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Abstract

We review selected tractability results for approximating linear tensor product functionals
defined over reproducing kernel Hilbert spaces. This review is based on Volume II of our book
[5] Tractability of Multivariate Problems. In particular, we show that all non-trivial linear
tensor product functionals defined over a standard tensor product unweighted Sobolev space
suffer the curse of dimensionality and therefore they are intractable. To vanquish the curse
of dimensionality we need to consider weighted spaces, in which all groups of variables are
monitored by weights. We restrict ourselves to product weights and provide necessary and
sufficient conditions on these weights to obtain various kinds of tractability.

1 Introduction

Tractability of multivariate problems has recently been a popular research subject. Such problems
are defined on spaces of d-variate functions, where d can be arbitrarily large. We want to compute
an ε-approximation of the d-variate multivariate problem by algorithms that use finitely many
function values. The minimal number n(ε, d) of function values needed for computation of an
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ε-approximation for the d variate case is a good measure of the computational complexity. The
minimal number n(ε, d) has been usually studied for a fixed d and for ε tending to zero. Tractability
studies n(ε, d) as a function of two variables, hoping to reveal conditions under which n(ε, d) is not
exponential neither in ε−1 nor in d. Such studies go back about 15 years, see [10, 11].

There are various kinds of tractability, depending on how we define the lack of exponential
dependence. The first papers were devoted to polynomial tractability, in which n(ε, d) is bounded
by a polynomial in ε−1 and d, so that there are three non-negative numbers C, q and p such that

n(ε, d) ≤ C d q ε−p for all ε ∈ (0, 1) and d ∈ N . (1)

If q = 0 then we say that the problem is strongly polynomially tractable, and in this case the
infimum of p satisfying (1) is called the exponent of strong polynomial tractability.

Weak tractability is defined when

lim
ε−1+d→∞

ln n(ε, d)

ε−1 + d
= 0. (2)

Weak tractability means that
n(ε, d) = exp

(

o(ε−1 + d)
)

cannot go exponentially fast to infinity with either ε−1 or d. However, it may go to infinity faster
than polynomially in ε−1 and d. For example, if

n(ε, d) = Θ
(

exp
(
√

ε−1 + d
))

then we do not have polynomial tractability but weak tractability holds.
If n(ε, d) goes to infinity exponentially fast with d then we say that the problem suffers the

curse of dimensionality and is intractable. There are other kinds of tractability, but we restrict
ourselves in this paper only to (strong) polynomial and weak tractability.

Tractability can be studied in various settings such as the worst case, average case, probabilistic
and randomized settings. The definition of an ε-approximation can also vary and include the
absolute, normalized and relative error criteria. Here we will consider only the worst case setting
for the normalized error criterion.

The current state of tractability research is presented in our book Tractability of Multivariate
Problems. The first volume [4] mostly studies tractability when we can use more general infor-
mation than function values, which are specified by arbitrary linear functionals. Such information
is reasonable for approximating linear operators with infinite (or very high) dimensional target
spaces, or for nonlinear operators with arbitrary target spaces. The second volume [5] mostly stud-
ies tractability of linear functionals for algorithms using function values. The third volume [6] will
be devoted to tractability study of mostly linear operators for algorithms using function values,
and hopefully will be finished in a year or two.
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The purpose of this paper is to present a sample of tractability results. Therefore we have
decided to restrict ourselves to tractability of linear functionals based on [5]. We want to stress
that tractability results for linear functionals are very rich in possibilities and that almost anything
can happen. Indeed, for some infinite dimensional reproducing kernel Hilbert spaces, all linear
functionals are trivial and can be approximated with arbitrarily small worst case error by using
just one function value. The first construction of such a space was done in [2] and also can be
found in Chapter 10 of [5]. On the other hand, linear functionals can be very hard. Indeed, there
are Hilbert reproducing kernel spaces for which all non-trivial linear tensor product functionals
suffer from the curse of dimensionality. We show such an example for a standard tensor product
unweighted Sobolev space in Section 2.

The negative tractability results usually hold for unweighted spaces. In this case, all variables
and groups of variables play the same role. This is the main reason for the exponential dependence
on d. To vanquish the curse of dimensionality we study weighted spaces, in which the role of
variables and groups of variables is monitored by weights. We can model problems for which the
dependence on the successive variables or groups of variables is diminishing by decaying weights.
This sometimes allows us to obtain (strong) polynomial or weak tractability.

There are many types of weights, such as product, finite-order, finite-diameter and order-
dependent weights. Again we restrict ourselves in this paper only to product weights, which were
introduced in [7]. Product weights were the first ones for which a tractability study was performed.
In Section 3 we give conditions on product weights and on linear tensor product functionals that
yield (strong) polynomial or weak tractability.

