
04.10.2012

1

Testing Concurrent Software 

Dr. Wolfgang Koch

Friedrich Schiller University Jena

Department of Mathematics and

Computer Science

Jena, Germany

wolfgang.koch@uni-jena.de

2

Errare humanum est,

in errore perseverare

stultum.

(To err is human, to persist in error is stupid.)

Motivation

3

� Motivation

� Software Tests, Sources of Errors

� Inspection, Correctness Proof

� Lock-free Operation, CAS

� Example – Lock-free LIFO Queue, Push and Pop

� Safety Proof

� Proof of Linearizability

� Stress Test

� The ABA Problem

� Model Checking Techniques in Concurrency Testing

� Wrapper Layer and the Demonic Scheduler

� Challenging  Example – FIFO Queue, Enqueue and Dequeue

� Results

� Hints for Testing Concurrent Software 

� References

Contents
4

The importance of concurrent programming is rapidly growing 

as multi-core processors replace older single core designs.

Today almost all PCs and Laptops have a 

multi-core ( e.g. quad-core ) processor

using SMP (symmetric multiprocessing) 

with shared memory and cache coherence

Concurrent software consists of competing and cooperating 

processes or threads. 

Additional fault types exist in concurrent software compared

to sequential software. Subtle interactions among threads 

and the timing of asynchronous events can result in concurrency 

errors that are hard to find, reproduce, and debug.

Motivation



04.10.2012

2

5

Additional fault types exist in concurrent software:

Failures in sequential programs are deterministic –

if a sequential program fails with a given set of inputs 

and initial state, it will fail every time. 

Failures in concurrent programs, on the other hand, 

tend to be rare probabilistic events.

Unexpected interference among threads often results in 

“Heisenbugs” 
that are extremely difficult to reproduce and eliminate.

Motivation
6

Testing is the process of executing a program 

with the intent of finding errors.

(The art of software testing, Glenford J. Myers)

E. W. Dijkstra:

Program testing can be used to show the presence of bugs, 

but never to show their absence!

(The Humble Programmer, ACM Turing Lecture 1972)

This famous saying is formally correct, but completely misleading.

The fact is that NOTHING, not inspection, not formal proof, 

not testing, can give 100% certainty of no errors. 

Yet all these techniques, at some cost, can in fact reduce 

the errors to whatever level you wish. 

“You don’t have to test anything unless you want it to work.”

Software Test

7

Testing is the process of executing a program 

with the intent of finding errors.

(The art of software testing, Glenford J. Myers)

Testing can find faults 

When they are removed, software quality and reliability is improved

� Build confidence

� Demonstrate conformance to requirements

� Assess the software quality

Companies spent  30 – 50%  time and budget of their software 

development on testing

depending on the risks for the system

(loss of money, loss of market share, death or injury)

Software Test
8

Purpose of testing: build confidence

The testing paradox

Purpose of testing: to find faults

Finding faults destroys confidence

Purpose of testing: destroy confidence  ???

The best way to build confidence

is to try to destroy it!

Software Test



04.10.2012

3

9

The best way to build confidence is to try to destroy it!

4 playing cards, a letter on the front side, a digit on the back

Proposition:  If the front shows a vowel, 

on the back is an odd number

You may turn over 2 cards  – which do you choose?

Software Test

A 7 B4

10

No generally accepted set of testing definitions used world wide

(New) standard BS 7925-1 (Glossary of testing terms)

developed by a working party of the BCS SIGIST,

adopted by the ISEB / ISTQB

� Error: a human action that produces an incorrect result

� Fault: a manifestation of an error in software

� also known as a defect or bug     

� if executed, a fault may cause a failure

� Failure: deviation of the software from its expected 

delivery or service 

� (found defect)

Defect - Error - Bug - Failure - Fault ?

11

Standard BS 7925-1 (Glossary of terms in software testing)

developed by a working party of the BCS SIGIST,

adopted by the ISEB / ISTQB

BCS - British Computer Society

BCS SIGiST - Specialist Group in Software Testing

ISEB - Information Systems Examinations Board

an examination awarding body, part of BCS

ISTQB - International Software Testing Qualifications Board

has defined the "ISTQB® Certified Tester" scheme 

that has become the world-wide leader in the certification 

of competences in software testing.

Hungarian Testing Board (HTB) - www.hstqb.org

Magyar Szoftvertesztelői Tanács Egyesület,

H-1117 Budapest, Neumann Janos u.1. Infopark "E"

Defect - Error - Bug - Failure - Fault ?
12

Error: a human action that produces an incorrect result

(To err is human.)

A person makes an error ...

... that creates a fault in the software ...

O that can cause a failure in operation

Failure is an event (external) 

Fault is a state of the software (internal), 

caused by an Error

Error - Fault - Failure 



04.10.2012

4

Error - Fault - Failure

A person makes

an error ...

O that creates a

fault in the

software ...

O that can cause

a failure

in operation

13

Source:  ISTQB / ISEB Foundation  Exam Practice

14

Logic Errors

� fencepost error:  30m straight fence, posts 5m apart – 7 posts !!

April 15 through April 25:   25 − 15 +1 = 11 days

� for(i=0; i<n; i++){...} 

a=i;   // assumtion: i==n  - not always true

Programming Language, Compiler

� if(a=5)...   – instead of if(a==5)...

in C/C++  (the compiler should issue a Warning)

a=5 – is an assignment and always true 

� if(a>5 && a<n++)...   

