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Today almost all PCs and Laptops have a 

multi-core ( e.g. quad-core ) processor

using SMP (symmetric multiprocessing) 

with shared memory and cache coherence

But most software has not changed adequately,

doesn’t use much multithreading

Lock-free synchronization in concurrent data structures

for a long time has been a research topic only 

in the area of mainframes and supercomputers

Only in recent years it obtained a common attention

(the subject in not really new, so many of the

basic articles are rather old)

Motivation
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Example: “Blocking” LIFO Queue (a Stack):

shared Node * top;
shared Lock lock;

void push(Node *node)

{ 
Node *t;        // local pointer

acquire(&lock);

t = top;
node->Next = t;
top = node; 

release(&lock);

}

Blocking Queue

Data: C

Next: NULL

Data:  B

Next: &C

Data:  A

Next: 

top:

&B

&B&A
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shared Lock lock; Why do we need the lock?

We protect a critical section: 

acquire(&lock); … release(&lock);

without the lock (2 or more threads may interfere):

t1=top;
t2=top;

node1->Next = t1;
top = node1;

node2->Next = t2;  // =t1, not node1

top = node2;

Now top points to node2 (and node2 to old *top)  – node1 is lost!

t=top; … top=node; is a critical section  – at most 1 thread 

may be in the section at the same time (mutual exclusion, mutex)

Locks, Critical Section
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How can we built the lock?

shared int lock = 0;

void acquire(int & lock){
while (lock != 0) /*do nothing*/;  // busy wait
lock = 1;

} 

But now we have again a (short) critical section.

We need an atomic “read & write” operation. 

Virtually all (CISC) processors provide an atomic TestAndSetBit

and/or an atomic Exchange instruction

For RISC processors  - LL / SC  - see  slide p. 20

Spinlock
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shared int lock = 0;

void acquire(int & lock){
while (lock != 0);  // busy wait
lock = 1;

} 

We need an atomic “read & write” operation. 

atomic  TestAndSetBit (TSB, intel: LOCK BTS)

while ( TSB(&lock) != 0);  // busy wait

atomic  Exchange (intel: XCHG)

while ( XCHG(&lock,1) != 0);  // busy wait

Spinlock
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Tight busy wait will result in “memory contention”

(to write to a memory location (e.g. thread2 writes to shared lock ) 

exclusive access is required, the cache line of thread1

containing lock is invalidated, must be loaded again when tread1 

reads lock → increased traffic on the shared bus, slowdown)

void acquire(int & lock){
while(XCHG(lock,1) != 0) ContentionManagement();  

}

simple, but efficient method – exponential backoff :

int n=32; nmax=4096;      // delay ns, max_delay
void acquire(int & lock){

while (XCHG(lock,1) != 0) 
{ sleep(random()%n); if (n<=nmax) n+=n; }

}   // random() avoids convoying and starvation

Spinlock, Contention Management
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Tight busy wait will result in “memory contention”

to write to a memory location – exclusive access is required

→ increased traffic on the shared bus, slowdown

to avoid unnecessary writes:

void acquire(int & lock){
while(true){ 

if (XCHG(lock,1) == 0) break;  // read + write
while (lock != 0) nop; // just read !

}
}

Spinlock with less Contention



04.10.2011

3

9

The idea of spinlocks is simple  

and so the usage seems to be simple

but the wrong use accidentally can lead to deadlocks

When using spinlocks, starvation of threads is possible

If a thread holding a spinlock blocks

(e.g. due to preemption, page faults, waiting for other locks etc.)

all waiting threads are blocked too, no one is making any progress

that’s the reason why spinlocks provided by the operating system 

deactivate preemption while holding the lock  

Spinlocks imply “mutual exclusion”  – sequential bottleneck 

(v. Amdahl’s law)

Similar to deadlocks, priority inversion may happen 

Disadvantages of Spinlocks
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Speedup = time when used 1 processor / time for n processors

