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Abstract. Hinrichs [3] recently studied multivariate integration defined over re-
producing kernel Hilbert spaces in the randomized setting and for the normalized
error criterion. In particular, he showed that such problems are strongly polynomi-
ally tractable if the reproducing kernels are pointwise nonnegative and integrable.
More specifically, let nran(ε, INTd) be the minimal number of randomized function
samples that is needed to compute an ε-approximation for the d-variate case of
multivariate integration. Hinrichs proved that

nran(ε, INTd) ≤
⌈

π

2

(

1

ε

)2
⌉

for all ε ∈ (0, 1) and d ∈ N.

In this paper we prove that the exponent 2 of ε−1 is sharp for tensor product
Hilbert spaces whose univariate reproducing kernel is decomposable and univariate
integration is not trivial for the two parts of the decomposition. More specifically
we have

nran(ε, INTd) ≥
⌈

1

8

(

1

ε

)2
⌉

for all ε ∈ (0, 1) and d ≥ 2 ln ε−1 − ln 2

ln α−1
,

where α ∈ [1/2, 1) depends on the particular space.
We stress that these estimates hold independently of the smoothness of functions

in a Hilbert space. Hence, even for spaces of very smooth functions the exponent
of strong polynomial tractability must be 2.

Our lower bounds hold not only for multivariate integration but for all linear
tensor product functionals defined over a Hilbert space with a decomposable re-
producing kernel and with a non-trivial univariate functional for the two spaces
corresponding to decomposable parts. We also present lower bounds for reproduc-
ing kernels that are not decomposable but have a decomposable part. However, in
this case it is not clear if the lower bounds are sharp.

1. Introduction

The motivation of this paper comes from the recent paper of Hinrichs [3] who
studied multivariate integration defined over reproducing kernel Hilbert spaces. Mul-
tivariate integration is a very popular research subject with numerous applications
especially for the d-variate case with large or huge d. Multivariate integration has
been studied in many settings including the worst case, average and randomized set-
ting. It is well known that the worst case and average case setting are technically

Date: March 2010; revised: August 2010.
The research reported in this paper has been partially done while the first author visited Columbia

University, and has been supported in part by DFG and NSF.
1



2 ERICH NOVAK AND HENRYK WOŹNIAKOWSKI

very much related and it is usually easy to translate the results from one setting to
the other.

The randomized setting is different and that was the setting studied in [3]. The
primary example of an algorithm for multivariate integration in the randomized set-
ting is obviously Monte Carlo (MC). It is well known that the error of MC with n
random function samples behaves like O(n−1/2). Here the factor in the big O notation
depends on the variance of the integrand. In general, the variance can be an arbitrary
function of d. In particular, the variance can be exponential in d. Then for large d,
we must take n exponentially large in d to guarantee a reasonably small error. It is
a priori not clear if this bad dependence on d is just a bad property of Monte Carlo
or an intrinsic property of multivariate integration in a given space.

The surprising result of Hinrichs is that there is no dependence on d if we switch
from the standard Monte Carlo to importance sampling with a properly chosen den-
sity function. This holds under the following assumptions.

• The normalized error criterion is chosen. That is, we want to reduce the error
that can be achieved without sampling the function by a factor of ε ∈ (0, 1).

• For all d the reproducing kernel of the Hilbert space for the d-variate case is
pointwise nonnegative and integrable.

Hinrichs [3] proved that there exists a density function such that the importance
sampling computes an ε approximation for the d-variate case with

n =

⌈

π

2

(

1

ε

)2
⌉

randomized function samples. So there is no dependence on d, however, the power 2
of ε−1 is independent of the Hilbert spaces.

One may hope that at least for some Hilbert spaces, we can get a better result.
Ideally, we would like to preserve the independence on d and improve the dependence
on ε−1 by lowering the exponent 2. This hope can be justified by remembering that
smoothness of functions sometimes permits the reduction of the exponent of ε−1. For
instance, it is known that for d = 1 and r times continuously differentiable functions

Θ(ε−1/(r+1/2))

randomized function samples are enough to compute an ε-approximation. For d > 1,
if we take the d-fold tensor product of such spaces then we need

O
(

ε−1/(r+1/2)
[

ln ε−1
]p(d,r)

)

randomized function samples to compute an ε-approximation, where the exponent
p(d, r) of ln ε−1 is linear in d and r. However, it is not known how the factor in the
big O notation depends on d. A priori, we do not know whether there is a tradeoff
between the dependence on d and ε−1.

Let nran(ε, INTd) denote the minimal number of randomized function samples that
is needed to compute an ε-approximation for d-variate integration. We stress that
nran(ε, INTd) is the intrinsic difficulty of multivariate integration in the randomized
setting since we now allow all possible algorithms including Monte Carlo, importance
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sampling with an arbitrary density function, as well as other linear or nonlinear
randomized algorithms. Clearly, the result of Hinrichs can be rewritten as

nran(ε, INTd) ≤
⌈

π

2

(

1

ε

)2
⌉

for all ε ∈ (0, 1) and d ∈ N.

In this paper we study, in particular, whether the last bound is sharp, or more
precisely if we can preserve the independence on d and lower the exponent of ε−1. We
study this question for tensor product Hilbert spaces. These spaces are generated by
a reproducing kernel Hilbert space of univariate functions. This corresponds to the
unweighted problem in which all variables and groups of variables play the same role.
We prove that the exponent 2 cannot be lowered. This holds if we assume that

• the univariate reproducing kernel is decomposable in the sense of [5],
• the univariate integration is non-zero if restricted to the space corresponding

to the decomposable parts of the kernel.

The first assumption means that the univariate reproducing kernel

K1 : D1 × D1 → R with D1 ⊆ R,

has the property that there exists a point a ∈ R such that

K1(x, y) = 0 for all x, y ∈ D1 and x ≤ a ≤ y.

The second assumption means that univariate integration is not zero when the domain
is restricted to one of the domains

D(0) := {x ∈ D1 : x ≤ a} and D(1) := {x ∈ D1 : x ≥ a}.
We stress that these assumptions are not related to the smoothness of functions

from the Hilbert space. As we shall see these assumptions hold for certain Sobolev
spaces with arbitrary high smoothness of functions.

More specifically, we prove that

nran(ε, INTd) ≥
⌈

1

8

(

1

ε

)2
⌉

for all ε ∈ (0, 1) and d ≥ 2 ln ε−1 − ln 2

ln α−1
.

Here α ∈ [1/2, 1) measures the difficulty of the univariate integration problem over
D(0) and D(1). If the univariate case is equally difficult over D(0) and D(1) then we
have α = 1/2.

We now comment on the condition on d which requires that d is large relative
to ε−1. First of all, note that the lower bound presented above cannot be true for
all ε ∈ (0, 1), d ∈ N and Hilbert spaces satisfying the assumptions mentioned above.
The reason is simple since for smooth functions the exponent of ε−1 is smaller than 2.
That is, for a fixed d and ε tending to zero, the asymptotic behavior of nran(ε, INTd)
may be better, or even much better, than ε−2. That is why the lower bound presented
above must relate ε−1 and d. On the other hand, note that the condition on d is quite
mild since the dependence on ε−1 is only logarithmic.

The main point of the lower bound is that smoothness can not lower the exponent
of ε−1 if we insist on the independence on d. This also means that there may be
an important difference between the asymptotic behavior of nran(ε, INTd) when d is
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fixed and ε goes to zero and the behavior of nran(ε, INTd) when ε is fixed and d goes
to infinity.

