22.09.2010

- APl Hooking
Tricks of the Hackers:
System Function Hooking
in MS Windows In a previous talk | showed, how to perform API hooking:
change of addresses in the IAT (Import Address Table )
Dr. Wolfgang Koch

of the executable
Friedrich Schiller University Jena

by use of DLL-Injection
Department of Mathematics and

Computer Science works for one process

(even if IATs of used DLLs are changed too —
wolfgang.koch@uni-jena.de due to “copy on write” mechanism of shared memory)

Jena, Germany

API Hooking System Call Hooking

In a previous talk | showed, how to perform API hooking: API hooking in a process is widely used by hackers etc.

used for testing, monitoring and reverse engineering But for writers of malicious software a system-wide

] . change of the behavior of the system is still more
as well as for altering the behavior of the important — System Call Hooking
operating system or of 3rd party products,

for example:

without having their source code available stealth viruses and root kits can conceal their presence

by changing NtReadFile or NtCreateFile

(if an infected file is to be read the altered system function
presents the original file)

widely used by hackers and other “bad guys”




Literature Books

The Windows Kernel Book:

Mark E. Russinovich

David A. Solomon

Windows Internals, 5th Edition
Covering Windows Server 2008
and Windows Vista

Redmond, Wash : Microsoft Press, 2009
ISBN-13: 978-0735625303

1264 p.

Literature Books

The WDM Bible:

Walter Oney

Programming the Microsoft Windows
Driver Model

2nd edition

Redmond, Wash : Microsoft Press, 2003
ISBN: 0-7356-1803-8

846 p. + CD-ROM

Literature Books

Rootkits:

Greg Hoglund
Jamie Butler

Rootkits:
Subverting the Windows Kernel

Amsterdam : Addison-Wesley, 2005
ISBN-13: 978-0321294319

352 p.

ﬁoo,;r__m‘rs

i

Literature Books

“The Windows-API Book”:

Jeffrey Richter,
Christophe Nasarre

WINDOWS via C/C++
5th edition

Redmond, Wash : Microsoft Press, 2008
ISBN-13: 978-0-7356-2424-5

820 p. + Companion content Web page

22.09.2010



Literature

Martin Hinz:

Profiling Windows System Call Activity (in German)
Studienarbeit, Technische Universitdt Chemnitz, 2006

http://rtg.informatik.tu-chemnitz.de/docs/da-sa-txt/sa-mhin.pdf
Robert Kuster:
Three Ways to Inject Your Code into Another Process, 2003
http://www.codeproject.com/KB/threads/winspy.aspx
Wolfgang Koch:

Tricks of the Hackers: API Hooking and DLL Injection
held at ELTE Budapest, September 2009

Literature

Anton Bassov:
Process-wide API spying - an ultimate hack, 2004

http://www.codeproject.com/KB/system/api_spying_hack.aspx

Hooking the native API and controlling process creation
on a system-wide basis, 2005

http://www.codeproject.com/KB/system/soviet_protector.asp

Newsgroups:

comp.os.ms-windows.programmer.nt.kernel-mode
microsoft.public.development.device.drivers

System Call Hooking

A lot of API-functions need assistance of the OS kernel —
which runs in kernel mode with no restrictions —

for example Input/Output, file access, process management,
memory management ...

These functions invoke “System Services” —
If you open and read a file using open() and read()
(or using the Windows-API functions
CreateFile and ReadFile )
the system functions NtCreateFile and
NtReadFile are finally called.

System Call Hooking

The system functions NtCreateFile and NtReadFile
are finally called

— System Call Hooking

Difficulties:
you have to write a kernel-mode driver

installing a driver without a digital signature on 64-bit Vista
or 64-bit Widows 7 is (almost) impossible

22.09.2010



System Call Hooking

The NtXxx -fuctions — the “Native API” —
are defined in ntdll.dll (a dynamic link library).