(and one expects  speedup ≈ n )

usually there are parts in the program that cannot be performed

in parallel ( synchronization, communication)  - ratio s (0.1 = 10%)

tn = t1 ( s + (1-s)/n ),      sp = t1 / tn

sp = 1 / ( s + (1-s)/n )

n → ∞ ,    sp → 1/s    i.e.   sp ≤10  for  s=0.1

no matter how many processors we use

(even if we have a million processors)

Excursion – Amdahl’s Law

s n=4 n=10

2% 3.77 8.47 

5% 3.48 6.90

10%  3.08 5.26
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Example: we have 3 threads:

� thread H – high priority, for fast reaction in real-time

� thread M – medium priority, time consuming

� thread L  – low priority, unfortunately holding a lock that H needs

thread H cannot run, it is waiting for the lock that L holds

thread L  cannot run, since thread M has higher priority

so it cannot free the lock that H is waiting for

thread M with medium priority will run for a long time 

thus preventing L from running and freeing the lock

and so preventing H from doing its duty in real-time

(The trouble experienced by the Mars lander “Pathfinder” is a

classic example.)

Excursion – Priority Inversion
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One disadvantage of spinlocks:

If a thread holding a spinlock blocks, all waiting threads are 

blocked too, no one is making any progress

A wait-free operation is guaranteed to complete 

after a finite number of its own steps, 

regardless of the timing behavior of other operations. 

A lock-free operation guarantees that after a finite number 

of its own steps, some operation (possibly in a different thread)

completes (also called nonblocking).

wait-freedom is a stronger condition than lock-freedom

wait-freedom is hard to achieve (and only with a lot of overhead)

Our queue with locks is neither wait-free nor lock-free 

Wait-freedom, Lock-freedom
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Disadvantages of spinlocks (slide p. 9) – request for a lock-free method 

make changes on a copy, then set the copy into effect 

in a single atomic step  - if the original has not changed

boolean try_push(Node *node)
{ boolean res;

Node     *t;         // local pointer

t = top;             // local copy
node->Next = t;      // still private node 
// top = node;       // global – Danger! 
atomic( if (top==t) {top=node; res=true;}

else res=false;     // try again
)

return res;
}

Lock-free method
14

. . . set the copy into effect in a single atomic step 

if the original has not changed

atomic( if (top==t) {top=node; res=true;}
else res=false;     // try again

)

We need an atomic primitive that accomplishes this task

(TSB and XCHG are not strong enough)

IBM introduced  CompareAndSwap (CAS) in 1970  in the IBM 370

res = CAS(&top, t, node);

Lock-free method, CAS
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IBM introduced  CompareAndSwap (CAS) in 1970  in the IBM 370

(in some other processors called CompareAndSet ) – boolean CAS

type - longword or pointer

boolean CAS(type * mem, type exp, type new)
{ atomic(

if (*mem == exp){*mem=new; return true;}
else return false;   //and leave mem untouched

)
}

In Intel processors (starting with i486 – 1989) there we find a variant

of CAS (called CMPXCHG– Compare and Exchange) that returns

the old value of mem in register EAX, and a boolean result in the Z-flag

Compare-and-Swap - CAS
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In Intel processors (starting with i486) there we find another variant

of CAS (called CMPXCHG– Compare and Exchange) that returns

the old value of mem in register EAX, and a boolean result in the Z-flag

int CAS(void **mem, void *old, void *new)
{

int res;

asm("lock cmpxchg %3,%1; mov $0,%0; jnz 1f; inc %0; 1: "
: "=a" (res) : "m" (*mem), "a" (old), "d" (new) );  

return res;
}

(there is also an atomic instruction CMPXCHG8B– for double long values)

Intel - CMPXCHG
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boolean try_push(Node *node)
{ Node *t;         // local pointer

t = top;          
node->Next = t;
return CAS(&top,t,node);

}

void push(Node *node)
{ Node *t;         // local pointer

while(true){
t = top; 
node->Next = t;
if ( CAS(&top,t,node)) break; 

