the point

(t+ 1, t). This implies the splitting into the following two cases, see Figure 3 below.

Case 3.1. Let t+ 1 + d(1/2− t) ≤ r < 3/2. The line β = r+ d(1/q− 1/2) meets the

Jerison-Kenig line in the point (β, 1/q) where

1

q
:=

1 − r + d/2

d− 1
and β := 1 +

1 − r + d/2

d− 1
.

This implies (by calculating (β − r)/d)

sup
{
σn(u,B∗)Hr(Ω) : ‖ f |H t−1(Ω)‖ ≤ 1

}
≤ c n−

3
2−r

d−1
+ε .

6
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Jerison-Kenig line
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•t+ 1

•
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•

•

•

•

•

t 1/τ ∗

•α∗

Fig. 3.
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Case 3.2. Let −∞ < r < t + 1 + d(1/2 − t). Then the line β = r + d(1/q − 1/2)

meets the line β = t+ 1 before it crosses the Jerison-Kenig line. This implies

sup
{
σn(u,B∗)Hr(Ω) : ‖ f |H t−1(Ω)‖ ≤ 1

}
≤ c n− t+1−r

d
+ε .

A part of these observations is collected in the following theorem.

Theorem 10. Let S denote the solution operator for the problem (18). Let B∗ be a

wavelet system satisfying the conditions mentioned at the beginning of this subsec-

tion. Let either

1/2 ≤ t ≤ 1 + 2/(d− 1) and −∞ < r < t+ 1 + d(1/2 − t)

or

−1/2 < t < 1/2 and −∞ < r < t+ 1 .

Then, for any ε > 0 and sufficiently large C best n-term wavelet approximation with

respect to the Hr(Ω) yields

enon
n,C(S,H t−1(Ω), Hr(Ω)) ≤ sup

{
σn(u,B∗)Hr(Ω) : ‖ f |H t−1(Ω)‖ ≤ 1

}

≤ c n− t+1−r

d
+ε

where c does not depend on n ∈ N.

Most interesting are the special cases r = 1 (approximation in the energy norm)

and r = 0 (approximation in the L2-norm).

Corollary 2. Let S denote the solution operator for the problem (18). Let B∗ be a

wavelet system satisfying the conditions mentioned at the beginning of this subsec-

tion. Then, for any ε > 0 and sufficiently large C best n-term wavelet approximation

with respect to the H1(Ω) yields

enon
n,C(S,H t−1(Ω), H1(Ω)) ≤ sup

{
σn(u,B∗)H1(Ω) : ‖ f |H t−1(Ω)‖ ≤ 1

}

≤ c





n− 1
2(d−1)

+ε if t ≥ 1
2

d
d−1

,

n− t

d
+ε if 0 < t ≤ 1

2
d

d−1
,

where c does not depend on n ∈ N.

Corollary 3. Let S denote the solution operator for the problem (18). Let B∗ be a

wavelet system satisfying the conditions mentioned at the beginning of this subsec-

tion. Then, for any ε > 0 and sufficiently large C best n-term wavelet approximation
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with respect to the L2(Ω) yields

enon
n,C(S,H t−1(Ω), L2(Ω)) ≤ sup

{
σn(u,B∗)L2(Ω) : ‖ f |H t−1(Ω)‖ ≤ 1

}

≤ c





n− 3
2(d−1)

+ε if t ≥ 2+d
2d−2

,

n− t+1
d

+ε if − 1
2
< t < 2+d

2d−2
,

where c does not depend on n ∈ N.

However it seems to be also interesting that we have some convergence results in

norms which are stronger than the energy norm.

Corollary 4. Let S denote the solution operator for the problem (18). Let B∗ be a

wavelet system satisfying the conditions mentioned at the beginning of this subsec-

tion. Let 1 < r < 3/2. Then, for any ε > 0 and sufficiently large C best n-term

wavelet approximation with respect to the Hr(Ω) yields

enon
n,C(S,H t−1(Ω), Hr(Ω)) ≤ sup

{
σn(u,B∗)Hr(Ω) : ‖ f |H t−1(Ω)‖ ≤ 1

}

≤ c





n−
3
2−r

d−1
+ε if 1 + d

2
− (d− 1)t ≤ r ,

n− t+1−r

d
+ε if r ≤ 1 + d

2
− (d− 1)t ,

where c does not depend on n ∈ N.

