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Abstract. This paper deals with the worst case setting for approximating multivariate
tensor product linear operators defined over Hilbert spaces. Approximations are obtained by
using a number of linear functionals from a given class of information. We consider the three
classes of information: the class of all linear functionals, the Fourier class of inner products
with respect to given orthonormal elements, and the standard class of function values.

We wish to determine which problems are tractable and which strongly tractable. The
complete analysis is provided for approximating operators of rank two or more. The problem
of approximating linear functionals is fully analyzed in the first two classes of information.
For the third class of standard information we show that the possibilities are very rich. We
prove that tractability of linear functionals depends on the given space of functions. For
some spaces all nontrivial normed linear functionals are intractable, whereas for other spaces
all linear functionals are tractable. In “typical” function spaces, some linear functionals are
tractable and some others are not.

1 Introduction

We study multivariate tensor product linear operators defined over Hilbert spaces. The d-
variate linear operator Sd is obtained by taking d-fold tensor product of the continuous linear
operator S1. We consider the worst case setting, in which we want to approximate Sd over
the unit ball with error at most ε. Approximations of Sd are obtained by using a number of
continuous linear functionals from a given class of information.

The problem is said to be tractable iff the number of linear functionals needed to ap-
proximate Sd with error at most ε is polynomial in d and 1/ε, and is said to be strongly
tractable iff the number of linear functionals does not depend on d and is polynomial in 1/ε.
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We are mainly interested in characterizing which problems are tractable and which strongly
tractable.

We consider three classes of information. The first class is the class of all linear functionals.
For this class, it is known, see [8, 9], that tractability is equivalent to strong tractability, and
that strong tractability holds iff either S1 is a linear functional, or ‖S1‖ < 1 and singular
values of S1 go polynomially to zero1.

The second class is the Fourier class of information. This class consists of inner products
with respect to products of given orthonormal elements. The analysis of the Fourier class
seems to be new. If the domain space of S1 is not spanned by the given orthonormal
elements then we may be not able to approximate Sd even if S1 is a linear functional. On
the other hand, if the domain space of S1 is spanned by the given orthonormal elements
then we can approximate Sd by using finitely many linear functionals iff S1 is compact.
We provide necessary and sufficient conditions for tractability and strong tractability. As
with the first class, tractability and strong tractability are equivalent in the Fourier class.
Strong tractability holds iff either S1 can be approximated with an arbitrarily small error
by one inner product from the Fourier class, or ‖S1‖ < 1 and the nth minimal errors2 of
approximating S1 go polynomially to zero.

The third class is the class of standard information, which consists of function values.
In this case we assume that the domain space of S1 is a reproducing kernel Hilbert space of
univariate functions. Standard information is probably the most important from a practical
point of view. There are many papers analyzing this class. In particular, it is known, see [7],
that if S1 is at least two-dimensional3 then tractability is again equivalent to strong tractabil-
ity, and strong tractability holds iff ‖S1‖ < 1 and the nth minimal errors of approximating
S1 go polynomially to zero.

The unresolved case for the class of standard information is when S1 is a linear func-
tional. We show that the results for this case are very rich in possibilities. First of all,
there exist domain spaces of S1 (even of infinite dimension) such that all problems Sd are
strongly tractable. In fact, it is enough to compute only one function value to get an ε-
approximation, and this holds for arbitrarily small positive ε. Such spaces can even be
subspaces of continuous functions. Their construction is related to Peano curves.

Let us now assume that one function value is not enough to get an ε-approximation for
arbitrarily small positive ε. We then have two cases. The first one is ‖S1‖ < 1. Then
tractability and strong tractability are equivalent, and strong tractability holds iff the nth

1A sequence λn goes polynomially to zero iff there exists a positive k such that λn = O(n−k)
2By the nth minimal error we mean the minimal error of approximations that use at most n linear

functionals from the given class of information.
3We assume here that dim(S1(F1)) ≥ 2, where F1 is the domain space of S1.
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minimal errors for approximating S1 go polynomially to zero, see [7].
The second case is ‖S1‖ ≥ 1. Then the problem is not strongly tractable. (This result has

been proven in [7] under an additional assumption.) To approximate Sd we have to compute
at least d function values for small ε. The last bound is sharp, since for some domain spaces
it is enough to compute d + 1 linear functionals to solve all Sd even exactly, i.e., with ε = 0.
In this case, we have tractability. On the other hand, for some other domain spaces, all
problems Sd are intractable. Hence, tractability of linear functionals with ‖S1‖ ≥ 1 depends
on the given space of functions. We provide conditions on tractability and intractability
of linear functionals. In “typical” function spaces these conditions are satisfied for some
linear functionals. That is, the classes of tractable and intractable linear functionals are
each in general nonempty. For a given linear functional, such as integration or weighted
integration, it is usually hard to verify to which class it belongs. Recently, an intractability
result for multivariate integration was proved in [4] for the Korobov class of functions, which
is different from the classes studied here.

2 Formulation of the Problem

In this section we define multivariate linear tensor product problems, as well as the three
classes of information which are used for their approximation. Then we define the concepts
of tractability and strong tractability for such problems.

Let F1 and G1 be Hilbert spaces over the real field. The inner products in F1 and in G1

are denoted by 〈·, ·〉F1
and 〈·, ·〉G1

. We stress that F1 or G1 need not be separable.
For d ≥ 2, define the Hilbert space Fd = F1⊗· · ·⊗F1 (d times) as a tensor product of F1’s.

That is, Fd is the completion of linear combinations of tensor products f1⊗· · ·⊗fd, which we
write for simplicity as f1f2 · · · fd, with fi ∈ F1. For the reader’s convenience we recall that

the tensor product f = f1 ⊗ · · · ⊗ fd = f1f2 · · · fd of numbers fk is just the product
d
∏

k=1

fk,

while for univariate functions fk it is a function of d variables f(t1, · · · , td) =
d
∏

k=1

fk(tk). The

inner product in Fd is defined for f = f1 · · · fd and h = h1 · · ·hd with fi, hi ∈ F1 as

〈f, h〉Fd
=

d
∏

j=1

〈fi, hi〉F1
.

Similarly we define the Hilbert space Gd = G1 ⊗ · · · ⊗ G1 with the inner product 〈·, ·〉Gd
.
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Let S1 : F1 → G1 be a linear continuous operator. For d ≥ 2, we define Sd : Fd → Gd

as a linear continuous operator which is the d-fold tensor product of S1. More precisely,
Sd = S1 ⊗ · · · ⊗ S1 (d times) such that for f = f1f2 · · ·fd with fi ∈ F1 we have

Sd f = S1f1 S1f2 · · · S1fd ∈ Gd.

By a multivariate linear tensor product problem (or shortly the problem) we mean the
sequence of the triples {Sd, Fd, Gd}.

We shall devote considerable attention to the case of a linear continuous functional S1.
That is, G1 = IR. Then there exists an element h ∈ F1 such that S1f = 〈f, h〉F1

, ∀ f ∈ F1,
and ‖S1‖ = ‖h‖. For d ≥ 2, Sd is also a linear continuous functional, Gd = IR, and

Sd f =
〈

f, hd
〉

Fd

,

where hd = h h · · · h ∈ Fd.
If F1 is a space of univariate functions defined on, say, the interval [0, 1] then Fd is a

space of multivariate functions defined on the d-dimensional unit cube [0, 1]d and hd(t) =
h(t1)h(t2) · · ·h(td) with t = [t1, t2, . . . , td].

We wish to approximate the elements Sdf for f from the unit ball of Fd. That is, for a
given nonnegative ε, we want to compute for each f an approximation Ud(f) such that the
worst case error e(Ud) does not exceed ε. Here the error is given by

e(Ud) = sup
f∈Fd, ‖f‖≤1

‖Sdf − Ud(f) ‖Gd
. (1)

We now explain how the elements Ud(f) can be constructed. We assume that the element
f is not known explicitly. Instead we may gather information about f by computing a
number of linear continuous functionals on f . These functionals are from a specific class Λd

of information which is always a subset of F ∗
d . As mentioned in the introduction, in this

paper we consider three classes of information:

1. The class of all linear information, Λd = F ∗
d . That is, we can now compute linear con-

tinuous functionals 〈·, η〉Fd
for arbitrary η’s from Fd. The results for this class, summarized

in Section 3, are not new, but are included here for completeness.

2. The class of Fourier information, Λd = ΛFou
d . This class, which does not seem to have

been considered before, is defined as follows. Let d = 1. Here we assume that an arbitrary
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orthonormal system {ηi | i ∈ I} is given, where I is a set of indices which may be finite,
countable or even uncountable. We assume that we can compute the inner products 〈f, ηi〉F1

for i ∈ I. The set {ηi} may or may not form an orthogonal basis of F1. If this is true then
we can compute Fourier coefficients of f with respect to the given basis.