} 
}

Lock-free methods
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void push(Node *node)
{ Node *t; 

while(true){
t = top; 
node->Next = t;
if ( CAS(&top,t,node)) break; 

} 
}

is lock-free:

if CAS succeeds, our thread completes the push-operation

if CAS fails, it failed because another thread has changed top

so the CAS of that other thread succeeded

the other tread has completed its (push-) operation

Lock-free methods
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Node * pop(void)
{ 

Node *t, *next;

while(true){
t = top;
if (t == NULL) break;    // empty stack
next = t->Next;                    
if ( CAS(&top,t,next)) break;   // lock-free 

}
return t;

}

There might be a problem: we use a pointer to a node (t->Next ),

but that node may be freed meanwhile by another thread (in sys-

tems without garbage collection) – problem of data persistence.

In addition:  the ABA-problem

Lock-free  pop-operation
20

Are there atomic “read & write” instructions like XCHG or CAS 

on RISC processors too?

No – RISC instructions can either read or write

but not both read and write in one single instruction.

Instead of atomic CAS –

RISC processors (e.g. MIPS) provide a pair of instructions:

LL – load linked (from a memory location to a register)

SC – store conditional (a register to a memory location)

when there was no write to that memory location

since the last LL     (ideal SC ↔ practical, weak SC)

otherwise leaves memory untouched

returns a boolean result in a register

RISC Processors – LL / SC
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RISC processors provide a pair of instructions: LL / SC

type - longword or pointer

type    LL(type * mem);
boolean SC(type * mem, type new); 

void push(Node *node)
{ Node *t; 

while(true){
t = LL(&top);              // t = top; 
node->Next = t;
if ( SC(&top,node)) break;  // CAS(&top,t,node)) 

} 
}

RISC Processors – LL / SC
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RISC processors provide a pair of instructions: LL / SC

while(true){
t = LL(&top);         
node->Next = t;
if ( SC(&top,node)) break;  // CAS(&top,t,node)) 

} 

LL/SC is stronger than CAS:

in case top has changed from one value, say A to B and the back to A

(ABA-problem)

CAS erroneously succeeds, 
but SC fails (prevents the ABA-problem)

LL / SC  – CAS  – ABA-problem
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Is ABA really a problem ?  (the value has not changed)

Yes – of cause – the data structure may have changed.

Imagine, we have a stack:

top --> A --> B --> C --> /

thread1 - pop():

t = top;           // top  = &A
next = t->Next;    // next = &B

// thread2: A=pop, B=pop, push A
// top --> A --> C --> /

if (CAS(&top,t,next)) break;   // succeeds !
// top --> B --> ??   -- Error !!

ABA-problem
24

One way to prevent the ABA-problem are pointer with tags (e.g. un-

used bits in the pointers) which are incremented in each push or pop

void push(Node *node)
{ Node *t, *p ;        

uint tag;           // unsigned int

while(true){
t = top;          // pointer + tag
p   = (Node *)((uint) t & ~0x03 );
tag = (uint) t & 0x03; tag = (tag+1) & 0x03;

node->Next = p;
node = (Node *)((uint) node | tag );
if (CAS(&top,t,node)) break; 

} 
}

ABA-problem  – short tags
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One way to prevent the ABA-problem are pointer with tags

the problem with unused bits in the pointers is the limited

number of these bits –

32 bit pointers – alignment 4 bytes

2 unused bits – wraparound after 4 push-/pop- operations

p   = (Node *)((uint)t & ~0x03);
tag = (uint)t & 0x03; 

we can use an additional tag word together with *top

then we need a double-word CAS (CASdbl)

typedef struct _Lptr{
Node  * Ptr;
uint Tag;

} LPtr;

ABA-problem  – tags
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we can use an additional tag word together with *top

– then we need a double-word CAS (CASdbl)

LPtr top;    // Node *Ptr; uint Tag;

void Push(Node *node)
{

LPtr tn; Node *t;

while (true){
tn = top; //t = top;
t  = tn.Ptr; 
node->Next = t;           
if( CASdbl(&top,&tn, node,tn.Tag+1)) break; 

