
Henryk Woźniakowski and the Complexity of

Continuous Problems

Erich Novak

November 12, 2008

Henryk Woźniakowski was presented with an honorary doctoral

degree by the University of Jena. The celebration took place

on June 6, 2008, in the Aula of the Friedrich-Schiller-Universität

Jena. This paper is an expanded and translated version of my

laudatio.

1 Introduction

Henryk Woźniakowski is a fascinating colleague and friend. This short paper

can only describe a very small part of what Henryk has done.

Henryk was born on August 31, 1946, in Lublin, Poland. Lublin is about

150 kilometers south east of Warsaw and today has about 350 000 inhabi-

tants. His family moved to Warsaw in 1950. Henryk studied mathematics

and computer science at the University of Warsaw and got his diploma in

1969, Ph.D. in 1972 and habilitation in 1976. From 1972 to 1977, he was

assistant professor; in 1977 he became an associate professor in Warsaw.

In 1981, Henryk was elected chairman of the Department of Mathematics,

Computer Science and Mechanics. He was running as a Solidarity candidate.

In the same year, the Senate of the University of Warsaw decided that Henryk

should become full professor. However, he had to wait till 1988 that this

decision became a reality because of political reasons—Henryk Woźniakowski

was for many years one of the leaders of the Solidarność movement at the

University of Warsaw. In 1989, after political changes in Poland, Henryk
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was elected chairman of Solidarity at the University of Warsaw and served

two years. Even before, in 1984, Henryk got a position as a full professor at

Columbia University in New York. Since then, he has been teaching in both

Warsaw and at Columbia.

Henryk received many prizes, such as the Stanis law Mazur prize of the

Polish Mathematics Society in 1988. He had long stays in Berkeley (MSRI

and ICSI), at the MGU in Moscow, at Carnegie-Mellon University, and at

the University of New South Wales in Sydney. In 2005 Henryk was awarded

the Humboldt Research Award and visited from November 2006 till July

2007 the University of Jena. Henryk is a member of the Polish Academy of

Sciences.

The University of Jena (FSU) is quite picky with respect to honorary

doctoral degrees. Although the FSU celebrated its 450th anniversary in 2008,

only three colleagues have received an honorary degree because of their work

in mathematics:

• Erna Weber, 1897–1988, for her work in statistics,

• Aleksander Pe lczyński, born 1932, for his work in functional analysis,

• Boris Trachtenbrot, born 1921, for his work in theoretical computer

science.

After Aleksander Pe lczyński, Henryk is the second mathematician from

Warsaw who is honored by the University of Jena. This is certainly a very

good proof of the high quality of Polish mathematics, as well as the good rela-

tions between the Universities in Warsaw and Jena. I cite from the diploma:

In Anerkennung seiner grundlegenden Arbeiten zur Numerischen

Mathematik. Besonders hervorgehoben seien die tiefen Einsichten

durch die neue Disziplin
”
Information-Based Complexity“ und die

Arbeiten zum Fluch der Dimension, mit deren Hilfe man erstmals

versteht, welche hochdimensionalen Probleme lösbar sind.1

1Translation: In recognition of his fundamental work in numerical mathematics. We

emphasize in particular the deep insights by the new discipline “Information-Based Com-

plexity” and the work on the curse of dimensionality. With this work we understand for

the first time which high-dimensional problems are tractable.
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2 Early Work

Henryk is an excellent mathematician with a great creative urge and power.

His first paper [36] appeared in 1969. Henryk was 23 years old and got his

diploma in the same year. During the next ten years Henryk published many

papers about the numerical solution of linear and nonlinear equations.

Several of these papers, as well as his Ph.D. dissertation, deal with the

maximal order of methods for the solution of nonlinear equations. In partic-

ular, Woźniakowski proved a conjecture of Traub and Kung concerning the

maximal order of multi-point iterations without memory, see Woźniakowski

[37, 38, 39], Traub and Woźniakowski [26], and the paper by Joseph Traub

in this book.

Several of his papers about the numerical stability for solving equations

appeared in Numerische Mathematik and in BIT in the years 1977 and 1978.

These papers [7, 40, 41, 42] are still cited quite often.

3 A General Theory of Optimal Algorithms

Henryk was decisively involved with the creation of two big theories—the

second one is his own child, other colleagues collaborating only later.

Together with Joseph Traub, Henryk built a complexity theory for con-

tinuous problems around 1977. The discrete world of the Turing machine

is too narrow for many applications. We want to understand efficient algo-

rithms for numerical integration, for the solution of differential equations,

and for many other problems that involve real- or complex-valued functions

on intervals or more complicated domains.

Of course there is a long tradition of studying algorithms for continuous

problems and some of the algorithms even bear the name of their inventors,

such as Newton’s method, Gaussian quadrature formula, or Lagrange inter-

polation. More recent algorithms include the Metropolis algorithm or the

Jenkins-Traub algorithm.

Also the complexity, i.e., the cost of optimal algorithms, was studied,

sometimes for a restricted class of algorithms and always only for a specific

problem.