For NtReadFile you just find the following “stub”:

mov eax,0x102 ; intel syntax:
mov  edx,0x7ffe0300 ; op dest,src
call edx

ret 0x24 ; 9 arguments — 36 bytes

System Call Hooking

For NtReadFile you just find the following “stub”:

mov eax,0x102 . system service number

mov edx,0x7ffe0300 ; always the same address

call edx

ret Ox24 ;. specific for the function
0x7ffe0300:

mov edx,esp ; arguments on the stack

sysenter ; switch to kernel mode

ret ; Intel: sysenter — AMD: syscall

; older processors: int 0x2E

System Service Number

mov eax,0x102 ; system service number

the system service number in register EAX
indicates the function

In the kernel system service dispatcher (KiSystemService)
it is used as an index into the SSDT (System Service
Dispatch Table).

The system service numbers are not documented,
they can change between OS versions
(Russinovich, Solomon: even between service packs )

System Service Number

The system service numbers are not documented,
they can be obtained from the stubs in ntdil.dll

(mov eax,0x102: 0xB8 0x02 0x01 0x00 0x00 )

byte *addr; Iltypedef unsigned char byte;
uint  ssn, *pi;
char Function[] = "NtReadFile";

addr = (byte*) GetProcAddress(
GetModuleHandle("ntdll.dll"), Function);

pi = (uint*)(addr+1); ssn = *pi;

22.09.2010



System Service Number

For NtCreateSection | obtained the following
system service numbers:

Windows XP  (NT 5.1) - 0x32
Windows Vista (NT 6.0) - 0x4B
Windows 7 (NT6.1) - Oxb54

We have to supply our driver with the appropriate number
— or the driver must detect the OS version
(— or the driver can find out the ssn from the corresponding
ZwXxx kernel function (ZwCreateSection) )

System Service Number

the driver must detect the OS version

RTL_OSVERSIONINFOW osvi;

osvi.dwOSVersionInfoSize =
sizeof(RTL_OSVERSIONINFOW);

RtIGetVersion(&osvi);

if( osvi.dwMajorVersion ==6 &&
osvi.dwMinorVersion ==0) {Index = 0x4B; }

if( osvi.dwMajorVersion ==6 &&
osvi.dwMinorVersion ==1) {Index = 0x54; }

/I Service Pack: build = osvi.dwBuildNumber;
/I or use RTL_OSVERSIONINFOEXW .wServicePackMajor

System Service Number

Better Solution:
the driver can find out the ssn from the corresponding
ZwXxx function.

The corresponding ZwXxx kernel functions start with
the same 5 Bytes as their NtXxx counterpart stubs.

Index = * (ULONG *)((UCHAR *)ZwCreateSection +1);
Hoglund use a macro:

#define SYSCALL_INDEX(_Function) \
*(PULONG)((PUCHAR)_Function+1)

Index = SYSCALL_INDEX(ZwCreateSection);

System Call Arguments

mov edx,esp ; arguments on the stack
sysenter ; switch to kernel mode

Kernel code uses a different stack than user mode processes.

KiSystemService receives the address of the top of the
callers stack in EDX —

it then copies the arguments to the kernel stack — so the
system service functions can use (read) them.

Often arguments are pointers to buffers in user land,
use them with care: ProbeForRead(), ProbeForWrite()

22.09.2010



System Call Arguments

Often arguments are pointers to buffers in user land,
use them with care: ProbeForRead(), ProbeForWrite()

_try{
ProbeForRead(UserBuffer, Length, 1);

/I'1 == TYPE_ALIGNMENT(char)
RtIMoveMemory(KernelBuffer, UserBuffer, Length);

} __except( EXCEPTION_EXECUTE_HANDLER ) {
status = GetExceptionCode();

System Call Dispatch

The kernel system service dispatcher (KiSystemService)
uses the ssn (in Reg. EAX) as an Index into the SSDT
(System Service Dispatch Table), which holds the
addresses of the system functions.

