
04.10.2011

1

Lock-Free Concurrent Data Structures,

CAS and the ABA-Problem

Dr. Wolfgang Koch

Friedrich Schiller University Jena

Department of Mathematics and

Computer Science

Jena, Germany

wolfgang.koch@uni-jena.de

2

Today almost all PCs and Laptops have a

multi-core (e.g. quad-core) processor

using SMP (symmetric multiprocessing)

with shared memory and cache coherence

But most software has not changed adequately,

doesn’t use much multithreading

Lock-free synchronization in concurrent data structures

for a long time has been a research topic only

in the area of mainframes and supercomputers

Only in recent years it obtained a common attention

(the subject in not really new, so many of the

basic articles are rather old)

Motivation

3

Example: “Blocking” LIFO Queue (a Stack):

shared Node * top;
shared Lock lock;

void push(Node *node)

{
Node *t; // local pointer

acquire(&lock);

t = top;
node->Next = t;
top = node;

release(&lock);

}

Blocking Queue

Data: C

Next: NULL

Data: B

Next: &C

Data: A

Next:

top:

&B

&B&A

4

shared Lock lock; Why do we need the lock?

We protect a critical section:

acquire(&lock); … release(&lock);

without the lock (2 or more threads may interfere):

t1=top;
t2=top;

node1->Next = t1;
top = node1;

node2->Next = t2; // =t1, not node1

top = node2;

Now top points to node2 (and node2 to old *top) – node1 is lost!

t=top; … top=node; is a critical section – at most 1 thread

may be in the section at the same time (mutual exclusion, mutex)

Locks, Critical Section

04.10.2011

2

5

How can we built the lock?

shared int lock = 0;

void acquire(int & lock){
while (lock != 0) /*do nothing*/; // busy wait
lock = 1;

}

But now we have again a (short) critical section.

We need an atomic “read & write” operation.

Virtually all (CISC) processors provide an atomic TestAndSetBit

and/or an atomic Exchange instruction

For RISC processors - LL / SC - see slide p. 20

Spinlock
6

shared int lock = 0;

void acquire(int & lock){
while (lock != 0); // busy wait
lock = 1;

}

We need an atomic “read & write” operation.

atomic TestAndSetBit (TSB, intel: LOCK BTS)

while (TSB(&lock) != 0); // busy wait

atomic Exchange (intel: XCHG)

while (XCHG(&lock,1) != 0); // busy wait

Spinlock

7

Tight busy wait will result in “memory contention”

(to write to a memory location (e.g. thread2 writes to shared lock)

exclusive access is required, the cache line of thread1

containing lock is invalidated, must be loaded again when tread1

reads lock → increased traffic on the shared bus, slowdown)

void acquire(int & lock){
while(XCHG(lock,1) != 0) ContentionManagement();

}

simple, but efficient method – exponential backoff :

int n=32; nmax=4096; // delay ns, max_delay
void acquire(int & lock){

while (XCHG(lock,1) != 0)
{ sleep(random()%n); if (n<=nmax) n+=n; }

} // random() avoids convoying and starvation

Spinlock, Contention Management
8

Tight busy wait will result in “memory contention”

to write to a memory location – exclusive access is required

→ increased traffic on the shared bus, slowdown

to avoid unnecessary writes:

void acquire(int & lock){
while(true){

if (XCHG(lock,1) == 0) break; // read + write
while (lock != 0) nop; // just read !

}
}

Spinlock with less Contention

04.10.2011

3

9

The idea of spinlocks is simple

and so the usage seems to be simple

but the wrong use accidentally can lead to deadlocks

When using spinlocks, starvation of threads is possible

If a thread holding a spinlock blocks

(e.g. due to preemption, page faults, waiting for other locks etc.)

all waiting threads are blocked too, no one is making any progress

that’s the reason why spinlocks provided by the operating system

deactivate preemption while holding the lock

Spinlocks imply “mutual exclusion” – sequential bottleneck

(v. Amdahl’s law)

Similar to deadlocks, priority inversion may happen

Disadvantages of Spinlocks
10

Speedup = time when used 1 processor / time for n processors

(and one expects speedup ≈ n)

usually there are parts in the program that cannot be performed

in parallel (synchronization, communication) - ratio s (0.1 = 10%)

tn = t1 (s + (1-s)/n), sp = t1 / tn

sp = 1 / (s + (1-s)/n)

n → ∞ , sp → 1/s i.e. sp ≤10 for s=0.1

no matter how many processors we use

(even if we have a million processors)