The lower bounds presented in this paper hold not only for multivariate integration
but for all linear tensor product functionals defined over Hilbert spaces with decom-
posable reproducing kernels. We also study non-decomposable kernels which have a
decomposable part. In this case, the lower bounds are almost the same as before only
if the part of the univariate linear functional corresponding to the non-decomposable
part of the reproducing kernel has a small norm. It is not clear what are sharp lower
and upper bounds for general linear tensor product functionals.

We now briefly compare the results for linear tensor product functionals for Hilbert
spaces with decomposable reproducing kernels in the worst case and randomized
settings. In the worst case setting, it is proved in [5] that such problems are intractable

since they suffer from the curse of dimensionality. This means we need to compute
exponentially many function values in d to get an ε-approximation for the d-variate
case. ¿From this point of view, the positive results on strong polynomial tractability
in the randomized setting are even more surprising. We must admit that after we
completed the paper [5] on lower bounds in the worst case setting, we started to
work on lower bounds in the randomized setting around the year 2002. Fairly soon
we realized that we cannot prove the curse of dimensionality for decomposable kernels
in the randomized setting since the lower bound had a factor n−1/2 independently of
the Hilbert space, i.e., independently of the smoothness of functions. At that time
we felt sure that our lower bounds were too loose. We regarded the factor n−1/2 as a
sign that our analysis is not good enough. After a few more trials, we gave up still
being (almost) certain that n−1/2 is not needed. After a few years, Hinrichs saved, in
a way, our previous work by showing that the factor n−1/2 is indeed needed and that
our intuition was simply wrong.

We finally briefly comment on a number of possible future directions related to the
randomized setting.

• The result of Hinrichs is for multivariate integration, and the lower bounds
are for linear tensor product functionals. It would be of interest to see if the
result of Hinrichs can be extended for linear tensor product functionals. In
fact, some linear functionals can be interpreted as multivariate integration, see
Section 10.9 of [7] but is it not clear if we can do this for all such functionals.

• We already mentioned that the lower bounds for the case of reproducing ker-
nels with only a decomposable part are not always satisfactory. Of course, it
would be of interest to improve them. It is not clear but perhaps the upper
bounds can also be improved and strong polynomial tractability with the ex-
ponent smaller than 2 can be obtained at least for some linear tensor product
functionals with nontrivial decomposable parts.

• We have so far discussed the unweighted spaces in which all variables and
groups of variables play the same role. Obviously, we should analyze weighted

spaces in which we moderate the influence of all groups of variables by weights.
In the worst case setting, the analysis of weighted spaces has been a major
research trend with many positive tractability results under the conditions of
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proper decay of weights. Some work has been also done in the randomized set-
ting. However, the consequences of the result of Hinrichs for weighted spaces
have not yet been found. In particular, we would like to know what we have
to assume about the weights to get a smaller exponent of strong polynomial
tractability than 2.

2. The Result of Hinrichs

We briefly define the problem studied by Hinrichs [3]. Let H(Kd) be a reproducing
kernel Hilbert space of real functions defined on a Borel measurable set Dd ⊆ R

d. Its
reproducing kernel Kd : Dd × Dd → R is assumed to be integrable,

C init
d :=

(∫

Dd

∫

Dd

Kd(x, y) ̺d(x) ̺d(y) dx dy

)1/2

< ∞.

Here, ̺d is a probability density function on Dd. Without loss of generality we assume
that Dd and ̺d are chosen such that there is no subset of Dd with positive measure
such that all functions from H(Kd) vanish on it.

The inner product and the norm of H(Kd) are denoted by 〈·, ·〉H(Kd) and ‖ · ‖H(Kd).
Consider multivariate integration

INTd(f) =

∫

Dd

f(x) ̺d(x) dx for all f ∈ H(Kd).

We approximate INTd(f) in the randomized setting using importance sampling. That
is, for a probability density function ωd on Dd we choose n random sample points
x1, x2, . . . , xn which are independent and distributed according to ωd and take the
algorithm

An,d,ωd
(f) =

1

n

n
∑

j=1

f(xj) ̺d(xj)

ωd(xj)
.

The error of An,d,ωd
is defined as

eran(An,d,ωd
) = sup

‖f‖H(Kd)≤1

(

Eωd
(INTd(f) − An,d,ωd

(f))2)1/2
,

where the expectation is with respect to the random choice of the sample points xj.
For n = 0 we formally take A0,d,ωd

= 0 and then

eran(0, Id) = C init
d .

The error eran(0) is called the initial error and can be obtained without sampling the
function. This also explains the use of the superscript init.

Hinrichs [3] proved, in particular, the following theorem.
Theorem 1. [3, Theorem 4]

Assume additionally that Kd(x, y) ≥ 0 for all x, y ∈ Dd. Then there exists a positive

density function ωd such that

eran(An,d,ωd
) ≤

(π

2

)1/2 1√
n

eran(0, Id).



6 ERICH NOVAK AND HENRYK WOŹNIAKOWSKI

Hence, if we want to achieve eran(An,d,ωd
) ≤ ε eran(0, Id) then it is enough to take

n =

⌈

π

2

(

1

ε

)2
⌉

.

We briefly comment on the assumption on Kd(x, y) ≥ 0 for all x, y ∈ Dd. In
general, this assumption is needed. Indeed, we will show this for an example which
is a modification of the example studied in Section 17.1.6.2 of [7]. More precisely, for
d = 1 we define the space H(K1) of real functions defined over [0, 1] such that they
are constant over [0, 1/2] and (1/2, 1]. That is, f(x) = f(0) for all x ∈ [0, 1/2], and
f(x) = f(1) for all x ∈ (1/2, 1]. The inner product of f, g from H(K1) is defined by

〈f, g〉H(K1) =
1

2
[f(0) + f(1)] [g(0) + g(1)] +

1

4
[f(0)g(0) + f(1)g(1)] .

For i = 1, 2, consider two functions fi from H(K1) such that

f1(0) = 2/
√

3, f1(1) = 0

f2(0) = 4/
√

15, f2(1) = −6/
√

15.

It is easy to check that 〈fi, fj〉H(K1) = δi,j. Therefore the reproducing kernel is

K1(x, y) = f1(x)f1(y) + f2(x)f2(y) for all x, y ∈ [0, 1].

We have K1(x, t) = 12/5 if x, t ∈ [0, 1/2] or x, t ∈ (1/2, 1] and K1(x, t) = −8/5
otherwise, i.e., if x ≤ 1/2 < t or t ≤ 1/2 < x. Univariate integration takes now the
form

INT1(f) =

∫ 1

0

f(t) dt =
1

2
[f(0) + f(1)] for all f ∈ H(K1).

For d > 1, we take the space H(Kd) of real functions that are constant on the 2d

products of intervals [0, 1/2] and (1/2, 1]. This is, each function in H(Kd) is uniquely
defined by its values at the 2d points {0, 1}d. We define the inner product for all
f, g ∈ H(Kd) by

〈f, g〉H(Kd) = 2−d





∑

x∈{0,1}d

f(x)









∑

x∈{0,1}d

g(x)



+ 4−d
∑

x∈{0,1}d

f(x)g(x).

It can be checked that the reproducing kernel is

Kd(x, t) = 4d

(

1 − 1

2d + 2−d

)

if all coordinates of x and t lie in the same subinterval [0, 1/2] or (1/2, 1] while

Kd(x, t) = − 2d

1 + 4−d

if at least one of the coordinates xi and ti lie in different subintervals. Hence, the
kernel Kd does not satisfy the assumption of Theorem 1 of Hinrichs.
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Consider multivariate integration

INTd(f) =

∫

[0,1]d
f(t) dt =

1

2d

∑

x∈{0,1}d

f(x) for all f ∈ H(Kd).