– shortcut evaluation and side effects

� NULL pointer dereference,  using uninitialized variables

Sources of Errors in Sequential Software

15

Resource bugs

� heap:   Node *p = new(Node);  if (p == NULL) …

� buffer overflow (no real strings in C)

� integer overflow 

a = INT_MAX – 4;  b = a+a;  // b = -10  !!

(not in python, checked C# throws an exception)

Not primarily an Error of the programmer (but at least a neglect).

A deficiency of the system (the libraries)  – we have to deal with.

Needs a lot of  “defensive programming”  – effort, time, money.

Sources of Errors in Sequential Software
16

Additional Errors in Concurrent Software

� Deadlock, where task A can't continue until task B finished, 

but at the same time, task B can't continue until task A finishes. 

� Race condition, where the computer does not perform 

tasks in the order the programmer intended. 

� Concurrency errors in critical sections, mutual exclusions

Hard to reproduce

“Heisenbugs” 

Not primarily an Error of the programmer (but at least a neglect). 

One has to deal with the possible sources of nondeterminism

in concurrent software.

Sources of Errors in Concurrent Software



04.10.2012

5

17

Another Definition of Testing (IEEE): 

The process of exercising or evaluating a system 

or system components by manual or automated means 

to verify that it’s satisfies specific requirements 

or to identify difference between expected and actual results.

NOTHING, not inspection, not formal proof, not testing, 

can give 100% certainty of no errors. But all these techniques

can reduce the errors, at some cost, to whatever level you wish.

→ We also consider inspection and formal proof.

Test, Inspection, Proof
18

Unlike dynamic testing, which requires the execution of software, 

static testing techniques rely on the manual examination 

(review, inspection) and/or automated analysis (static analysis) 

of the code or other project documentation. 

Reviews can be performed well before dynamic test execution. 

Defects detected during reviews early in the life cycle are often 

much cheaper to remove.

Reviews, static analysis and dynamic testing have the 

same objective – identifying defects. 

They are complementary - the different techniques can find 

different types of defects effectively and efficiently.

Test, Inspection

19

Proof - correctness in the concurrent world has two aspects: 

� safety,  guaranteeing that nothing bad happens

consistency conditions: serializability, linearizability

� liveness, guaranteeing that eventually something good 

will happen (that method calls eventually complete).

progress conditions: deadlock freedom, lock freedom

Correctness Proof
20

Safety,  guaranteeing that nothing bad happens

The safety aspects of concurrent data structures are complicated 

by the need to argue about the many possible interleavings of 

methods called by different threads. 

It is infinitely easier and more intuitive for us humans to specify 

how abstract data structures behave in a sequential setting, 

where there are no interleavings. 

Thus, the standard approach to arguing the safety properties

of a concurrent data structure is to specify the structure’s 

properties sequentially, and find a way to map its concurrent

executions to these "correct" sequential ones. 

(serializability, linearizability)

Correctness Proof



04.10.2012

6

21

Example: “Blocking” LIFO Queue (a Stack):

shared Node * Top;
shared Lock lock;

void push(Node *node)

{ 
Node *t;        // local pointer

acquire(&lock);

t = Top;
node->Next = t;
Top = node; 

release(&lock);

}

Blocking Queue

Data: C

Next: NULL

Data:  B

Next: &C

Data:  A

Next: 

Top:

&B

&B&A

22

One disadvantage of locks:

If a thread holding a lock blocks, all waiting threads are 

blocked too, no one is making any progress

A wait-free operation is guaranteed to complete 

after a finite number of its own steps, 

regardless of the timing behavior of other operations. 

A lock-free operation guarantees that after a finite number 

of its own steps, some operation (possibly in a different thread)

completes (also called nonblocking).

wait-freedom is a stronger condition than lock-freedom

wait-freedom is hard to achieve (and only with a lot of overhead)

Our queue with locks is neither wait-free nor lock-free 

Wait-freedom, Lock-freedom

23

Disadvantages of locks – request for a lock-free method, 

make changes on a copy, then set the copy into effect 

in a single atomic step  - if the original has not changed

boolean try_push(Node *node)
{ boolean res;

Node     *t;         // local pointer

t = Top;             // local copy
node->Next = t;      // still private node 
// Top = node;       // global – Danger! 
atomic( if (Top==t) {Top=node; res=true;}

else res=false;     // try again
)

return res;
}

Lock-free method
24

. . . set the copy into effect in a single atomic step 

if the original has not changed

atomic( if (Top==t) {Top=node; res=true;}
else res=false;     // try again

)

We need an atomic primitive that accomplishes this task

(TSB and XCHG are not strong enough)

IBM introduced  CompareAndSwap (CAS) in the IBM 370

res = CAS(&Top, t, node);

Lock-free method, CAS



04.10.2012

7

25

IBM introduced  CompareAndSwap (CAS) in 1970  in the IBM 370

(in some other processors called CompareAndSet ) – boolean CAS

type - longword or pointer

boolean CAS(type * mem, type exp, type new)
{ atomic(

if (*mem == exp){*mem=new; return true;}
else return false;   //and leave mem untouched