For d ≥ 2, we assume that we can compute the tensor products of the one-dimensional
functionals. That is, we can now compute inner products of the form 〈f, ηi1ηi2 · · ·ηid〉Fd

for
any ij ∈ I.

Once more, if the ηi form an orthonormal basis of F1 then the {ηi1ηi2 · · ·ηid} form an
orthonormal basis of Fd. In this case, we can compute Fourier coefficients of elements from
the space Fd.

That is why we call this class the class of Fourier information, even if the system {ηi}
is not complete. We stress that for the Fourier class the elements ηi are fixed and the inner
products with ηi are used for approximation of all linear operators Sd. Obviously, ΛFou

d is a
proper subset of F ∗

d . The difference between the classes of linear and Fourier information is
that for the class F ∗

d we may select an orthonormal system which is suitable for approximating
the operators Sd, whereas for the class ΛFou

d we use the same orthonormal system based on
ηi, independently of the operators Sd. Properties for this class are established in Section 4.

3. The class of standard information, Λd = Λstd
d . This class consists of function values.

More precisely, for this class we assume that the space F1 consists of univariate functions
f defined on a given domain, say D, and for which the linear functional f(t), ∀ f ∈ F1,
is continuous for any t ∈ D. This is equivalent, see [1], to the assumption that F1 has a
reproducing kernel K1 : D2 → IR with K1(·, t) ∈ F1 and

f(t) = 〈f, K1(·, t)〉F1
, ∀ f ∈ F1, ∀ t ∈ D.

For d ≥ 2, the space Fd has also a reproducing kernel Kd : D2d → IR and

Kd(x, t) =
d
∏

i=1

K1(xi, ti), ∀x, t ∈ Dd,

with x = [x1, . . . , xd] and t = [t1, . . . , td].
For the class of standard information we assume that we can compute function values

f(t) = 〈f, Kd(·, t)〉Fd
for any t ∈ Dd. Obviously, Λstd

d is a subset of F ∗
d . Relations between

the classes Λstd
d and ΛFou

d depend on the space F1 and on the sequence of the ηi. As we shall
see, for some cases these two classes are the same, whereas for other cases they are different
and yield completely different results for multivariate linear tensor product problems.
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In particular, we shall see in Section 5 that the results for the approximation of contin-
uous linear functionals are very rich in the possibilities they allow in the case of standard
information. This is the largest part of the paper.

We are finally ready to define tractability and intractability concepts. Let Λd be one of
the three classes defined above. Suppose we compute n such functionals,

N(f) = [L1(f), . . . , Ln(f)] , Li ∈ Λd.

Then the approximation Ud(f) is given as a linear combination4 of Li(f),

Ud(f) =
n
∑

i=1

giLi(f), for some gi ∈ Gd. (2)

The worst case error of Ud is defined by (1). For fixed n and the class Λd, let e(n, Λd)
denote the minimal error which can be achieved by computing n functionals from the class Λd,

e(n, Λd) = min{e(Ud) : Ud is of the form (2) }.

We want to guarantee that the worst case error is at most ε. The smallest n for which this
holds is called the complexity5 of the multivariate linear tensor product problem {Sd, Fd, Gd},

comp(ε, Λd) = min{n : e(n, Λd) ≤ ε }.

We listed as the arguments of the complexity only ε and Λd since we want to study the
dependence on ε, d and the class Λd of information.

We say that the multivariate linear tensor product problem {Sd, Fd, Gd} is tractable (in
the class Λd) if its complexity is bounded by a polynomial in 1/ε and d, i.e., there exist
nonnegative numbers C, p and q such that

comp(ε, Λd) ≤ C ε−p dq, ∀ ε ≤ 1, ∀ d = 1, 2 . . . .

The smallest (or the infimum) of p or q, respectively, is called the exponent with respect to
ε−1 or the exponent with respect to d.

4We restrict ourselves to nonadaptive information and linear algorithms since for the worst case setting
considered in this paper, adaption and nonlinear algorithms are not better, see e.g., [6].

5Usually, the complexity is defined as the minimal cost needed to compute approximations with error at
most ε. In our case, the minimal cost is proportional to the smallest n and therefore we choose this simplified
definition of complexity.
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The problem is strongly tractable (in the class Λd) iff q above is zero, i.e.,

comp(ε, Λd) ≤ C ε−p ∀ ε ≤ 1, ∀ d = 1, 2 . . . .

The smallest (or the infimum) of p above is called the strong exponent.
Finally, the problem is called intractable iff it is not tractable. For more detailed discus-

sion of these concepts the reader is referred to [8, 9].

3 The Class of Linear Information

The class of linear information has been studied in many papers, and the complexity of many
problems is known for this class, see e.g., [6] and papers cited there. Tractability and strong
tractability issues have been studied in [8, 9]. In this section we briefly review necessary and
sufficient conditions on tractability and strong tractability for the multivariate linear tensor
product problems in the class of linear information.

Let d = 1. It is well known that comp(ε, F ∗
1 ) is finite for all positive ε iff the linear

operator S1 is compact, see e.g., Chapter 4 of [6]. Hence, for a noncompact S1 the problem
is intractable. Assume then that S1 is compact. Let W1 = (S∗

1S1)
1/2 : F1 → F1. Then W1

is a compact, self adjoint and nonnegative definite operator. Let (ζi, λi) be its orthonormal
eigenpairs,

W1ζi = λi ζi,

with λ1 ≥ λ2 ≥ . . . ≥ 0, and 〈ζi, ζj〉F1
= δi,j. Here i and j vary from 1, 2, . . . , dim(F1). If

dim(F1) is finite then we formally set λi = 0 for i > dim(F1).
For d ≥ 2, the operator Sd is also compact and Wd = (S∗

dSd)
1/2 is compact, self adjoint

and nonnegative definite with orthonormal eigenpairs (ζi1ζi2 · · · ζid, λi1λi2 · · ·λid). As with
the case d = 1, the complexity comp(ε, F ∗

d ) is finite for all positive ε and all d.
The behavior of comp(ε, F ∗

d ) depends on the singular values λi of S1. Assume first that
λ1 = 0. Then Sd = 0, and the problem is trivially strongly tractable with strong exponent
zero.

Assume next that λ1 > 0 and that λ2 = 0. This implies, for j ≥ 2, that ‖S1ζj‖2 =
(S1ζj, S1ζj) = (ζj, W

2
1 ζj) = 0, and hence S1ζj = 0. This means that S1 is an operator

of rank 1, i.e., its image has dimension 1, and S1f = 〈f, ζ1〉F1
g with g = S1ζ1 ∈ G1

and λ1 = ‖g‖G1
. Hence, S1f can be recovered exactly by computing one linear functional

〈f, ζ1〉F1
. For d ≥ 2, we have Sdf = 〈f, ζ1ζ1 · · · ζ1〉Fd

gd for all f ∈ Fd, which can be recovered
exactly by computing one linear functional. Hence, the problem is also strongly tractable
with strong exponent zero.
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Hence, it is enough to consider the case λ2 > 0. Then the dimension of S1(F1) is at least
two, and the dimension of Sd(Fd) is at least 2d. The following theorem is proven in [9].

Theorem 1 Consider the problem {Sd, Fd, Gd} in the class of linear information with λ2 >
0. Then

(i) the problem is tractable iff it is strongly tractable.
(ii) the problem is strongly tractable iff

λ1 = ‖S1‖ < 1, and λn = O(n−k)

for some positive k. For the strong exponent p we have

p ≤ max
{

k−1, s
}

, (3)

where s is given by the equation
∑∞

i=1 λs
i = 1.

For some eigenvalue sequences we have equality in (3). This holds, for example, for λn =
1/(a n + b)r with positive a and r, and a + b > 1. In this case p = s = κ/r, where κ is given
by

∑∞
n=1(a n + b)−κ = 1. For fixed a and b, the strong exponent p goes to infinity as r goes

to zero, and it goes to zero as r goes to infinity.
Hence, we have strong tractability if the sequence of eigenvalues of W1 goes to zero like

a polynomial in n−1, and the norm of the operator S1 (or W1) is strictly less than one. Note
that the norm of Sd is λd

1 which is exponentially small in d for strongly tractable problems.
It might seem more natural to scale the problem by taking λ1 = ‖S1‖ = 1, but we would
then lose even tractability. Scaling of linear multivariate problems and their tractability are
interrelated with some surprising consequences, see [8].

4 The Class of Fourier Information

We believe that the class of Fourier information has not yet been studied in the literature,
and that the analysis presented in this section is new.