We hope that the readers of our paper will get a general idea of tractability study. Much more
can be found in many tractability papers that are, in particular, mentioned in Volumes I and II
of [4, 5].

We thank Art G. Werschulz for valuable comments on our paper.

2 Tensor Product Sobolev Space

For d = 1, consider the Sobolev space H1 of real functions f : [0, 1] → R that are absolutely
continuous and whose first derivatives are square integrable. The inner product in H1 is given by

〈f, g〉H1
= f(0)g(0) +

∫ 1

0
f ′(t) g′(t) dt for all f, g ∈ H1.

It is well known that H1 is a reproducing kernel Hilbert space with the kernel

K1(x, t) = 1 + min(x, t) for all x, t ∈ [0, 1].

For d ≥ 1, we take the d-fold tensor product of H1 and obtain

Hd = H1 ⊗ H1 ⊗ · · · ⊗ H1.
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The Sobolev space Hd is the space of real functions defined on [0, 1]d with the inner product

〈f, g〉Hd
= f(0)g(0) +

∑

∅6=u⊆{1,2,...,d}

∫

[0,1]|u|

∂|u|f

∂xu

(xu, 0)
∂|u|g

∂xu

(xu, 0) dxu for all f, g ∈ Hd.

Here, y = (xu, 0) denotes a d-dimensional vector with components yj = xj for j ∈ u and yj = 0 for
j /∈ u. Obviously, |u| is the cardinality of the set u, and ∂xu stands for

∏

j∈u
∂xj .

The space Hd is also a reproducing kernel space with the kernel

Kd(x, t) =
d
∏

j=1

(1 + min(xj , tj)) for all x, t ∈ [0, 1]d.

We consider a linear tensor product functional Id : Hd → R given by

Id(f) = 〈f, hd〉Hd
for all f ∈ Hd,

where

hd(x) =
d
∏

j=1

h1(xj) for all x ∈ [0, 1]d.

Here, h1 ∈ H1, and obviously hd ∈ Hd. We also have

‖Id‖ = ‖hd‖Hd
= ‖h1‖

d
H1

.

We approximate Id by algorithms An using n function values. Without loss of generality, we
may assume that An is linear, so that

An(f) =
n
∑

j=1

ajf(tj) for all f ∈ Hd

for some aj ∈ R and some sample points tj ∈ [0, 1]d. The worst case error of An is defined as

ewor(An) := sup
‖f‖Hd

≤1
|Id(f) − An(f)| = ‖Id − An‖.

For n = 0 we set A0 = 0, and then the worst case error

ewor(0) = ‖Id‖

is the initial error that can be achieved without sampling the function f .
We want to improve the initial error by a factor ε ∈ (0, 1), and this corresponds to the normalized

error criterion. Let

n(ε, Id) = min {n | ∃An such that ewor(An) ≤ ε ewor(0) }
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be the minimal number of function values that is necessary to reduce the initial error by a factor ε.
The minimal number n(ε, Id) is called the information complexity, and it is almost the same as the
computational complexity (minimal cost) of solving the problem Id to within ε.

Let I = {Id} be the linear tensor product problem, or shortly the problem. We say that the
problem I is (strongly) polynomially tractable if (1) holds, and the problem I is weakly tractable
if (2) holds.

It is natural to ask for which problems I we have (strong) polynomial or weak tractability.
Observe that the problem I is fully determined by h1, which is a representer of I1 for the univariate
case. Obviously, for some h1 the problem I is trivial. Indeed, if h1 = 0 then Id = 0 for all d and
n(ε, d) = 0. More generally, if

h1(x) = aK1(x, t) = a[1 + min(x, t)] for all x ∈ [0, 1], (3)

for some a ∈ R and some t ∈ [0, 1] then

I1(f) = 〈f, h1〉H1
= a 〈f, K1(·, t)〉H1

= af(t) for all f ∈ H1.

Furthermore, hd(x) = ad
∏d

j=1[1 + min(xj , t)] = adKd(x, [t, t, . . . , t]), and therefore

Id(f) = ad 〈f, Kd(·, [t, t, . . . , t])〉Hd
= adf(t, t, . . . , t) for all f ∈ Hd.

Then the algorithm A1 with a1 = ad and t1 = [t, t, . . . , t] has the form

A1(f) = a1f(t1) = adf(t, t, . . . , t) = Id(f),

and its worst case error is zero. Hence, n(ε, d) ≤ 1. More precisely, n(ε, d) = 0 if a = 0 and
otherwise n(ε, d) = 1. In either case, the problem I is trivial and we have strong polynomial
tractability with the exponent 0.