)
}

In Intel processors (starting with i486 – 1989) there we find a variant

of CAS (called CMPXCHG– Compare and Exchange) that returns

the old value of mem in register EAX, and a boolean result in the Z-flag

Compare-and-Swap - CAS
26

void push(Node *node)
{ Node *t; 

while(true){
t = top; 
node->Next = t;
if ( CAS(&top,t,node)) break; 

} 
}

is lock-free:

if CAS succeeds, our thread completes the push-operation

if CAS fails, it failed because another thread has changed top

so the CAS of that other thread succeeded

the other tread has completed its (push-) operation

Lock-free methods

27

Node * pop(void)
{ 

Node *t, *next;

while(true){
t = top;
if (t == NULL) break;    // empty stack
next = t->Next;                    
if ( CAS(&top,t,next)) break;   // lock-free 

}
return t;

}

There might be a problem: we use a pointer to a node (t->Next ),

but that node may be freed meanwhile by another thread (in sys-

tems without garbage collection) – problem of data persistence.

In addition (more serious):  the ABA-problem

Lock-free  pop-operation
28

Safety properties are “never” or “always” claims.

The presented algorithms push() and pop() are safe (in the 

sequential case) because they satisfy the following properties:

1. The linked list of the LIFO Queue (if any) is always connected.

2. Nodes are only inserted at the beginning of the linked list.

3. Nodes are only deleted from the beginning of the linked list.

4. Top always points to the first node in the linked list

(or is NULL if and only if the list is empty).

Initially, all these properties hold (Top = NULL). 

By induction, we show that they continue to hold.

Correctness Proof, Safety



04.10.2012

8

29

1. The linked list is always connected 

because once a node is inserted, 

its Next pointer is never changed.

When a node is inserted, it is inserted at the beginning of

the linked list (property 2) and its Next pointer was 

set to the old value of Top, which pointed to the formerly

first node (property 4). So the new list is connected too.

If the list was empty, the new node is the last node in

the list and its Next pointer is NULL (Top was NULL -

property 4).

Correctness Proof, Safety
30

2. Nodes are only inserted at the beginning of the linked list 

because they are linked through the Top pointer, 

which always points to the first node in the list (property 4).

3. Nodes are only deleted from the beginning of the linked list, 

because they are deleted only when they are pointed to by Top

and Top always points to the first node in the list (property 4).

Insertion and Deletion don’t interfere because they gain effect

atomically (using CAS).

Property 2 together with property 3  ensure the LIFO principle 

of operation.

Correctness Proof, Safety

31

4. Top always points to the first node in the list, 

because it only changes its value to a new node (Push) 

or to the next node (Pop) atomically (using CAS)

never showing an incompletely changed state. 

In the case of Push() Top thereafter points to the new node, 

which is inserted at the beginning of the list (property 2).

In the case of Pop() Top then points to the formerly second

node (which was linked to the first node - property 1)

or it becomes NULL when the deleted node was the last one.

( This example is very simple – for a more challenging one (the FIFO Queue) 

see Michael/Scott )

Correctness Proof, Safety
32

The standard approach is to specify the structure’s properties 

sequentially, and find a way to map its concurrent executions 

to these "correct" sequential ones. 

An implementation of a data structure (i.e. the algorithms on it) is

linearizable

if it can always give an external observer the illusion

that each of the operations takes effect  instantaneously 

at some point between its invocation and its response 

→  Linearization Points

The (single) successful  CAS-calls in our push- and pop- operations

Correctness Proof, Linearizability



04.10.2012

9

33

void push(Node *node)
{ Node *t; 

while(true){
U1: t = top; 
U2: node->Next = t;
U3: if ( CAS(&top,t,node)) break; 

} 
}

Pu1     U1, U2, U3−          failed iteration

Pu2     U1, U2, U3+          successful  iteration

push  →  (Pu1)*  Pu2  →  Pu2

Correctness Proof, Linearizability
34

Node * pop(void)
{ Node *t, *next;

while(true){
O1: t = top;
O2: if (t == NULL) break;   // empty stack
O3: next = t->Next;                    
O4: if ( CAS(&top,t,next)) break;   

}
return t;

}

Po1    O1, O2−, O3, O4−        failed iteration

Po2    O1, O2−, O3, O4+        successful iteration

Po3    O1, O2+                        successful iteration, stack was empty

pop   →  (Po1)*  (Po2 | Po3)  →  (Po2 | Po3)

Correctness Proof, Linearizability

35

Let A be an execution containing an execution of Pu2 by process p 

say:    A1  U1_p A2  U2_p A3  U3+_p  A4 

where  A2 to A3 contain no p-actions

Two steps are independent (and can change their place) if 

� They are executed by different threads and 

� Either they access different variables 

or READ (not WRITE !)  the same variable

U2 can be moved (node at this time still is a local variable)

→    A1  U1_p A2  A3  U2_p U3+_p  A4

Correctness Proof, Linearizability
36

U2 can be moved (local variables)

→    A1  U1_p A2  A3  U2_p U3+_p  A4

Consideration:

Since U3 succeeds, top has the same value at U3 as it had at U1,  

we can infer that top is not modified by a2 to a3 (not written to).

(ABA freedom presumed)

→    A1 A2  A3  U1_p U2_p U3+_p  A4

U3+    is the Linearization Point

Much more difficile proof in algorithms with multiple CAS – (FIFO)

Correctness Proof, Linearizability



04.10.2012

10

37

In practice, people almost always identify concurrency testing 

with stress testing,

which evaluates the behavior of a concurrent system under 

heavy load for a long time.