Since ΛFou
d is a subset of F ∗

d , all the negative results for the class of linear information are
also true for the class of Fourier information. Hence, without loss of generality we assume
that S1 is compact since otherwise the problem is intractable.

Let d = 1. For the class of Fourier information we have available to us the inner products
〈f, ηi〉F1

for i ∈ I. For the operator S1 and fixed n, suppose we compute

N(f) = [〈f, ηi1〉F1
, 〈f, ηi2〉F1

, . . . , 〈f, ηin〉F1
]
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for some indices i1, i2, . . . , in ∈ I.
Let r(N) denote the minimal error of the approximations U1 having the form (2) that

use the information N . It is known, see e.g., Chapter 4 of [6], that

r(N) = sup
f∈F1,N(f)=0,‖f‖≤1

‖S1f‖ = ‖S1|X~i
‖, (4)

where X~i = span⊥ (ηi1, ηi2 , . . . , ηin).

The optimal choice of information N corresponds to choosing the vector ~i for which the
norm of S1 over X~i is minimal. Hence,

γn := e(n, ΛFou
1 ) = min

~i=[i1,i2,...,in], ij∈I
‖S1|X~i

‖. (5)

Clearly, the complexity comp(ε, ΛFou
1 ) is finite for all positive ε iff the sequence γn tends

to zero as n goes to infinity. Unfortunately, the compactness of S1 does not necessarily imply
this. Let X be the closed linear hull of the ηi; we write X = span{ηi | i ∈ I}. If X is a proper
subset of F1 then the sequence γn need not converge to zero. Assume then that X = F1, i.e.,
the ηi form an orthogonal basis of F1. Then compactness of S1 implies convergence to zero
of γn.

This discussion illustrates the difference between the classes of linear and Fourier infor-
mation for d = 1. For F ∗

1 , the complexity is finite for all ε iff S1 is compact. For ΛFou
1 we

need to assume also that the ηi’s form an orthogonal basis. Then the complexity is finite for
all ε iff S1 is compact.

We now discuss the multivariate case d ≥ 2. We approximate the linear operator Sd by
the class of Fourier information consisting of inner products 〈·, ηi1ηi2 · · · ηid〉Fd

, where ij ∈ I.
Assume first that γ0 = 0 in (5). Then S1 as well as all Sd are zero and the problem is

trivially strongly tractable.
Assume thus that γ0 > 0 and that γ1 = 0. This means that S1 is of rank 1, i.e., of the form

S1f = 〈f, ηi∗〉F1
g for some i∗, with g = S1ηi∗ ∈ G1 and γ0 = ‖g‖G1

. Then Sdf =
〈

f, ηd
i∗

〉

Fd

gd

and it can be computed in one evaluation. Once more, the problem is strongly tractable.
We now consider the case γ1 > 0. We begin by discussing nonzero linear functionals,

S1f = 〈f, h〉F1
. Then Sdf =

〈

f, hd
〉

Fd

is also a linear functional. This problem is trivial for

the class of linear information since it can be solved exactly in one evaluation. For the class
of Fourier information the situation may be quite different.

Assume that h ∈ X since otherwise the problem cannot be solved. Let

h =
∞
∑

i=1

aiηi, with ‖h‖2 =
∞
∑

i=1

a2
i ,
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where, with a possible permutation of ηi, we can assume that

|a1| ≥ |a2| ≥ · · · ≥ 0.

Consider the information N(f) = [〈f, ηi1〉F1
, 〈f, ηi2〉F1

, . . . , 〈f, ηin〉F1
] for some indices ij . It

is easy to check that the approximation

U1(f) =
n
∑

j=1

〈

f, ηij

〉

F1

aij

minimizes the error among all approximations that use the information N , and the minimal
error r(N), see (4), is given by

e(U1) = r(N) =

√

√

√

√‖h‖2 −
n
∑

j=1

a2
ij .

This shows that the optimal choice of ηij corresponds to the largest weights aj , i.,e., ηij = ηj ,
and

γn =

√

√

√

√

∞
∑

i=n+1

a2
i =

√

√

√

√‖h‖2 −
n
∑

i=1

a2
i .

Hence, γ1 > 0 implies that |a2| > 0, or equivalently, that ‖h‖ > |a1|.
For d ≥ 2, we have

hd =
∞
∑

i1,i2,...,id=1

ai1ai2 · · ·aid ηi1ηi2 · · · ηid.

We order the coefficients ai1 ai2 · · · aid in decreasing order, i.e., let {βi,d} be a rearrangement
of the products {ai1 ai2 · · · aid} such that

|β1,d| ≥ |β2,d| ≥ · · · ≥ 0.

Clearly, β1,d = ad
1, and

∑∞
i=1 β2

i,d = ‖h‖2d.
It is easy to check that the minimal error is now given by

e(n, ΛFou
d ) =

√

√

√

√‖h‖2d −
n
∑

i=1

β2
i,d
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and the best approximation Ud that has error e(n, ΛFou
d ) is of the form

Ud(f) =
n
∑

i=1

〈f, ηi1ηi2 · · · ηid〉Fd
βi,d.

Hence, e(n, ΛFou
d ) tends to zero as n goes to infinity. We now check that a necessary

condition for tractability (and strong tractability) is ‖h‖ < 1. Indeed, to illustrate the
necessity of this condition, assume that ‖h‖ ≥ 1. Since |βi,d| ≤ |β1,d| = |a1|d, we have

e(n, ΛFou
d )2 ≥ ‖h‖2d



 1 − n

(

|a1|
‖h‖

)2d


 .

If we want to guarantee that the error is at most ε, with ε < 1, then n must satisfy

n ≥
(

1 − ε

‖h‖2d

) (

‖h‖
|a1|

)2d

.

Since ‖h‖/|a1| > 1, the number n of computed functionals is bounded below by an exponen-
tial function of d, and therefore the problem is intractable.

We stress that even for d = 1, the speed of convergence e(n, ΛFou
1 ) = γn can be arbitrarily

slow for some h, and equivalently, the complexity even for d = 1 can go to infinity arbitrarily
quickly as ε approaches zero. Indeed, let g : [0,∞) → IR+ be a convex decreasing function
such that g(0) = 1 and limx→∞ g(x) = 0. Define

ai = (g(i− 1) − g(i))1/2 for i = 1, 2, . . . (6)

and, as before, h =
∑∞

i=1 aiηi. Note that monotonicity and convexity of g yield that ai are
positive and ai ≥ ai+1. We have ‖h‖ = 1, and

γ2
n = e(n, ΛFou

1 )2 = g(n),

and therefore
comp(ε, ΛFou

1 ) = min{n : g(n) ≤ ε2 }.
For example, take an integer k and define the function g(x) = 1/ ln(k, x), where ln(k, x) =

ln ln · · · ln(x+ ck), (with ln occurring k times), ∀x ≥ 0, with ck = exp(exp( · · · (exp(1) · · ·).
The number ck is chosen in such a way that ln(k, ·) is well defined and ln(k, 0) = 1. For such
g, we have

comp(ε, ΛFou
1 ) =

⌈

exp(exp(· · · exp(ε−2) · · · ) − ck

⌉

.

We are ready to present necessary and sufficient conditions for tractability and strong
tractability of general operators Sd in the class of Fourier information.
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Theorem 2 Consider the problem {Sd, Fd, Gd} in the class of Fourier information with
F1 = span{ηi | i ∈ I} and γ1 > 0. Then

(i) the problem is tractable iff it is strongly tractable.
(ii) the problem is strongly tractable iff

γ0 = ‖S1‖ < 1, and γn = O(n−k)

for some positive k.

Proof: Assume first that the problem is tractable, comp(ε, ΛFou
d ) ≤ C ε−p dq. Tractability in

the class of Fourier information implies tractability in the class of linear information.
If S1 is a linear functional we proved in Section 3 that λ1 = γ0 = ‖S1‖ < 1. If S1 is not a

linear functional (λ2 > 0 in the notation of Section 3) then tractability in the class of linear
information implies that λ1 = γ0 < 1.

For d = 1, we have, because the problem is tractable,

comp(ε, ΛFou
1 ) = min{n : γn ≤ ε } ≤ C ε−p.

This implies that γn = O(n−k) with k = 1/p.
Consider now the Smolyak algorithm, see [5], for approximation of Sd as analyzed in

[7]. The Smolyak algorithm is linear and uses as its information the tensor product of
linear functionals used in the one-dimensional case. Thus, the Smolyak algorithm uses
〈·, ηi1ηi2 · · ·ηid〉Fd

for some indices ij . This information is allowed in the class of Fourier
information.

As proven in [7], γ0 < 1 and γn = O(n−k) implies that the cost of the Smolyak algorithm
with error at most ε is bounded by C ε−m for some C and m both independent of d. Hence,
the problem is strongly tractable.