Observe that the norm of multivariate integration is given by ‖INTd‖ =
√

2−d/(1 + 4−d).
Similarly as in [7], see the proof of Theorem 17.14, we can apply Lemma 1 below

(with N = 2d and fi being equal to
√

2d/(1 + 2−d) on one of the 2d subregions of
[0, 1]d and zero otherwise, which corresponds to η = (1 + 2d)−1/2) to conclude that
for ε2 = 1

2

nran(ε, INTd) ≥ 2d

(

1 − 1 + 2−d

2 + 2 · 4−d

)

.

This means that multivariate integration suffers from the curse of dimensionality
and Theorem 1 does not hold for this space H(Kd) since its reproducing kernel takes
also negative values.

Formally, the result of Hinrichs seems to be only for multivariate integration. How-
ever, it turns out that some linear functionals can be expressed as multivariate inte-
gration and this of course extends applicability of Theorem 1, for details see Section
10.9 in [7].

3. Linear Tensor Product Functionals

In this section we define linear tensor product functionals over reproducing kernel
Hilbert spaces. These problems are not necessarily given as multivariate integration.
The basic information on this subject can be found, e.g, in [1, 9].

For d = 1, we assume that H(K1) is a reproducing kernel Hilbert space of real
functions defined over D1 ⊂ R with the kernel K1 : D1 ×D1 → R. The inner product
of H(K1) is denoted by 〈·, ·〉H(K1). Consider the continuous linear functional

I1(f) = 〈f, h1〉H(K1) for all f ∈ H(K1).

Here h1 is some function from H(K1).
For d > 1, we take

H(Kd) = H(K1) ⊗ H(K1) ⊗ · · · ⊗ H(K1)

as the d-fold tensor product of H(K1). Then H(Kd) is a reproducing kernel Hilbert
space of multivariate functions defined over Dd = D1 ×D1 × · · · ×D1 (d times) with
the kernel Kd : Dd × Dd → R given by

Kd(x, y) =
d
∏

j=1

K1(xj, yj) for all x = [x1, x2, . . . , xd], y = [y1, y2, . . . , yd] ∈ Dd.

The inner product of H(Kd) is denoted by 〈·, ·〉H(Kd). Finally, the continuous linear
functional

Id = I1 ⊗ · · · ⊗ I1
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is the d-fold tensor product of I1. This means that

Id(f) = 〈f, hd〉H(Kd) for all f ∈ H(Kd)

and
hd(x) = h1(x1)h1(x2) · · ·h1(xd) for all x ∈ Dd.

4. Randomized Setting and Tractability

We approximate linear tensor product functionals in the randomized setting. We
now briefly define this setting as well as recall a few notions of tractability. The reader
may find more on these subjects, e.g., in [6, 7, 8].

We approximate Id by algorithms An,d,ωd
that use n function values on the average

and each function value is computed at a random sample point from Dd chosen with
respect to a probability distribution on Dd. More precisely, the algorithm An,d,ωd

is
of the following form

An,d,ωd
(f) = ϕn,d,ωd

(

f(t1,ωd,1
), f(t2,ωd,2

), . . . , f(tn(ωd),ωd,n(ωd)
)
)

.

Here ωd = [ωd,1, ωd,2, . . . ], and the sample points tj,ωd,j
are random points distributed

according to a probability distribution ωd,j on Dd which may depend on j as well
as on the function values already computed. The mapping ϕn,d,ωd

: R
n(ωd) → R is a

random mapping, and
Eωd

n(ωd) ≤ n.

We also allow adaptive choices of sample points. That is, tj,ωd
may depend on the

already selected sample points t1,ωd
, t2,ω2 , . . . , tj−1,ωd

.
Without loss of generality, we assume that An,d,·(f) is measurable, and define the

error of An,d,ωd
as

eran(An,d,ωd
) = sup

‖f‖H(Kd)≤1

(

Eωd
(Id(f) − An,d,ωd

(f))2)1/2
.

For n = 0, the algorithm A0,d,ωd
does not depend on any function values and it is

easy to check that the error is minimized when we take A0,d,ωd
≡ 0. Then

eran(0) = ‖Id‖ = ‖hd‖H(Kd) = ‖h1‖d
H(Kd).

Hence, eran(0) = 0 only for trivial problems with h1 ≡ 0. Therefore, we always assume
that h1 6= 0.

For a given n, we would like to find an algorithm with the nth minimal error. Let

(1) eran(n, Id) = inf {eran(An,d,ωd
) | An,d,ωd

as above }
be the nth minimal error when we use n randomized function values on the average.
We stress that we minimize the error with respect to all possible probability distribu-
tions ωd, adaptive sample points xj, as well as random mappings ϕn,d,ωd

. Obviously,
eran(0, Id) = eran(0) = ‖Id‖.

We would like to reduce the initial error by a factor ε, where ε ∈ (0, 1). We are
looking for the smallest n = n(ε, Id) for which eran(n, d) ≤ εeran(0, Id). That is,

(2) nran(ε, Id) = min {n : eran(n, Id) ≤ ε eran(0, Id) } .
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We now turn to tractability that studies when nran(ε, d) is not exponential in ε−1

or d. Since there are many different ways to define the lack of exponential dependence
we have various kinds of tractability.

We say that the problem I = {Id} is polynomially tractable iff there exist nonneg-
ative C, q and p such that

(3) nran(ε, Id) ≤ C d q ε−p for all ε ∈ (0, 1) and d ∈ N.

Polynomial tractability means that we can reduce the initial error by a factor ε by
using a number of function values that is polynomial in ε−1 and d.

If q = 0 in (3), then we say that the problem I = {Id} is strongly polynomially

tractable. In this case, the number of randomized samples is independent of d and
depends polynomially on ε−1. The smallest (or the infimum of) p in (3) is called the
exponent of strong polynomial tractability.

Finally, we say that I = {Id} is weakly tractable iff

lim
ε−1+d→∞

ln nran(ε, Id)

ε−1 + d
= 0.

Weak tractability means that nran(ε, d) = exp(o(ε−1+d)) is not exponential in ε−1+d
but may increase to infinity faster than any polynomial in ε−1 + d.

We illustrate the concepts of this section for multivariate integration. We now need
to assume that H(K1) contains integrable functions with respect to some probability
density function ̺1 : D1 → R, i.e., ̺1 ≥ 0 and

∫

D1
̺1(x) dx = 1. This requires to

assume that

C init
1 :=

(∫

D1

∫

D1

K1(x, y) ̺1(x) ̺1(y) dx dy

)1/2

< ∞.

Without loss of generality we may choose D1 and ̺1 such that there is no subset of
D1 with positive measure for which all functions from H(K1) vanish on it. Let

INT1(f) =

∫

D1

f(x) ̺1(x) dx = 〈f, h1〉H(K1) for all f ∈ H(K1),

where

h1(x) =

∫

D1

K1(x, y) ̺1(y) dy for all x ∈ D1,

and

‖INT1‖ = ‖h1‖H(K1) = C init
1 .

For d > 1, we have

INTd(f) = 〈f, hd〉H(Kd) =

∫

Dd

f(x) ̺d(x) dx for all f ∈ H(Kd),

where

hd(x) =
d
∏

j=1

h1(xj) and ̺d(x) =
d
∏

j=1

̺1(xj) for all x ∈ Dd.
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For K1 ≥ 0, Theorem 1 of Hinrichs states that

nran(ε, INTd) ≤ 1 + π/2 · ε−2,

so that multivariate integration I = {Id} is strongly polynomially tractable with the
exponent at most 2.