While stress testing does indirectly increase the variety of 

thread schedules, such testing is far from sufficient. 

Stress testing does not cover enough different thread schedules 

and, as a result, yields unpredictable results. 

A bug may surface one week, when stress testing happens to 

cover a low-probability schedule, and then disappear for months.

“Heisenbugs” that rarely surface and are hard to reproduce

Stress Test
38

In practice, people almost always identify concurrency testing 

with stress testing, which evaluates the behavior of a concurrent 

system under load for a long time.

while(true){

Setup_Test();

RunTestScenario();

err = CheckErrors();

Shutdown_Test();

if(err) break;      // Error, Timeout, etc.

}

Stress Test

39

My Test-Example: We have a queue with 4 nodes and then 

concurrently pop 3 nodes and push one additional node. 

(OK – it’s not really heavy load but it works –

and we need it this way later with model checking)

Setup_Test():

Create a queue with 4 nodes 

RunTestScenario():

Start 4 threads: 3 ThreadPop, 1 ThreadPush

WaitForMultipleThreads(); CloseThreads();

Shutdown_Test();

Delete remaining queue,  free nodes

Stress Test
40

Concurrently pop 3 nodes and push one additional node: 

ThreadPush(Params)

{

Node *node = new(Node);

node->Data = Params->Value; 

push(node); 

}

ThreadPop(Params)

{

Node *node = pop();

if (node) store(node->Data); 

delete(node); 

}

Stress Test



04.10.2012

11

41

Concurrently pop 3 nodes and push one additional node: 

ThreadPush(Params)

{ new(Node); … push(node); }

ThreadPop(Params)

{ node = pop(); … delete(node); }

Running this test for a long time showed no failures!

Most of the time short blocks will run to completion without 

preemption. 

This limits the likelihood that race conditions will be disclosed.

Enhancement: Insertion of random delays 

Stress Test
42

Running the test for a long time showed no failures.

Enhancement: Insertion of random delays in push and pop:

t=top;
... 

if (do-test) Sleep(wait_rand);

if (CAS(&top,t,next)) break;

wait_rand: small numbers – milliseconds

20%  - no Sleep()

20%  - Sleep(0)

30%  - Sleep(1)

20%  - Sleep(3)

10%  - Sleep(9)

Stress Test with Delays

The tool ConTest (IBM) does 

something like this automatically 

for Java applications

43

Enhancement: if (do-test) Sleep(wait_rand);

Now in most cases I got a failure within the first 50 ... 150 passes.

But what went wrong?  (I.e.  I found a failure, not the defect!)

Adding printf (attention - this may cause the failures to disappear): 

T1: 9   T2: x   T3: 1   T4: 3   T4: 1  - Error!

Analysis:

t0:  pop1.read - sleep 9, pop2.read - no sleep - pop2.CAS+

(+ free Node), pop3.read - sleep 1, push4.read - sleep 3

t1:  pop3.CAS+

t3:  push4.CAS− - sleep 1

t4:  push4.CAS+ ABA-prone

t9:  pop1.CAS+ ABA occurred ! 

Stress Test with Delays
44

Is ABA really a problem ?  (the value has not changed)

Yes – of cause – the data structure may have changed.

Imagine, we have a stack:

top  −−>  A  −−> B −−>  C −−>  /

thread1 - pop():

t = top;           // top  = &A
next = t->Next;    // next = &B

// thread2: A=pop, B=pop, push A
// top --> A --> C --> /

if (CAS(&top,t,next)) break;   // succeeds !
// top --> B --> ??   -- Error !!

ABA-problem



04.10.2012

12

45

ABA-prevention

we don’t call new() and delete() within the threads, 

but use a pool of Nodes – each thread has it’s own Node

ThreadPush(Params)

{

Node *node = pool[Params->Nr];  //new(Node);

node->Data = Params->Value; 

push(node); 

}

Now the test runs without failure for an arbitrary long time!  

(There is no ABA in systems with garbage collection

and on RISC machines with LL/SC instead of CAS)

Stress Test, ABA-prevention
46

Different  approach:

use of model checking techniques 

to systematically generate all interleavings of a given scenario

A model checker essentially captures the nondeterminism

of a system and then systematically enumerates all possible 

choices. 

For a multithreaded process, this approach is tantamount 

to running the system under a demonic scheduler.

I first learned about this technique from a paper by 

Madanlal Musuvathi et. all.

CHESS: A Systematic Testing Tool for Concurrent Software

Technical Report  Microsoft Research

Model Checking Techniques

47

A model checker systematically generates all possible interleavings

Model Checking Techniques

Thr. 1

Thr. 2

Thr. 3

IL  1

or IL  k

or IL  n

threads running parallel

demonic scheduler - only one thread is executing at any given moment

48

Another way to tell the same story:

The model checker abstracts a program as a nondeterministic 

state transition system 

in which each transition is executed by a task. 

Given a state and task enabled in it, 

executing the task results in a unique new state.

Nondeterminism arises because in each state more than one 

task may be enabled and any one of them may be scheduled.

Starting from the initial state, an execution is obtained by

iteratively picking an enabled task and executing it for one step.

Given the task abstraction and knowledge of the set of tasks 

enabled in a state, all such execution can be systematically 

generated in a straightforward manner.