Hence there existed something what could be called “pieces of the puzzle”

and it is fair to mention many fathers of the theory of optimal algorithms for
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continuous problems, such as Babushka, Bakhvalov, Kolmogorov, Nikolskij,

Smolyak and Sobolev in the east and Golomb, Kiefer, Sard and Weinberger

in the west. This list is certainly far from complete!

But the flow of information between the west and the east was sometimes

slow and, more important, there only existed somewhat isolated results for

specific problems. These results became a part of a comprehensive theory

only later.

Hence the “first black book” by Traub and Woźniakowski, A General

Theory of Optimal Algorithms, was a sensation. It was published in 1980

by Academic Press. This book described for the first time a comprehensive

theory for continuous problems. The book also contains, as Part C, a brief

history of the field and a long annotated bibliography. There the reader may

find all the references that are missing here.

Ko-Wei Lih writes in the Mathematical Reviews an excellent report that

ends with “. . . the authors should be congratulated on their magnificent

product which elevates the study of the approximate to a higher dimension.”

Actually, this report is still very informative and this is why it is reprinted

here in full length:

This monograph is a report on work in progress in the theory of

analytic computational complexity which is the study of optimal

algorithms for problems solved approximately. Such a line of in-

vestigation had its inception around 1950 with the work of Kiefer,

Sard, and Nikolskij on optimal algorithms for locating the max-

imum, for integration, for approximation, etc. This stream of

research generated mainly results concerning specific problems.

In 1961 Traub initiated a second stream of research with the

study of solutions to nonlinear equations by iterative methods.

The possibility of unification of these two streams into one gen-

eral and necessarily more abstract framework was first shown by

the authors in two long reports [“General theory of optimal error

algorithms and analytic complexity”, parts A and B; per bibl.].

This monograph includes extended and improved material from

these two reports. A central concern of the computer scientist is

the selection of the best algorithm for solving a problem. How-

ever, selection of the best is subject to multivariate criteria such
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as time and space complexity, ease of implementation, robust-

ness, and stability. The authors only deal with time complex-

ity here. Nevertheless, conclusions could be easily adjusted to

work for space complexity. Also, the authors study only prob-

lems which cannot be solved exactly with finite complexity or

problems which one chooses to solve approximately for reasons of

efficiency. The final theory includes algebraic complexity as a spe-

cial case. The generality and simplicity achieved by this theory

has its cornerstone on the notion of information operator. Adver-

sary arguments based on the information used by an algorithm

lead to lower bound theorems. This has its practical application

in the rationalization of the synthesis of algorithms. Traditional

ad hoc algorithms are revealed to be paying high penalty without

the use of optimal information. The authors propose 20 general

questions to be studied. The following is a sample of some of

them. 1. What is a lower bound on the error of any algorithm for

solving a problem using given information? 2. In general is there

an algorithm which gets arbitrarily close to this lower bound? 3.

What is the optimal information for solving a problem? 4. Given

a specific problem, how do we characterize and construct an opti-

mal algorithm for its solution? 5. Can it be established that one

problem is intrinsically harder than another? 6. Compare the

power of adaptive and non-adaptive algorithms. 7. Compare the

power of linear and nonlinear information operators. 8. What is

the class of all problems which can be solved by iteration using

linear information?

This monograph is divided into three parts. Part A has ten chap-

ters and deals with a general information model. The basic con-

cepts are first formalized. The notions of optimal error algorithm

and optimal complexity algorithms are introduced. Then a large

portion is devoted to the study of linear problems using linear

information. It is shown that adaptive information is not more

powerful than non-adaptive information for a linear problem. A

linear problem is also constructed to possess no linear optimal

error algorithms. However, natural problems are immune from
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such pathology. Algorithms optimal in the sense of Sard and

Nikolskij are shown to be optimal error algorithms. There exist

linear problems with essentially arbitrary complexity. So there

are no “gaps” in the complexity function.

In Chapter 6, the theory is applied to the solution of many differ-

ent linear problems including approximation, interpolation, inte-

gration, and the solution of linear partial differential equations.

Finally, the theory of nonlinear information is developed and ap-

plications given. In the general information setting the class of

nonlinear information operators is actually too powerful to be of

interest. In the last two chapters, a partial hierarchy of com-

plexity is presented and other models of computation are briefly

discussed. Part B consists of one chapter with 11 sections. It

deals with the iterative information model and is built on some

20 years of research on iterative complexity initiated by Traub.

The deepest question studied is: what problems can be solved by

iteration using iterative linear information? For one-point sta-

tionary iterations using iterative linear information, it is shown

that the class of iterative algorithms is empty for a problem unless

the “index” of the problem is finite. A conjecture characterizing

problems with finite index is posed to the effect that a positive

solution implies that only nonlinear equations can be solved by

iteration. Part C provides a brief history of the theory of analytic

computational complexity and an annotated bibliography of over

300 papers and books covering both the eastern European and

the Western literature. The authors supply numerous conjectures

and open problems throughout the book. They also recommend

eight tracks for various readers with particular interests such as

researchers interested in open problems, researchers interested in

the literature on history, theoretical computer scientists, mathe-

maticians, numerical analysts, scientists and engineers. Some of

these readers will definitely find that the study of this book is a

quite strenuous task. However, the authors should be congratu-

lated on their magnificent product which elevates the study of the

approximate to a higher dimension. [MR0584446 (84m:680410)]
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4 Information-Based Complexity

There are two more monographs, written jointly with Joseph Traub and Grze-

gorz Wasilkowski. The third monograph, Information-Based Complexity, is

certainly a special highlight.