We say that the tensor product problem I is non-trivial if (3) does not hold for any a ∈ R and
t ∈ [0, 1]. We now ask whether there are any non-trivial problems that are (strongly) polynomial
tractable or weakly tractable. The following theorem answers this question in the negative.

Theorem 1 All non-trivial linear tensor product problems suffer from the curse of dimensionality.
More precisely, for all such problems I there exist C > 1 and ε0 ∈ (0, 1) depending on h1 such that

n(ε, Id) ≥ C d for all ε ∈ (0, ε0) and d ∈ N .

Proof: This theorem is a special case of Theorem 11.15 in Chapter 11, see also Example 11.6.1,
of [5]. The proof is based on the fact that the reproducing kernel K1 has a so-called decomposable
part and uses the proof technique developed in [3]. 2
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What can we do with this negative result? We can claim that the Sobolev space Hd is too large
for large d. Indeed, note that all variables and groups of variables in Hd play exactly the same role.
That is, for f ∈ Hd define

g(t1, t2, . . . , td) = f(tj1 , tj2 , . . . , tjd
) for all tj ∈ [0, 1]

for an arbitrary permutation of (j1, j2, . . . , jd) of (1, 2, . . . , d). Then

g ∈ Hd and ‖g‖Hd
= ‖f‖Hd

.

Perhaps the curse of dimensionality will disappear if all variables and groups of variables play a
different role and are monitored by weights. This is the subject of our next section.

3 Weighted Tensor Product Sobolev Space

It seems natural to shrink the Sobolev space by demanding that some variables and groups of
variables are more important than others. This can be accomplished by introducing weights that
monitor the importance of all variables and groups of variables. To simplify our presentation we
restrict ourselves only to product weights, referring the reader to [4, 5] for general weights.

For product weights, we redefine the reproducing kernel as

Kd,γ(x, t) =
d
∏

j=1

(1 + γj min(xj , tj)) for all x, t ∈ [0, 1]d.

Here, γ = {γj} and all γj ’s are positive and ordered

1 = γ1 ≥ γ2 ≥ · · · ≥ γd ≥ · · · > 0.

An example of such product weights is given by letting γj = j−β for β ≥ 0.
Let Hd,γ = H(Kd,γ) be the modified Sobolev space. The inner product in Hd,γ is now given by

〈f, g〉Hd,β
= f(0)g(0) +

∑

∅6=u⊆{1,2,...,d}

∏

j∈u

γ−1
j

∫

[0,1]|u|

∂|u|f

∂xu

(xu, 0)
∂|u|g

∂xu

(xu, 0) dxu for all f, g ∈ Hd.

Note that algebraically the spaces Hd,γ and Hd are the same and

‖f‖Hd
≤ ‖f‖Hd,γ

≤
1

∏d
j=1 γ

1/2
j

‖f‖Hd
for all f ∈ Hd.

This implies that the linear tensor product functionals Id(f) = 〈f, hd〉Hd
are also well defined over

Hd,γ . To stress the new domain Hd,γ of Id we denote

Id,γ(f) = Id(f) for all f ∈ Hd,γ .
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Note that we now have Id,γ(f) = 〈f, hd,γ〉Hd,γ
with

hd,γ(x) =
d
∏

j=1

[h1(0) + γj (h1(xj) − h1(0))] for all x ∈ [0, 1]d,

and

‖Id,β‖ = ‖hd,γ‖Hd,γ
=

d
∏

j=1

(

h2
1(0) + γj

∫ 1

0

[

h′
1(t)
]2

dt

)1/2

. (4)

To understand the role of the weights, take f ∈ Hd,γ with ‖f‖Hd,γ
= 1. Then

∫

[0,1]|u|

(

∂|u|f

∂xu

(xu, 0)

)2

dxu ≤
∏

j∈u

γj .

Assume for a moment that limj γj = 0. Then for u with a large cardinality, the corresponding
partial derivatives are small in the L2 sense. If the γj ’s go to zero then all partial derivatives go to
zero and the space Hd,γ becomes the space of constant functions.

One may hope that the curse of dimensionality will be vanquished for product weights that
decay sufficiently quickly. As we shall see, this hope will be only partially fulfilled, at the expense
of some additional assumptions on h1.

The first troublesome case is when h1(0) = 0. Then

hd,γ =





d
∏

j=1

γj



 hd.

Note that the only trivial problem with this property is when h1 = 0. For h1(0) = 0 and h1 6= 0,
the initial error (4) becomes

‖Id,γ‖ =





d
∏

j=1

γ
1/2
j



 ·

[∫ 1

0
[h ′

1(t)]
2 dt

]d/2

=





d
∏

j=1

γ
1/2
j



 · ‖hd‖Hd
> 0.