Model Checking Techniques



04.10.2012

13

49

A model checker systematically generates all possible interleavings.

Our stress test scheme is still valid: 

while(true){          

Setup_Test();       

RunTestScenario();  

err = CheckErrors();

Shutdown_Test();

}

The module checker guarantees that every execution of 

RunTestScenario generates a new interleaving 

and that each such interleaving can be replayed.

Model Checking Techniques

// for all interleavings

// same testcase in every pass

// different interleaving 

50

Our stress test scheme is still valid: 

while(true){          

Setup_Test();       

RunTestScenario();  

Shutdown_Test();

}

For each failure, the module checker is able to reproduce 

the erroneous execution. So debugging is easy.

We expose Setup_Test and Shutdown_Test to the module 

checker and several  API-calls (CreateThread, CAS, …)

in RunTestScenario are instrumented (intercepted).

Model Checking Techniques

// same testcase in every pass

// different interleaving 

51

Three key challenges in making model checking applicable:

1. Existing model checkers requires the programmer

to do a huge amount of work just to get started.  

The “Perturbation Problem”

2. Concurrency is enabled via rich and complex concurrency API.

We wrap the concurrency APIs to capture and control the 

nondeterminism, without changing the underlying OS or 

reimplementing the synchronization primitives of the API.

The only perturbation here is a thin wrapper layer between 

the program under test and the concurrency API.

3. The classic problem of state-space explosion. 

The number of thread interleavings even for small systems 

can be astronomically large.

Model Checking Techniques
52

The model checker controls the scheduling of tasks (threads)

by instrumenting all functions in the concurrency API

that create tasks and access synchronization objects.

( CreateThread(), CAS(), ReadGlobal(),

EnterCriticalSection(), … )

The idea is that when the instrumented function is executed, 

either prior the execution of function, or at its point of return, or both, 

a block of code in the model checker is able to gain control. 

It can obtain access to the function arguments, execute its own logic, 

and even decide whether or not the instrumented function will run at all,

and with what argument values, and what it shall return.

Wrapper Layer



04.10.2012

14

53

Instrumenting functions in the concurrency API –

we write wrappers (a thin wrapper layer between the program 

under test and the concurrency API)

int Wrapper_CAS(void *mem, void exp, void new)
{

int re;         // boolean

if (do_test) MC_sched();

re = Orig_CAS(mem, exp, new);

if (do_test) MC_CAS_Result(mem,re);  

// to tackle the state-space problem

return re; 
}

Wrapper Layer
54

How can we apply the wrapper layer to the test program?

If we have access to the code of the test program:

#include ”MC_Wrapper.h”

and link the model-checking module to the program.

If we don’t have access to the code -

we can use  DLL Injection 

changing the addresses of the API routines 

in the Import Address Table (IAT) of the executable (.exe) file

(I gave a lecture on API Hooking and DLL Injection in 2009)

Wrapper Layer

55

#include ”MC_Wrapper.h”

int Orig_CAS(void * mem, void exp, void new)
{

return CAS(mem, exp, new);

}

#define CAS(m,o,n)   Wrapper_CAS(m,o,n)

int Wrapper_CAS(void * mem, void exp, void new)
{

int re;         // boolean

if (do_test) MC_sched();

re = Orig_CAS(mem, exp, new);

return re;

}

Wrapper Layer
56

Given the task abstraction and knowledge of the set of tasks 

enabled in a state O

The model checker must know about active threads –

it needs additional scheduling points at the beginning 

and at the end of each thread.

So we don’t start (create) the original thread, but a Thread-Wrapper

that brackets the call to the original thread’s function 

by calls to the model checker ( bookkeeping + MC_sched() )

HANDLE Wrapper_ CreateThread(function, arg)
{

tid = MC_NewThread();
Closure c = <function, arg, tid>;
return Real_ CreateThread(ThreadWrapper, c);

}

Wrapper Layer



04.10.2012

15

57

Wrapper_CreateThread(function, arg)
{

tid = MC_NewThread();
Closure c = <function, arg, tid>;
return Real_ CreateThread(ThreadWrapper, c);

}

A Thread-Wrapper that brackets the call to the original thread’s function 

by calls to the model checker

ThreadWrapper(Closure c)
{

MC_ThrBegin(c.tid); // Bookkeeping + MC_sched();
retVal = c.function(c.arg);
MC_ThrEnd(c.tid);     // -> MC_sched();
return retVal;

}

Wrapper Layer
58

The model checking approach is tantamount 

to running the system under a demonic scheduler  –

only one thread is executing at any given moment

void MC_sched(void)
{

int old,new;

old = thr_old;          // global variable
new = find_new();

if (new < 0 ) return;   // end of test
if (new==old) return;   // simply go on

thr_old = new;
. . .      // suspend old, resume new thread

}

MC Scheduler

59

void MC_sched(void)
{

old = thr_old;  new = find_new();

// suspend old, resume new thread
ResumeThread(tcbs[new].handle);     // first

if(tcbs[old].handle)
SuspendThread(tcbs[old].handle); 

}

The MC-scheduler is running in the context of the active 

(the old) thread. So we cannot simply suspend the old thread 

and thereafter resume the new one. The scheduler would stop itself

(and the old thread) immediately  – the program would hang.

– we have to reverse things.