Remark 12. In all three special cases we have a similar behaviour. As long as the

smoothness t is below of some barrier depending on r and d, the rate of approxima-

tion is the expected one (= (t + 1 − r)/d + ε). For large values of t we have only

suboptimal rates of convergence.

Remark 13. Theorem 10 implies that best n-term wavelet approximation for the

solution of the Poisson equation is optimal for a huge scale of (weak) norms. More-

over, we gain approximation order as the norms get weaker. This can be interpreted

as a nonlinear analogue to the classical Aubin-Nitsche trick for uniform approxima-

tion schemes, see. e.g., [20] for details. However, the reader should observe that this

is still a quite theoretical result since the concrete design of an optimal numerical

approximation scheme is an open question. It is well-known that adaptive wavelet

schemes indeed realize the convergence order of best n-term wavelet approximation,

but this is only true for approximations with respect to the energy norm, see, e.g.

[4, 5] for details. Convergence with respect to stronger norms can only be estab-

lished in specific settings, i.e., for adaptive schemes based on Gabor frames [8]. To

our knowledge, no convergence results for weaker norms exist so far.
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Let us finally remark that for specific domains, i.e., for polygonal domains con-

tained in R
2, much more far-reaching results can be shown. It turns out that in this

case the restrictions caused by the Jerison-Kenig line simply disappear. This means

that for polygonal domains best n-term wavelet approximation is optimal for all

values of t.

Theorem 11. Let S denote the solution operator for the problem (18) in a bounded

polygonal domain Ω contained in R
2 Let ωl, l = 1, . . . , N denote the measures of

the interior angles of Ω and suppose that t 6= mπ/ωl for all l = 1, . . . , N,m ≥ 1.

Let B∗ be a wavelet system satisfying the conditions mentioned at the beginning of

this subsection. Then, for any ε > 0, r < 3/2 and sufficiently large C best n-term

wavelet approximation with respect to the Hr(Ω) yields

enon
n,C(S,H t−1(Ω), Hr(Ω)) ≤ sup

{
σn(u,B∗)Hr(Ω) : ‖ f |H t−1(Ω)‖ ≤ 1

}

≤ c n− t+1−r

d
+ε

where c does not depend on n ∈ N.

Proof. The proof is based on the fact that in polygonal domains the solution u to

(18) can be decomposed into a regular part uR and a singular part uS, u = uR + uS,

where uR ∈ H t+1(Ω) and uS depends only on the shape of the domain and can be

computed explicitely, see [19] for details. It has been shown in [6] that the singular

part uS is contained in all the spaces Bα
τ (Lτ (Ω)) where

(α, 1/τ) ∈
{

(β, 1/q) : β <
2

q
+

1

2
, 0 < q ≤ 2

}
.

Consequently, u is contained in the Besov spaces corresponding to the set

(α, 1/τ) ∈
{

(β, 1/q) : β < min
(
t+ 1,

2

q
+

1

2

)
, 0 < q ≤ 2

}
.

Now another application of Proposition 3 yields the result.

Now we turn to the case that we assume that f ∈ H t−1
p (Ω), 1 < p < ∞, p 6= 2.

It is not our aim to treat the most general case. We concentrate on two situations

where best n-term approximation is optimal.

Theorem 12. Let S denote the solution operator for the problem (18). Let B∗ be a

wavelet system satisfying the conditions mentioned at the beginning of this subsec-

tion.

(i) Let (t+ 1, 1/p) ∈ Hµ. Further we assume

r < t+ 1 − d max
(
0,

1

p
−

1

2

)
. (32)
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Then, for any ε > 0 and sufficiently large C best n-term wavelet approximation with

respect to the Hr(Ω) yields

enon
n,C(S,H t−1

p (Ω), Hr(Ω)) ≤ sup
{
σn(u,B∗)Hr(Ω) : ‖ f |H t−1(Ω)‖ ≤ 1

}

≤ c n− t+1−r

d
+ε (33)

where c does not depend on n ∈ N.

