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Abstract We present some results on the complexity of numerical integration. We

start with the seminal paper of Bakhvalov (1959) and end with new results on the

curse of dimensionality and on the complexity of oscillatory integrals.

This survey paper consists of four parts:

1. Classical results till 1971

2. Randomized algorithms

3. Tensor product problems, tractability and weighted norms

4. Some recent results: Ck functions and oscillatory integrals

1 Classical Results till 1971

I start with a warning: We do not discuss the complexity of path integration and

infinite-dimensional integration on R
N or other domains although there are exciting

new results in that area, see [8, 14, 21, 22, 23, 41, 43, 44, 53, 69, 77, 90, 96, 121, 123].

For parametric integrals see [16, 17], for quantum computers, see [48, 49, 80, 115].

We mainly study the problem of numerical integration, i.e., of approximating the

integral

Sd( f ) =
∫

Dd

f (x)dx (1)

over an open subset Dd ⊂ R
d of Lebesgue measure λ d(Dd) = 1 for integrable func-

tions f : Dd → R. The main interest is on the behavior of the minimal number of

function values that are needed in the worst case setting to achieve an error at most

ε > 0. Note that classical examples of domains Dd are the unit cube [0,1]d and the
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2 Erich Novak

normalized Euclidean ball (with volume 1), which are closed. However, we work

with their interiors for definiteness of certain derivatives.

We state our problem. Let Fd be a class of integrable functions f : Dd → R.

For f ∈ Fd , we approximate the integral Sd( f ), see (1), by algorithms of the form

An( f ) = φn( f (x1), f (x2), . . . , f (xn)),

where x j ∈ Dd can be chosen adaptively and φn : Rn → R is an arbitrary mapping.

Adaption means that the selection of x j may depend on the already computed values

f (x1), f (x2), . . . , f (x j−1). We define N : Fd →R
n by N( f ) = ( f (x1), . . . , f (xn)). The

(worst case) error of the algorithm An is defined by

e(An) = sup
f∈Fd

|Sd( f )−An( f )|,

the optimal error bounds are given by

e(n,Fd) = inf
An

e(An).

The information complexity n(ε ,Fd) is the minimal number of function values

which is needed to guarantee that the error is at most ε , i.e.,

n(ε ,Fd) = min{n | ∃ An such that e(An)≤ ε}.

We minimize n over all choices of adaptive sample points x j and mappings φn.

In this paper we give an overview on some of the basic results that are known

about the numbers e(n,Fd) and n(ε ,Fd). Hence we concentrate on complexity issues

and leave aside other important questions such as implementation issues.

It was proved by Smolyak and Bakhvalov that as long as the class Fd is convex

and balanced we may restrict the minimization of e(An) by considering only non-

adaptive choices of x j and linear mappings φn, i.e., it is enough to consider An of the

form

An( f ) =
n

∑
i=1

ai f (xi). (2)

Theorem 0 (Bakhvalov [6]). Assume that the class Fd is convex and balanced. Then

e(n,Fd) = inf
x1,...,xn

sup
f∈Fd

N( f )=0

Sd( f ) (3)

and for the infimum in the definition of e(n,Fd) it is enough to consider linear and

nonadaptive algorithms An of the form (2).

In this paper we only consider convex and balanced Fd and then we can use the

last formula for e(n,Fd).
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Remark 0. a) For a proof of Theorem 0 see, for example, [89, Theorem 4.7]. This

result is not really about complexity (hence it got its number), but it helps to prove

complexity results.

b) A linear algorithm An is called a quasi Monte Carlo (QMC) algorithm

if ai = 1/n for all i and is called a positive quadrature formula if ai > 0 for all i. In

general it may happen that optimal quadrature formulas have some negative weights

and, in addition, we cannot say much about the position of good points xi.

c) More on the optimality of linear algorithms and on the power of adaption can

be found in [15, 79, 89, 113, 114]. There are important classes of functions that

are not balanced and convex, and where Theorem 0 can not be applied, see also

[13, 95]. ⊓⊔

The optimal order of convergence plays an important role in numerical analysis.

We start with a classical result of Bakhvalov (1959) for the class

Fk
d = { f : [0,1]d → R | ‖Dα f‖∞ ≤ 1, |α| ≤ k},

where k ∈ N and |α| = ∑d
i=1 αi for α ∈ N

d
0 and Dα f denotes the respective partial

derivative. For two sequences an and bn of positive numbers we write an ≍ bn if

there are positive numbers c and C such that c < an/bn <C for all n ∈ N.

Theorem 1 (Bakhvalov [5]).

e(n,Fk
d )≍ n−k/d . (4)

Remark 1. a) For such a complexity result one needs to prove an upper bound (for

a particular algorithm) and a lower bound (for all algorithms). For the upper bound

one can use tensor product methods based on a regular grid, i.e., one can use the n =
md points xi with coordinates from the set {1/(2m),3/(2m), . . . ,(2m−1)/(2m)}.