MC Scheduler
60

old = thr_old;  new = find_new();

ResumeThread(tcbs[new].handle);     // first
SuspendThread(tcbs[old].handle); 

We cannot simply suspend the old thread and thereafter resume 

the new one – we have to reverse things. 

But there might be a new problem: now (for a short time) new thread 

and old thread are running at the same time. 

What happens, if the new thread schedules the old thread again,

before the old thread reached it’s suspend – will it then hang?

(It gets the wake-up call before it starts sleeping.)

Can we detect this situation, to avoid hanging?

MC Scheduler



04.10.2012

16

61

Can we detect this situation, to avoid hanging?

old = thr_old;  new = find_new();

while(1){
sus = ResumeThread(tcbs[new].handle);
if(sus) break;
Sleep(0);       // schedules another thread

}

SuspendThread(tcbs[old].handle); 

If the return value sus is zero, 

the specified thread was not suspended. 

If the return value is 1, 
the specified thread was suspended but now it is restarted

MC Scheduler
62

How are things getting started?

– only one thread is executing at any given moment

void MC_ThrBegin(int tid)    // in ThreadWrapper()
{

int nst = InterlockedIncrement( &nstart );
// number_of_started_threads

DuplicateHandle( … GetCurrentThread(), &hand, …);
tcbs[tid].handle = hand;  tcbs[tid].enabled = 1; 

if (nst < nthreads)  SuspendThread(hand);

else{ thr_old = tid; MC_sched(); }
}

MC Scheduler

63

How are things getting started?

nst = InterlockedIncrement( &nstart );

We must initialize nstart in the beginning of each test pass to 0.

We can do this (and other initializations) in the instrumented
Setup_Test() routine.

And how do things end? 

void MC_ThrEnd(int tid)    // in ThreadWrapper()
{

tcbs[tid].handle = NULL; 
MC_sched();

}

MC Scheduler
64

The code of  MC_sched() just shows the big picture.

But we left the task of systematically generating 

all possible interleavings to  find_new() .

We use a Backtracking Algorithm 

similar to generating all permutations of a set of numbers.

Problem here: 

Backtracking means to go back in a list sometimes –

but in our list of steps of threads we cannot simply go back

– we (usually) cannot undo a performed step of computation

So instead of going back in the list, we replay the list 

from the beginning up to the point where the changes start. 

MC Scheduler, Generating Interleavings



04.10.2012

17

65

Backtracking Algorithm 

similar to generating all permutations of a set of elements.

All positions in the list are initialized to 0 (empty)  and k=1.

#  When at position k>0  in the list:

a := list[k];  if (a>0) free[a] += 1;   // mark a  as free;  

choose the lowest free element b>a 

(the thread (enabled threads only) with the lowest number b>a)

o  if there is such an element/thread b

list[k] := b;   free[b] −= 1;    // mark b as used

go to the right ( k := k+1 )

o  otherwise:  list[k] := 0;  go to the left ( k := k−1 )

(if  a was 0, we found a new permutation / our test run is complete, 

go to the left for one more permutation / a new test run)

MC Scheduler, Generating Interleavings
66

a := list[k];   choose the lowest free element b>a 

if (b)

list[k] := b;  k := k+1; 

else

list[k] := 0;  k := k−1;

1  1  2  2  3  3

31 1 2 2 3

MC Scheduler, Generating Interleavings

67

a := list[k];   choose the lowest free element b>a 

if (b)

list[k] := b;  k := k+1; 

else

list[k] := 0;  k := k−1;

1  1  2  2  3  3

31 1 2 2 323

replay list

MC Scheduler, Generating Interleavings
68

We cannot undo a performed step of computation.

Instead of going back in the list, we replay the list from the 

beginning up to the point where the changes start. 

(The scheduler keeps track of this point.)

Is a perfect replay always possible?

No, if there are other sources of nondeterminism: 

� Different input values or initial states
� Calls to GetTimeOfDay() or random( )

� Asynchronous I/O  

We always enforce the same initial state using  Setup_Test()

MC Scheduler, Generating Interleavings



04.10.2012

18

69

The model checker must keep track of the set of enabled threads

in the presence of potentially blocking operations.

The wrapper function for EnterCriticalSection (for example)

cannot simply call EnterCriticalSection directly: 

Wrapper_EnterCriticalSection(cs)
{

MC_SyncVar(cs, ACQUIRE);
EnterCriticalSection(cs);

}

If the lock is currently held by another thread, 

the MC-scheduler will deadlock!

The calling thread is the only running thread, it must not block.

MC Scheduler, Blocking Operations
70

The wrapper function for EnterCriticalSection cannot 

simply call EnterCriticalSection directly (it must not block) 

– instead it just tries with the non-blocking function TryEnter…

Wrapper_EnterCriticalSection(cs)
{

while(true){
MC_SyncVar(cs, ACQUIRE);
if ( TryEnterCriticalSection(cs)) return;
MC_SyncVar(cs, BLOCKED);    // MC_sched()

}
}

If the lock is held by another thread   TryEnter… returns False.

MC Scheduler, Blocking Operations

71

If the lock is held by another thread MC_SyncVar(cs,BLOCKED)

� disables the current thread, 

� adds it to the set of threads waiting on cs

� and schedules a new (active) thread.

