
BENSOLVE - VLP Solver

Reference Manual

for Version 2.1.x

July 25, 2017

Copyright c© 2014-2017 Andreas Löhne and Benjamin Weißing, Institut für Mathematik,
Friedrich-Schiller-Universität Jena, All rights reserved

2

1 Introduction

Bensolve is a solver for vector linear programs (VLP), in particular, for the subclass of
multiple objective linear programs (MOLP). The present version is based on Benson’s
algorithm and its extensions, see e.g. [3, 4, 1, 2, 10, 8, 5, 6, 9] and the references therein.
For the theoretical background of this program, the reader is referred to [8, 6].

The present version utilizes the GNU Linear Programming Kit (Glpk). Bensolve
(from version 2.0.0) is written in C programming language (C99 standard).

1.1 Multiple Objective Linear Program

An important special case of a vector linear program (VLP) is a multiple objective linear
program (MOLP), that is, a linear program (LP) with multiple linear objective functions.
Bensolve assumes the following formulation of a MOLP:

minimize (or maximize)


P11x1 + P12x2 + · · ·+ P1nxn
P21x1 + P22x2 + · · ·+ P2nxn

. . .
Pq1x1 + Pq2x2 + · · ·+ Pqnxn

 (1)

subject to the constraints

a1 ≤ B11x1 +B12x2 + · · ·+B1nxn ≤ b1
a2 ≤ B21x1 +B22x2 + · · ·+B2nxn ≤ b2

. . .
am ≤ Bm1x1 +Bm2x2 + · · ·+Bmnxn ≤ bm

(2)

l1 ≤ x1 ≤ s1
l2 ≤ x2 ≤ s2

. . .
ln ≤ xn ≤ sn.

(3)

1.2 Vector Linear Program

In this more general setting, the minimization (or maximization) in (1) is defined with
respect to a partial ordering ≤C induced by a polyhedral cone C ⊆ Rq, that is

y1
y2
...
yq

 ≤C


z1
z2
...
zq

 ⇐⇒

z1 − y1
z2 − y2

...
zq − yq

 ∈ C. (4)

Bensolve assumes that C has a non-empty interior and contains no lines. The polyhedral
cone C is assumed to be given by one of the following two representations:

3

The CONE representation is given by a matrix Y with q rows and o columns. A vector
(y1, . . . , yq) belongs to C if and only if there are nonnegative real numbers v1, v2, . . . , vo ≥ 0
such that

y1 = Y11v1 + Y12v2 + · · ·+ Y1ovo
y2 = Y21v1 + Y22v2 + · · ·+ Y2ovo

. . .
yq = Yq1v1 + Yq2v2 + · · ·+ Yqovo.

(5)

The columns of the matrix Y are generating vectors of the polyhedral cone C.
The DUALCONE representation is given by a matrix Z with q rows and p columns. A

vector (y1, . . . , yq) belongs to C if and only if the following inequalities are satisfied:

Z11y1 + Z21y2 + · · ·+ Zq1yq ≥ 0
Z12y1 + Z22y2 + · · ·+ Zq2yq ≥ 0

. . .
Z1py1 + Z2py2 + · · ·+ Zqpyq ≥ 0.

(6)

The columns of the matrix Z are generating vectors of the dual cone of the polyhedral
cone C.

1.3 Upper and lower images

The q-dimensional space of objective values is called image space and the n-dimensional
space of variables is called the pre-image space. Bensolve computes the finite set of all
vertices and extreme directions of the upper image in case of minimization and the lower
image in case of maximization. This finite set can be considered as a “solution in the image
space”.

For MOLP, the upper image is the set of all vectors y = (y1, . . . , yq) such that

y1 ≥ P11x1 + P12x2 + · · ·+ P1nxn
y2 ≥ P21x1 + P22x2 + · · ·+ P2nxn

. . .
yq ≥ Pq1x1 + Pq2x2 + · · ·+ Pqnxn

(7)

for x = (x1, . . . , xn) satisfying the constraints (2) and (3). The set of vertices of the upper
image is exactly the set of of minimal (see e.g. [8], minimal is also called efficient or non-
dominated) vertices of the image, where the image is the set of vectors y = (y1, . . . , yq)
such that

y1 = P11x1 + P12x2 + · · ·+ P1nxn
y2 = P21x1 + P22x2 + · · ·+ P2nxn

. . .
yq = Pq1x1 + Pq2x2 + · · ·+ Pqnxn

(8)

for x = (x1, . . . , xn) satisfying the constraints (2) and (3).
The lower image of a maximization problem is defined likewise by replacing ≥ by ≤ in

(7). In the general case of a vector linear program (VLP), the component-wise ordering ≥
in (7) has to be replaced by the ordering ≥C , see (4).

4

1.4 Solution concept

Bensolve computes a solution of the vector linear program [8, 6]. Such a solution is a
finite set of points and directions x = (x1, . . . , xn) of the feasible set (i.e. the set of vectors
satisfying the constraints (2) and (3)) such that the corresponding images y = (y1, . . . , yq)
(according to (8)) are the vertices and extreme direction of the upper or lower image.

A solution to the given vector linear program is also called primal solution, whereas a
solution of the dual program (see Section 1.6) is called dual solution.

1.5 Duality parameter vector

Bensolve utilizes vector linear programming duality [7]. It computes primal and dual
solutions. The duality parameter vector c is a q-dimensional vector that must belong to
the interior of the ordering cone C and must have a non-zero last component cq 6= 0. The
duality parameter vector c = (c1, . . . , cq) is scaled by Bensolve with a positive factor
such that either cq = 1 or cq = −1. If not specified or invalid, it will be computed by the
program. Note that the dual problem, in particular, the dual solution of VLP depends on
this parameter. For a description of the dual program see Section 1.5. For details on the
theory, see e.g. [6].