(ii) Let (t+ 1, 1/p) ∈ II (see Subsection 5.3.1). Further we assume

max
(1

2
,
1

p

)
≤ t ≤ 1 + 2/(d− 1) and −∞ < r < t+ 1 − d

(
t−

1

2

)
. (34)

Then, for any ε > 0 and sufficiently large C best n-term wavelet approximation with

respect to the Hr(Ω) yields the same estimate as in (33).

Proof. Step 1. Proof of (i). Observe that (32) is guaranteeing that the lines β = t+1

and β = r + d(1
q
− 1

2
) intersect at a point (t + 1, 1/q∗) such that q∗ ≤ p. Now it is

enough to combine Lemma 5 with Proposition 3.

Step 2. Proof of (ii). The point of intersection of the lines β = r + d(1
q
− 1

2
) and

β = t+ 1 has the coordinates

α∗ := t+ 1 and
1

q∗
:=

t+ 1 − r

d
+

1

2
.

By assumption (34) we obtain t ≥ 1/2 and hence r < t + 1. This shows that

0 < q∗ < 2. Furthermore, since t− 1/2 ≥ 1/p− 1/2 we conclude

r < t+ 1 − d
(
t−

1

2

)
≤ t+ 1 − d

(1

p
−

1

2

)
.

But this implies q∗ < p. Now we can argue as in proof of Theorem 10.

Remark 14. (i) Also in the general context we have the phenomenon that if r and t

are not too large then the approximation order of best n-term wavelet approximation

is the optimal one.

(ii) The part (ii) in Theorem 12 represents an improvement of Theorem 10 if p > 2.

Under weaker assumptions as in Theorem 10 we end up with the same order of best

n-term approximation.

6 Appendix

For convenience of the reader we collect the definitions of the various different widths

that are used in this paper.
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6.1 Linear Widths

We consider the class Ln of all continuous linear mappings Sn : F → X,

Sn(f) =
n∑

i=1

Li(f)hi

with arbitrary hi ∈ X and the Li are linear functionals defined on F . The worst case

error of optimal linear mappings is given by the approximation numbers or linear

widths

elinn (S, F,X) = inf
Sn∈Ln

e(Sn, F,X).

6.2 Nonlinear Widths

For a given basis B of X we consider the class Nn(B) of all (linear or nonlinear)

mappings of the form

Sn(f) =
n∑

k=1

ck hik ,

where the ck and the ik depend in an arbitrary way on f . We also allow that the basis

B to be chosen in a nearly arbitrary way. Then the nonlinear widths enon
n,C(S, F,X)

are given by

enon
n,C(S, F,X) = inf

B∈BC

inf
Sn∈Nn(B)

e(Sn, F,X).

Here BC denotes a set of Riesz bases for X where C indicates the stability of the

basis. Hence we assume here that X is a Hilbert space. Then a sequence h1, h2, . . .

of elements of X is called a Riesz basis for X if there exist positive constants A and

B such that, for every sequence of scalars α1, α2, . . . with αi 6= 0 for only finitely

many i, we have

A
( ∑

k

|αk|
2
)1/2

≤
∥∥∥

∑

k

αk hk

∥∥∥
X
≤ B

( ∑

k

|αk|
2
)1/2

(35)

and the vector space of finite sums
∑
αk hk is dense in X. In what follows

B = {hi | i ∈ N} (36)

will always denote a Riesz basis of X and A and B will be the corresponding optimal

constants in (35). For a real number C ≥ 1 we define

BC :=
{
B : B/A ≤ C

}
. (37)
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6.3 Manifold Widths

Let Cn be the class of continuous mappings, given by arbitrary continuous mappings

Nn : F → R
n and ϕn : R

n → X. Again we define the worst case error of optimal

continuous mappings by

econt
n (S, F,X) = inf

Sn∈Cn

e(Sn, F,X),

where Sn = ϕn ◦ Nn. These numbers are called manifold widths of S. We refer to

[13, 14, 15, 27] and [9, 10] for further information.
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