5. Decomposable Kernels

We present lower bounds on the minimal errors eran(n, Id) for certain tensor prod-
uct linear functionals Id and tensor product spaces H(Kd). From these bounds we
will conclude that the exponent 2 of strong polynomial tractability of multivariate
integration is sharp.

We proceed similarly as in [5], where the worst case setting was studied. Take first
d = 1. We say that the kernel K1 is decomposable iff there exists a∗ ∈ R such that

(4) K1(x, y) = 0 for all x ≤ a∗ ≤ y and x, y ∈ D1.

For a∗ ∈ R, define

D(0) = {x ∈ D1 : x ≤ a∗} and D(1) = {x ∈ D1 : x ≥ a∗}.
Obviously D1 = D(0) ∪ D(1) and D(0) ∩ D(1) = {a∗} or D(0) ∩ D(1) = ∅ depending on
whether a∗ belongs or does not belong to D1. The essence of (4) is that the function
K1 may take nonzero values only if x and t belong to the same quadrant D(0) ×D(0)

or D(1) × D(1).
Observe that if K1 is decomposable and a∗ ∈ D1 then K1(·, a∗) = 0. This implies

that all functions in H(K1) vanish at a∗ since f(a∗) = 〈f,K1(·, a∗)〉H(K1) = 0.

If K1 is decomposable, then the space H(K1) can be decomposed as the direct sum
of Hilbert spaces H(K1)(0) and H(K1)(1) of univariate functions defined by

H(K1)(i) = span{K1(·, t) : t ∈ D(i) }
and equipped with the inner product of H(K1).

Indeed, functions of the form f =
∑k

j=1 βjK1(·, tj) with real βj and tj ∈ D1 are

dense in H(K1). Then for all t ∈ D1 we have

f(t) =
k
∑

j=1

βjK1(t, tj) =
∑

(t,tj)∈D2
(0)

βjK1(t, tj) +
∑

(t,tj)∈D2
(1)

βjK1(t, tj) = f(0)(t) + f(1)(t),

where f(0) ∈ H(K1)(0) and f(1) ∈ H(K1)(1). For f ∈ H(K1)(i) we have f(t) = 0 for
t ∈ D(1−i) and the subspaces H(K1)(0) and H(K1)(1) are orthogonal. Hence

‖f‖2
H(K1) = ‖f(0)‖2

H(K1) + ‖f(1)‖2
H(K1) for all f ∈ H(K1).

Consider now I1(f) = 〈f, h1〉H(K1) for all f ∈ H(K1). The function h1 is from

H(K1) and can be decomposed as

h1 = h1,(0) + h1,(1)

where h1,(i) ∈ H(K1)(i) for i = 1, 2.
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Take now arbitrary d ≥ 1. Then

Kd(x, y) =
d
∏

j=1

K1(xj, yj) for all x, y ∈ Dd.

The continuous linear functional Id(f) = 〈f, hd〉H(Kd) corresponds to

hd(x) =
d
∏

j=1

h1(xj) =
d
∏

j=1

(

h1,(0)(xj) + h1,(1)(xj)
)

and

‖Id‖ = ‖hd‖H(Kd) =
(

‖h1,(0)‖2
H(K1) + ‖h1,(1)‖2

H(K1)

)d/2
.

We will apply a modification of Lemma 17.10 of Chapter 17 from [7], which in turn
is a slight modification of Lemma 1 from [4] p. 63. For completeness we provide the
proof of this lemma here.

Lemma 1. Let f1, f2, . . . , fN be such that

• fi ∈ H(Kd) and ‖fi‖H(Kd) = 1 for all i = 1, 2, . . . , N ,

• the functions fi have disjoint supports and satisfy Id(fi) ≥ η > 0.

Then for n < N we have

eran(n, Id) ≥
(

1 − n

N

)1/2

η.

Proof. We apply the idea of Bakhvalov [2] which states that the randomized setting
is at least as hard as the average case setting for an arbitrary probability measure.
For the average case setting, we select the set

M = {±fi | i = 1, 2, . . . , N}
with the uniform distribution so that each ±fi occurs with probability 1/(2N). That
is, the average case error of a deterministic algorithm A is now

eavg(A) =

[

1

2N

N
∑

i=1

[

(Id(fi) − A(fi))
2 + (Id(−fi) − A(−fi))

2
]

]1/2

.

Suppose first that A uses k function values, k < N . Then at least N − k supports of
fi’s are missed and for these functions A(fi) = A(−fi). Then

(Id(fi) − A(fi))
2 + (−Id(fi) − A(−fi))

2 ≥ 2I2
d(fi) ≥ 2η2,

and therefore

[eavg(A)]2 ≥ 1

2N
(N − k)2η2 =

(

1 − k

N

)

η2.

Next, let A use k function values with probability pk such that
∑∞

k=1 pk = 1 and
∑∞

k=1 kpk ≤ n. Then

[eavg(A)]2 ≥
∞
∑

k=1

pk

(

1 − k

N

)

η2 =

(

1 −
∑∞

k=1 kpk

N

)

η2 ≥
(

1 − n

N

)

η2.
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Since this holds for any deterministic algorithm using n function values on the aver-
age, we conclude that

(5) inf
A

eavg(A) ≥
(

1 − n

N

)1/2

+
η.

Take now an arbitrary randomized algorithm An,d,ωd
that uses n function values

on the average. The square of its error is
[

eran(An)
]2

= sup
‖f‖H(Kd)≤1

Eωd
(Id(f) − An,d,ω(f))2

≥ Eωd

(

1

2N

N
∑

i=1

[

(Id(fi) − An,d,ω(fi))
2 + (−Id(fi) − An,d,ω(−fi))

2
]

)

.

Note that for a fixed ω, the algorithm An,d,ω is deterministic. The expression above
between the brackets is then the square of the average case error of An,d,ω for which
we can apply the lower bound (5). Therefore we have

[

eran(An)
]2 ≥ Eωd

(

1 − n

N

)2

+
η2 =

(

1 − n

N

)2

+
η2.

This completes the proof. �

We are ready to present a lower bound on the nth minimal error eran(n, Id) which
is the main result of this paper.

Theorem 2. Assume that K1 is decomposable and that h1,(0) and h1,(1) are non-zero.

Denote

α =
max

(

‖h1,(0)‖2
H(K1), ‖h1,(1)‖2

H(K1)

)

‖h1,(0)‖2
H(K1) + ‖h1,(1)‖2

H(K1)

∈
[

1
2
, 1
)

.

Then

eran(n, Id) ≥
(

1

8

)1/2
1√
n

eran(0, Id) for all n and d such that 4nαd ≤ 1.

Hence

nran(ε, Id) ≥
⌈

1

8

(

1

ε

)2
⌉

for all ε ∈ (0, 1) and d ≥ 2 ln ε−1 − ln 2

ln α−1
.

Proof. To apply Lemma 1 we need to construct functions fi and estimate η. We
proceed as follows. Let [d] := {1, 2, . . . , d}. For the function hd we have

(6) hd(x) =
d
∏

j=1

(h1,(0)(xj) + h1,(1)(xj)) =
∑

u⊆[d]

hu(x)

with
hu(x) =

∏

j∈u

h1,(0)(xj)
∏

j /∈u

h1,(1)(xj).

For u = ∅ or u = [d], the product over the empty set is taken as 1.
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The support of hu is

Du := {x ∈ Dd | xj ∈ D(1) for all j ∈ u and xj ∈ D(0) for all j /∈ u}.
That is we identify 2d elements hu with disjoint supports and

Id(hu) = ‖hu‖2
H(Kd) = ‖h1,(0)‖2|u|

H(K1) ‖h1,(1)‖2(d−|u|)
H(K1) .