Excursion – Amdahl’s Law

s n=4 n=10

2% 3.77 8.47

5% 3.48 6.90

10% 3.08 5.26

11

Example: we have 3 threads:

� thread H – high priority, for fast reaction in real-time

� thread M – medium priority, time consuming

� thread L – low priority, unfortunately holding a lock that H needs

thread H cannot run, it is waiting for the lock that L holds

thread L cannot run, since thread M has higher priority

so it cannot free the lock that H is waiting for

thread M with medium priority will run for a long time

thus preventing L from running and freeing the lock

and so preventing H from doing its duty in real-time

(The trouble experienced by the Mars lander “Pathfinder” is a

classic example.)

Excursion – Priority Inversion
12

One disadvantage of spinlocks:

If a thread holding a spinlock blocks, all waiting threads are

blocked too, no one is making any progress

A wait-free operation is guaranteed to complete

after a finite number of its own steps,

regardless of the timing behavior of other operations.

A lock-free operation guarantees that after a finite number

of its own steps, some operation (possibly in a different thread)

completes (also called nonblocking).

wait-freedom is a stronger condition than lock-freedom

wait-freedom is hard to achieve (and only with a lot of overhead)

Our queue with locks is neither wait-free nor lock-free

Wait-freedom, Lock-freedom

04.10.2011

4

13

Disadvantages of spinlocks (slide p. 9) – request for a lock-free method

make changes on a copy, then set the copy into effect

in a single atomic step - if the original has not changed

boolean try_push(Node *node)
{ boolean res;

Node *t; // local pointer

t = top; // local copy
node->Next = t; // still private node
// top = node; // global – Danger!
atomic(if (top==t) {top=node; res=true;}

else res=false; // try again
)

return res;
}

Lock-free method
14

. . . set the copy into effect in a single atomic step

if the original has not changed

atomic(if (top==t) {top=node; res=true;}
else res=false; // try again

)

We need an atomic primitive that accomplishes this task

(TSB and XCHG are not strong enough)

IBM introduced CompareAndSwap (CAS) in 1970 in the IBM 370

res = CAS(&top, t, node);

Lock-free method, CAS

15

IBM introduced CompareAndSwap (CAS) in 1970 in the IBM 370

(in some other processors called CompareAndSet) – boolean CAS

type - longword or pointer

boolean CAS(type * mem, type exp, type new)
{ atomic(

if (*mem == exp){*mem=new; return true;}
else return false; //and leave mem untouched

)
}

In Intel processors (starting with i486 – 1989) there we find a variant

of CAS (called CMPXCHG– Compare and Exchange) that returns

the old value of mem in register EAX, and a boolean result in the Z-flag

Compare-and-Swap - CAS
16

In Intel processors (starting with i486) there we find another variant

of CAS (called CMPXCHG– Compare and Exchange) that returns

the old value of mem in register EAX, and a boolean result in the Z-flag

int CAS(void **mem, void *old, void *new)
{

int res;

asm("lock cmpxchg %3,%1; mov $0,%0; jnz 1f; inc %0; 1: "
: "=a" (res) : "m" (*mem), "a" (old), "d" (new));

return res;
}

(there is also an atomic instruction CMPXCHG8B– for double long values)

Intel - CMPXCHG

04.10.2011

5

17

boolean try_push(Node *node)
{ Node *t; // local pointer

t = top;
node->Next = t;
return CAS(&top,t,node);

}

void push(Node *node)
{ Node *t; // local pointer

while(true){
t = top;
node->Next = t;
if (CAS(&top,t,node)) break;

}
}

Lock-free methods
18

void push(Node *node)
{ Node *t;

while(true){
t = top;
node->Next = t;
if (CAS(&top,t,node)) break;

}
}

is lock-free:

if CAS succeeds, our thread completes the push-operation

if CAS fails, it failed because another thread has changed top

so the CAS of that other thread succeeded

the other tread has completed its (push-) operation

Lock-free methods

19

Node * pop(void)
{

Node *t, *next;

while(true){
t = top;
if (t == NULL) break; // empty stack
next = t->Next;
if (CAS(&top,t,next)) break; // lock-free

}
return t;

}

There might be a problem: we use a pointer to a node (t->Next),

but that node may be freed meanwhile by another thread (in sys-

tems without garbage collection) – problem of data persistence.