Later on

Wrapper_LeaveCriticalSection(cs)
{

MC_SyncVar(cs,RELEASE);
LeaveCriticalSection(cs);

}

re-enables all threads waiting on cs .

MC Scheduler, Blocking Operations
72

Same example as with stress test: 

We have a queue with 4 nodes and then 

concurrently pop 3 nodes and push one additional node. 

But instead of  Sleep(wait_rand) we now call  MC_sched()

pass  300   #   1.1   2.1   1.4   3.1   3.4   4.1   4.4   2.4   ##   Error!!

Analysis:

1.1 O  3.4     – Number_of_Thread . Operation

Operation:   

1  - Read,   3  - CAS−,   4  - CAS+

First Results



04.10.2012

19

73

We have a queue with 4 nodes and then 

concurrently pop 3 nodes and push one additional node. 

pass  300   #   1.1   2.1   1.4   3.1   3.4   4.1   4.4   2.4   ##   Error!!

Analysis  (is now simple, steps happened sequentially):

pop1.read,   pop2.read,  pop1.CAS+ (+ free Node), 

pop3.read,   pop3.CAS+ , 

push4.read, push4.CAS+ ABA-prone

pop2.CAS+ ABA occurred ! 

top  −−>  A   −−> B −−>  C −−>  D −−> /         pop2.read:  next = &B

top  −−>  A*  −−>  C −−>  D −−> /                     top  −−>  B!!  −−>  ??

First Results
74

We have a queue with 4 nodes and then 

concurrently pop 3 nodes and push one additional node. 

Sometimes ABA is correct:    read, push(),  pop(), CAS+    

pass    31  #   1.1   1.4   2.1   3.1   4.1   4.4   2.3   2.4   3.4    (no Error)

Analysis:

pop1.read,   pop1.CAS+ 

pop2.read,   pop3.read, 

push4.read, push4.CAS+

pop2.CAS−, pop2.CAS+,   pop3.CAS+ ABA here correct 

First Results

75

We have a queue with 4 nodes and then 

concurrently pop 3 nodes and push one additional node. 

With ABA-prevention

(we don’t call new() and delete() within the threads, 

but use a pool of Nodes – each thread has it’s own Node)

Stress Test (with random delays) showed no results (no failures). 

Also the Module Checker Test runs without failure.

Since we systematically tested all possible interleavings,

this is more a proof, an (automated) formal verification than a test.

– If the test scenarios are thoroughly choosen and all 

essential scheduling points are utilized.

First Results
76

The problem of state-space explosion:

the number of thread interleavings even for small systems 

can be astronomically large.

Possibilities:

� Scope preemptions to code regions of interest

� Different Modes  – speed  vs coverage

� Don’t analyze redundant interleavings

Tackling the State-Space Problem



04.10.2012

20

77

Different  Modes:   speed  vs coverage

Fast mode - Introduce schedule points only before 

synchronizations and possibly volatile accesses

(also called  preemption bounding) 

Finds many bugs in practice  (Less often is more!)

Data-race mode - Introduce schedule points before memory accesses

Finds race-conditions due to data races

Tackling the State-Space Problem
78

Don’t analyze redundant interleavings.

Two steps are independent (and can change their place) if 

� They are executed by different threads and 

� either they access different variables 

or READ (not WRITE !)  the same variable

Interleavings which only differ in the order of independent steps 

have the same result  – only one of them needs to be analyzed. 

Unsuccessful CAS operations also only READ a variable,

but we cannot easily know in advance, whether the CAS will be

successful or not.

Tackling the State-Space Problem

79

We cannot know in advance, whether the CAS will be successful.

My approach: 

Try the CAS.

Deliver the CAS status to the scheduler (MC_CAS_Result(mem,re) )

Cancel this run if the CAS was unsuccessful and the 

interleaving is redundant.

The point up to where the list will be replayed 

is shifted to the left of the position of the CAS.

So all following interleavings with the same reason of redundancy

are skipped automatically.

Results:   LIFO:    1 488  instead of        36 936  – 4%

FIFO:  65 964  instead of 11 887 944   – 0.5%

Tackling the State-Space Problem
80

Two entry points (pointers): Node *Head, *Tail;

To avoid special cases (the empty queue)

the queue always includes a dummy node as the first node

Introduced by Michael and Scott  ( → the MS-queue )

included in the standard JavaTM Concurrency Package (JSR-166)

correctness – linearizability proof by L. Groves

We enqueue at the tail (after the so far last node)

we dequeue at the head (unless the queue is empty)

we read the next node 

after the dummy,

then this node becomes 

the new dummy

FIFO Queue

Data: B

Next: NULL

Data:  A

Next: &B

Dummy

Next:  &A

Head:  &Dm Tail:  &B



04.10.2012

21

81

We enqueue data at the tail

we create a new Node:   

Node * node = new(Node); 
node->Data  = data; 
node->Next  = NULL;     // important!

to enqueue this node we have to change two pointers:

first  – the Next-field of the so far last node (was NULL) 

second  – Tail

(not possible

in one single

atomic step)

FIFO Queue

Data: B

Next: NULL

Data:  A

Next: &B

Dummy

Next:  &A

Head:  &Dm Tail:  &B

82

To enqueue a node we have to change two pointers: Next and Tail

A first (incomplete) routine looks like this:

void Enqueue(Type data) 
{ Node *node, *t, *next;