Both parts of Theorem 2 easily follow from the above reasoning. 2

Theorem 2 specifies conditions on strong tractability for the class of Fourier information.
It does not, however, specify the strong exponent. An upper bound on the strong exponent
can be found in Theorem 2 of [7]. In general, this bound is not sharp. The problem of
finding the strong exponent for the class of Fourier information is open.

We stress that conditions on tractability in both classes of linear and Fourier information
are similar. Excluding trivial cases (λ2 = 0 and γ1 = 0), tractability is equivalent to strong
tractability. Strong tractability holds under the same conditions on the sequence of λn or
γn, respectively.
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5 The Class of Standard Information

The class of standard information is probably the most practical one and has been studied in
many papers for many specific problems. As we shall see, tractability and strong tractability
in this class depend on the dimension of S1(F1). If the latter is at least two, i.e., S1 is not
a linear functional, there is a simple criterion for tractability. In particular, as with the
linear and Fourier classes of information, tractability is equivalent to strong tractability. If,
however, S1 is a linear functional then the situation is much more complex. We shall show
by constructing examples that in this case tractability is not, in general, equivalent to strong
tractability. Furthermore, the structure of the Hilbert space F1 plays a much more decisive
role than in the previous cases.

5.1 Linear Operators

First of all observe that even for a nonseparable space F1 we have limn→+∞ e(n, Λstd
d ) = 0 iff

S1 is compact. We already know from the discussion in Section 2 that compactness of S1 is a
necessary condition for e(n, Λstd

d ) to converge to zero. It is enough to check the sufficiency for

linear functionals6, Sdf =
〈

f, hd
〉

Fd

. The element hd is from Fd, which has the reproducing

kernel Kd. Since Fd is the completion of linear combinations of elements Kd(·, ti), see [1], we
know that for any positive ε there exists a finite n = n(ε) and there exist t1, t2, . . . , tn ∈ Dd

and a1, a2, . . . , an ∈ IR such that
∥

∥

∥

∥

hd −
n
∑

i=1

ai Kd(·, ti)
∥

∥

∥

∥

Fd

≤ ε.

Define the approximation Ud(f) =
∑n

i=1 ai f(ti) which uses only function values, i.e., infor-
mation from the class Λstd

d . Then f(ti) = 〈f, Kd(·, ti)〉Fd
yields

|Sdf − Ud(f)| =
∣

∣

∣

∣

〈

f, hd −
n
∑

i=1

ai Kd(·, ti)
〉

Fd

∣

∣

∣

∣

≤ ‖f‖Fd
ε.

This means that the error of Ud is at most ε. Therefore, e(m, Λstd
d ) ≤ ε for all m ≥ n. Since

ε is arbitrary we have limn→+∞ e(n, Λstd
d ) = 0, as claimed.

This also implies that comp(ε, Λstd
d ) is finite for all positive ε, although the proof presented

above does not supply any specific bounds on comp(ε, Λstd
d ). In general, comp(ε, Λstd

d ) may

6This follows from the fact that a compact operator can be approximated with an arbitrarily small error
by finite rank operators. An operator of rank k is determined by k linear functionals. Hence, if we can
approximate linear functionals then we can approximate finite rank operators, and compact operators.
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go arbitrarily quickly to infinity as ε approaches zero even for d = 1 and a linear functional
S1, see Section 4.2.

To control the behavior of comp(ε, Λstd
d ), assume that for d = 1 we have a polynomial

dependence on 1/ε, comp(ε, Λstd
1 ) = O(ε−p). For d ≥ 2, we may use the Smolyak algorithm,

see [7], which yields

comp(ε, Λstd
d ) ≤ α1

(

α2 +
ln ε−1

d − 1

)d−1

ε−p

with αi independent of d and fully determined by the one-dimensional S1. The above estimate
can be rewritten as follows. For any positive η there exists a constant Cη (which could be
larger than one) such that

comp(ε, Λstd
d ) ≤ Cd

η ε−p−η.

The essence of the last estimate is that we have at most exponential dependence on d, and
that the dependence on ε is roughly the same as for the one-dimensional case. For small d,
this estimate is always fine.

The last estimate does not answer the question of when the problem is tractable or
strongly tractable. We now address this issue. Let

σn := e(n, Λstd
1 ) = inf

t1,t2,...,tn∈D
sup

f∈F1, f(t1)=f(t2)=···=f(tn)=0
‖S1f‖G1

be the nth minimal error for the one-dimensional case, d = 1. For standard information,
f(ti) = 〈f, K1(·, ti)〉F1

= 0 means that f is orthogonal to K1(·, ti), i = 1, 2, . . . , n. Clearly,

σ0 = γ0 = λ1 = ‖S1‖.
For at least two-dimensional operators, dim(S1(F1)) ≥ 2, conditions on tractability and

strong tractability are known, see [7]. We now recall them.

Theorem 3 Consider the problem {Sd, Fd, Gd} with dim(S1(F1)) ≥ 2 in the class of stan-
dard information. Then

(i) the problem is tractable iff it is strongly tractable.
(ii) the problem is strongly tractable iff

σ0 = ‖S1‖ < 1, and σn = O(n−k)

for some positive k.

Thus when dim(S1(F1)) ≥ 2 the situation is essentially the same as for the other classes of
information. The case of linear functionals, dim(S1(F1)) = 1, is much more complicated and
treated in the next subsection.
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5.2 Linear Functionals

In this section we assume that S1 is a linear functional, S1f = 〈f, h〉F1
. Then Sdf =

〈

f, hd
〉

Fd

is also a linear functional and Gd = IR.
Tractability and strong tractability depend, in particular, on the sequence σn = e(n, Λstd

1 )
for the univariate case d = 1. In the next subsection we discuss the behavior of the sequence
{σn}, and then we switch to the multivariate case with d ≥ 2.

5.2.1 Univariate Case, d = 1

We have

σn = inf
ai∈IR, ti∈D

∥

∥

∥

∥

h −
n
∑

i=1

ai K1(·, ti)
∥

∥

∥

∥

F1

.

Indeed, this easily follows from the fact that for the approximation U1(f) =
∑n

i=1 aif(ti) we
have

|S1f − U1(f)| =

∣

∣

∣

∣

〈

f, h −
n
∑

i=1

ai K1(·, ti)
〉

F1

∣

∣

∣

∣

≤ ‖f‖F1

∥

∥

∥

∥

h −
n
∑

i=1

ai K1(·, ti)
∥

∥

∥

∥

F1

so that the error of U1 is given by

e(U1) = ‖h −
n
∑

i=1

aiK(·, ti)‖F1
.

Clearly
σ0 = ‖h‖F1

.

We now consider the minimal error σ1. It is obvious that for all S1 for which h = aK1(·, t)
for some t ∈ D, we have σ1 = 0. As we shall see, for some spaces F1 of arbitrary dimension
it may happen that σ1 = 0 for all S1. To show such an example we first derive the formula
for σ1 which will also be needed for further estimates.

Theorem 4 (i) For any space F1 we have

σ1 =

√

√

√

√ σ2
0 − sup

t∈D

h2(t)

K1(t, t)
. (7)

Moreover, if σ0 > 0 then σ1 < σ0.
(ii) For any positive integer k or for k = +∞, there exists a Hilbert space F1 of dimension

k for which σ1 = 0 for all linear functionals S1.
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Proof: We first show the formula for σ1. We have, for arbitrary t ∈ D,

‖h − a K1(·, t)‖2
F1

= σ2
0 − 2a h(t) + a2K1(t, t).

Minimizing with respect to a we get a = h(t)/K1(t, t), and so

inf
a

sup
f∈F1, ‖f‖F1

≤1

∣

∣

∣S1f − a f(t)
∣

∣

∣

2
= σ2

0 − h2(t)

K1(t, t)
,

with the convention that 0/0 = 0.7 Minimizing with respect to t, we get

σ2
1 = σ2

0 − sup
t∈D

h2(t)

K1(t, t)

which yields (7).
Observe that σ1 cannot be equal to σ0 for positive σ0. Indeed, σ1 = σ0 implies that

h(t) = 0, ∀ t ∈ D. Hence, h = 0 which contradicts σ0 = ‖h‖F1
> 0.

We now turn to (ii). The dimension of F1 is to be k, hence we are looking for F1 =
span(e1, e2, . . . , ek) for some functions ei : D → IR. We set D = [−1, 1]. Let

~e (t) = [e1(t), e2(t), . . . , ek(t)], ∀ t ∈ [−1, 1].

We choose the functions ei such that ~e ([−1, 1]) is dense in [−1, 1]k. If k = +∞ we use the
l2 norm, and we additionally assume that

∞
∑

i=1

e2
i (t) < +∞, ∀ t ∈ [−1, +1].