In addition: the ABA-problem

Lock-free pop-operation
20

Are there atomic “read & write” instructions like XCHG or CAS

on RISC processors too?

No – RISC instructions can either read or write

but not both read and write in one single instruction.

Instead of atomic CAS –

RISC processors (e.g. MIPS) provide a pair of instructions:

LL – load linked (from a memory location to a register)

SC – store conditional (a register to a memory location)

when there was no write to that memory location

since the last LL (ideal SC ↔ practical, weak SC)

otherwise leaves memory untouched

returns a boolean result in a register

RISC Processors – LL / SC

04.10.2011

6

21

RISC processors provide a pair of instructions: LL / SC

type - longword or pointer

type LL(type * mem);
boolean SC(type * mem, type new);

void push(Node *node)
{ Node *t;

while(true){
t = LL(&top); // t = top;
node->Next = t;
if (SC(&top,node)) break; // CAS(&top,t,node))

}
}

RISC Processors – LL / SC
22

RISC processors provide a pair of instructions: LL / SC

while(true){
t = LL(&top);
node->Next = t;
if (SC(&top,node)) break; // CAS(&top,t,node))

}

LL/SC is stronger than CAS:

in case top has changed from one value, say A to B and the back to A

(ABA-problem)

CAS erroneously succeeds,
but SC fails (prevents the ABA-problem)

LL / SC – CAS – ABA-problem

23

Is ABA really a problem ? (the value has not changed)

Yes – of cause – the data structure may have changed.

Imagine, we have a stack:

top --> A --> B --> C --> /

thread1 - pop():

t = top; // top = &A
next = t->Next; // next = &B

// thread2: A=pop, B=pop, push A
// top --> A --> C --> /

if (CAS(&top,t,next)) break; // succeeds !
// top --> B --> ?? -- Error !!

ABA-problem
24

One way to prevent the ABA-problem are pointer with tags (e.g. un-

used bits in the pointers) which are incremented in each push or pop

void push(Node *node)
{ Node *t, *p ;

uint tag; // unsigned int

while(true){
t = top; // pointer + tag
p = (Node *)((uint) t & ~0x03);
tag = (uint) t & 0x03; tag = (tag+1) & 0x03;

node->Next = p;
node = (Node *)((uint) node | tag);
if (CAS(&top,t,node)) break;

}
}

ABA-problem – short tags

04.10.2011

7

25

One way to prevent the ABA-problem are pointer with tags

the problem with unused bits in the pointers is the limited

number of these bits –

32 bit pointers – alignment 4 bytes

2 unused bits – wraparound after 4 push-/pop- operations

p = (Node *)((uint)t & ~0x03);
tag = (uint)t & 0x03;

we can use an additional tag word together with *top

then we need a double-word CAS (CASdbl)

typedef struct _Lptr{
Node * Ptr;
uint Tag;

} LPtr;

ABA-problem – tags
26

we can use an additional tag word together with *top

– then we need a double-word CAS (CASdbl)

LPtr top; // Node *Ptr; uint Tag;

void Push(Node *node)
{

LPtr tn; Node *t;

while (true){
tn = top; //t = top;
t = tn.Ptr;
node->Next = t;
if(CASdbl(&top,&tn, node,tn.Tag+1)) break;

}
}

ABA-problem – long tags

27

GC – Garbage Collection

For every push-operation we create a new node,

when there are no references (no pointers) to that node anymore

GC frees the node, its memory can be reused

void push(type data) // old: push(Node *node)
{ Node *node, *t;

node = new(Node); node->Data = data;

while (true){
t = top;
node->Next = t;
if(CAS(&top,t,node)) break;

}
}

ABA-prevention under GC
28

for every push-operation we create a new node,

when there are still references to a node, GC cannot free the node

type pop(void) // old: Node * pop(void)
{ Node *t, *next;

while(true){
t = top; // new reference t
if (t == NULL) return EMPTY;
next = t->Next; // no access hazard
if (CAS(&top,t,next)) break; // not ABA-prone

}
return t->Data;

}

In a system with GC data persistence and ABA are no problem

– without GC things are much harder

ABA-prevention under GC

04.10.2011

8

29

Garbage Collection usually works with a reference counter

A data item can be freed not until there a no longer references

to that item, i.e. not until the reference counter is zero.