The lower bound can be proved with the technique of “bump functions”: One can

construct 2n functions f1, . . . , f2n with disjoint supports such that all 22n functions

of the form ∑2n
i=1 δi fi are contained in Fk

d , where δi =±1 and Sd( fi)≥ cd,k n−k/d−1.

Since an algorithm An can only compute n function values, there are two functions

f+ = ∑2n
i=1 fi and f− = f+−2∑n

k=1 fik such that f+, f− ∈ Fk
d and An( f+) = An( f−)

but |Sd( f+)− Sd( f−)| ≥ 2ncd,kn−k/d−1. Hence the error of An must be at least

cd,kn−k/d . For the details see, for example, [78].

b) Observe that we can not conclude much on n(ε ,Fk
d ) if ε is fixed and d is large,

since Theorem 1 contains hidden factors that depend on k and d. Actually the lower

bound is of the form

e(n,Fk
d )≥ cd,kn−k/d ,

where the cd,k decrease with d → ∞ and tend to zero.

c) The proof of the upper bound (using tensor product algorithms) is easy since

we assumed that the domain is Dd = [0,1]d . The optimal order of convergence is

known for much more general spaces (such as Besov and Triebel-Lizorkin spaces)

and arbitrary bounded Lipschitz domains, see [86, 116, 119]. Then the proof of the

upper bounds is more difficult, however.
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d) Integration on fractals was recently studied by Dereich and Müller-Gron-

bach [18]. These authors also obtain an optimal order of convergence n−k/α . The

definition of Sd must be modified and α coincides, under suitable conditions, with

the Hausdorff dimension of the fractal. ⊓⊔

By the curse of dimensionality we mean that n(ε ,Fd) is exponentially large in d.

That is, there are positive numbers c, ε0 and γ such that

n(ε ,Fd)≥ c(1+ γ)d for all ε ≤ ε0 and infinitely many d ∈ N. (5)

If, on the other hand, n(ε ,Fd) is bounded by a polynomial in d and ε−1 then we

say that the problem is polynomially tractable. If n(ε ,Fd) is bounded by a polyno-

mial in ε−1 alone, i.e., n(ε ,Fd) ≤ Cε−α for ε < 1, then we say that the problem is

strongly polynomially tractable.

From the proof of Theorem 1 we can not conclude whether the curse of dimen-

sionality holds for the classes Fk
d or not; see Theorem 11. Possibly Maung Zho

Newn and Sharygin [74] were the first who published (in 1971) a complexity result

for arbitrary d with explicit constants and so proved the curse of dimensionality for

Lipschitz functions.

Theorem 2 (Maung Zho Newn and Sharygin [74]). Consider the class

Fd = { f : [0,1]d → R | | f (x)− f (y)| ≤ max
i

|xi − yi|}.

Then

e(n,Fd) =
d

2d +2
·n−1/d

for n = md with m ∈ N.

Remark 2. One can show that for n = md the regular grid (points xi with coordi-

nates from the set {1/(2m),3/(2m), . . . ,(2m − 1)/(2m)}) and the midpoint rule

An( f ) = n−1 ∑n
i=1 f (xi) are optimal. See also [3, 4, 12, 108] for this result and for

generalizations to similar function spaces. ⊓⊔

2 Randomized Algorithms

The integration problem is difficult for all deterministic algorithms if the classes Fd

of inputs are too large, see Theorem 2. One may hope that randomized algorithms

make this problem much easier.

Randomized algorithms can be formalized in various ways leading to slightly

different models. We do not explain the technical details and only give a reason why

it makes sense to study different models for upper and lower bounds, respectively;

see [89] for more details.
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• Assume that we want to construct and to analyze concrete algorithms that yield

upper bounds for the (total) complexity of given problems including the arith-

metic cost and the cost of generating random numbers. Then it is reasonable to

consider a rather restrictive model of computation where, for example, only the

standard arithmetic operations are allowed. One may also restrict the use of ran-

dom numbers and study so-called restricted Monte Carlo methods, where only

random bits are allowed; see [51].

• For the proof of lower bounds we take the opposite view and allow general ran-

domized mappings and a very general kind of randomness. This makes the lower

bounds stronger.

It turns out that the results are often very robust with respect to changes of

the computational model. For the purpose of this paper, it might be enough that

a randomized algorithm A is a random variable (Aω)ω∈Ω with a random element

ω where, for each fixed ω , the algorithm Aω is a (deterministic) algorithm as be-

fore. We denote by µ the distribution of the ω . In addition one needs rather weak

measurability assumptions, see also the textbook [73]. Let n̄( f ,ω) be the number of

function values used for fixed ω and f .

The number

ñ(A) = sup
f∈F

∫

Ω
n̄( f ,ω)dµ(ω)

is called the cardinality of the randomized algorithm A and

eran(A) = sup
f∈F

(

∫ ∗

Ω
‖S( f )−φω(Nω( f ))‖2 dµ(ω)

)1/2

is the error of A. By
∫ ∗

we denote the upper integral. For n ∈ N, define

eran(n,Fd) = inf{eran(A) : ñ(A)≤ n}.