Clearly such functions exist since we do not impose any regularity assumptions on ei.
We may define the function ~e as follows. Let ri be an ordered sequence of all rationals
from [−1, 1], and let ~pi,k be an ordered sequence of all rational vectors from [−1, +1]k. For
k = +∞, we use the diagonal ordering of successive components such that each ~pi,∞ has
finitely many nonzero components. Define ~e(ri) = ~pi,k and ~e(t) = 0, say, otherwise. For
k = +∞, we see that

∑∞
i=1 e2

i (t) equals zero for irrational t, and equals ‖~p j,∞‖2 < +∞ for a
rational t = rj.

7Observe that K1(t, t) = 0 implies K1(t, t) = ‖K1(t, ·)‖2

F1
= 0, so in turn K1(t, ·) = 0, and f(t) = 0 for

all f ∈ F1. Hence, K1(t, t) = 0 yields that h(t) = 0 and that the error is σ0. This is consistent with our
convention 0/0 = 0.
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It is easy to check that these functions ei are linearly independent. So we define F1 =
span(e1, e2, . . . , ek), with inner product such that the functions ei are orthonormal. The
reproducing kernel K1 is then given by

K1(x, t) =
k
∑

i=1

ei(x) ei(t), ∀x, t ∈ [−1, +1].

Indeed, K1(·, t) belongs to F1 since
∑k

i=1 e2
i (t) < ∞, and 〈f, K1(·, t)〉F1

= f(t). We now

show that σ1 = 0 for an arbitrary linear functional S1f = 〈f, h〉F1
with h =

∑k
i=1 αiei ∈ F1.

Indeed, we have σ2
0 = ‖h‖2 =

∑k
i=1 α2

i < +∞. If σ0 = 0 then σ1 = 0. Now assume σ0 > 0.
Then we have

σ−1
0 [α1, α2, . . . , αk] ∈ [−1, +1]k\{~0}.

Let ~α = [α1, α2, . . . , αk]. Since ~e ([−1, +1]) is dense in [−1, +1]k, for any positive η < 1 there
exists t ∈ [−1, +1] such that

‖~e (t) − σ−1
0 ~α ‖2 ≤ η.

This means that for small η we get ‖~e (t)‖2 > 0, and the vectors ~e (t) and ~α are almost
parallel. We have

h2(t)

K1(t, t)
=

(
∑k

i=1 αiei(t))
2

∑k
i=1 e2

i (t)
.

Observe that
k
∑

i=1

αiei(t) = σ0

(

k
∑

i=1

ei(t)
2 +

k
∑

i=1

(

σ−1
0 αi − ei(t)

)

ei(t)

)

.

Therefore
∣

∣

∣

∣

∣

k
∑

i=1

αiei(t)

∣

∣

∣

∣

∣

≥ σ0

k
∑

i=1

ei(t)
2
(

1 − ‖~e (t) − σ−1
0 ~α ‖2/‖~e (t) ‖2

)

,

and
h2(t)

K1(t, t)
≥ σ2

0 ‖~e (t)‖2
2 (1 − η/‖~e (t)‖2)

2 .

Letting η go to zero, we get ‖~e (t)‖2 → 1 and supt∈D h2(t)/K1(t, t) = σ2
0 . Hence, σ1 = 0 due

to (7). This completes the proof. 2

Remark 1 The space F1 in the proof of Theorem 4 (ii) consists of very irregular
functions. We now show that F1 can be chosen as a subclass of the class C([0, 1]) of continuous
functions. The construction of such F1 is as follows, see also [2].

17



The interval [0, 1] is a Peano set, i.e., there exists a continuous mapping

g = [g1, g2, . . .] : [0, 1] → [−1, 1]IN

which is onto, see, e.g., [3]. Such a mapping is called a Peano map or a Peano curve. Here,
gi is the ith component of g and is a continuous function.

For a given integer k or k = +∞, define

F1 =

{

f : [0, 1] → IR | f =
k
∑

i=1

figi for which
k
∑

i=1

i2f 2
i < +∞

}

with the inner product

〈f, h〉F1
=

k
∑

i=1

i2fihi

for h =
∑k

i=1 higi ∈ F1.
Observe that f(t) =

∑k
i=1 figi(t) is well defined since |gi(t)| ≤ 1 and

|f(t)| ≤
k
∑

i=1

|fi| ≤
(

k
∑

i=1

i2f 2
i

)1/2 ( k
∑

i=1

i−2

)1/2

≤ ‖f‖F1
π/

√
6.

This also implies that f is a continuous function; hence F1 ⊂ C([0, 1]). It is easy to check
that F1 is complete so F1 is a Hilbert space.

We now show that for any linear functional S1 ∈ F ∗
1 and any positive ε, there exist a

nonnegative number β and x ∈ [0, 1] such that

|S1f − β f(x)| ≤ ε, ∀ f ∈ F1, ‖f‖F1
≤ 1. (8)

That is, S1 can be recovered with arbitrarily small error by using at most one function value;
hence σ1 = 0.

Indeed, S1f = 〈f, h〉F1
for some h =

∑k
i=1 higi ∈ F1. The series

∑k
i=1 i2h2

i is convergent,
so there exists m = m(ε) such that

k
∑

i=m+1

i2h2
i ≤ ε2.

Let
β = max

i=1,2,...m
|S1gi|.
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Observe that S1gi = i2hi and since |ihi| ≤ ‖h‖F1
then β ≤ m‖h‖F1

.
If β > 0 then

u = β−1 [S1g1, S1g2, . . . , S1gm] ∈ [−1, 1]m.

Since g is surjective, there exists x ∈ [0, 1] such that g(x) = [u, 0, 0, . . .]. That is, gi(x) =
β−1S1gi for i = 1, 2, . . .m, and gi(x) = 0 for i > m.

For ‖f‖F1
≤ 1 we thus have

S1f =
m
∑

i=1

fiS1gi +
k
∑

i=m+1

fiS1gi

= β
m
∑

i=1

figi(x) +
k
∑

i=m+1

i2fihi

= β
k
∑

i=1

figi(x) +
k
∑

i=m+1

i2fihi

= β f(x) +
k
∑

i=m+1

i2fihi.

Hence,

|S1f − βf(x)| ≤
k
∑

i=m+1

i2|fihi| ≤ ‖f‖F1





k
∑

i=m+1

i2h2
i





1/2

≤ ε,

as claimed in (8). Obviously, for a finite k, we can set ε = 0 in (8). 2

Although there exist spaces for which σ1 = 0 for all linear functionals, for typical spaces
and linear functionals we have that σn > 0 for all n. We now recall conditions under which
σn goes to zero at least as quickly as as n−1/2, see [8].

If F1 ⊂ L2(D) and

(i)
| 〈f, h〉F1

| ≤ C1‖f‖L2
, ∀ f ∈ F1,

(ii)
supesst∈D K1(t, t) = C2 < +∞

19



then

σn ≤
C1

√

C2 λ(D)
√

n
,

comp(ε, Λstd
1 ) ≤ C2

1 C2 λ(D)ε−2,

where λ(D) denotes the Lebesgue measure of the set D.
In general, if (i) or (ii) does not hold then σn may go arbitrarily slowly to zero, or

equivalently, comp(ε, Λstd
1 ) may go arbitrarily quickly to infinity as ε approaches zero. More

precisely, as in Section 3, for any convex decreasing function g : [0, +∞] → IR+, there exists
a linear functional S1 for which

σ2
n = g(n).

We now provide two such examples which will also play an additional role of illustrating
further estimates.

Example 1: Nonseparable Space

We present a nonseparable Hilbert space F1 with a bounded reproducing kernel which
does not satisfy the assumption (i) and satisfies the assumption (ii), and for which σn may
go arbitrarily slowly to zero.

Define F1 as the space of functions defined on D = [0, 1] with the reproducing kernel

K1(t, t) = 1, and K1(x, t) = 0 for x 6= t.

Here, F1 is the Hilbert space of functions f such that f =
∑∞

i=1 aiK1(·, ti) for some distinct
ti from [0, 1], and ‖f‖2

F1
=
∑∞

i=1 a2
i < +∞. The inner product is 〈f, g〉F1

= Σi,jaibjδ(ti, sj).
Hence we have f(ti) = ai and f(t) = 0 for t distinct from all ti , so that each function f
from F1 vanishes almost everywhere. Thus, (i) does not hold, and (ii) holds with C2 = 1.

Note that K(·, x) and K(·, t) are orthonormal for x 6= t. Hence, F1 has an uncountable
orthonormal system, and therefore is not separable.