We can include a reference counter (RC) in our nodes

– but there is a problem:

void ReleaseNode(Node *p)
{

int rc = atomicDecrement(& p->RC); // atomic!

if (rc == 0) delete(p); // Danger !!
}

danger: other threads can reserve the node just now, in the gap bet-

ween (rc==0) and delete() , but it nevertheless will be deleted

Reference Counter
30

if(rc == 0) /*gap*/ delete(p);

danger: other threads can reserve the node just now, but it never-

theless will be deleted, while in use by the other threads

We might fix this, when we allow reservation only for nodes with

RC greater than zero

– but there is a more serious problem:

Node * ReserveNode(Node *p)
{

int rc = p->RC; // access hazard !
if (rc > 0) ...

In order to test and increment the RC for a pointer (reserve a node)

we must use this pointer – but to use the pointer it must be reserved.

We are in a doom loop, in a ”circulus vitiosus“.

Reference Counter

31

In order to test and increment the RC for a pointer (reserve a node)

we must use this pointer – but to use the pointer it must be reserved.

We are in a doom loop, in a ”circulus vitiosus“.

But then – how does GC work? (in Java, C#, Haskell, Z)

it usually is not lock-free

and often uses stop-the-world techniques (Detlefs)

The reason that garbage collectors commonly “stop the world” is

that some of these pointers are in threads' registers and/or stacks,

discovering these requires operating system support, and is

difficult to do concurrently with the executing thread

GC – Reference Counter
32

rc = atomicDecrement(& p->RC);

In Intel processors there are (atomic) Increment- and Decrement-
instructions (inc, dec), but they do not supply a result.

There is also an atomic ExchangeAndAdd instruction (lock xadd)
that delivers the old value (rc = ExchangeAdd(&p->RC,-1)-1;)

We can easily built an atomicDecrement using CAS:

int atomicDecrement(int *mem, int val)
{ int old;

while (true){
old = *mem;
if(CAS(mem,old, old-val)) break;

}
return old-val;

}

Excursion – atomicDecrement

04.10.2011

9

33

In order to built an own lock-free GC-like environment

and in consideration of the difficulties managing reference counters

M. M. Michael introduced Hazard Pointers:

Node * pop(void)
{ Node *t, *next;

while(true){
t = top; if (t == NULL) break;
hp[thr] = t;
if (t != top) continue;
next = t->Next; // no access hazard
if (CAS(&top,t,next)) break;

}
return t;

}

Hazard Pointers
34

M. M. Michael introduced Hazard Pointers (one or two for each tread)

Node * pop(void)
{

t = top; if (t == NULL) break;
hp[thr] = t; ...
next = t->Next; // no hazard
...

Caller:

Node * A = pop(); if (A == NULL) break;
data = A->Data;
hp[thr]=NULL; DeleteNode(A);

Hazard Pointers

35

hp[thr]=NULL; DeleteNode(A);

int dcount = 0; // static, per thread
Node * dlist[R]; // or a linked list

void DeleteNode(Node *node)
{

dlist[dcount++] = node;
if (dcount == R) Scan(dlist);

}

Scan first collects all non-null hazard pointers in a local data structure

(e.g. a hash table),
then checks each node in dlist against these hazard pointers;

if there is no match the node is deleted,
otherwise node remains in dlist until a subsequent Scan

Hazard Pointers – DeleteNode
36

Two entry points (pointers): Node *Head, *Tail;

To avoid special cases (the empty queue)

the queue always includes a dummy node as the first node

Introduced by Michael and Scott (→ the MS-queue)

included in the standard JavaTM Concurrency Package (JSR-166)

correctness – linearizability proof by L. Groves

We enqueue at the tail (after the so far last node)

we dequeue at the head (unless the queue is empty)

we read the next node

after the dummy,

then this node becomes

the new dummy

FIFO Queue

Data: B

Next: NULL

Data: A

Next: &B

Dummy

Next: &A

Head: &Dm Tail: &B

04.10.2011

10

37

We enqueue data at the tail

we create a new Node:

Node * node = new(Node);
node->Data = data;
node->Next = NULL; // important!

to enqueue this node we have to change two pointers:

first – the Next-field of the so far last node (now NULL)

second – Tail

(not possible

in one single

atomic step)

FIFO Queue

Data: B

Next: NULL

Data: A

Next: &B

Dummy

Next: &A

Head: &Dm Tail: &B

38

To enqueue a node we have to change two pointers: Next and Tail

A first (incomplete) routine looks like this:

void Enqueue(Type data)
{ Node *node, *t, *next;