A second table - SSPT - includes the number of bytes

of the arguments for each function.

The addresses of both tables can be found in

struct SYS_SERVICE_TABLE({ ... };

the addresses of which is exported by the kernel in
the variable *KeServiceDescriptorTable

System Call Dispatch

struct SYS_SERVICE_TABLE {
void **ServiceTable; // SSDT
unsigned long *CounterTable;
unsigned long ServiceLimit;
unsigned char *ArgumentsTable; // SSPT
b
(you will find different names of the structure and its members in
literature )

extern struct SYS_SERVICE_TABLE
*KeSer vi ceDescri pt or Tabl e;

int Args = KeServiceDescriptorTable->
Argunent sTabl e[ | ndex] ;

System Call Dispatch

To hook a system service function, we can change its
address in the SSDT

ULONG *RealCallee;
ULONG **SsdtEntryAddr;

SsdtEntryAddr =

& KeServiceDescriptorTable->ServiceTable[Index];
RealCallee = *SsdtEntryAddr; /I OK
*SsdtEntryAddr = (ULONG *) &Proxy; /I No !
/I We usually have no write access -> blue screen

How to work around this, using MDLs (Memory Descriptor Lists),
is described by Hoglund; Bassov proposed a shorter way:

22.09.2010



System Call Dispatch

ULONG Args, *RealCallee;

void St art Hook(PWDM_DEVICE_EXTENSION pdx)
{
voi d *SsdtEntryAddr, *PhAddr;
SsdtEntryAddr =
& KeServiceDescriptorTable->ServiceTable[Index];

PhAddr = MrVapl oSpace(
MrGet Physi cal Addr ess( Ssdt Ent ryAddr), 4, 0);

RealCallee = InterlockedExchangePointer(
PhAddr, &Proxy);

MmUnmaploSpace(PhAddr,4);
}

System Call Dispatch

void Rel easeHook(PWDM_DEVICE_EXTENSION pdx)

{
void *SsdtEntryAddr, *PhAddr;

SsdtEntryAddr =
& KeServiceDescriptorTable->ServiceTable[Index];

PhAddr = MmMaploSpace(
MmGetPhysicalAddress(SsdtEntryAddr),4,0);

InterlockedExchangePointer(PhAddr, RealCallee);
MmUnmaploSpace(PhAddr,4);

System Call Hooking

Stealth viruses and rootkits can conceal their presence
by changing NtReadFile (if an infected file is to be

read the altered system function presents the original file)

In the Rootkit-book by Hoglund and Butler is shown,
how to hide processes by hooking
ZwQuerySysteminformation

Bassov shows, how to control process creation on a
system-wide basis, hooking NtCreateSection

System Call Hooking

To hook a system service function, we change its address
in the SSDT. The SSDT entry then points to our “proxy”
function.

Often the proxy must call the “real”, original system function
(pointer RealCallee  in my code), to utilize its service.

If proxy uses the real function with different arguments,
some preprocessing is needed to create the new
arguments.

If proxy modifies the results of the real function, we need
postprocessing.

22.09.2010



System Call Hooking

To hide processes by hooking zwQuerySystemInformation
the results of the original zwQuerySysteminformation
function (called with the original arguments) are
manipulated. No preprocessing is needed.

The original function returns a pointer to a linked list,
containing all processes. Proxy then removes certain
processes off this list in its postprocessing part.