Consider now an arbitrary linear functional S1f = 〈f, h〉F1
with h =

∑∞
i=1 αiK1(·, t∗i ),

where
∑∞

i=1 α2
i = 1 and |α1| ≥ |α2| ≥ · · ·. Clearly, the information

N(f) = [f(t1), f(t2), . . . , f(tn)]

should consist only of sample points ti from the set {t∗1, t∗2, . . .}. This corresponds to Fourier
information with ηi = K1(·, t∗i ). As in Section 3 we thus have

σn = e(n, Λstd
1 ) = e(n, ΛFou

1 ) =

√

√

√

√1 −
n
∑

i=1

α2
i .
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We can define the coefficients αi by (6) such that σ2
n = g(n) for any convex decreasing

function g. Hence, we can have arbitrarily slow convergence, or equivalently, arbitrarily bad
complexity. 2

Example 2: Unbounded Kernel

We present a separable Hilbert space F1 with an unbounded reproducing kernel which
does not satisfy the assumption (ii) and satisfies the assumption (i), and for which σn may go
arbitrarily slowly to zero. This is done by a simple modification of the space from Example 1.

Define F1 as the space of functions f : [0, 1] → IR which are constant over the intervals
(1/(i + 1), 1/i] for i = 1, 2, . . .. That is,

f(x) =
∞
∑

i=1

f(1/i) χ(1/(i+1),1/i](x),

where χ(a,b] is the characteristic (indicator) function of the set (a, b].
We assume that

∑∞
i=1 f 2(1/i) < +∞, and define the inner product of F1 as

〈f, h〉F1
=

∞
∑

i=1

f(1/i) h(1/i) i−1(i + 1)−1.

Observe that

∫ 1

0
f(x)h(x) dx =

∞
∑

i=1

∫ 1/i

1/(i+1)
f(x)h(x) dx =

∞
∑

i=1

f(1/i) h(1/i) i−1(i + 1)−1.

Thus, 〈f, h〉F1
= 〈f, h〉L2

. This shows that F1 ⊂ L2([0, 1]) and ‖f‖F1
= ‖f‖L2

. Hence, (i)
holds with C1 = ‖h‖F1

.
We now show that F1 is a reproducing kernel Hilbert space and find the reproducing

kernel K1. For any t ∈ (1/(i + 1), 1/i] we should have

f(t) = f(1/i) = 〈f, K1(·, 1/i)〉F1
=

∞
∑

j=1

f(1/j)K1(1/j, 1/i)j
−1(j + 1)−1.

This is satisfied for all f if
K1(1/j, 1/i) = i(i + 1) δi,j.

Since K1(·, t) should be piecewise constant we finally have

K1(x, t) = i(i + 1) if T (x) = T (t) = i for some i,
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and K1(x, t) = 0 otherwise. Here, T (x) = k iff x ∈ (1/(k + 1), 1/k]. Since

K1(1/i, 1/i) = i(i + 1), ∀ i,

K1 is unbounded, and (ii) does not hold.
Let S1f = 〈f, h〉F1

with h =
∑∞

i=1 αiχ(1/(i+1),1/i] and ‖h‖2
F1

=
∑∞

i=1 α2
i i

−1(i + 1)−1 = 1.
Consider the approximation U1(f) =

∑n
i=1 aif(ti). Since f is piecewise constant we may

assume that ti = 1/ji for some integers ji. Since K(·, 1/i) and K(·, 1/j) are orthogonal for
distinct i and j, it is easy to check that ai = αji

j−1
i (ji + 1)−1 minimizes the error. Then the

square of the error is

1 −
n
∑

i=1

α2
ji
j−1
i (ji + 1)−1.

The n best sample points correspond to the n largest numbers of the sequence α2
i i

−1(i+1)−1.
Assume that

α2
j1

j1(j1 + 1)
≥ α2

j2

j2(j2 + 1)
≥ · · · ≥ 0.

Then

σn =

√

√

√

√

∞
∑

i=n+1

α2
ji
j−1
i (ji + 1)−1.

As in Section 3, we can define the coefficients αi such that σ2
n = g(n) for any convex decreasing

function g. Hence, we can have arbitrarily slow convergence, or equivalently, arbitrarily bad
complexity. 2

5.2.2 Multivariate Case, d ≥ 2

We study multivariate linear functionals Sd. We first find the formula for e(1, Λstd
d ) and check

that σ1 = 0 yields the trivial multivariate problems.

Lemma 1 We have
e(1, Λstd

d ) =
√

σ2d
0 − (σ2

0 − σ2
1)

d. (9)

Hence, σ1 = 0 implies e(1, Λstd
d ) = 0, ∀ d, and comp(ε, Λstd

d ) = 1, ∀ ε > 0, d = 1, 2, . . .. This
means that the problem is strongly tractable with strong exponent zero.

Proof: To prove the formula for e(1, Λstd
d ) we proceed similarly to the case d = 1 in (i) of

Theorem 4. That is, we approximate Sdf =
〈

f, hd
〉

Fd

by af(t) for t = [t1, t2, . . . , td], where
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ti ∈ D. We conclude that the best a is given by a = hd(t)/Kd(t, t) and

e2(1, Λstd
d ) = ‖hd‖2

Fd
− sup

t∈Dd

h2d(t)

Kd(t, t)
.

Obviously, ‖hd‖Fd
= ‖h‖d

F1
= σd

0 . Observe that hd(t)/Kd(t, t) =
∏d

i=1 h(ti)/K1(ti, ti), and
therefore

sup
t∈Dd

h2d(t)

Kd(t, t)
=

(

sup
t∈D

h2(t)

K1(t, t)

)d

=
(

σ2
0 − σ2

1

)d

using the formula (7) for σ1. This completes the proof. 2

From now on, we assume that σ1 > 0. We study tractability issues for multivariate linear
functionals Sd. It is clear (since the multivariate case cannot be easier than the univariate
case) that a necessary condition for tractability is that σn goes to zero as a polynomial in
n−1. Tractability also depends on the norm of S1. The following theorem is proven in [7].

Theorem 5 Consider the problem {Sd, Fd, IR} with σ1 > 0 in the class of standard infor-
mation.

Assume that σ0 = ‖S1‖ < 1. Then
(i) the problem is tractable iff it is strongly tractable.
(ii) the problem is strongly tractable iff σn = O(n−k) for some positive k.
Assume that σ0 = ‖S1‖ ≥ 1. Then σn > 0, ∀n, implies that the problem is not strongly

tractable.

Unlike the corresponding result for the previous classes of information, Theorem 5 does
not cover all cases for linear functionals. In particular, Theorem 5 does not rule out the
possibility that the problem is tractable for σ0 ≥ 1. As we shall see, tractability may indeed
happen for some spaces F1 and all linear functionals S1, or for some linear functionals S1

in a given space F1. On the other hand, there exists a space F1 for which tractability will
never happen. Hence, the situation is much more complicated than for the other classes of
information.

Even when the problem is strongly tractable, Theorem 5 does not supply bounds on the
strong exponent. Some bounds on the strong exponent may be found in [7]. These bounds
tend to infinity as ‖S1‖ tends to 1.

The unresolved case is when ‖S1‖ ≥ 1. Here we consider the normalized case σ0 =
‖S1‖ = 1. We now present several estimates for the sequence e(n, Λstd

d ) in terms of σ1.

23



Theorem 6 Assume σ0 = 1 and σ1 > 0. Let

τ = 1 − σ2
1 ∈ (0, 1).

Then

e(d, Λstd
d ) ≥ σd

1 > 0, (10)

e(n, Λstd
nd ) ≥

(

1 − τd
)n/2

, (11)

lim
d→+∞

e(n, Λstd
d ) = 1, ∀n, (12)

lim
d→+∞

e(⌈dp⌉, Λstd
d ) = 1, ∀ p ∈ [0, 1). (13)

Proof: We recall, see (4), that

e(n, Λstd
d ) = inf

ti∈Dd, i=1,2,...,n
sup

f∈Fd, ‖f‖Fd
≤1, f(ti)=0, i=1,2,...,n

〈

f, hd
〉

Fd

. (14)

In particular,
σ1 = inf

t∈D
sup

f∈F1, ‖f‖F1
≤1, f(t)=0

〈f, h〉F1
.

Let η ∈ (0, σ1). Then for every t ∈ D there exists ft ∈ F1, ‖ft‖F1
= 1, such that ft(t) = 0

and 〈ft, h〉F1
≥ σ1 − η.

To prove (10), take n = d and arbitrary points t1, t2, . . . , td ∈ Dd. Let ti,i ∈ D denote the
ith component of the point ti. Define the function

f(x) = ft1,1
(x1)ft2,2

(x2) · · · ftd,d
(xd), ∀x = (x1, · · · , xd) ∈ Dd.