}
}

ABA-problem  – long tags
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GC – Garbage Collection 

For every push-operation we create a new node,

when there are no references (no pointers) to that node anymore

GC frees the node, its memory can be reused

void push( type data)   // old: push(Node *node)
{ Node *node, *t;

node = new(Node); node->Data = data; 

while (true){
t = top;
node->Next = t;           
if(CAS(&top,t,node)) break; 

}
}

ABA-prevention under GC
28

for every push-operation we create a new node,

when there are still references to a node, GC cannot free the node

type pop(void)        // old: Node * pop(void)
{ Node *t, *next;

while(true){
t = top;              // new reference t
if (t == NULL) return EMPTY; 
next = t->Next;       // no access hazard
if (CAS(&top,t,next)) break; // not ABA-prone

}
return t->Data;

}

In a system with GC data persistence and ABA are no problem 

– without GC things are much harder 

ABA-prevention under GC
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Garbage Collection usually works with a reference counter

A data item can be freed not until there a no longer references 

to that item, i.e. not until the reference counter is zero.

We can include a reference counter (RC) in our nodes

– but there is a problem: 

void ReleaseNode(Node *p)
{

int rc = atomicDecrement(& p->RC);  // atomic!

if (rc == 0) delete(p);    // Danger !!
}

danger:  other threads can reserve the node just now, in the gap bet-

ween (rc==0) and delete() , but it nevertheless will be deleted

Reference Counter
30

if(rc == 0) /*gap*/ delete(p); 

danger: other threads can reserve the node just now, but it never-

theless will be deleted, while in use by the other threads

We might fix this, when we allow reservation only for nodes with

RC greater than zero 

– but there is a more serious problem:

Node * ReserveNode(Node *p)
{

int rc = p->RC;     // access hazard !
if (rc > 0) ... 

In order to test and increment the RC for a pointer (reserve a node) 

we must use this pointer – but to use the pointer it must be reserved.

We are in a doom loop, in a ”circulus vitiosus“. 

Reference Counter
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In order to test and increment the RC for a pointer (reserve a node) 

we must use this pointer – but to use the pointer it must be reserved.

We are in a doom loop, in a ”circulus vitiosus“. 

But then – how does GC work?  (in Java, C#, Haskell, Z) 

it usually is not lock-free

and often uses stop-the-world techniques (Detlefs)

The reason that garbage collectors commonly “stop the world” is 

that some of these pointers are in threads' registers and/or stacks,

discovering these requires operating system support, and is 

difficult to do concurrently with the executing thread

GC  – Reference Counter
32

rc = atomicDecrement(& p->RC); 

In Intel processors there are (atomic) Increment- and Decrement-
instructions (inc, dec ),  but they do not supply a result.

There is also an atomic ExchangeAndAdd instruction (lock xadd)
that delivers the old value (rc = ExchangeAdd(&p->RC,-1)-1; )

We can easily built an atomicDecrement using CAS:

int atomicDecrement(int *mem, int val)
{ int old; 

while (true){ 
old = *mem;
if(CAS(mem,old, old-val)) break;

} 
return old-val;

}

Excursion – atomicDecrement
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In order to built an own lock-free GC-like environment

and in consideration of the difficulties managing reference counters

M. M. Michael introduced Hazard Pointers:

Node * pop(void)
{ Node *t, *next;

while(true){
t = top; if (t == NULL) break; 
hp[thr] = t;
if (t != top) continue; 
next = t->Next;        // no access hazard
if (CAS(&top,t,next)) break;

}
return t;

}

Hazard Pointers
34

M. M. Michael introduced Hazard Pointers (one or two for each tread)

Node * pop(void)
{

t = top; if (t == NULL) break; 
hp[thr] = t;   ...
next = t->Next;    // no hazard
...