1:   node = new(Node); 
node->Data = data; node->Next = NULL;

while(true){
2:     t = Tail;  
4:     if ( CAS(&t->Next,NULL,node)) break;

}
5:   CAS(&Tail,t,node);  

} 

FIFO Queue

Data: B

Next: NULL

Data:  A

Next: &B

Dummy

Next:  &A

Head:  &Dm Tail:  &B

83

while(true){
2:    t = Tail;  

next = t->Next;
3:    if (next != NULL) {CAS(&Tail,t,next); continu e}
4:    if (CAS(&t->Next,NULL,node)) break;

}
5:  CAS(&Tail,t,node);  

If one thread has performed step 4, but not yet step 5 (when it is blocked)

other threads cannot succeed in step 4  (t->Next != NULL) 

→ the algorithm (so far – without step 3)  is not lock-free !  

To repair this, threads must be able to adjust Tail

(step 3 in our tread instead of step 5 in the blocking thread)

– our thread assists the obstructing tread 

FIFO Queue
84

The complete, lock-free routine:

void Enqueue(Type data) 
{ Node *node, *t, *next;

node = new(Node); 
node->Data = data; node->Next = NULL;

while(true){
t = Tail;  
next = t->Next;
if (next!=NULL) {CAS(&Tail,t,next); continue}
if ( CAS(&t->Next,NULL,node)) break;  //lin. point

}
CAS(&Tail,t,node);  

} 

FIFO Queue

Data: B

Next: NULL

Data:  A

Next: &B

Dummy

Next:  &A

Head:  &Dm Tail:  &B



04.10.2012

22

85

To dequeue we (usually) change only one pointer - Head 

(step 3 is analogous to step 3 in Enqueue)

Type Dequeue(void) 
{  Node *h, *t, *next; Type data;

while(true){
h = Head; t = Tail;  

1:      next = h->Next;
2:      if (next == NULL) return EMPTY;
3:      if (h == t) { CAS(&Tail,t,next); continue}

data = next->Data;     // next behind dummy  
4:      if ( CAS(&Head,h,next)) break;  // new dummy

}
return data;

} 

FIFO Queue

Data: B

Next: NULL

Data:  A

Next: &B

Dummy

Next:  &A

Head:  &Dm Tail:  &B

86

The Module Checker Tests of several test scenarios using

Enqueue() and Dequeue() were running without failure.

Why is this interesting?

� We have here much more complicated code,

with 2 or even 3 CAS operations 

instead of just 1 in push/pop

� In literature the algorithms of the MS-queue are shown with

one additional if-clause (which is superfluous in my opinion)

The tests showed  I was right. The algorithms do

work correctly without that additional if-clause.

Results

87

Is such Module Checking Test Tool useful for large systems?

(Robustness and Usability ?) 

Mine is not – there are much more cases to be considered 

– but CHESS probably is !

CHESS has been integrated into the test frameworks of many code 

bases inside Microsoft and is being used by testers on a daily basis.

(Yes – by testers, not only by the authors of CHESS)

CHESS has found numerous previously unknown bugs 

in systems that had been stress tested for many months 

prior to being tested by CHESS.

CHESS works with  Win32-API,  .NET and Singularity.

Results
88

When your multithreaded software is intended to run both on 

multi-processor and on single-processor machines: 

(stress-) test it on a machine with the highest available number 

of processors  (increase the likelihood of  interferences)

It has shown that it is advantageous when the number of threads

is a (small) multiple of the number of processors.

Be aware that your test program can mask potential negative

interactions.

Stress testing with random delays is easy to accomplish

and often shows good results (i.e. finds failures).

Hints for Testing Concurrent Software



04.10.2012

23

89

Try to encapsulate concurrent interactions in a few well tested

functions.

Concurrency mechanisms, such as our FIFO queue, often act 

as a conduit for moving objects from one thread to another.

Make the generation of the objects on one side and

the further work with them on the other side thread-safe,

and treat the objects as immutable while in the queue.

Hints for Writing Concurrent Software
90

Nir Shavit

Data Structures in the Multicore Age

Communications of the ACM, Vol. 54, No. 3, March 2011, pp. 76-84

ISTQB

Certified Tester, Foundation Level Syllabus, Version 2011

Madanlal Musuvathi, Shaz Qadeer, Thomas Ball

CHESS: A Systematic Testing Tool for Concurrent Software

Technical Report MSR-TR-2007-149,  

Microsoft Research,  Redmond, WA 98052

Sebastian Burckhardt, Madan Musuvathi, Shaz Qadeer

CHESS: Analysis and Testing of  Concurrent Programs

Microsoft Research, Tutorial at PLDI 2009

CHESS homepage: http://research.microsoft.com/en-us/projects/chess/

References, Shortlist 

91

Maged M. Michael, Michael L. Scott 

Simple, Fast, and Practical Non-Blocking and Blocking Concurrent 

Queue Algorithms

Proceedings of the 15th Annual ACM Symposium on Principles of 

Distributed Computing (PODC ’96), New York, USA, ACM (1996)

pp. 267-275

Lindsay Groves

Verifying Michael and Scott’s Lock-Free Queue Algorithm using 

Trace Reduction

Computing: The Australasian Theory Symposium (CATS2008),

Wollongong Australia 2008

All the papers can be found as pdf-files in the internet.

References, Shortlist 