1: node = new(Node);
node->Data = data; node->Next = NULL;

while(true){
2: t = Tail;
4: if (CAS(&t->Next,NULL,node)) break;

}
5: CAS(&Tail,t,node);

}

FIFO Queue

Data: B

Next: NULL

Data: A

Next: &B

Dummy

Next: &A

Head: &Dm Tail: &B

39

while(true){
2: t = Tail;

next = t->Next;
3: if (next != NULL) {CAS(&Tail,t,next); continu e}
4: if (CAS(&t->Next,NULL,node)) break;

}
5: CAS(&Tail,t,node);

If one thread has performed step 4, but not yet step 5 (when it is blocked)

other threads cannot succeed in step 4 (t->Next != NULL)

→ the algorithm (so far – without step 3) is not lock-free !

To repair this, threads must be able to adjust Tail

(step 3 in our tread instead of step 5 in the blocking thread)

– our thread assists the obstructing tread

FIFO Queue
40

The complete, lock-free routine:

void Enqueue(Type data)
{ Node *node, *t, *next;

node = new(Node);
node->Data = data; node->Next = NULL;

while(true){
t = Tail;
next = t->Next;
if (next!=NULL) {CAS(&Tail,t,next); continue}
if (CAS(&t->Next,NULL,node)) break; //lin. point

}
CAS(&Tail,t,node);

}

FIFO Queue

Data: B

Next: NULL

Data: A

Next: &B

Dummy

Next: &A

Head: &Dm Tail: &B

04.10.2011

11

41

To dequeue we (usually) change only one pointer - Head

(step 3 is analogous to step 3 in Enqueue)

Type Dequeue(void)
{ Node *h, *t, *next; Type data;

while(true){
h = Head; t = Tail;

1: next = h->Next;
2: if (next == NULL) return EMPTY;
3: if (h == t) { CAS(&Tail,t,next); continue}

data = next->Data; // next behind dummy
4: if (CAS(&Head,h,next)) break; // new dummy

}
return data;

}

FIFO Queue

Data: B

Next: NULL

Data: A

Next: &B

Dummy

Next: &A

Head: &Dm Tail: &B

42

Nir Shavit

Data Structures in the Multicore Age

Communications of the ACM, Vol. 54, No. 3, March 2011, pp. 76-84

Mark Moir, Nir Shavit (Sun Microsystems Laboratories)

Concurrent Data Structures

Sun Microsystems Laboratories, CRC Press, 2001

32 p., 138 references!

Maged M. Michael (IBM, T.J. Watson Research Center)

Hazard Pointers: Safe Memory Reclamation for Lock-Free Objects

IEEE Transactions on Parallel and Distributed Systems, Vol. 15, No. 6,

June 2004, pp. 491-504

David L. Detlefs, Paul A. Martin, Mark Moir, Guy L. Steele Jr. (Sun Laboratories)

Lock-Free Reference Counting

Proc. 20th Ann. ACM Symp. Principles of Distributed Computing, Aug. 2001

References, Shortlist

43

Maged M. Michael, Michael L. Scott

Simple, Fast, and Practical Non-Blocking and Blocking Concurrent

Queue Algorithms

Proceedings of the 15th Annual ACM Symposium on Principles of

Distributed Computing (PODC ’96), New York, USA, ACM (1996)

pp. 267-275

Lindsay Groves

Verifying Michael and Scott’s Lock-Free Queue Algorithm using

Trace Reduction

Computing: The Australasian Theory Symposium (CATS2008),

Wollongong Australia 2008

M. M. Michael

High Performance Dynamic Lock-Free Hash Tables and List-Based Sets

Proceedings of the 14th annual ACM Symposium on Parallel Algorithms

and Architectures, 2002. ACM Press, 2002. pp. 73–82.

References, Shortlist
44

Michael Spiegel, Paul F. Reynolds Jr.

Lock-Free Multiway Search Trees

39th International Conference on Parallel Processing, 2010

pp. 604-613

Maurice Herlihy (Digital Equipment Corporation, now Brown University, Rhode Island)

Wait-Free Synchronization

ACM Transactions on Programming Languages and Systems,

Vol. 11, No 1, January 1991, pp. 124-149

A fundamental paper on CAS etc. – Dijkstra Prize !

All the papers can be found as pdf-files in the internet.

References, Shortlist