Then f ∈ Fd, ‖f‖Fd
= 1, and f(ti) = 0 for i = 1, 2, . . . , d. Furthermore,

〈

f, hd
〉

Fd

=
d
∏

i=1

〈

fti,i , h
〉

F1

≥ (σ1 − η)d.

Since this holds for arbitrary ti, from (14) we have e(d, Λstd
d ) ≥ (σ1 − η)d. Letting η go to

zero we obtain (10).
To prove (11) we proceed similarly. This time let η ∈ (0, e(1, Λstd

d )). From (14) with
n = 1, for any t ∈ Dd there exists ft ∈ Fd, ‖f‖Fd

= 1 such that ft(t) = 0 and

〈

ft, h
d
〉

Fd

≥ e(1, Λstd
d ) − η = (1 − τd)1/2 − η,
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where we used Lemma 1.
Take arbitrary points t1, t2, . . . , tn ∈ Dnd. Let ti,d ∈ Dd denote the components from

(i−1)d+1 to id of the point ti. For x = [x1, x2, . . . , xn] ∈ Dnd with xj ∈ Dd for j = 1, 2 . . . , n
define the function

f(x) = ft1,d
(x1) ft2,d

(x2) · · · ftn,d
(xn), ∀x ∈ Dnd.

Then f ∈ Fnd, ‖f‖Fnd
= 1, f(ti) = 0 for i = 1, 2, . . . , n and

〈

f, hnd
〉

Fnd

=
n
∏

i=1

〈

fti,d , h
d
〉

Fd

≥
(

(1 − τd)1/2 − η
)n

.

Letting η go to zero we obtain (11).
The last estimates (12) and (13) follow easily from (11). Indeed, e(n, Λstd

d ) ≤ e(0, Λstd
d ) =

1 and by letting d go to infinity in (11) we get (12). Finally, using d = Θ(⌈dp⌉ d1−p) and (11)
we have for large d,

e(⌈dp⌉, Λstd
d ) ≥

(

1 − τ c d1−p
)⌈dp⌉/2

for some positive c. Since 1 − p is positive and τ c < 1, the logarithm of the right hand side
of the last inequality is of order dp(τ c)d1−p

and goes to zero as d approaches infinity. Thus,
the right hand side goes to one. This completes the proof. 2

Observe that the last estimate of Theorem 6 means, in particular, that the problem is
not strongly tractable. This strengthens the second part of Theorem 5 where this is proven
under the stronger assumption that all σn are positive. We summarize this, together with
a tractability condition that also follows from the last part of Theorem 6, in the following
corollary.

Corollary 1 If σ0 ≥ 1 and σ1 > 0 then the problem {Sd, Fd, IR} in the class of standard
information is not strongly tractable. If the problem is tractable then its exponent with respect
to d is at least one.

Theorem 6 says, in particular, that e(d, Λstd
d ) is positive. We now prove that, in general, this

estimate cannot be improved, in that it can fail if d is replaced by d + 1. Furthermore, we
also show that the last estimate of Theorem 6 is somewhat sharp in the sense that it can fail
for arbitrary p > 1.
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Theorem 7 There exists a Hilbert space F1 for which
(i) all multivariate linear tensor product functionals are tractable;
(ii) there exist linear functionals S1 with σ1 > 0 and for all such problems Sd we have

e(d, Λstd
d ) > 0 and e(d + 1, Λstd

d ) = 0.

Therefore comp(ε, Λstd
d ) ≤ d + 1, ∀ ε ≥ 0, and the exponent with respect to ε−1 is zero

whereas the exponent with respect to d is one whenever σ1 > 0.

Proof: We construct a space F1 as a two-dimensional space, F1 = span(e1, e2), where e1 and
e2 are two linearly independent functions defined on D = [0, 1]. We choose an inner product
in such a way that ei are orthonormal.

Take an arbitrary linear functional S1f = 〈f, h〉F1
with h = α1e1 + α2e2. Without loss of

generality8, assume that ‖h‖2
F1

= α2
1 + α2

2 = 1. We first check for which αi’s we have σ1 = 0.
We compute σ1 =

√
1 − τ given by Theorem 6. The reproducing kernel of F1 is given by

K1(t, x) = e1(t)e1(x) + e2(t)e2(x).

Let

g(t) =
α1 e1(t) + α2 e2(t)
√

e2
1(t) + e2

2(t)
, ∀ t ∈ [0, 1], (here 0/0 = 0).

Then from (7)

σ1 =
√

1 − sup
t∈[0,1]

g2(t)

and σ1 = 0 iff supt∈[0,1] g
2(t) = 1. This, in turn, holds (by application of the Cauchy-Schwarz

inequality for l2) if there exists t ∈ [0, 1] such that

α1e2(t) = α2e1(t). (15)

Let Z2 = {t ∈ [0, 1] : e2(t) = 0} denote the roots of e2. Consider the function

r := e1/e2 : [0, 1] \ Z2 → IR.

Then (15) holds for some t ∈ [0, 1] for arbitrary α1, α2 iff r([0, 1] \Z2) = IR. In this case, for
all linear functionals of F1 we have σ1 = 0.

8For ‖h‖F1
= 1 we construct an approximation Ud which uses d + 1 function values and which recovers

Sd exactly. For a general h it is enough to multiply Ud by ‖h‖d

F1
.
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From now on, we assume that the functions e1 and e2 are chosen such that r([0, 1] \ Z2)
is a proper subset of IR. This implies that there exist linear functionals for which σ1 > 0.
They are characterized by the condition

α1/α2 /∈ r([0, 1] \ Z2).

For such functionals we know from (10) that e(d, Λstd
d ) > 0. To prove that e(d + 1, Λstd

d ) = 0
we need to assume that

r ([0, 1] \ Z2) has infinitely many elements. (16)

Obviously there exist functions e1 and e2 satisfying all these assumptions. For instance, one
can take e1(t) = t and e2(t) = t2 + 1.

For d ≥ 2, we have Sdf =
〈

f, hd
〉

Fd

with

hd(x) = hd(x1, x2, . . . , xd) =
d
∏

j=1

(α1e1(xj) + α2e2(xj)) .

We approximate Sdf by computing

Ud(f) =
d+1
∑

i=1

ai f(ti, ti, . . . , ti), ∀ f ∈ Fd, (17)

for some ai ∈ IR and ti ∈ [0, 1]. We stress that Ud uses the d + 1 function values at the
points whose all components are equal. The error of Ud is e(Ud) = ‖gd‖Fd

with

gd = hd −
d+1
∑

i=1

ai Kd(·, [ti, ti, . . . , ti]).

That is, we have

gd =
d
∏

j=1

(α1e1,j + α2e2,j) −
d+1
∑

i=1

ai

d
∏

j=1

(e1(ti) e1,j + e2(ti) e2,j) ,

where ei,j(x) = ei(xj).
Define the set

Jk =
{

~j = [j1, j2, . . . , jd] : ji ∈ {1, 2}, and the number of i with ji = 1 is k
}

,
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for k = 0, . . . , d. The cardinality of the set Jk is

(

d
k

)

. We now decompose the first term

in gd as
d
∏

j=1

(α1e1,j + α2e2,j) =
d
∑

k=0

αk
1 αd−k

2 e∗k,

where
e∗k =

∑

~j ∈Jk

ej1,1ej2,2 · · · ejd,d.

Similarly we have

d
∏

j=1

(e1(ti) e1,j + e2(ti) e2,j) =
d
∑

k=0

ek
1(ti) ed−k

2 (ti) e∗k.

Substituting these expressions into the above expression for gd we obtain

gd =
d
∑

k=0

(

αk
1α

d−k
2 −

d+1
∑

i=1

ai e
k
1(ti)e

d−k
2 (ti)

)

e∗k.

Hence e(Ud) = 0 iff ‖gd‖Fd
= 0, which in turn holds, because the e∗0, e

∗
1, . . . , e

∗
d are linearly

independent, iff
d+1
∑

i=1

ai e
k
1(ti)e

d−k
2 (ti) = αk

1α
d−k
2 , for k = 0, 1, . . . , d.

We have a system of d + 1 linear equations and d + 1 unknown coefficients ai. We can find
ai for arbitrary αi’s iff the matrix

M =
(

ek
1(ti)e

d−k
2 (ti)

)

= (mk,i), k = 0, 1, . . . , d, i = 1, 2, . . . , d + 1,

is nonsingular.
Take now points ti for which e2(ti) are nonzero and qi = r(ti) are distinct for all i =

1, 2, . . . , d + 1. Due to (16) such points exist.
We claim that for these points ti the matrix M is nonsingular. Indeed, let W =

diag
(

e−d
2 (t1), e

−d
2 (t2), . . . , e

−d
2 (td+1)

)

be a diagonal matrix. By our assumptions it is non-

singular. Moreover, M W = (ak,i) is a Vandermonde matrix with ak,i = qk
i . Since the qi are

distinct, the matrix M W is nonsingular, and therefore so is M . This completes the proof.
2
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Remark 2 We stress that the points ti in the proof of Theorem 7, part (ii) do not
depend on the functionals Sd. More precisely, in the space Fd used in the proof of Theorem
7, let

Nj(f) = [f(t1, . . . , t1), f(t2, . . . , t2), . . . , f(tj, . . . , tj)]

be the information, with numbers ti for which e2(ti) are all nonzero and e1(ti)/e2(ti) are
distinct for all i. Then for any linear functional Sd, we have r(Nd+1) = 0, i.e., the minimal
error with j = d + 1 is zero.