We now order {hu} according to their decreasing Id(hu). That is, let

{gj}j=1,2,...,2d = {hu}u⊆[d]

such that ‖g1‖H(Kd) ≥ ‖g2‖H(Kd) ≥ · · · . Let

pj =
‖gj‖2

H(Kd)

‖hd‖2
H(Kd)

for j = 1, 2, . . . , 2d.

Clearly,
∑2d

j=1 pj = 1 and the largest p1 is given by

p1 = αd.

Define k0 = 0 and integers k1, k2, . . . , ks ≤ 2d such that for i = 1, 2, . . . , s we have

pki−1+1 + pki−1+2 + · · · + pki−1 <
1

4n
≤ pki−1+1 + pki−1+2 + · · · + pki

.

Since 4nαd ≤ 1 we have

pki−1+1 + pki−1+2 + · · · + pki−1 + pki
<

1

4n
+ αd ≤ 1

2n
.

This implies that

s

4n
≤

ks
∑

j=1

pj <
s

2n
.

Hence this construction is well defined at least for s = 2n.
Finally we apply Lemma 1 with N = 2n and

fj =

∑kj

i=kj−1+1 gi
∥

∥

∥

∑kj

i=kj−1+1 gi

∥

∥

∥

H(Kd)

=

∑kj

i=kj−1+1 gi

(

∑kj

i=kj−1+1 ‖gi‖2
H(Kd)

)1/2

for all j = 1, 2, . . . , N .
Then fj’s have disjoint supports, ‖fj‖H(Kd) = 1, and

Id(fj) =





kj
∑

i=kj−1+1

‖gj‖2
H(Kd)





1/2

= ‖hd‖H(Kd)





kj
∑

i=kj−1+1

pj





1/2

≥ η := ‖hd‖H(Kd)
1

2
√

n
.

¿From Lemma 1 we conclude that

eran(n, Id) ≥
1

2
√

2n
eran(0, Id),
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which completes the proof of the first inequality.
To prove the second inequality assume that

n < ⌈ε−2/8⌉ for ε ∈ (0, 1) and d ≥ 2 ln ε−1 − ln 2

ln α−1
.

Then n < ε−2/8 and 4nαd ≤ 1. Since ε < 1/
√

8n, the first inequality yields that

eran(n, Id) > ε eran(0, Id).

This means that nran(ε, Id) > n, and taking the largest such n we conclude that

nran(ε, Id) ≥
⌈

1

8ε2

⌉

,

as claimed. This completes the proof of Theorem 2. �

We stress that the lower estimate of nran(ε, Id) in Theorem 2 holds for all ε ∈ (0, 1)
and sufficiently large d with respect to ε. This has to be so since otherwise if we do
not have a condition on the growth of d, then we could fix d and let ε tend to zero.
The asymptotic behavior of nran(ε, Id) depends on the smoothness of functions in
H(Kd) and may go to infinity much slower than ε−2. In fact, in a moment we will see
examples for which this happens. Therefore the lower bound in Theorem 2 cannot
be true for all d, in general. On the other hand, it is interesting to note that the
condition on d is quite mild since it requires that d grows only logarithmically with
ε−1.

Comparing Theorems 1 and 2 for multivariate integration defined over a tensor
product Hilbert space we see quite similar lower and upper estimates on nran(ε, INTd)
of order ε−2. These estimates hold as long as the univariate reproducing kernel K1

is pointwise nonnegative, integrable and decomposable. We now show two examples
for which all these properties of K1 hold.

Example 1: Multivariate Integration of Smooth Functions

As in Section 11.4.1 of [7], we consider multivariate integration for the Sobolev
space of arbitrarily smooth functions. More precisely, let r ∈ N. We take

H(K1) = W r
0 (R)

as the Sobolev space of functions defined over R whose (r−1)st derivatives are abso-
lutely continuous, with the rth derivatives belonging to L2(R) and their derivatives
up to the (r − 1)st at zero being zero. That is, we now have D1 = R and

H(K1) = {f : R → R : f (j)(0) = 0, j ∈ [0, r−1], f (r−1) abs. cont. and f (r) ∈ L2(R)}.
The inner product of F1 is given as

〈f, g〉F1
=

∫

R

f (r)(t)g(r)(t) dt.

It is known, and not hard to check, that this Hilbert space has the reproducing kernel

K1(x, t) = 1M(x, t)

∫ ∞

0

(|t| − u)r−1
+ (|x| − u)r−1

+

[(r − 1)!]2
du,
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where 1M is the characteristic (indicator) function of the set M = {(x, t) : xt ≥ 0}.
For r = 1, we have

K1(x, t) = 1M(x, t) min(|t|, |x|).
For r ≥ 1, observe that this kernel is decomposable at a∗ = 0 since

K1(x, t) = 0 for all x ≤ 0 ≤ t.

The kernel K1 is also symmetric since K1(x, t) = K1(−x,−t)., and obviously

K1(x, t) ≥ 0 for all x, t ∈ D1.

For d > 1, we take tensor products and

H(Kd) = W r,r,...,r
0 (Rd) = W r

0 (R) ⊗ · · · ⊗ W r
0 (R)

is the d-fold tensor product of W r
0 (R). Hence, H(Kd) is the Sobolev space of smooth

functions defined over Dd = R
d such that Dαf(x) = 0 if at least one component of x

is zero for any multi-index α = [α1, α2, . . . , αd] with integers αj ∈ [0, r− 1]. Here, Dα

is the partial differential operator, Dαf = ∂|α|f/∂α1x1 · · · ∂αdxd. The inner product
of H(Kd) is given by

〈f, g〉H(Kd) =

∫

Rd

D[r,r,...,r]f(x) D[r,r,...,r]g(x) dx.

Obviously,

Kd(x, t) =
d
∏

j=1

K1(xj, tj) ≥ 0 for all x, t ∈ Dd.

For d = 1, consider univariate integration

INT1(f) =

∫

R

f(t) ̺(t) dt for all f ∈ H(K1)

for some measurable non-zero weight function ̺ : R → R+. It is easy to check that
INT1 is a continuous linear functional iff the function

h1(x) =

∫

R

K1(x, t) ̺(t) dt

belongs to H(K1), which holds iff

(7)

∫

R2

K1(x, t) ̺(t) ̺(x) dt dx < ∞.

It is also easy to check that K1(x, t) = O(|t x|r−1/2), and (7) holds if
∫

R

̺(t) |t|r−1/2 dt < ∞.

The last condition imposes a restriction on the behavior of the weight ̺ at infinity.
If (7) holds, then

INT1(f) = 〈f, h1〉H(K1) for all f ∈ H(K1),
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and

‖INT1‖ = ‖h1‖H(K1) =

(∫

R2

K1(x, t) ̺(t) ̺(x) dt dx

)1/2

< ∞.

We also have

h1,(0)(x) =

∫ 0

−∞

K1(x, t) ̺(t) dt and h1,(1)(x) =

∫ ∞

0

K1(x, t) ̺(t) dt.

Furthermore,

‖h1,(0)‖2
H(K1) =

∫ 0

−∞

∫ 0

−∞

K1(x, t) ̺(t) ̺(x) dt dx,

‖h1,(1)‖2
H(K1) =

∫ ∞

0

∫ ∞

0

K1(x, t) ̺(t) ̺(x) dt dx.

For d > 1, we have

INTd(f) =

∫

Rd

f(t) ̺d(t) dt with ̺d(t) = ̺(t1)̺(t2) · · · ̺(td).