If A : F → G is a (measurable) deterministic algorithm then A can also be treated

as a randomized algorithm with respect to a Dirac (atomic) measure µ . In this sense

we can say that deterministic algorithms are special randomized algorithms. Hence

the inequality

eran(n,Fd)≤ e(n,Fd) (6)

is trivial.

The number eran(0,Fd) is called the initial error in the randomized setting. For

n = 0, we do not sample f , and Aω( f ) is independent of f , but may depend on ω . It

is easy to check that for a linear S and a balanced and convex set F , the best we can

do is to take Aω = 0 and then

eran(0,Fd) = e(0,Fd).

This means that for linear problems the initial errors are the same in the worst case

and randomized setting.
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The main advantage of randomized algorithms is that the curse of dimensionality

is not present even for certain large classes of functions. With the standard Monte

Carlo method we obtain

eran(n,Fd)≤
1√
n
,

when Fd is the unit ball of Lp([0,1]
d) and 2 ≤ p ≤ ∞. Mathé [72] proved that this is

almost optimal and the optimal algorithm is

Aω
n ( f ) =

1

n+
√

n

n

∑
i=1

f (Xi)

with i.i.d. random variables Xi that are uniformly distributed on [0,1]d . It also fol-

lows that

eran(n,Fd) =
1

1+
√

n
,

when Fd is the unit ball of Lp([0,1]
d) and 2 ≤ p ≤ ∞. In the case 1 ≤ p < 2 one can

only achieve the rate n−1+1/p, for a discussion see [50].

Bakhvalov [5] found the optimal order of convergence already in 1959 for the

class

Fk
d = { f : [0,1]d → R | ‖Dα f‖∞ ≤ 1, |α| ≤ k},

where k ∈ N and |α|= ∑d
i=1 αi for α ∈ N

d
0 .

Theorem 3 (Bakhvalov [5]).

eran(n,Fk
d )≍ n−k/d−1/2. (7)

Remark 3. A proof of the upper bound can be given with a technique that is often

called separation of the main part or also control variates. For n = 2m use m func-

tion values to construct a good L2 approximation fm of f ∈ Fk
d by a deterministic

algorithm. The optimal order of convergence is

‖ f − fm‖2 ≍ m−k/d .

Then use the unbiased estimator

Aω
n ( f ) = Sd( fm)+

1

m

m

∑
i=1

( f − fm)(Xi)

with i.i.d. random variables Xi that are uniformly distributed on [0,1]d . See, for

example, [73, 78] for more details. We add in passing that the optimal order of con-

vergence can be obtained for many function spaces (Besov spaces, Triebel-Lizorkin

spaces) and for arbitrary bounded Lipschitz domains Dd ⊂ R
d ; see [86], where the

approximation problem is studied. To obtain an explicit randomized algorithm with

the optimal rate of convergence one needs a random number generator for the set

Dd . If it is not possible to obtain efficiently random samples from the uniform distri-
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bution on Dd one can work with Markov chain Monte Carlo (MCMC) methods, see

Theorem 5.

All known proofs of lower bounds use the idea of Bakhvalov (also called Yao’s

Minimax Principle): study the average case setting with respect to a probability

measure on F and use the theorem of Fubini. For details see [45, 46, 47, 73, 78, 90].

⊓⊔

We describe a problem that was studied by several colleagues and solved by Hin-

richs [58] using deep results from functional analysis. Let H(Kd) be a reproducing

kernel Hilbert space of real functions defined on a Borel measurable set Dd ⊆ R
d .

Its reproducing kernel Kd : Dd ×Dd → R is assumed to be integrable,

Cinit
d :=

(

∫

Dd

∫

Dd

Kd(x,y)ρd(x)ρd(y)dxdy

)1/2

< ∞.

Here, ρd is a probability density function on Dd . Without loss of generality we

assume that Dd and ρd are chosen such that there is no subset of Dd with positive

measure such that all functions from H(Kd) vanish on it.

The inner product and the norm of H(Kd) are denoted by 〈·, ·〉H(Kd) and ‖·‖H(Kd).

Consider multivariate integration

Sd( f ) =
∫

Dd

f (x)ρd(x)dx for all f ∈ H(Kd),

where it is assumed that Sd : H(Kd)→ R is continuous.

We approximate Sd( f ) in the randomized setting using importance sampling.

That is, for a positive probability density function τd on Dd we choose n random

sample points x1,x2, . . . ,xn which are independent and distributed according to τd

and take the algorithm

An,d,τd
( f ) =

1

n

n

∑
j=1

f (x j)ρd(x j)

τd(x j)
.

The error of An,d,τd
is then

eran(An,d,τd
) = sup

‖ f‖H(Kd )
≤1

(

Eτd

(

Sd( f )−An,d,τd
( f )
)2
)1/2

,

where the expectation is with respect to the random choice of the sample points x j.