The first monograph did not discuss the average case setting and did

not study randomized algorithms. These are two major new subjects of the

“second black book”, that appeared again with Academic Press, see [24]. Of

course the book contains many more results, for example also a section on

linear PDEs written by Arthur Werschulz. Again I cite the complete report

from the Mathematical Reviews, written by M. I. Dekhtyar.

There are two main branches of computational complexity the-

ory. The first is combinatorial complexity, which considers prob-

lems for which the information is complete, exact, and free. The

second, which deals with problems for which the information is

partial, noisy, and priced and for which solutions are not exact,

is called information-based complexity and is the subject of the

book under review. The authors summarize and present a num-

ber of results that are concerned with various definitions of the

cost and the error of algorithms. The book may be viewed as

a continuation and extension of two previous books [Traub and

Woźniakowski, A general theory of optimal algorithms, Academic

Press, New York, 1980; the authors, Information, uncertainty,

complexity, Addison-Wesley, Reading, MA, 1983].

The book consists of twelve chapters and two appendices. Chap-

ter 1 is an introduction. In Chapter 2, the basic concepts of

information-based complexity are illustrated by the example of

continuous binary search.

In Chapter 3 an abstract formulation of an information-based

theory is presented. A problem is defined as a solution operator

S : F → G, where F is a set and G is a normed linear space

over the scalar field of real or complex numbers. Elements f ∈ F

are called problem elements, and the S(f) are called solution el-

ements. Computation of an approximation U(f) of S(f) consists
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of two steps. The first is to obtain information about f :

N(f) = [L1(f), L2(f ; y1), · · · , Ln(f)(f ; y1, · · · , yn(f)−1)],

where yi = Li(f ; y1, · · · , yi−1), and Li is a permissible informa-

tion operation. Information N is called non-adaptive if yi =

Li(f). The second step is to evaluate the approximation by

N(f) 7→ U(f) = ϕ(N(f)), where ϕ is a mapping (algorithm):

N(F ) → G. Then the cost of computing U(f) is given by

cost(U, f) = cost(N, f) + cost(ϕ, N(f)). The main results pre-

sented in the book deal with the first item of this sum. Three

definitions of the error e(U) are considered: (i) the worst case

setting: e(U) = {sup ‖S(f)−U(f)‖ f ∈ F}; (ii) the average case

setting: e(U) = (
∫

F
‖S(f)−U(f)‖(dF ))1/2; (iii) the probabilistic

setting: let δ ∈ [0, 1]; then e(U) = inf{{sup ‖S(f) − U(f)‖ f ∈
F − A} (A) ≤ δ}. In Chapter 4 theoretical results for the worst

case setting are presented. The radius of information is intro-

duced; it is a sharp lower bound on the error of any algorithm

using this information. The minimal cardinality of information

with radius at most ε is denoted by m(ε). If c is the cost of

one information operation then c m(ε) is a lower bound on the

ε-complexity. Conditions under which this bound is almost sharp

are investigated. Special attention is paid to the class of linear

problems. It is shown that the use of adaptive information does

not decrease ε-complexity for this class. Chapter 5 contains exam-

ples of approximation problems to which the results of Chapter 4

are applied to obtain complexity bounds and optimal algorithms.

They include integration, function approximation, optimization,

etc. For most of them only short sketches of the results are pre-

sented and the authors direct the reader to the references cited

for detailed analysis.

Chapters 6 and 7 deal with the average case setting. A Gaussian

measure is proposed as the probability measure on the set F . The

average radius of information and the average minimal cardinal-

ity of error mavg(ε) are introduced. As in Chapter 4, c mavg(ε) is

a lower bound on the average ε-complexity. It is shown that this
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bound is tight for linear problems. In Chapter 7 three linear prob-

lems are considered and bounds on their average ε-complexity are

established.

The probabilistic setting is considered in Chapter 8. The proba-

bilistic radius of information and the probabilistic (ε, δ)-cardinality

number mprob(ε, δ) are defined in such a way that c mprob(ε, δ) is

a lower bound on probabilistic complexity. Complexity of linear

problems is analyzed. The probabilistic complexity is compared

with the average complexity and some relations are developed.

Chapter 9 contains a comparison between different settings for

four problems: the integration of smooth functions, the integra-

tion of smooth periodic functions, the approximation of smooth

periodic functions, and the approximation of smooth non-periodic

functions. For each problem a 5 × 3 table is presented with for-

mulas for the complexity under five error criteria (absolute error,

normalized error, and three kinds of relative errors) in three set-

tings.

In Chapter 10 the asymptotic setting is studied. Two approaches

to optimal asymptotic algorithms are considered. Under one of

them the best speed of convergence is achieved by algorithms

which are optimal in the worst case setting. The other approach

leads to a close relation between the asymptotic and average case

settings.