We now show that for such problems we still have the curse of dimensionality independently of the
product weights.

Theorem 2 Let Iγ = {Id,γ} be a linear tensor product problem defined over the weighted Sobolev
space Hd,γ with

h1(0) = 0 and h1 6= 0.

Then for arbitrary positive product weights, the problem Iγ suffers from the curse of dimensionality.
More precisely, there exist C > 1 and ε0 ∈ (0, 1) depending on h1 and independent of the weights γ
such that

n(ε, Id,γ) ≥ C d for all ε ∈ (0, ε0) and d ∈ N .
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Proof: Take an arbitrary linear algorithm An(f) =
∑n

j=1 ajf(tj) for f ∈ Hd,γ . It is well known
that the square of the worst case of An is given by

[ewor(An)]2 = ‖hd,γ‖
2
Hd,γ

− 2
n
∑

j=1

ajhd,γ(tj) +
n
∑

i,j=1

aiajKd,γ(ti, tj)

=





d
∏

j=1

γj







‖hd‖
2
Hd

− 2
n
∑

j=1

ajhd(tj) +
1

∏d
j=1 γj

n
∑

i,j=1

aiajKd,γ(ti, tj)



 .

We have

Kd,γ(x, y) =
∑

u⊆{1,2,...,d}





∏

j∈u

γj



 Ku(x, y) for all x, y ∈ [0, 1]d,

where
Ku(x, y) =

∏

j∈u

min(xj , yj) for all x, y ∈ [0, 1]d.

We stress that for all u, the function Ku is a reproducing kernel and therefore

n
∑

i,j=1

aiajKu(ti, tj) ≥ 0 for all aj , tj and n.

Furthermore,
∏

j /∈u
γj ≤ 1. This implies that

1
∏d

j=1 γj

n
∑

i,j=1

aiajKd,γ(ti, tj) =
∑

u⊆{1,2,...,d}

1
∏

j /∈u
γj

n
∑

i,j=1

aiajKu(ti, tj)

≥
∑

u⊆{1,2,...,d}

n
∑

i,j=1

aiajKu(ti, tj) =
n
∑

i,j=1

aiaj

∑

u⊆{1,2,...,d}

Ku(ti, tj)

=
n
∑

i,j=1

aiaj

d
∏

j=1

(1 + min(ti, tj)) =
n
∑

i,j=1

aiaj Kd(ti, tj).

This proves that

[ewor(An)]2

[ewor(0)]2
≥

‖hd‖
2
Hd

− 2
∑n

j=1 ajhd(tj) +
∑n

i,j=1 aiajKd(ti, tj)

‖hd‖
2
Hd

.

The right hand side is just the ratio of the square of the worst case error of An and the square of the
initial error for the unweighted case, i.e., for the space Hd. We can now apply Theorem 1, which
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states that we have the curse of dimensionality for all non-trivial problems. In our case, h1(0) = 0
and h1 6= 0 imply that the problem is indeed non-trivial. This completes the proof. 2

In view of Theorem 2, we must assume that h1(0) 6= 0. Is it enough to claim tractability results
for fast decaying product weights? Not yet, since we have the second troublesome case. Namely,
even for d = 1 we may have exponential dependence on ε−1. Indeed, as in Example 10.4.3 of
Chapter 10 of [5], for j = 1, 2, . . . define

gj(x) =











0 for x ∈ [0, 1/(j + 1)] ∪ [1/j, 1],
√

j(j + 1) [−x + 1/(j + 1)] for x ∈ [1/(j + 1), 1
2(1/(j + 1) + 1/j)],

√

j(j + 1) [x − 1/j] for x ∈ [12(1/(j + 1) + 1/j), 1/j].

The functions gj are piecewise linear, the support of gj is [1/(j + 1), 1/j], and these functions have
disjoint supports. Then H1 = H1,γ . Clearly, gj ∈ H1 and 〈gi, gj〉H1

= δi,j .
Define I1(f) = 〈f, h1〉H1

with

h1(x) =
∞
∑

j=1

αjgj(x) for all x ∈ [0, 1].

The coefficients αj are chosen such that α1 ≥ α2 ≥ · · · ≥ 0 and

‖h1‖
2
H1

=
∞
∑

j=1

α2
j = 1.

It is proved in Example 10.4.3 of [5] that

inf
An

ewor(An) =

[ ∞
∑

j=n+1

α2
j

]1/2

.