For n = 0 we formally take A0,d,τd
= 0 and then

eran(0,H(Kd)) =Cinit
d .

Theorem 4 (Hinrichs [58]). Assume additionally that Kd(x,y)≥ 0 for all x,y ∈ Dd .

Then there exists a positive density function τd such that
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eran(An,d,τd
)≤

(π

2

)1/2 1√
n

eran(0,H(Kd)).

Hence, if we want to achieve eran(An,d,τd
)≤ ε eran(0,H(Kd)) then it is enough to take

n =

⌈

π

2

(

1

ε

)2
⌉

.

Remark 4. In particular, such problems are strongly polynomially tractable (for the

normalized error) if the reproducing kernels are pointwise nonnegative and inte-

grable. In [91] we prove that the exponent 2 of ε−1 is sharp for tensor product

Hilbert spaces whose univariate reproducing kernel is decomposable and univariate

integration is not trivial for the two parts of the decomposition. More specifically

we have

nran(ε ,H(Kd))≥
⌈

1

8

(

1

ε

)2
⌉

for all ε ∈ (0,1) and d ≥ 2 ln ε−1 − ln 2

ln α−1
,

where α ∈ [1/2,1) depends on the particular space.

We stress that these estimates hold independently of the smoothness of functions

in a Hilbert space. Hence, even for spaces of very smooth functions the exponent of

strong polynomial tractability is 2. ⊓⊔

Sometimes one cannot sample easily from the “target distribution” π if one wants

to compute an integral

S( f ) =
∫

D
f (x)π(dx).

Then Markov chain Monte Carlo (MCMC) methods are a very versatile and widely

used tool.

We use an average of a finite Markov chain sample as approximation of the mean,

i.e., we approximate S( f ) by

Sn,n0
( f ) =

1

n

n

∑
j=1

f (X j+n0
),

where (Xi)n∈N0
is a Markov chain with stationary distribution π . The number n

determines the number of function evaluations of f . The number n0 is the burn-in or

warm up time. Intuitively, it is the number of steps of the Markov chain to get close

to the stationary distribution π .

We study the mean square error of Sn,n0
, given by

eν(Sn,n0
, f ) =

(

Eν ,K |Sn,n0
( f )−S( f )|

)1/2
,

where ν and K indicate the initial distribution and the transition kernel of the chain;

we work with the spaces Lp = Lp(π). For the proof of the following error bound we

refer to [99, Theorem 3.34 and Theorem 3.41].
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Theorem 5 (Rudolf [99]). Let (Xn)n∈N be a Markov chain with reversible transition

kernel K, initial distribution ν , and transition operator P. Further, let

Λ = sup{α : α ∈ spec(P−S)},

where spec(P − S) denotes the spectrum of the operator (P − S) : L2 → L2, and

assume that Λ < 1. Then

sup
‖ f‖p≤1

eν(Sn,n0
, f )2 ≤ 2

n(1−Λ)
+

2Cν γn0

n2(1− γ)2
(8)

holds for p = 2 and for p = 4 under the following conditions:

• for p = 2, dν
dπ ∈ L∞ and a transition kernel K which is L1-exponentially conver-

gent with (γ ,M) where γ < 1, i.e.,

‖Pn −S‖L1→L1
≤ Mγn

for all n ∈ N and Cν = M
∥

∥

dν
dπ −1

∥

∥

∞
;

• for p = 4, dν
dπ ∈ L2 and γ = ‖P−S‖L2→L2

< 1 where Cν = 64
∥

∥

dν
dπ −1

∥

∥

2
.

Remark 5. Let us discuss the results. First observe that we assume that the so called

spectral gap 1−Λ is positive; in general we only know that |Λ | ≤ 1. If the transi-

tion kernel is L1-exponentially convergent, then we have an explicit error bound for

integrands f ∈ L2 whenever the initial distribution has a density dν
dπ ∈ L∞. However,

in general it is difficult to provide explicit values γ and M such that the transition

kernel is L1-exponentially convergent with (γ ,M). This motivates to consider tran-

sition kernels which satisfy a weaker convergence property, such as the existence

of an L2-spectral gap, i.e., ‖P−S‖L2→L2
< 1. In this case we have an explicit error

bound for integrands f ∈ L4 whenever the initial distribution has a density dν
dπ ∈ L2.

Thus, by assuming a weaker convergence property of the transition kernel we obtain

a weaker result in the sense that f must be in L4 rather than L2.

If we want to have an error of ε ∈ (0,1) it is still not clear how to choose n and n0

to minimize the total amount of steps n+n0. How should we choose the burn-in n0?

One can prove in this setting, see [99], that the choice n∗ = ⌈ logCν
1−γ ⌉ is a reasonable

and almost optimal choice for the burn-in.