The main question investigated in Chapter 11 is the extent to

which randomization can lower the worst and the average case

complexities. The results presented here show that randomiza-

tion does not help significantly for linear problems.2 Some results

concerning noisy information are given in Chapter 12. Noisy in-

formation about f ∈ F has the form

N(f, x) = [L1(f) + x1, · · · , Ln(f ; z1, · · · , zn−1) + xn],

2Remark of the author: It is true that randomization does not help for some linear

problems. There are other problems, however, where randomization helps a lot; the most

popular is the problem of numerical integration.
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where x = [x1, · · · , xn] is noise, n = n(f, x), and zi = Li(f ; z1, · · · ,

zi−1) + xi is the ith observed piece of information. The relation-

ship between adaptive information and non-adaptive information

is discussed. These areas are open for further investigation.

Two appendices contain the main definitions and facts concern-

ing functional analysis and measure theory. The extensive bib-

liography includes more than 450 items. Almost all chapters

and sections are followed by notes and remarks that contain

some additional results, comments and references. The book is

clearly written and may be used as a handbook by specialists in

information-based complexity; it may also be recommended as

a textbook for those who want to study this area of computer

science. [MR0958691 (90f:68085)]

5 Tractability of Multivariate Problems

Many results in numerical analysis and approximation theory concern the

optimal order of convergence for a problem and a class of functions. Also

many results in the two black books GTOA and IBC deal with this subject.

There is a widespread belief that we understand the complexity of a problem

if we know the optimal order. This belief is wrong; it was Henryk who first

studied the following problem seriously since about 1992:

Which multivariate problems can be efficiently solved in high di-

mensions?

First we formalize this question according to [45, 46]. Assume that we

want to solve a problem Sd for functions f ∈ Fd, where Fd is a class of

d-variate functions. An example would be the computation of

Sd(f) =

∫

[0,1]d
f(x) dx, (1)

for f ∈ Fd, up to an error ε. Assume that the cost of an optimal algorithm

for this problem is n(ε, d). If

n(ε, d) ≤ C · ε−αdβ (2)
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for certain C, α, β > 0 then the problem is called (polynomially) tractable.

Observe that C is independent of d in the definition (2) of tractability. There-

fore the optimal order of convergence does not say much about tractability.

We give three examples. Only the first example uses known results about

the order of convergence to decide the tractability problem.

5.1 Integration of Ck-Functions

There is a basic result of Bakhvalov from the year 1959 that the optimal

order of convergence for the computation of the integral (1) for Ck-functions

is n−k/d. We conclude that the problem is not (polynomially) tractable.

Roughly speaking, the cost is exponential in d, this is called the curse of

dimensionality, after Bellman.

5.2 Integration of smooth periodic functions

We now consider the Korobov space Fd,α of complex functions from L1([0, 1]d),

where α > 1. This class is defined by controlling the sizes of Fourier coeffi-

cients of functions. More precisely, for h = [h1, h2, . . . , hd] with integers hj ,

consider the Fourier coefficients

f̂(h) =

∫

[0,1]d
f(x)e−2πih·x dx,

where i =
√
−1 and h · x =

∑d
j=1 hjxj . Denote h̄j = max(1, |hj|). Then

Fd,α =
{

f ∈ L1([0, 1]d) | |f̂(h)| ≤
(

h̄1h̄2 · · · h̄d

)−α
for all h ∈ Z

d
}

.

Again we consider the integration problem

Sd(f) =

∫

[0,1]d
f(x) dx for f ∈ Fd,α.

We consider algorithms An that use n function values, the worst case error

ewor(An), the nth minimal worst case error e(n, d), and the minimal number

nwor(ε, Sd, Fd,α)

of function values needed to approximate the integrals to within ε.
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The integration problem for the Korobov class Fd,α has been studied in

a number of papers and books. It is known that

e(n, d) = O
(

n−p
)

as n → ∞, for all p < α.

For p = α we have

e(n, d) = O
(

n−α (ln n)β(d,α)
)

where β(d, α) is of order d. Such errors can be obtained by lattice rules of

rank 1, i.e., by algorithms of the form

An(f) =
1

n

n−1
∑

j=0

f
({

j
z

n

})

,

where n is prime and z ∈ {1, 2, . . . , n − 1}d is a well-chosen integer vector.

Here, {x} denotes the vector whose jth component is the fractional part

of xj .

Hence, for large α, the optimal order of convergence is also large and

roughly equal to α independently of d. This is encouraging, but what can

we say about tractability?

The tractability of this integration problem was studied by Sloan and

Woźniakowski in [20], where it was proved that

e(n, d) = 1 for n = 0, 1, . . . , 2d − 1, (3)

which implies that

nwor(ε, Sd, Fd,α) ≥ 2d for all ε ∈ (0, 1).

That is, even for arbitrarily large α, despite an excellent order of convergence,

this integration problem is not tractable. More about this problem can be

found in Henryk’s paper in this booklet.

5.3 The star-discrepancy

After two negative examples the reader may have the impression that all

“interesting” problems are intractable and the curse of dimension is “always”

present. This would be a wrong impression, since there are many tractable
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problems; actually there are many multivariate problems that can be solved

in very high dimension.

Discrepancy is a measure of the deviation from uniformity of a set of

points. It is desirable that a set of n points be chosen so that the discrepancy

is as small as possible. The notion of discrepancy appears in many fields of

mathematics.