We are ready to apply Theorems 1 and 2 for this multivariate integration problem.
All the assumptions of Theorem 1 of Hinrichs are satisfied. To apply Theorem 2, note
that if the weight ̺ does not vanish (in the L2 sense) over R− and R+ then the norms
of h1,(0) and h1,(1) are positive and

α =
max

(

‖h1,(0)‖2
H(K1), ‖h1,(1)‖2

H(K1)

)

‖h1,(0)‖2
H(K1) + ‖h1,(0)‖2

H(K1)

< 1.

Furthermore, if we take a nonzero symmetric ̺, i.e., ̺(t) = ̺(−t), then α = 1
2
. This

is the case for Gaussian integration for which

̺(t) = (2π σ)−1/2 exp
(

− t2/(2 σ)
)

for all t ∈ R

is symmetric. Here, the variance σ is an arbitrary positive number.
Hence, multivariate integration is strongly polynomially tractable with the expo-

nent 2. We stress that the exponent is independent of the assumed smoothness of
functions measured by r. More specifically we have the following bounds

nran(ε, INTd) ≤
⌈

π

2

(

1

ε

)2
⌉

for all ε ∈ (0, 1) and d ∈ N,

nran(ε, INTd) ≥
⌈

1

8

(

1

ε

)2
⌉

for all ε ∈ (0, 1) and d ≥ 2 ln ε−1 − ln 2

ln α−1
.

We add in passing that this problem was also studied in the worst case setting. If
we denote nwor(ε, INTd) as the minimal number of function values needed to reduce
the initial error by a factor ε in the worst case setting then

nwor(ε, INTd) ≥ (1 − ε2) α−d for all ε ∈ (0, 1) and d ∈ N,
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see Theorem 11.8 in [7]. Hence, we have intractability and the curse of dimension-
ality. This means that the randomized setting allows us to vanquish the curse of
dimensionality of this multivariate problem in the worst case setting.

We now briefly discuss the asymptotic behavior of nran(ε, INTd) for a fixed d and
ε tending to zero. For simplicity we take the weight ̺(t) = 1

2
for t ∈ [−1, 1] and

̺(t) = 0 for |t| > 1. Then α = 1/2 and
∫

R
̺(t) dt = 1. For d = 1 it is known that

(8) nran(ε, INT1) = Θ
(

ε−1/(r+1/2)
)

as ε → 0.

For d ≥ 2, we can achieve almost the same dependence modulo some powers of ln ε−1.
More precisely, we first approximate functions from H(Kd) in the worst case setting
for the L2 norm by algorithms using arbitrary linear functionals. Then the minimal
worst case error of algorithms that use n such linear functionals is

Θ
(

n−r (ln n)(d−1)r
)

.

It is also know that in the randomized setting we can approximate functions from
H(Kd) by linear algorithms using function values with the error which is modulo a
double log the same as the worst case error for arbitrary linear functionals, see [10].
That is, f is approximated by fn =

∑n
j=1 aj,ωd

f(xj,ωd
) with the error for the L2 norm

O
(

n−r (ln n)(d−1)r (ln ln n)r+1/2
)

.

Finally, since

INTd(f) = INTd(fn) + INTd(f − fn)

we approximate the integral of f by adding to INTd(fn) the standard Monte Carlo
approximation of the integral of f − fn, and obtain the error

O
(

n−(r+1/2) (ln n)(d−1)r (ln ln n)r+1/2
)

.

This implies that

nran(ε, INTd) = O
(

ε−2/(1+2r)
(

ln ε−1
)(d−1)r/(r+1/2)

ln ln ε−1
)

as ε → 0.

From (8) we conclude that modulo logarithms the last bound is sharp.
We stress that the factor in the big O notation depends on d and r. In any case,

the leading factor ε−2/(1+2r) is always less 2, and for large r is quite small. Hence,
asymptotically in ε and for fixed d, we have a much better behavior than ε−2 that is
achieved if d varies with ε−1.

Example 2: Centered Discrepancy and Midpoint Conditions

We now consider multivariate integration whose worst case error is closely related to
the centered discrepancy, see Section 11.4.3 of [7]. In fact, we have two such multivari-
ate problems defined on specific Sobolev spaces with or without midpoint conditions.
Here we discuss the case with midpoint conditions and later we will address the case
without midpoint conditions.
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Take now D1 = [0, 1] and H(K1) = W 1
1/2([0, 1]) as the Sobolev space of absolutely

continuous functions whose first derivatives are in L2([0, 1]) and whose function values
are zero at 1/2. We call f(1

2
) = 0 the midpoint condition. That is,

H(K1) = {f : [0, 1] → R : f(1
2
) = 0, f abs. cont. and f ′ ∈ L2([0, 1])}

with the inner product

〈f, g〉H(K1) =

∫ 1

0

f ′(t)g′(t) dt.

The reproducing kernel is

K1(x, t) = 1
2
(|x − 1

2
| + |t − 1

2
| − |x − t|),

which can be rewritten as

K1(x, t) = 1M(x, t) · min(|x − 1
2
|, |t − 1

2
|),

where M = [0, 1
2
] × [0, 1

2
] ∪ [1

2
, 1] × [1

2
, 1], and 1M denotes the characteristic function

of M , i.e., 1M(y) = 1 if y ∈ M and 1M(y) = 0 is y /∈ M . Hence, the kernel K1 is
decomposable at a∗ = 1

2
, symmetric and clearly K1 ≥ 0.

For d > 1, we take tensor products and obtain

H(Kd) = W 1,1,...,1
1/2 ([0, 1]d) = W 1

1/2([0, 1]) ⊗ · · · ⊗ W 1
1/2([0, 1]), d times,

as the Sobolev space of smooth functions f defined over Dd = [0, 1]d such that
f(x) = 0 if at least one component of x is 1/2. They are called the midpoint conditions.
The inner product of H(Kd) is given by

〈f, g〉H(Kd) =

∫

[0,1]d

∂d

∂x1 · · · ∂xd

f(x)
∂d

∂x1 · · · ∂xd

g(x) dx.

Consider the uniform integration problem,

I1(f) =

∫ 1

0

f(t) dt.

It is easy to compute

h1,(0)(x) =

∫ 1/2

0

min(1
2
− x, 1

2
− t) dt = 1

2
(1

2
− x)(1

2
+ x) ∀x ∈ [0, 1

2
],

h1,(1)(x) =

∫ 1

a

min(x − 1
2
, t − 1

2
) dt = 1

2
(x − 1

2
)(3

2
− x) ∀x ∈ [1

2
, 1].

Furthermore,

‖h1,(0)‖2
H(K1) = ‖h1,(1)‖2

H(K1) = 1
24

and α = 1
2
.
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This means that we can apply Theorems 1 and 2 and obtain strong polynomial
tractability with the exponent 2. More specifically we have

nran(ε, INTd) ≤
⌈

π

2

(

1

ε

)2
⌉

for all ε ∈ (0, 1) and d ∈ N,

nran(ε, INTd) ≥
⌈

1

8

(

1

ε

)2
⌉

for all ε ∈ (0, 1) and d ≥ 2 ln ε−1 − ln 2

ln 2
.

In the worst case setting we have

nwor(ε, INTd) ≥ (1 − ε2) 2d for all ε ∈ (0, 1) and d ∈ N,

see Theorem 11.8 of [7]. Furthermore, the worst case error of a linear algorithm

Qn,d(f) =
n
∑

j=1

ajf(zj)

is given by

ewor(Qn,d) =

(

∫

[0,1]d

∣

∣

∣

∣

d
∏

j=1

min(xj, 1 − xj) −
n
∑

j=1

aj · 1J(b(x),x)(zj)

∣

∣

∣

∣

2

dx

)1/2

,

where J(b(x), x) is the rectangular box generated by x and the vertex b(x) of [0, 1]d

that is closest to x in the sup-norm. The last integral is the centered discrepancy
of the points zj and the coefficients aj. This explains in what sense this integration
problem is related to the centered discrepancy.