In fact, for an arbitrary functional Sd and any choice of t1, · · · , td+1, as above, we showed
that there exist numbers ai = ai(Sd), i = 1, 2 . . . , d + 1, such that

Sdf = Ud(f) =
d+1
∑

i=1

ai f(ti, . . . , ti), ∀ f ∈ Fd.

Remark 3 The proof of Theorem 7 presents a two-dimensional univariate space F1 for
which all linear functionals are tractable. It is possible to generalize the proof of Theorem
7 for spaces F1 of dimension p ≥ 2. Namely, assume that F1 = span(e1, e2, . . . , ep) for
orthonormal ei defined on D. For given points ti ∈ D consider the n × n matrix

M =
(

ek1

1 (ti) ek2

2 (ti) · · · ekp

p (ti)
)

for nonnegative kj such that k1 + k2 + . . . + kp = d, and i = 1, 2, . . . , n =

(

d + p − 1
p − 1

)

.

We prove that if there exist points t1, · · · , tn such that M is nonsingular then

e(n, Λstd
d ) = 0 (18)

for all multivariate linear tensor product functionals. In this case, the problem is tractable
and the exponent with respect to ε−1 is zero whereas the exponent with respect to d is at
most p − 1.

Indeed, we have

hd =
d
∏

j=1

(α1e1,j + α2e2,j + · · ·+ αpep,j) .

To decompose the last expression, let

Ap,d =
{

~k = [k1, k2, . . . , kp] : for nonnegative integers ki and k1 + k2 + · · ·+ kp = d
}

.
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The cardinality of the set Ap,d is n =

(

d + p − 1
p − 1

)

. For each ~k ∈ Ap,d define the set

J~k =
{

~j = [j1, j2, . . . , jd] : ji ∈ {1, 2, . . . , p}, and the number of ji = m is km, m ∈ [1, p]
}

.

Then
hd =

∑

~k∈Ap,d

αk1

1 αk2

2 · · · αkp
p e∗~k ,

where
e∗~k =

∑

~j ∈J~k

ej1,1ej2,2 · · · ejd,d.

Consider Ud given by (17) with the number of function values n =

(

d + p − 1
p − 1

)

. As

before we can show that the error e(Ud) = ‖gd‖Fd
with

gd =
∑

~k∈Ap,d

(

αk1

1 αk2

2 · · · αkp

p −
n
∑

i=1

ai e
k1

1 (ti)e
k2

2 (ti) · · · ekp

p (ti)

)

e∗~k .

To guarantee that ‖gd‖Fd
= 0 we require that ai’s satisfy the system of linear equations

n
∑

i=1

ai e
k1

1 (ti)e
k2

2 (ti) · · · ekp

p (ti) = αk1

1 αk2

2 · · · αkp

p , ∀~k ∈ Ap,d.

If the matrix M of this system is nonsingular, we can find ai for arbitrary αi. This completes
the proof of (18).

It is natural to ask for which points ti the matrix M is nonsingular. An example is
provided for D = [0, +∞) and ei(t) = t

√
qi, where qi is the ith prime number, with q1 = 1.

Then
ek1

1 (ti) ek2

2 (ti) · · · ekp

p (ti) = t
k1+k2

√
q2+···+kp

√
qp

i .

Clearly, the exponents u~k = k1 + k2
√

q2 + · · · + kp
√

qp are different for different vectors
~k = [k1, k2, . . . , kp].

We use induction on n to check nonsingularity of M =
(

t
u~k
i

)

. The inductive hypothesis
is that for 1 ≤ m < n the m × m submatrices of M that involve only t1, . . . , tm can all be
made nonsingular by appropriate choice of t1, . . . , tm. If the result holds for submatrices of
size m = ν−1 then for each submatrix Mν of size ν we find, by expansion of the determinant
along the appropriate row, that

det(Mν) = a tβν + o(tβν ), as tν → +∞
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for some nonzero a and β. Hence, we can take a large tν for which each det(Mν) is nonzero.
From this it follows that choices of points always exist for which M is non-singular. 2

The preceding theorem says that in some spaces all multivariate linear tensor product
functionals are tractable. We now show that the opposite can also happen.

Theorem 8 There exists a Hilbert space for which all multivariate linear tensor product
functionals with σ0 ≥ 1 and σ1 > 0 are intractable.

Proof: Take the Hilbert space F1 from Example 1. That is, F1 is a nonseparable space of
functions defined on [0, 1] with the reproducing kernel K1(t, t) = 1 and K1(t, x) = 0 for
x 6= t.

Consider now an arbitrary linear functional S1f = 〈f, h〉F1
with h ∈ F1. Then h =

∑∞
i=1 αiK1(·, ti) for some αi ∈ IR and distinct ti ∈ [0, 1], with σ2

0 =
∑∞

i=1 α2
i < +∞. We know

by assumption that σ0 ≥ 1. As in Example 1, we can show that σ1 =
√

σ2
0 − maxi |αi|2.

Hence, σ1 > 0 iff at least two αi are nonzero.
We showed in Example 1 that standard information for this space is equivalent to Fourier

information. We thus have γ0 = σ0 and γ1 = σ1, and Theorem 8 follows from Theorem 2. 2

Theorems 7 and 8 state that, in general, tractability of linear functionals depends on the
Hilbert space. For some spaces all nontrivial linear functionals are intractable whereas for
other spaces all linear functionals are tractable with the exponents zero and at most one for
ε−1 and d, respectively.

The spaces of Theorems 7 and 8 are very special. We believe that in “typical” Hilbert
spaces some linear functionals are tractable and some others are not. The next theorem
presents conditions under which we can find tractable and intractable linear functionals in
a given space.

Theorem 9 Let F1 be a Hilbert space of real-valued functions on a domain D.
(i) For two distinct t1 and t2 from D, let e1 and e2 be orthonormal elements from

span (K1(·, t1), K1(·, t2)) .

If the function e1/e2 takes infinitely many values then all linear functionals S1f = 〈f, h〉F1

with h ∈ span(e1, e2) are tractable with exponents zero and at most one, since e(d+1, Λstd
d ) = 0

and comp(ε, Λstd
d ) ≤ d + 1.

(ii) If there exist two orthonormal elements e1 and e2 from the space F1 which have
disjoint supports then all linear functionals S1f = 〈f, h〉F1

with h = α e1 +
√

1 − α2 e2 for
α ∈ (0, 1) are intractable.
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Proof: To prove the first part we may use exactly the same construction as in Theorem 7,
with span(e1, e2) now playing the role of F1. The second part is proven as in [7] p. 53. 2

We believe that for “typical” spaces F1 the assumptions of (i) and (ii) are satisfied. This
holds, for example, for Sobolev spaces F1 = W r([0, 1]). Hence, the classes of tractable linear
functionals and intractable linear functionals are both, in general, non-empty. The trouble
is that for the fixed problem S1f = 〈f, h〉F1

(like integration or weighted integration) we do
not know whether the problem is tractable or intractable. Clearly, there remains much work
to be done.

Acknowledgments. The first of us (E.N.) was supported by a Heisenberg fellowship
of the German DFG. The second of us (I.H.S.) gratefully acknowledges the support of the
Australian Research Council. The third of us (H. W.) was supported in part by the National
Science Foundation and the Air Force Office of Scientific Research.

We thank K. Ritter, G. W. Wasilkowski and A. G. Werschulz for valuable comments.

References

[1] N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc., 68, p. 337-404,
1950.

[2] E. Novak, Quadrature and widths, J. Approx. Th., 47, p. 195-202, 1986.

[3] Z. Semadeni, Banach Spaces of Continuous Functions, Vol. 1, Warsaw, 1971.

[4] I. H. Sloan and H. Woźniakowski, An intractability result for multiple integration, to
appear in Math. Comp.

[5] S. A. Smolyak, Quadrature and interpolation formulas for tensor products of certain
classes of functions, Dokl. Akad. Nauk SSSR, p. 240-243, 1964.

[6] J. F. Traub, G. W. Wasilkowski, and H. Woźniakowski, Information-based Complexity,
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