We begin with the definition of the star discrepancy. Let x = [x1, x2 . . . , xd]

be from [0, 1]d. By the box [0, x) we mean the set [0, x1) × [0, x2) × · · · ×
[0, xd), whose (Lebesgue) measure is clearly x1x2 · · ·xd. For given points

t1, t2, . . . , tn ∈ [0, 1]d, we approximate the volume of [0, x) by the fraction of

the points ti that are in the box [0, x). The error of such an approximation

is called the discrepancy function, and is given by

disc(x) = x1x2 · · ·xd −
1

n

n
∑

i=1

1[0,x)(ti),

where 1[0,x) is the indicator (characteristic) function, so that 1[0,x)(ti) = 1 if

ti ∈ [0, x) and 1[0,x)(ti) = 0 otherwise.

The star discrepancy of the points t1, . . . , tn ∈ [0, 1]d is defined by the

L∞-norm of the discrepancy function disc

disc(t1, t2, . . . , tn) = sup
x∈[0,1]d

∣

∣

∣

∣

x1x2 · · ·xd −
1

n

n
∑

i=1

1[0,x)(ti)

∣

∣

∣

∣

. (4)

The main problem associated with star discrepancy is that of finding

points t1, t2, . . . , tn that minimize disc, and to study how this minimum de-

pends on d and n. We now show that the star discrepancy is intimately re-

lated to multivariate integration. Let W 1

1 := W
(1,1,...,1)
1 ([0, 1]d) be the Sobolev

space of functions defined on [0, 1]d that are once differentiable in each vari-

able and whose derivatives have finite L1-norm. We consider first the sub-

space of functions that satisfy the boundary conditions f(x) = 0 if at least

one component of x is 1, and define the norm

‖f‖∗d,1 =

∫

[0,1]d

∣

∣

∣

∣

∂d

∂x
f(x)

∣

∣

∣

∣

dx.

Here, ∂x = ∂x1∂x2 · · ·∂xd.
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That is, we consider the class

F ∗
d =

{

f ∈ W 1

1

∣

∣ f(x) = 0 if xj = 1 for some j ∈ [1, d], and ‖f‖∗d,1 ≤ 1
}

.

Consider the multivariate integration problem

Sd(f) =

∫

[0,1]d
f(x) dx for f ∈ F ∗

d .

We approximate Sd(f) by quasi-Monte Carlo algorithms, which are of the

form

Qd,n(f) =
1

n

n
∑

j=1

f(tj)

for some points tj ∈ [0, 1]d. We stress that the points tj are chosen non-

adaptively and deterministically. The name “quasi-Monte Carlo” is widely

used, since these algorithms are similar to the Monte Carlo algorithm which

takes the same form but for which the points tj are randomly chosen, usually

as independent uniformly distributed points over [0, 1]d.

We also stress that we use especially simple coefficients n−1. This means

that if f(t1), f(t2), . . . , f(tn) are already computed then the computation of

Qd,n(f) requires just n − 1 additions and one division. Since the points

t1, t2, . . . , tn are non-adaptive, Qd,nf can be evaluated very efficiently in par-

allel since each f(tj) can be computed on a different processor. Obviously,

Qd,n integrates constant functions exactly, even though 1 /∈ F ∗
d .

The quality of the algorithm Qn,d depends on the points tj . There is a

deep and beautiful theory about how the points tj should be chosen. We

add that quasi-Monte Carlo algorithms have been used very successfully for

many applications, including mathematical finance applications, for d equal

360 or even larger.

We now recall Hlawka and Zaremba’s identity, which states that for f ∈
W 1

1 , we have

Sd(f) − Qd,n(f) =
∑

∅6=u⊆{1,2,...,d}

(−1)|u|
∫

[0,1]|u|
disc(xu, 1)

∂|u|

∂xu

f(xu, 1)dxu.

Here, we use the following standard notation. For any subset u of {1, 2, . . . , d}
and for any vector x ∈ [0, 1]d, we let xu denote the vector from [0, 1]|u|, where
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|u| is the cardinality of u, whose components are those components of x

whose indices are in u. For example, for d = 5 and u = {2, 4, 5} we have

xu = [x2, x4, x5]. Then ∂xu =
∏

j∈u
∂xj and dxu =

∏

j∈u
dxj . By (xu, 1) we

mean the vector from [0, 1]d with the same components as x for indices in u

and with the rest of components being replaced by 1. For our example, we

have (xu, 1) = [1, x2, 1, x4, x5]. Note that

disc(xu, 1) =
∏

k∈u

xk −
1

n

n
∑

j=1

1[0,xu) ((tj)u) .

For f ∈ F ∗
d , the boundary conditions imply that all terms in Hlawka and

Zaremba identity vanish except the term for u = {1, 2, . . . , d}. Hence, for

f ∈ F ∗
d we have

Sd(f) − Qd,n(f) = (−1)d

∫

[0,1]d
disc(x)

∂d

∂x
f(x)dx.

Applying the Hölder inequality, we obtain that the worst case error of Qn,d

is

ewor(Qd,n) = sup
f∈F ∗

d

|Sd(f) − Qd,n(f)| = disc(t1, t2, . . . , tn),

which is the star discrepancy for the points t1, t2, . . . , td that are used by the

quasi-Monte Carlo algorithm Qd,n.