Obviously, we can now define the coefficients αj so that the information complexity is exponential
in ε−1. For instance, take

αj =

[

1

ln2(j + e − 1)
−

1

ln2(j + e)

]1/2

.

Then it is easy to check that
n(ε, I1) =

⌈

exp(ε−1) − e
⌉

.

Therefore the problem is not even weakly tractable.
One may hope that the lack of weak tractability happens only for some linear functionals.

Unfortunately this is not the case. Let

B = {h1 ∈ H1 | n(ε, I1) = Θ(exp(ε−1)) }
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be the set of representers for which we have exponential dependence on ε−1 even for d = 1. It turns
out that the set B is dense in H1, see again Example 10.4.3 of [5].

This discussion means that if we want to obtain, say, polynomial tractability for linear tensor
product problems for the weighted Sobolev space Hd,γ then we have to assume that h1(0) 6= 0 and
that the information complexity for the univariate case must be polynomial in ε−1. Hence, let us
assume that for a given h1 there exists a positive s such that

h1(0) 6= 0 and n(ε, I1) = O
(

ε−s
)

for all ε ∈ (0, 1). (5)

We are ready to prove the following theorem.

Theorem 3 Let Iγ = {Id,γ} be a linear tensor product problem defined over the weighted Sobolev
space Hd,γ with h1 satisfying (5). Then the following statements hold.

• If there exists p ≥ s, with s satisfying (5), such that

∞
∑

j=1

γ
p/(p+2)
j < ∞

then Iγ is strongly polynomially tractable with an exponent at most p, i.e,,

n(ε, Id,γ) = O(ε−p) for all ε ∈ (0, 1) and d ∈ N,

with the factor in the big O notation independent of ε−1 and d.

• If there exists p ≥ s such that

lim sup
d→∞

(

∑d
j=1 γ

p/(p+2)
j

)(p+2)/p

ln d
< ∞

then Iγ is polynomially tractable.

• If there exists p ≥ s such that

lim
d→∞

(

∑d
j=1 γ

p/(p+2)
j

)(p+2)/p

d
= 0

then Iγ is weakly tractable.
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Proof: The weighted tensor product (WTP) algorithm was introduced for product weights in [9]
as a generalization of the Smolyak/sparse grid algorithm, see [8]. The basic information on the
WTP algorithm can be also found Chapter 15 of [5]. In particular, Theorem 15.21 of [5] states
that the error bounds of the WTP algorithm yield that Iγ is strongly polynomially, polynomially
or weakly tractable if the product weights satisfied the conditions presented here. 2

Theorem 3 tells us that if the weights decay fast enough, we have various notions of tractability.
It is natural to ask whether the conditions presented on the product weights are sharp. It turns out
that they are sometimes “almost” sharp. Indeed, for some specific linear tensor product functionals
we know necessary and sufficient conditions on product weights to obtain tractability results. To
see this we turn our attention to multivariate integration which is probably the most important
and the most studied linear tensor functional. So, we let

Id(f) =

∫

[0,1]d
f(t) dt for all f ∈ Hd,γ .

This corresponds to

hd(x) =

∫

[0,1]d
Kd,γ(x, t) dt =

d
∏

j=1

(

1 + γj (xj −
1
2x2

j )
)

for all x ∈ [0, 1]d.

The initial error is given by

‖Id,γ‖ =
d
∏

j=1

(

1 + 1
3γj

)1/2
.

It was proved in [3] that multivariate integration is strongly polynomially tractable iff

∞
∑

j=1

γj < ∞,

and polynomially tractable iff

lim sup
d→∞

∑d
j=1 γj

ln d
< ∞.

It was proved in [1] that multivariate integration is weakly tractable iff

lim
d→∞

∑d
j=1 γj

d
= 0.

We now compare these conditions with the conditions presented in Theorem 3 by assuming that
the product weights are of the form γj = j−β . Then we have the following facts:
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• Strong polynomial tractability in Theorem 3 holds for β > 1. This condition is necessary
for strong polynomial tractability of multivariate integration. In this case, the estimate in
Theorem 3 is sharp.

• Polynomial tractability in Theorem 3 also requires that β > 1. For multivariate integration
we must assume that β ≥ 1. In this case, there is not much difference and the estimate in
Theorem 3 is almost sharp.

• Weak tractability in Theorem 3 again requires that β > 1. However, multivariate integration
is weakly tractable iff β > 0. In this case, there is a gap and it is not clear what is the condition
on β to guarantee that all linear tensor product functionals satisfying (5) are weakly tractable..
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[9] G. W. Wasilkowski and H. Woźniakowski, Weighted tensor-product algorithms for linear multivariate
problems, J. Complexity 15, 402–447, 1999.
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