More details can be found in [84]. For a full discussion with all the proofs see

[99]. ⊓⊔

3 Tensor Product Problems and Weights

We know from the work of Bakhvalov already done in 1959 that the optimal order of

convergence is n−k/d for functions from the class Ck([0,1]d). To obtain an order of

convergence of roughly n−k for every dimension d, one needs stronger smoothness
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conditions. This is a major reason for the study of functions with bounded mixed

derivatives, or dominating mixed smoothness, such as the classes

W k,mix
p ([0,1]d) = { f : [0,1]d → R | ‖Dα f‖p ≤ 1 for ‖α‖∞ ≤ k}.

Observe that functions from this class have, in particular, the high order deriva-

tive D(k,k,...,k) f ∈ Lp and one may hope that the curse of dimensionality can be

avoided or at least moderated by this assumption. For k = 1 these spaces are closely

related to various notions of discrepancy, see, for example, [23, 25, 71, 90, 112].

The optimal order of convergence is known for all k ∈ N and 1 < p < ∞ due

to the work of Roth [97, 98], Frolov [39, 40], Bykovskii [10], Temlyakov [110]

and Skriganov [102], see the survey Temlyakov [112]. The cases p ∈ {1,∞} are

still unsolved. The case p = 1 is strongly related to the star discrepancy, see also

Theorem 10.

Theorem 6. Assume that k ∈ N and 1 < p < ∞. Then

e(n,W k,mix
p ([0,1]d))≍ n−k(logn)(d−1)/2.

Remark 6. The upper bound was proved by Frolov [39] for p = 2 and by Skrig-

anov [102] for all p > 1. The lower bound was proved by Roth [97] and Bykovskii

[10] for p = 2 and by Temlyakov [110] for all p < ∞. Hence it took more than 30

years to prove Theorem 6 completely.

For functions in W
k,mix
p ([0,1]d) with compact support in (0,1)d one can take

algorithms of the form

An( f ) =
|detA|

ad ∑
m∈Zd

f

(

Am

a

)

,

where A is a suitable matrix that does not depend on k or n, and a > 0. Of course the

sum is finite since we use only the points Am
a

in (0,1)d .

This algorithm is similar to a lattice rule but is not quite a lattice rule since the

points do not build an integration lattice. The sum of the weights is roughly 1, but

not quite. Therefore this algorithm is not really a quasi-Monte Carlo algorithm. The

algorithm An can be modified to obtain the optimal order of convergence for the

whole space W
k,mix
p ([0,1]d). The modified algorithm uses different points xi but still

positive weights ai. For a tutorial on this algorithm see [117]. Error bounds for Besov

spaces are studied in [36]. Triebel-Lizorkin spaces and the case of small smoothness

are studied in [118] and [75]. ⊓⊔
For the Besov-Nikolskii classes Sr

p,qB(T d) with 1 ≤ p,q ≤ ∞ and 1/p < r < 2,

the optimal rate is

n−r(logn)(d−1)(1−1/q)

and can be obtained constructively with QMC algorithms, see [60]. The lower bound

was proved by Triebel [116]. ⊓⊔
The Frolov algorithm can be used as a building block for a randomized algorithm

that is universal in the sense that it has the optimal order of convergence (in the
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randomized setting as well as in the worst case setting) for many different function

spaces, see [65]. ⊓⊔

A famous algorithm for tensor product problems is the Smolyak algorithm, also

called sparse grids algorithm. We can mention just a few papers and books that

deal with this topic: The algorithm was invented by Smolyak [107] and, indepen-

dently, by several other colleagues and research groups. Several error bounds were

proved by Temlyakov [109, 111]; explicit error bounds (without unknown con-

stants) were obtained by Wasilkowski and Woźniakowski [122, 124]. Novak and

Ritter [81, 82, 83] studied the particular Clenshaw-Curtis Smolyak algorithm. A sur-

vey is Bungartz and Griebel [9] and another one is [90, Chap. 15]. For recent results

on the order of convergence see Sickel and T. Ullrich [100, 101] and Dinh Dũng and

T. Ullrich [30]. The recent paper [63] contains a tractability result for the Smolyak

algorithm applied to very smooth functions. We display only one recent result on

the Smolyak algorithm.

Theorem 7 (Sickel and T. Ullrich [101]). For the classes W
k,mix
2 ([0,1]d) one can

construct a Smolyak algorithm with the order of the error

n−k(logn)(d−1)(k+1/2). (9)

Remark 7. a) The bound (9) is valid even for L2 approximation instead of integra-

tion, but it is not known whether this upper bound is optimal for the approximation

problem. Using the technique of control variates one can obtain the order

n−k−1/2(logn)(d−1)(k+1/2)

for the integration problem in the randomized setting. This algorithm is not often

used since it is not easy to implement and its arithmetic cost is rather high. In addi-

tion, the rate can be improved by the algorithm of [65] to n−k−1/2(logn)(d−1)/2.

b) It is shown in Dinh Dũng and T. Ullrich [30] that the order (9) can not be

improved when restricting to Smolyak grids.

c) We give a short description of the Clenshaw-Curtis Smolyak algorithm for the

computation of integrals
∫

[−1,1]d f (x)dx that often leads to “almost optimal” error

bounds, see [82].