We now remove the boundary conditions and consider the class

Fd =
{

f ∈ W 1

1 | ‖f‖d,1 ≤ 1
}

,

where the norm is given by

‖f‖d,1 =
∑

u⊆{1,2,...,d}

∫

[0,1]|u|

∣

∣

∣

∣

∂|u|

∂xu

f(xu, 1)

∣

∣

∣

∣

dxu.

The term for u = ∅ corresponds to |f(1)|.
We return to the Hlawka and Zaremba identity and again apply the

Hölder inequality, this time for integrals and sums, and conclude that the

worst case error again is

ewor(Qd,n) = sup
f∈Fd

|Sd(f) − Qd,n(f)| = disc(t1, t2, . . . , tn).
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The multivariate problem is properly scaled for both classes F ∗
d and Fd since

the initial error is 1. Then

n(ε, d) = min{n | ∃ t1, t2, . . . , tn ∈ [0, 1]d such that disc(t1, t2, . . . , tn) ≤ ε}
is the same for both classes; this is just the inverse of the star-discrepancy.

Hence, tractability of multivariate problems depends on how the inverse

of the star discrepancy behaves as a function of ε and d. Based on many

negative results for classical spaces and on the fact that all variables play

the same role for the star discrepancy, it would be natural to expect an

exponential dependence on d, i.e., intractability. Therefore it was quite a

surprise when a positive result was proved in [5]. More precisely, let

disc(n, d) = inf
t1,t2,...,tn∈[0,1]d

disc(t1, t2, . . . , tn)

denote the minimal star discrepancy that can be achieved with n points in

the d-dimensional case. Then there exists a positive number C such that

disc(n, d) ≤ Cd1/2n−1/2 for all n, d ∈ N.

The proof of this bound follows directly from deep results of the theory of

empirical processes. The proof is unfortunately non-constructive, and we do

not know points for which this bound holds. The slightly worse upper bound

disc(n, d) ≤ 2
√

2n−1/2

(

d ln

(⌈

dn1/2

2(ln 2)1/2

⌉

+ 1

)

+ ln 2

)1/2

follows from Hoeffding’s inequality and is quite elementary. Also this proof is

non-constructive. However, using a probabilistic argument, it is easy to show

that many points t1, t2, . . . , tn satisfy both bounds modulo a multiplicative

factor greater than one, see [5] for details.

The upper bounds on disc(n, d) can be easily translated into upper bounds

on n(ε, d). In particular, we have

n(ε, d) ≤
⌈

C2d

(

1

ε

)2
⌉

for all ε ∈ (0, 1) and d ∈ N. (5)

This means that we have polynomial tractability. Furthermore it was also

shown in [5] that there exists a positive number c such that

n(ε, d) ≥ c d ln ε−1 for all ε ∈ (0, 1/64] and d ∈ N.
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In fact, this lower bound holds not only for quasi-Monte Carlo algorithms,

but also in full generality for all algorithms.

The theory of tractability of multivariate problems was initiated by Hen-

ryk and also mainly developed by Henryk—sometimes together with col-

leagues and friends. The recent paper [47] of Henryk is an excellent survey

and also describes the history of this young field.

We now understand why certain multivariate problems are tractable or

not. We also know how intractable problems can be modified to obtain

tractable problems. But, again, with a new theory, there are also new prob-

lems. Actually, the recent book [15] contains 30 Open Problems that, hope-

fully, are a challenge for many mathematicians.3

6 Why is the work of Henryk so fascinating?

There are two reasons. First, the persistence of Henryk who attacks, from

quite different angles, similar questions again and again: How can we describe

and find good or even optimal algorithms for different continuous problems

of mathematics? What properties do those algorithms have? Henryk wants

to understand this by a comprehensive theory. This is visible already in Hen-

ryk’s early work and gets even more prominent later when Henryk’s interests

cover the whole range of numerical mathematics, as well as other subjects,

such as computational physics and quantum computers.

Secondly, the strength and patience that are needed to study problems

in their detail: For this it was necessary to work in many different areas of

mathematics.

It is not enough to develop a general theory. Also in mathematics a theory

gets thought-provoking only through laborious investigations of many single

problems that need many different skills and lots of energy. Henryk got a

lot of deep results by studying such problems and examples; he had to study

many parts of mathematics to obtain these results. In this way he influenced

many fields, as can be seen by studying the Mathematical Reviews.

Most of us publish papers in a relative small field, and probably are

happy to work a small amount in a second field. Henryk published results

3Open Problems 18 and 25 of [15] have been already solved by Stefan Heinrich.
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in numerical analysis and in many other fields, such as computability, num-

ber theory, linear algebra, measure theory, interpolation and approximation,

Fourier analysis, functional analysis, operator theory, probability theory and

stochastic processes, statistics and quantum theory.

There do not exist many other mathematicians with a similar versatility.

All these excursions into different parts of mathematics are still strongly

related to the main basic question that was always studied by Henryk: How

can we construct and understand optimal algorithms for numerical problems?

Today, Henryk is a main leader all over the world and is a great commu-

nicator who works together with excellent colleagues in many countries.