As in the previous example, the curse of dimensionality present in the worst case
setting is vanquished in the randomized setting. Also as before we can basically repeat
the reasoning on the asymptotic behavior of nran(ε, INTd) for a fixed d and ε tending
to zero, and show that the current case is a variant of the previous case for r = 1
and a special ̺ = 1 over [−1, 1]. Therefore we have

(9) nran(ε, INTd) = O
(

ε−2/3
(

ln ε−1
)2(d−1)/3

ln ln ε−1
)

as ε → 0

with the factor in the big O notation depending on d. Again, modulo logarithms the
last bound is sharp. This means that we must have ε−2 instead of ε−2/3 if we want
to have bounds independent of d.

6. Non-decomposable Kernels

In this final section we briefly discuss tensor product functionals defined over
Hilbert spaces with non-decomposable kernels. We indicate how to get a lower bound
for such problems. However, the lower and upper bounds are not sharp as before and
we think that there is much more work needed to get better bounds.

Our approach is parallel to the approach we took for the worst case setting in [5].
Unfortunately for the randomized setting the situation is much more complicated
and it is not clear if some properties of tensor product functionals that were crucial



20 ERICH NOVAK AND HENRYK WOŹNIAKOWSKI

for lower bounds techniques in the worst case setting are also true in the randomized
setting. We will be more specific on this point later after we present a lower bound.

As before, we first consider d = 1, and assume that

(10) K1 = R1 + R2

for some reproducing kernels R1 and R2 such that the corresponding Hilbert spaces
H(R1) and H(R2) satisfy

(11) H(R1) ∩ H(R2) = {0} and the kernel R2 is decomposable.

For many standard spaces with non-decomposable kernels K1 we can take R1 such
that H(R1) is a finite dimensional space. For example, let K1(x, t) = 1 + min(x, t)
for x, t ∈ [0, 1]. For a ∈ (0, 1) we take R2 = K1 − R1 with

R1(x, t) =
(1 + min(x, a))(1 + min(t, a))

1 + a
for all x, t ∈ [0, 1].

Then H(R1) = span(1+min(·, a)} is one-dimensional, H(R2) = {f ∈ H(K1) | f(a) =
0} and H(R1) ∩ H(R2) = {0}. For x ≤ a ≤ t we have

R2(x, t) = 1 + x − (1 + x)(1 + a)

1 + a
= 0,

so that R2 is decomposable at a.
Due to (10) we have a unique decomposition for f ∈ H(K1),

f = f1 + f2 with fi ∈ H(Ri), i = 1, 2.

Furthermore, for f, g ∈ H(K1) we have

〈f, g〉H(K1) = 〈f1, g1〉H(R1) + 〈f2, g2〉H(R2) .

This implies that all f ∈ H(K1) can be uniquely represented as

f = f1 + f2,(0) + f2,(1) with f1 ∈ H(R1), f2,(0) ∈ H(R2)(0), f2,(1) ∈ H(R2)(1),

and
‖f‖2

H(K1) = ‖f1‖2
H(R1) + ‖f2,(0)‖2

H(R2) + ‖f2(1)‖2
H(R2).

For I1(f) = 〈f, h1〉H(K1) for all f ∈ H(K1) and some h1 ∈ H(K1), we have

h1 = h1,1 + h1,2,(0) + h1,2,(1)

and
‖h1‖2

H(K1) = ‖h1,1‖2
H(R1) + ‖h1,2,(0)‖2

H(R2) + ‖h1,2,(1)‖2
H(R2).

For d > 1, we take tensor products and obtain H(Kd) with

Kd(x, t) =
d
∏

j=1

(R1(xj, tj) + R2(xj, tj)) =
∑

u⊆[d]

Ru,1(xu, tu) Ru,2(xu, tu),

where
Ru,1(xu, tu) =

∏

j /∈u

R1(xj, tj) and Ru,2(xu, tu) =
∏

j∈u

R2(xj, tj)

are the reproducing kernels of the Hilbert spaces H(Ru,1) and H(Ru,2).
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For Id(f) = 〈f, hd〉H(Kd) for all f ∈ H(Kd), we have

hd(x) =
∏

j=1

h1(xj) =
d
∏

j=1

(h1,1(xj) + h1,2(xj)) =
∑

u⊆[d]

hu,1(xu) hu,2(xu),

where
hu,1(xu) =

∏

j /∈u

h1,1(xj), and hu,2(xu) =
∏

j∈u

h1,2(xj).

Then hu,1 ∈ H(Ru,1) and hu,2 ∈ H(Ru,2). For u = ∅ or u = [d], we take h∅,2 = 1 and
h[d],1 = 1. We also have

‖hu,1‖H(Ru,1) = ‖h1,1‖d−|u|
H(R1) and ‖hu,2‖H(Ru,2) = ‖h1,2‖|u|H(R2).

Obviously, h1,2 = h1,2,(0) + h1,2,(1) and

‖h1,2‖2
H(R2) = ‖h1,2,(0)‖2

H(R2) + ‖h1,2,(1)‖2
H(R2).

We are ready to present our lower bound.

Theorem 3. Assume that (11) holds. Let

‖h1,2,(0)‖2
H(R2) > 0 and ‖h1,2,(1)‖2

H(R2) > 0

so that

α =
max(‖h1,2,(0)‖2

H(R2), ‖h1,2,(1)‖2
H(R2))

‖h1,2,(0)‖2
H(R2) + ‖h1,2,(1)‖2

H(R2)

∈
[

1
2
, 1
)

.

Let

β =
‖h1,1‖2

H(R1)

‖h1,1‖2
H(R1) + ‖h1,2,(0)‖2

H(R2) + ‖h1,2,(1)‖2
H(R2)

∈ [0, 1).

Then

eran(n, Id) ≥
(1 − β)1/2

4γα,β+3/4

1

n γα,β+1/2
eran(0, Id) with γα,β =

ln 1/(1 − β)

2 ln α−1

for all n and d such that 4nαd ≤ 1. Hence

nran(ε, Id) ≥
⌈

1

4

(

1 − β

2

)1/(1+2γα,β) (
1

ε

)2/(1+2γα,β)
⌉

for all ε ∈ (0, 1) and

d ≥
2

1+2γα,β
ln ε−1 + 1

1+2γα,β
ln 1−β

2

ln α−1
.

Proof. Let k = ⌈ln(4n)/ ln(α−1)⌉ so that α−k ≥ 4n. It is easy to check that 4nαd ≤ 1
implies that k ≤ d. Indeed, since α−k+1 < 4n we have 4n = α−k(1 − x) for x ∈
[0, 1 − α). Then

αd−k(1 − x) = 4nαd ≤ 1

and this implies that k ≤ d, as claimed.
Consider 2k pairs (vj,wj) such that

vj ∩ wj = ∅ and vj ∪ wj = [k] = {1, 2, . . . , k}.
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Consider the function

gj(x) =
∏

j∈vj

h1,2,(0)(xj)
∏

j∈wj

h1,2,(1)(xj)
∏

j∈[d]\[k]

h1(xj).

Clearly,

Id(gj) = 〈gj, hd〉H(Kd) = ‖gj‖2
H(Kd)

= ‖h1,2,(0)‖2|vj |

H(R2) ‖h1,2,(1)‖2|wj |

H(R2) ‖h1‖2(d−k)
H(K1) .