We assume that for d = 1 a sequence of formulas

U i( f ) =
mi

∑
j=1

ai
j f (xi

j)

is given. In the case of numerical integration the ai
j are just numbers. The method

U i uses mi function values and we assume that U i+1 has smaller error than U i and

mi+1 > mi. Define then, for d > 1, the tensor product formulas

(U i1 ⊗·· ·⊗U id )( f ) =

mi1

∑
j1=1

· · ·
mid

∑
jd=1

a
i1
j1
· · ·aid

jd
f (xi1

j1
, . . . ,x

id
jd
).
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12 Erich Novak

A tensor product formula clearly needs

mi1 ·mi2 · · · · ·mid

function values, sampled on a regular grid. The Smolyak formulas A(q,d) are clever

linear combinations of tensor product formulas such that

• only tensor products with a relatively small number of knots are used;

• the linear combination is chosen in such a way that an interpolation property for

d = 1 is preserved for d > 1.

The Smolyak formulas are defined by

A(q,d) = ∑
q−d+1≤|iii|≤q

(−1)q−|iii| ·
(

d −1

q−|iii|

)

· (U i1 ⊗·· ·⊗U id ),

where q ≥ d. Specifically, we use, for d > 1, the Smolyak construction and start, for

d = 1, with the classical Clenshaw-Curtis formula with

m1 = 1 and mi = 2i−1 +1 for i > 1.

The Clenshaw-Curtis formulas

U i( f ) =
mi

∑
j=1

ai
j f (xi

j)

use the knots

xi
j =−cos

π( j−1)

mi −1
, j = 1, . . . ,mi

(and x1
1 = 0). Hence we use nonequidistant knots. The weights ai

j are defined in such

a way that U i is exact for all (univariate) polynomials of degree at most mi. ⊓⊔

It turns out that many tensor product problems are still intractable and suffer from

the curse of dimensionality, for a rather exhaustive presentation see [89, 90, 92].

Sloan and Woźniakowski [106] describe a very interesting idea that was further

developed in hundreds of papers, the paper [106] is most important and influential.

We can describe here only the very beginnings of a long ongoing story; we present

just one example instead of the whole theory.

The rough idea is that f : [0,1]d → R may depend on many variables, d is large,

but some variables or groups of variables are more important than others. Consider,

for d = 1, the inner product

〈 f ,g〉1,γ =

(

∫ 1

0
f dx

)(

∫ 1

0
gdx

)

+
1

γ

∫ 1

0
f ′(x)g′(x)dx,

where γ > 0. If γ is small then f must be “almost constant” if it has small norm.

A large γ means that f may have a large variation and still the norm is relatively
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Some Results on the Complexity of Numerical Integration 13

small. Now we take tensor products of such spaces and weights γ1 ≥ γ2 ≥ . . . and

consider the complexity of the integration problem for the unit ball Fd with respect

to this weighted norm. The kernel K of the tensor product space H(K) is of the form

K(x,y) =
d

∏
i=1

Kγi
(xi,yi),

where Kγ is the kernel of the respective space Hγ of univariate functions.

Theorem 8 (Sloan and Woźniakowski [106]). Assume that ∑∞
i=1 γi < ∞. Then the

problem is strongly polynomially tractable.

Remark 8. The paper [106] contains also a lower bound which is valid for all quasi-

Monte Carlo methods. The proof of the upper bound is very interesting and an

excellent example for the probabilistic method. Compute the mean of the quadratic

worst case error of QMC algorithms over all (x1, . . . ,xn) ∈ [0,1]nd and obtain

1

n

(

∫

[0,1]d
K(x,x)dx−

∫

[0,1]2d
K(x,y)dxdy

)

.

This expectation is of the form Cd n−1 and the sequence Cd is bounded if and only if

∑γi < ∞. The lower bound in [106] is based on the fact that the kernel K is always

non-negative; this leads to lower bounds for QMC algorithms or, more generally, for

algorithms with positive weights. ⊓⊔
As already indicated, Sloan and Woźniakowski [106] was continued in many di-

rections. Much more general weights and many different Hilbert spaces were stud-

ied. By the probabilistic method one only obtains the existence of a good QMC

algorithms but, in the meanwhile, there exist many results about the construction

of good algorithms. In this paper the focus is on the basic complexity results and

therefore we simply list a few of the most relevant papers: [7, 11, 24, 28, 29, 54, 55,

56, 66, 67, 68, 70, 93, 94, 103, 104, 105]. See also the books [25, 71, 76, 90] and

the excellent survey paper [23]. ⊓⊔

In complexity theory we want to study optimal algorithms and it is not clear

whether QMC algorithms or quadrature formulas with positive coefficients ai are

optimal. Observe that the Smolyak algorithm uses also negative ai and it is known

that in certain cases positive quadrature formulas are far from optimal; for examples

see [85] or [90, Sects. 10.6 and 11.3]. Therefore it is not clear whether the conditions

on the weights in Theorem 8 can be relaxed if we allow arbitrary algorithms. The

next result shows that this is not the case.