7 Four of Henryk’s Papers

It is difficult to select only four papers of Henryk. Probably it would be

an interesting game to select the four “most influential” or the four “best”

papers. To avoid this intractable problem I mention four papers that are

cited most often—as can be checked with the Mathematical Reviews.4

Average case complexity of multivariate integration [43], 1991

Henryk studies the average case complexity of multivariate integration for

the class C([0, 1]d) equipped with the classical Wiener sheet measure. To de-

rive the average case complexity one needs to obtain optimal sample points.

This design problem was open for a long time. In this paper Henryk proves

that the optimal design is closely related to discrepancy theory. The re-

spective L2-discrepancy problem was solved by K. F. Roth (the lower and

the upper bounds being published in 1954 and 1980, respectively) and by

K. K. Frolov (who also proved the upper bound), who showed that optimal

sample points are given by shifted Hammersley points z∗1 , z
∗
2 , . . . , z

∗
n. Henryk

showed that 1 − z∗1 , 1 − z∗2 , . . . , 1 − z∗n are the optimal sample points for the

quadrature problem, and that the ε-complexity of the problem is of the order

4This kind of selection discriminates against older papers as well as very young papers.

This is obvious for very fresh papers. But also older papers have a disadvantage since

most colleagues do not bother to cite a paper from the early eighties if they can also cite

the IBC book. Therefore all four papers were published between 1991 and 2000.
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Θ(ε−1(ln ε−1)(d−1)/2).5

Hence this paper is in the intersection of complexity theory, stochastic

processes, discrepancy theory, number theory and numerical analysis. In

particular, the paper proves that this intersection is non-empty.

Explicit cost bounds of algorithms for multivariate tensor product

problems [29], with Grzegorz Wasilkowski, 1995

The authors study explicit error bounds for the Smolyak algorithm in the

worst case setting and in the average case setting for multivariate tensor

product problems.

In 1963, Smolyak introduced an algorithm for tensor product problems

and proved bounds of the form

n(ε, d) ≤ Cd ε−β1(ln ε−1)β2(d−1). (6)

The interesting thing is that β1, the order of convergence, does not depend

on d. The constant Cd is, however, not known and therefore this is a typical

classical result about the order of convergence. The authors prove bounds of

the form

n(ε, d) ≤ C

(

β1 + β2
ln ε−1

d − 1

)β3(d−1)

ε−β4, (7)

where all the constants C, β1, β2, β3 and β4 are known and can be computed

from error bounds for d = 1.

When are quasi-Monte Carlo algorithms efficient for high dimen-

sional integrals? [21], with Ian Sloan, 19986

This paper is of fundamental importance for the understanding of high di-

mensional problems. It gives a partial answer to why quasi-Monte Carlo al-

gorithms are successful, even in huge dimension. The authors define weighted

spaces of functions using the idea that, for many applications, the number d

5Observe that this paper studies the optimal order of convergence, not tractability. The

tractability of the L2-discrepancy problem was studied later.
6This is the paper of Henryk that recently has been cited most often, according to

Mathematical Reviews. By the way, it is is also the paper of Ian Sloan that is most often

cited.
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of variables is huge, however, not all variables play the same role and some

variables are “less important” than others. The idea of weighted spaces is

central for the recent theory of tractability of multivariate problems.

Integration and approximation in arbitrary dimensions [6], with

Fred Hickernell, 2000

The authors study several multivariate integration and approximation prob-

lems. They consider algorithms for classes f ∈ Fd using function values. Let

n(ε, d) be the minimal number of function values needed for a worst case er-

ror ε in the dimension d for the class Fd. The authors are mainly interested

in spaces and problems with the property

n(ε, d) ≤ C ε−p, (8)

where C and p do not depend on d. Problems with this property are called

strongly (polynomially) tractable. The authors prove that integration and ap-

proximation are strongly tractable for certain weighted Korobov and Sobolev

spaces.

For the approximation problem the authors also consider algorithms that

use arbitrary linear functionals instead of function values. The main result is

that (under some assumptions) this much more general information is “not

much” better, i.e., the ε-exponents stay the same.

8 Other Directions

Here I just mention very few other of Henryk’s research directions. Again

my choice is very selective.

• Linear Optimization. Traub and Woźniakowski study in [27] the ellip-

soid algorithm and observe that, even if this algorithm is a polynomial-

time algorithm within the bit number model, it has unbounded cost

in the real number model. The authors conjecture that there does not

exist a polynomial-time algorithm for the linear inequalities problem.

This problem is still open today, in 2008.
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• Computation of Fixed Points. It is known from work of Nemirovskii

that it is impossible to improve the efficiency of the simple iteration

whenever the dimension of the domain of contractive functions is large.

However for a modest dimension, Sikorski, Tsay and Woźniakowski [18]

exhibit a fixed point ellipsoid algorithm that is much more efficient than

the simple iteration for mildly contractive functions. This algorithm is

based on Khachiyan’s construction of minimal volume ellipsoids used

for solving linear programming.