The support of gj is included in the set

Dj = {x ∈ Dd | xj ∈ D(0) for all j ∈ vj and xj ∈ D(1) for all j ∈ wj}.

Therefore the functions gj for j = 1, 2, . . . , 2k have disjoint support.
We now basically repeat a part of the proof of Theorem 2. More precisely, we define

pj =
‖gj‖2

H(Kd)

‖hd‖2
H(Kd)

for all j = 1, 2, . . . , 2k.

We now have

2k
∑

j=1

pj =
(

‖h1,2,(0)‖2
H(R2) + ‖h1,2,(1)‖2

H(R2)

)k ‖h1‖−2k
H(K1) = (1 − β)k .

Furthermore, it is easy to check that

max
j=1,2,...,2k

pj = αk(1 − β)k.

As in the proof of Theorem 2, we define k0 = 0 and ki ≤ 2k for i = 1, 2, . . . , s such
that

pki−1+1 + pki−1+2 + · · · + pki−1 <
(1 − β)k

4n
≤ pki−1+1 + pki−1+2 + · · · + pki

.

Then we check as before that 4nαk ≤ 1 implies

pki−1+1 + pki−1+2 + · · · + pki
≤ (1 − β)k

4n
+ pki

≤ (1 − β)k

4n
+ αk(1 − β)k ≤ (1 − β)k

2n
,

so that the construction is well defined for s = 2n.
We are ready to apply Lemma 1 with N = 2n and

fj =

∑kj

i=kj−1+1 gi
∥

∥

∥

∑kj

i=kj−1+1 gi

∥

∥

∥

H(Kd)

=

∑kj

i=kj−1+1 gi

(

∑kj

i=kj−1+1 ‖gi‖2
H(Kd)

)1/2

for all j = 1, 2, . . . , N .
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Then the fj have disjoint supports, ‖fj‖H(Kd) = 1, and

Id(fj) =





kj
∑

i=kj−1+1

‖gj‖2
H(Kd)





1/2

= ‖hd‖H(Kd)





kj
∑

i=kj−1+1

pj





1/2

≥ η := ‖hd‖H(Kd)
(1 − β)k/2

2
√

n
.

¿From Lemma 1 we conclude that

eran(n, Id) ≥
(1 − β)k/2

2
√

2n
eran(0, Id).

We estimate

(1 − β)k/2 ≥ (1 − β)1/2 exp

(

(ln 4n)
ln(1 − β)

2 ln α−1

)

= (1 − β)1/2 (4n)−γα,β

which completes the proof of the first inequality.
To prove the second inequality assume that

n <

⌈

1

4

(

1 − β

2

)1/(1+2γα,β) (
1

ε

)2/(1+2γα,β)
⌉

.

Then

4n <

(

1 − β

2

)1/(1+2γα,β) (
1

ε

)2/(1+2γα,β)

and 4nαd ≤ 1. Since

ε <

(

1 − β

2

)1/2
1

(4n)γα,β+1/2
=

(1 − β)1/2

4γα,β+3/4

1

nγα,β+1/2
,

the first inequality yields that

eran(n, Id) > ε eran(0, Id).

This means that nran(ε, Id) > n, and taking the largest such n we conclude the second
inequality, as claimed. This completes the proof of Theorem 2. �

We comment on Theorem 3. First of all note that for h1,1 = 0 we have β = 0
and the estimates of Theorem 3 are exactly the same as the estimates of Theorem 2.
This means that Theorem 3 generalizes Theorem 2 for non-decomposable kernels and
linear tensor product functions with the zero function h1,1.

Assume that β > 0. Then the lower bound on eran(n, Id)/e
ran(0, Id) is roughly

n−(γα,β+1/2) which is smaller than the bound n−1/2 obtained before since γα,β > 0.
Of course, this results in the lower bound on nran(ε, Id) roughly ε−2/(1+2γα,β), again
smaller than the bound ε−2 before. If we assume additionally that the reproducing
kernel is nonnegative, then Theorem 1 of Hinrichs for multivariate integration says
that eran(n, Id)/e

ran(0, Id) = O(n−1/2) and nran(ε, Id) = O(ε−2). This means that
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there is a gap between the lower and upper bounds. We do not know whether the
lower or upper bounds can be improved. Of course, for small β relative to α the
bounds are pretty tight. However if β is close to 1, the exponent of n−1 is large, and
the exponent of ε−1 small. The same also holds if α is close to 1 and β is not too
close to zero. In this case the lower bound cannot be sharp since even the asymptotic
bounds yield better estimates of the exponents since asymptotically the exponents of
n−1 and ε−1 do not depend on β. This will be illustrated by the following example.

Example 3: Centered Discrepancy and no Midpoint Conditions

We now remove the midpoint conditions by taking the reproducing kernel

Kd(x, t) =
d
∏

j=1

[

b + 1M(xj, tj) · min(|xj − 1
2
|, |tj − 1

2
|)
]

for all x, t ∈ [0, 1],

where, as before, 1M is the characteristic function of M = [0, 1
2
]× [0, 1

2
]∪ [1

2
, 1]× [1

2
, 1].

Here b is a non-negative number. For b = 0 we have the case studied before where we
assume the midpoint condition, i.e., f(x) = 0 if at least one component of x is 1

2
. For

b > 0, there are no midpoint conditions and the inner product of H(Kd) is given by

〈f, g〉H(Kd) =
1

bd
f
(

~1
2

)

g
(

~1
2

)

+
∑

∅6=u⊆[d]

1

bd−|u|

∫

[0,1]|u|

∂|u|

∂ xu

f
(

xu,
~1
2

) ∂|u|

∂ xu

g
(

xu,
~1
2

)

d xu,

where y = (xu,
~1
2
) is the vector for which yj = xj for j ∈ u and yj = 1

2
for j /∈ u,

whereas d xu =
∏

j∈u
d xj and ∂ xu =

∏

j∈u
∂ xj.

For multivariate integration

INTd(f) =

∫

[0,1]d
f(t) dt = 〈f, hd〉H(Kd) for all f ∈ H(Kd)

we now have, similarly as before,

hd(x) =

∫

[0,1]d
Kd(x, t) dt

=
d
∏

j=1

[

b + 1
2
(1

2
− xj)

(

δxj≤1/2(
1
2

+ xj) + (1 − δxj≤1/2)(x + j − 3
2
)
)]

for all x ∈ [0, 1]d. Here δx≤1/2 = 1 for x ≤ 1
2

and δx≤1/2 = 0 for x > 1
2
.

This implies that we can take

R1(x, t) = b and R2(x, t) = 1M(x, t) min(|x − 1
2
|, |t − 1

2
|) for all x, t ∈ [0, 1].

Then h1,1 = b and ‖h1,2,(0)‖2
H(R2) = ‖h1,2,(1)‖2

H(R2) = 1/(24). Hence we have

α = 1
2

and β =
12b

1 + 12b
.

The lower bound on nran(ε, INTd) is now of the form Ω(ε−pb) with

pb =
2

1 + ln(1 + 12b)/ ln(2)
.
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For small b we have pb ≈ 2. Furthermore p1/12 = 1, p1/4 = 2/3 and pb < 2/3 for
b > 1/4.

Observe that for a fixed d, the value of b does not change the asymptotic behavior
of nran(ε, INTd). Therefore (9) holds and the exponent of ε−1 must be at least 2

3
. This

means that the lower bound does not tell us anything useful for b ≥ 1/4.
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H. Woźniakowski, Department of Computer Science, Columbia University, New York

10027, NY, USA, and, Institute of Applied Mathematics, University of Warsaw, Ba-

nacha2, 02-097 Warsaw, Poland

E-mail address: henryk@cs.columbia.edu