Theorem 9 ([88]). The integration problem from Theorem 8 is strongly polynomi-

ally tractable if and only if ∑∞
i=1 γi < ∞.

Remark 9. Due to the known upper bound of Theorem 8, to prove Theorem 9 it is

enough to prove a lower bound for arbitrary algorithms. This is done via the tech-

nique of decomposable kernels that was developed in [88], see also [90, Chap. 11].
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14 Erich Novak

We do not describe this technique here and only remark that we need for this

technique many non-zero functions fi in the Hilbert space Fd with disjoint supports.

Therefore this technique usually works for functions with finite smoothness, but not

for analytic functions. ⊓⊔

Tractability of integration can be proved for many weighted spaces and one may

ask whether there are also unweighted spaces where tractability holds as well. A fa-

mous example for this are integration problems that are related to the star discrep-

ancy.

For x1, . . . ,xn ∈ [0,1]d define the star discrepancy by

D∗
∞(x1, . . . ,xn) = sup

t∈[0,1]d

∣

∣

∣

∣

∣

t1 · · · td −
1

n

n

∑
i=1

1[0,t)(xi)

∣

∣

∣

∣

∣

,

the respective QMC quadrature formula is Qn( f ) = 1
n ∑n

i=1 f (xi).
Consider the Sobolev space

Fd = { f ∈W
1,mix
1 | ‖ f‖ ≤ 1, f (x) = 0 if there exists an i with xi = 1}

with the norm

‖ f‖ :=

∥

∥

∥

∥

∂ d f

∂x1∂x2 . . .∂xd

∥

∥

∥

∥

1

.

Then the Hlawka-Zaremba-equality yields

D∗
∞(x1, . . . ,xn) = sup

f∈Fd

|Sd( f )−Qn( f )|,

hence the star discrepancy is a worst case error bound for integration. We define

n(ε ,Fd) = min{n | ∃x1, . . . ,xn with D∗
∞(x1, . . . ,xn)≤ ε}.

The following result shows that this integration problem is polynomially tractable

and the complexity is linear in the dimension.

Theorem 10 ([52]).

n(ε ,Fd)≤C d ε−2 (10)

and

n(1/64,Fd)≥ 0.18d.

Remark 10. This result was modified and improved in various ways and we mention

some important results. Hinrichs [57] proved the lower bound

n(ε ,Fd)≥ cd ε−1 for ε ≤ ε0.

Aistleitner [1] proved that the constant C in (10) can be taken as 100. Aistleitner

and Hofer [2] proved more on upper bounds. Already the proof in [52] showed that

Page:14 job:novak3 macro:svmult.cls date/time:18-Nov-2015/12:18



Some Results on the Complexity of Numerical Integration 15

an upper bound D∗
∞(x1, . . . ,xn) ≤ C

√

d
n

holds with high probability if the points

x1, . . . ,xn are taken independently and uniformly distributed. Doerr [31] proved the

respective lower bound, hence

E(D∗
∞(x1, . . . ,xn))≍

√

d

n
for n ≥ d.

Since the upper bounds are proved with the probabilistic method, we only know

the existence of points with small star discrepancy. The existence results can be

transformed into (more or less explicit) constructions and the problem is, of course,

to minimize the computing time as well as the discrepancy. One of the obstacles is

that already the computation of the star discrepancy of given points x1,x2, . . . ,xn is

very difficult. We refer the reader to [19, 26, 27, 32, 33, 34, 35, 42, 59]. ⊓⊔
Recently Dick [20] proved a tractability result for another unweighted space that

is defined via an L1-norm and consists of periodic functions; we denote Fourier

coefficients by f̃ (k), where k ∈ Z
d . Let 0 < α ≤ 1 and 1 ≤ p ≤ ∞ and

Fα ,p,d =

{

f : [0,1]d → R | ∑
k∈Zd

| f̃ (k)|+ sup
x,h

| f (x+h)− f (x)|
‖h‖α

p

≤ 1

}

.

Dick proved the upper bound

e(n,Fα ,p,d)≤ max

(

d −1√
n

,
dα/p

nα

)

for any prime number n. Hence the complexity is at most quadratic in d.

The proof is constructive, a suitable algorithm is the following. Use points

xk =
({

k1

n

}

,
{

k2

n

}

, . . . ,
{

kd

n

})

, where k = 0,1, . . . ,n−1, and take the respective

QMC algorithm. ⊓⊔

4 Some Recent Results

We end this survey with two results that were still unpublished at the time of the

conference, April 2014. First we return to the classes Ck([0,1]d), see Theorem 1.