• Testing Operators. Together with David Lee, Henryk wrote several

papers about testing and verification of linear and nonlinear operators,

see, e.g., [12]. For the testing problem, A is an implementation of a

specification S, both are mappings from a compact metric space F into

a metric space G. Given ε > 0, one is allowed to compute Af and Sf

for a finite number of f and has to decide whether d(Af, Sf) ≤ ε for all

f ∈ F . It is shown that asymptotically correct sequences of guesses can

be arranged. Sharp upper and lower bounds on the number of tests are

given in terms of the Kolmogorov entropy of F . Probabilistic testing

methods are developed and analyzed.

• Tractability of Path Integration. In [30], Wasilkowski and Woźniakowski

analyze the complexity of computing integrals
∫

X
f(x) µ(dx), where µ

is a Gaussian measure on a Banach space X. For r times differentiable

functions on X, the integration problem is tractable for determinis-

tic algorithms iff the covariance operator is of finite rank. Hence for

measures µ with infinite-dimensional covariance operator, Monte Carlo

integration is superior to deterministic algorithms. For certain classes

of entire functions on X, it is shown that the problem becomes tractable

in the deterministic setting.

Plaskota, Wasilkowski and Woźniakowski [17] suggest a new algorithm

for the computation of Feynman-Kac path integrals. This algorithm

has a very small cost, which gives a dramatic improvement of earlier

results. However, there is also a problem since the new algorithm needs

a lot of precomputation and therefore can (so far) only be used if the

error requirements are moderate.

• Quantum Computers. Henryk studied quantum computation and wrote
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several papers about optimal numerical algorithms in the quantum set-

ting. Kwas and Woźniakowski [11] prove sharp error bounds for the

Boolean summation problem. Traub and Woźniakowski [28] study path

integration on a quantum computer.

• Weighted Problems and Finite-Order Weights. As already mentioned,

the work [21] by Sloan and Woźniakowski has been continued by many

colleagues. Dick, Sloan, Wang and Woźniakowski [1] discuss general

weights in order to give recommendations for choosing the weights in

practice. They defined in [2] finite-order weights. Such weights seem

to be appropriate for many applications and they model functions of

d variables that can be expressed as a sum of functions of k variables

with k independent of d. The authors also prove new lower and upper

bounds for the tractability of quasi-Monte Carlo algorithms for the

computation of integrals for functions from weighted Sobolev spaces.

For finite-order weights, we usually have tractability bounds depending

polynomially on dβ(k) with β(k) linearly dependent on k.

• Lower bounds. To determine the complexity of a problem, we also

need good lower bounds. This is straightforward for linear operators

S : F → G between Hilbert spaces, if we consider algorithms that use

arbitrary linear functionals in the worst case setting. Then we have to

study the singular values of S. The proof of lower bounds is much more

difficult in the randomized setting and/or if we consider algorithms that

use function values. Many papers of Henryk deal with lower bounds,

we mention [14, 20, 30].

• Good Lattice Rules. By lattice rule algorithms we mean algorithms

that are based on function values at (sometimes shifted) lattice sample

points. Such algorithms can be used for integration and approximation

and in different settings. Some tractability results were first proved in

a non-constructive way and today can be proved (by the work of Kuo,

Joe, Sloan and others) in a constructive way, see also work of Cools

and Nuyens. We mention [2, 8, 9, 22], where the reader can find more

references.

• Smolyak Algorithm and Generalizations. The algorithm of Smolyak has

been generalized to the concept of weighted tensor product algorithms
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to prove, in a constructive way, the tractability of many tensor product

problems, see [31].

• The Power of Standard Information. Often we know upper bounds for

algorithms based on arbitrary linear information, based on estimates of

singular values. It is then a challenge to prove similar upper bounds for

algorithms based on function values—or to prove that such algorithms

do not exist. Here we mention the paper [34], which deals with the

randomized setting, and the paper [10], which deals with the worst

case setting.

• Generalized Tractability. In this short survey we discussed polynomial

tractability that is defined by the requirement

n(ε, d) ≤ C · ε−αdβ (9)

for certain C, α, β > 0 and all ε > 0 and d ∈ N. There are differ-

ent notions of tractability, since one might be interested in different

tractability domains (for example, only d is large while ε−1 is modest)

and different tractability functions, instead of polynomials. Then (9)

is replaced by

n(ε, d) ≤ C · T (ε−1, d)t, (10)

for all (ε−1, d) ∈ Ω. This was studied by Henryk together with Gnewuch,

see [3, 15].

• Quasilinear Problems. Many IBC results have been proved for linear

problems, for example for linear operator equations, where the solution

u depends linearly on the right hand side f . Together with Arthur Wer-

schulz, Henryk studied the tractability of quasilinear problems. Many

problems of mathematical physics belong to this class of problems. The

paper [34] is the first paper in a series of papers.

9 Concluding Remarks

I want to conclude with a few personal remarks. I have known Henryk

since 1985, when Joseph Traub and Henryk invited me to a conference to

New York. We immediately started discussions—which have not ended so
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far. Our first joint paper appeared in 1992. Henryk was always a good

friend—actually, he is the nicest guy you can imagine. I thank him for 1000

suggestions and also for his sympathetic warmth.
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[13] E. Novak, K. Ritter and H. Woźniakowski, Average-case optimality of a

hybrid secant-bisection method, Math. Comp. 64, 1517–1539, 1995.
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