Caller:

Node * A = pop(); if (A == NULL) break;
data = A->Data;
hp[thr]=NULL; DeleteNode(A);

Hazard Pointers
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hp[thr]=NULL; DeleteNode(A);

int dcount = 0;     // static, per thread
Node * dlist[R];    // or a linked list

void DeleteNode(Node *node)
{

dlist[dcount++] = node;
if (dcount == R) Scan(dlist);

}

Scan first collects all non-null hazard pointers in a local data structure

(e.g. a hash table),  
then checks each node in dlist against these hazard pointers; 

if there is no match the node is deleted,
otherwise node remains in dlist until a subsequent Scan

Hazard Pointers – DeleteNode
36

Two entry points (pointers): Node *Head, *Tail;

To avoid special cases (the empty queue)

the queue always includes a dummy node as the first node

Introduced by Michael and Scott  ( → the MS-queue )

included in the standard JavaTM Concurrency Package (JSR-166)

correctness – linearizability proof by L. Groves

We enqueue at the tail (after the so far last node)

we dequeue at the head (unless the queue is empty)

we read the next node 

after the dummy,

then this node becomes 

the new dummy

FIFO Queue

Data: B

Next: NULL

Data:  A

Next: &B

Dummy

Next:  &A

Head:  &Dm Tail:  &B
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We enqueue data at the tail

we create a new Node:   

Node * node = new(Node); 
node->Data  = data; 
node->Next  = NULL;     // important!

to enqueue this node we have to change two pointers:

first  – the Next-field of the so far last node (now NULL) 

second  – Tail

(not possible

in one single

atomic step)

FIFO Queue

Data: B

Next: NULL

Data:  A

Next: &B

Dummy

Next:  &A

Head:  &Dm Tail:  &B
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To enqueue a node we have to change two pointers: Next and Tail

A first (incomplete) routine looks like this:

void Enqueue(Type data) 
{ Node *node, *t, *next;

1:   node = new(Node); 
node->Data = data; node->Next = NULL;

while(true){
2:     t = Tail;  
4:     if ( CAS(&t->Next,NULL,node)) break;

}
5:   CAS(&Tail,t,node);  

} 

FIFO Queue

Data: B

Next: NULL

Data:  A

Next: &B

Dummy

Next:  &A

Head:  &Dm Tail:  &B
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while(true){
2:    t = Tail;  

next = t->Next;
3:    if (next != NULL) {CAS(&Tail,t,next); continu e}
4:    if (CAS(&t->Next,NULL,node)) break;

}
5:  CAS(&Tail,t,node);  

If one thread has performed step 4, but not yet step 5 (when it is blocked)

other threads cannot succeed in step 4  (t->Next != NULL) 

→ the algorithm (so far – without step 3)  is not lock-free !  

To repair this, threads must be able to adjust Tail

(step 3 in our tread instead of step 5 in the blocking thread)

– our thread assists the obstructing tread 

FIFO Queue
40

The complete, lock-free routine:

void Enqueue(Type data) 
{ Node *node, *t, *next;

node = new(Node); 
node->Data = data; node->Next = NULL;

while(true){
t = Tail;  
next = t->Next;
if (next!=NULL) {CAS(&Tail,t,next); continue}
if ( CAS(&t->Next,NULL,node)) break;  //lin. point

}
CAS(&Tail,t,node);  

} 

FIFO Queue

Data: B

Next: NULL

Data:  A

Next: &B

Dummy

Next:  &A

Head:  &Dm Tail:  &B
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To dequeue we (usually) change only one pointer - Head 

(step 3 is analogous to step 3 in Enqueue)

Type Dequeue(void) 
{  Node *h, *t, *next; Type data;

while(true){
h = Head; t = Tail;  

1:      next = h->Next;
2:      if (next == NULL) return EMPTY;
3:      if (h == t) { CAS(&Tail,t,next); continue}

data = next->Data;     // next behind dummy  
4:      if ( CAS(&Head,h,next)) break;  // new dummy

}
return data;

} 

FIFO Queue

Data: B

Next: NULL

Data:  A

Next: &B

Dummy

Next:  &A

Head:  &Dm Tail:  &B
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