We want to be a little more general and consider the computation of

Sd( f ) =

∫

Dd

f (x)dx (11)

up to some error ε > 0, where Dd ⊂R
d has Lebesgue measure 1. The results hold for

arbitrary sets Dd , the standard example of course is Dd = [0,1]d . For convenience

we consider functions f : Rd → R. This makes the function class a bit smaller and

the result a bit stronger, since our emphasis is on lower bounds.
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16 Erich Novak

It has not been known if the curse of dimensionality is present for probably the

most natural class which is the unit ball of r times continuously differentiable func-

tions,

Fk
d = { f ∈Ck(Rd) | ‖Dα f‖∞ ≤ 1 for all |α| ≤ k},

where k ∈ N.

Theorem 11 ([61]). The curse of dimensionality holds for the classes Fk
d with the

super-exponential lower bound

n(ε ,Fk
d )≥ ck (1− ε)d d/(2k+3) for all d ∈ N and ε ∈ (0,1),

where ck > 0 depends only on k.

Remark 11. In [61, 62] we also prove that the curse of dimensionality holds for

even smaller classes of functions Fd for which the norms of arbitrary directional

derivatives are bounded proportionally to 1/
√

d.

We start with the fooling function

f0(x) = min

{

1,
1

δ
√

d
dist(x,Pδ )

}

for all x ∈ R
d ,

where

Pδ =
n
⋃

i=1

Bd
δ (xi)

and Bd
δ (xi) is the ball with center xi and radius δ

√
d. The function f0 is Lipschitz.

By a suitable smoothing via convolution we construct a smooth fooling function

fk ∈ Fd with fk|P0
= 0.

Important elements of the proof are volume estimates (in the spirit of Elekes [38]

and Dyer, Füredi and McDiarmid [37]), since we need that the volume of a neigh-

borhood of the convex hull of n arbitrary points is exponentially small in d. ⊓⊔
Also classes of C∞-functions were studied recently. We still do not know whether

the integration problem suffers from the curse of dimensionality for the classes

Fd = { f : [0,1]d → R | ‖Dα f‖∞ ≤ 1 for all α ∈ N
d
0},

this is Open Problem 2 from [89]. We know from Vybı́ral [120] and [62] that the

curse is present for somewhat larger spaces and that a weak tractability holds for

smaller classes; this can be proved with the Smolyak algorithm, see [63]. ⊓⊔

We now consider univariate oscillatory integrals for the standard Sobolev spaces

Hs of periodic and non-periodic functions with an arbitrary integer s ≥ 1. We study

the approximate computation of Fourier coefficients

Ik( f ) =
∫ 1

0
f (x)e−2π ikx dx, i =

√
−1,

where k ∈ Z and f ∈ Hs.
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There are several recent papers about the approximate computation of highly

oscillatory univariate integrals with the weight exp(2π ikx), where x ∈ [0,1] and k

is an integer (or k ∈ R) which is assumed to be large in the absolute sense, see

Huybrechs and Olver [64] for a survey.

We study the Sobolev space Hs for a finite s ∈ N, i.e.,

Hs = { f : [0,1]→ C | f (s−1) is abs. cont., f (s) ∈ L2} (12)

with the inner product

〈 f ,g〉s =
s−1

∑
ℓ=0

∫ 1

0
f (ℓ)(x)dx

∫ 1

0
g(ℓ)(x)dx +

∫ 1

0
f (s)(x)g(s)(x)dx

=
s−1

∑
ℓ=0

〈 f (ℓ),1〉0 〈g(ℓ),1〉0 + 〈 f (s),g(s)〉0,

(13)

where 〈 f ,g〉0 =
∫ 1

0 f (x)g(x)dx, and norm ‖ f‖Hs = 〈 f , f 〉1/2
s .

For the periodic case, an algorithm that uses n function values at equally spaced

points is nearly optimal, and its worst case error is bounded by Cs(n+ |k|)−s with

Cs exponentially small in s. For the non-periodic case, we first compute successive

derivatives up to order s− 1 at the end-points x = 0 and x = 1. These derivatives

values are used to periodize the function and this allows us to obtain similar error

bounds like for the periodic case. Asymptotically in n, the worst case error of the

algorithm is of order n−s independently of k for both periodic and non-periodic

cases.

Theorem 12 ([87]). Consider the integration problem Ik defined over the space Hs

of non-periodic functions with s ∈ N. Then

cs

(n+ |k|)s
≤ e(n,k,Hs) ≤

(

3

2π

)s
2

(n+ |k|−2s+1)s
,

for all k ∈ Z and n ≥ 2s.

Remark 12. The minimal errors e(n,k,Hs) for the non-periodic case have a peculiar

property for s ≥ 2 and large k. Namely, for n = 0 we obtain the initial error which is

of order |k|−1, whereas for n ≥ 2s it becomes of order |k|−s. Hence, the dependence

on |k|−1 is short-lived and disappears quite quickly. For instance, take s = 2. Then

e(n,k,Hs) is of order |k|−1 only for n = 0 and maybe for n = 1,2,3, and then be-

comes of order |k|−2. ⊓⊔
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