Hoglund uses the original function prototype for his
proxy NewZwQuerySysteminformation and for the
function pointer O dzwQuerySysteminformation :

System Call Hooking

NTSTATUS NewZwQuerySystemInformation(
ULONG SystemInformationClass, PVOID SystemInformation,
ULONG SystemInformationLength, PULONG ReturnLength)

NTSTATUS ntStatus; /I no preprocessing
ntStatus = OldZwQuerySystemInformation ( SystemInformationClass,
SystemInformation, SystemInformationLength, ReturnLength );
if( NT_SUCCESS(ntStatus)) {
/I postprocessing, using pointer SystemInformation

}

return ntStatus;

System Call Hooking

Bassov uses a more general method using an assembler
frame routine:

_declspec(naked) Proxy()

{
_asm{
pushfd /I save flags
pushad /I save 8 registers

mov  ebx,esp

add ebx,40 // pointer to arguments of NtXxx
push ebx /I 1 argument for check

call check /I preprocessing C-routine

cmp eax,1 //result: allow or block ?

jne  block

System Call Hooking

_declspec(naked) Proxy()
{

_asm{
jne block
popad /I proceed to the actual callee
popfd
jmp RealCallee // no postprocessing
block: popad /I return STATUS_ACCESS_DENIED

mov ebx, dword ptrlesp+8] // 1_st argument
mov dword ptr[ebx],0 /I Handle = NULL
mov eax,0xC0000022L

popfd

ret 28 } /I 28 bytes of arguments

22.09.2010



System Call Hooking

Proxy
saves flags and 8 registers

loads ebx with the address of the arguments on the stack
calls a C-routine with this address as a parameter,

this routine (in our case) decides whether or not
to create the process

yes: restore registers and flags, jump to original function
this function returns with an NTSTATUS code
to the caller of the original function (using ret 28)

no: restore registers,

set the handle, the orig. function returns, to NULL
return with STATUS_ACCESS_DENIEmSIng ret 28

System Call Hooking

_declspec(naked) Proxy()
{

_asm{...}

}

_declspec(naked) creates pure function code without a
stack frame — intended for assembler code

Probabily it is not necessary to save registers,
but who knows?

pushfd  // save flags
pushad /] save eax, ecx, edx, ebx,
/I original esp, ebp, esi, edi : 32 bytes

ret28 s specific to the NtXxx - function

System Call Hooking

A similar assembler frame routine is a good solution
when several NtXxx — functions are hooked
with the same aim (e.g. logging the calls).

Then one single routine can be used for all hooked
system functions, the routine somehow must know:

- the original callee
- the ssn Index for logging
- the number of bytes of the arguments for logging
(and for ret n if necessary, i.e. if the block - branch is used)

A solution like in my previous talk (v. also Bassov 1)
is possible, using the call-indirec t instruction,

pointing to a data structure that contains the relevant data

Hooking NtCreateSection

Bassov (2) shows, how to control process creation on a
system-wide basis, hooking NtCreateSection

He points out that NtCreateProcess is not always
called when a process is created (e.g. CreateProcess()
doesn’t use it), so it's no use to hook this system function.

But there is absolutely no way to run any executable file
without calling either NtCreateFile ~ or NtOpenFile
and NtCreateSection

In the latter function it is easier to take a decision
whether is it a part of a process creation.

22.09.2010



Hooking NtCreateSection

Control process creation on a system-wide basis,
hooking NtCreateSection

The hook can be utilized in any kind of parental control
software, e.g. for logging or for preventing certain
programs from running.

This can be expanded to accomplish a secure
environment that prevents execution of any program
that does not appear on a list of allowed software.

As a result, the PC is protected against add-on spyware,
worms, and Trojans.

Hooking NtCreateSection

We hook NtCreateSection
Index = * (ULONG*)((UCHAR*)ZwCreateSection +1);

In check() we first take a decision whether is it
part of a process creation:

ULONG __stdcall check(PULONG arg) //->ret4

{
/I check the flags

if((arg[4]&0xf0)==0) return 1,
if((arg[5]&0x01000000)==0) return 1;

/I no executable -> return 1 -> jmp RealCallee

Hooking NtCreateSection

/I check the flags
if((arg[4]&0xf0)==0) return 1;
if((arg[5]&0x01000000)==0) return 1;

arg[4] — IN ULONG PageAttributes
arg[5] - IN ULONG SectionAttributes

PAGE_EXECUTE - 0x10
PAGE_EXECUTE_READ - 0x20
PAGE_EXECUTE_READWRITE - 0x40
PAGE_EXECUTE_WRITECOPY - 0x80

SEC_IMAGE - 0x01000000
/I hFile (arg[6]) is an executable image file

Hooking NtCreateSection

Next we find out the file name:

HANDLE hand;
PFILE_OBJECT file;
OBJECT_HANDLE_INFORMATION info;

Illchar pathbuff[128]; // global - small s tack
ANSI_STRING  path;
ULONG len;

hand =(HANDLE)arg|[6];
ObReferenceObjectByHandle(hand, 0, O,

KernelMode, &file, &info);
if(tfile) return 1;

RtlUnicodeStringToAnsiString(&path, &file->FileName , 1);

strcpy(pathbuff, path.Buffer); len =path.Length;
RtIFreeAnsiString(&path); ObDereferenceObject(file)

22.09.2010

10



Hooking NtCreateSection

We find out the file name —is it an .exe file?

strcpy(pathbuff, path.Buffer); len =path.Length;

if(len<4 || _stricmp(&pathbuff[len-4],".exe")) retu mi;
/I _stricmp: .exe == .EXE

DbgPrint(" Exe FileName: %s \n", pathbuff);

We now have the path of an exe-file,

we can decide whether we want it to run.

If not - check() can return 0, and then proxy()
returns STATUS_ACCESS_DENIED

Hooking NtCreateSection

We now have the path of an exe-file,
if you need the drive letter too (e.g. D:), use:

UNICODE_STRING DosName;
ANSI_STRING drive;

loVolumeDeviceToDosName(file->DeviceObject,
&DosName);

RtlUnicodeStringToAnsiString(&drive, &DosName, 1);

ExFreePool(DosName.Buffer);

Now you can concatenate the strings drive and path.

RtIFreeAnsiString(&drive);
ObDereferenceObject(file);

Hooking NtCreateSection

We have the path name of the exe-file,
we can decide whether we want it to run.

Run the program only if it appears on a “white” list of
allowed software.

Or don’t run the program if it appears on a “black” list of
prohibited software.

Bassov shows how to ask the user — he runs a user
thread that periodically polls the driver for requests.

But Bassovs method, to return STATUS_ACCESS_DENIEDDN
rejection is not elegant — run a dummy program instead.

Hooking NtCreateSection

| used the hook to prevent the famous chat-program ICQ
from running in class-rooms:

if (len<8 || _stricmp(&pathbuff[len-8],"\\icq.exe")

{return 1;}

DbgPrint(" caught: %s \n", &pathbuff[len-8]);

a=0; /I ->return a;

Bassovs method, to return STATUS_ACCESS_DENIEDDN
rejection is not elegant — run a dummy program instead
(that does nothing or just shows a simple message).

We close the underlying .exe-file and open dummy.exe
hand = (HANDLE)arg[6];
ZwClose(hand);

22.09.2010

11



22.09.2010

Hooking NtCreateSection System Call Hooking

We close the underlying .exe-file and open dummy.exe”:

if(a == 0) {
OBJECT_ATTRIBUTES objAttr;
I0_STATUS_BLOCK ioStatusBlock;

RtlinitUnicodeString(&pathname, T h a n k yo u .

L"\\DosDevices\\D:\\SysHook\\icq2.exe");

InitializeObjectAttributes(&objAttr, &pathname,
OBJ_INHERIT |OBJ_CASE_INSENSITIVE, NULL,NULL);

ZwClose(hand);

ZwCreateFile(&hand, f) Questions ?

GENERIC_EXECUTE, &objAttr, &ioStatusBlock,
NULL, FILE_ATTRIBUTE_NORMAL,
FILE_SHARE_READ | FILE_SHARE_WRITE,
FILE_OPEN, FILE_RANDOM_ACCESS, NULL, 0);

nemmove( &rg[ 6], &hand, 4); a=1;

12