1.6 Dual program

1.6.1 Special case of MOLP

Assume that the multiple objective linear program (MOLP) is a minimization problem and
has only the constraints (2) (but not (3)). Assume further that bi = ∞ (i = 1, . . . ,m) in
(2), i.e. there are only lower bounds. Then the dual problem is the following vector linear
program (VLP) with ordering cone K := {y ∈ Rq| y1 = 0, . . . , yq−1 = 0, yq ≥ 0}:

K-maximize


w1

w2

. . .
wq−1

a1u1 + · · ·+ amum

 (9)

subject to the constraints

B11u1 +B21u2 + · · ·+Bm1um = P11w1 + P21w2 + · · ·+ Pq1wq

B12u1 +B22u2 + · · ·+Bm2um = P12w1 + P22w2 + · · ·+ Pq2wq

. . .
B1nu1 +B2nu2 + · · ·+Bmnum = P1nw1 + P2nw2 + · · ·+ Pqnwq

(10)

u1 ≥ 0, . . . , um ≥ 0, w1 ≥ 0, . . . , wq ≥ 0 (11)

w1 + w2 + · · ·+ wq = 1. (12)

5

In this case, the duality parameter vector is (c1, . . . , cq) = (1, . . . , 1) and constraint (12)
can be written as

c1w1 + c2w2 + · · ·+ cqwq = 1.

1.6.2 General case of VLP for minimization

Starting with a minimization problem, the dual problem is the following vector linear
program with ordering cone K := {y ∈ Rq| y1 = 0, . . . , yq−1 = 0, yq ≥ 0}:

K-maximize


cq
|cq |w1
cq
|cq |w2

. . .
cq
|cq |wq−1

d(u1, . . . , um, v1, . . . , vn)

 (13)

subject to the constraints

B11u1 +B21u2 + · · ·+Bm1um = P11w1 + P21w2 + · · ·+ Pq1wq + v1
B12u1 +B22u2 + · · ·+Bm2um = P12w1 + P22w2 + · · ·+ Pq2wq + v2

. . .
B1nu1 +B2nu2 + · · ·+Bmnum = P1nw1 + P2nw2 + · · ·+ Pqnwq + vn

(14)

Y11w1 + Y12w2 + · · ·+ Y1qwq ≥ 0
Y21w1 + Y22w2 + · · ·+ Y2qwq ≥ 0

. . .
Yo1w1 + Yo2w2 + · · ·+ Yoqwq ≥ 0

(15)

c1w1 + c2w2 + · · ·+ cqwq = 1, (16)

where, for α+ := max(0, α) and α− := max(−α, 0), we set

d(u1, . . . , um, v1, . . . , vn) = a1u
+
1 + · · ·+ amu

+
m − b1u−1 − · · · − bmu−m

+ l1v
−
1 + · · ·+ lnv

−
n − s1v+1 − · · · − snv+n .

(17)

1.6.3 General case of VLP for maximization

Starting with a maximization problem, the dual problem is the following vector linear
program with ordering cone K := {y ∈ Rq| y1 = 0, . . . , yq−1 = 0, yq ≥ 0}:

K-minimize


cq
|cq |w1
cq
|cq |w2

. . .
cq
|cq |wq−1

d̄(u1, . . . , um, v1, . . . , vn)

 (18)

subject to the constraints (14), (15), (16), where

d̄(u1, . . . , um, v1, . . . , vn) = b1u
+
1 + · · ·+ bmu

+
m − a1u−1 − · · · − amu−m

+ s1v
−
1 + · · ·+ snv

−
n − l1v+1 − · · · − lnv+n .

(19)

6

1.7 Dual solution

Bensolve computes all vertices and extreme directions of the lower or upper image D of
the dual problem. The lower image D for the dual problem in Section 1.6.2 is the set of
all vectors y∗ = (y∗1, . . . , y

∗
q) such that

y∗1 = cq
|cq |w1

. . .
y∗q−1 = cq

|cq |wq−1

y∗q ≤ d(u1, . . . , um, v1, . . . , vn)

(20)

for some (u,w, v) = (u1, . . . , um, w1, . . . , wq, v1, . . . , vn) satisfying the constraints (14), (15)
and (16). A dual solution is understood to be a finite set of points and directions (u,w, v) =
(u1, . . . , um, w1, . . . , wq, v1, . . . , vn) of the feasible set (i.e. the set of vectors satisfying the
constraints (14), (15), (16)) such that the corresponding images according to

y∗1 = cq
|cq |w1

. . .
y∗q−1 = cq

|cq |wq−1

y∗q = d(u1, . . . , um, v1, . . . , vn)

(21)

are, respectively, the vertices and extreme direction of D.
The upper image D of the dual problem is Section 1.6.3 is defined likewise by replacing
≤ and d by ≥ and d̄ in (20).

1.8 Duality

The vertices of the lower image (or upper image) D of the dual problem can be used to
provide an inequality representation of the upper image (or lower image) P of the given
vector linear program. If y∗ = (y∗1, . . . , y

∗
q) is a vertex of the lower image D of the dual

problem in Section 1.6.2, the corresponding inequality is

cq(y
∗
1y1 + · · ·+ y∗q−1yq−1) +

(
|cq|
cq
− c1y∗1 − · · · − cq−1y∗q−1

)
yq ≥ |cq|y∗q , (22)

where c = (c1, . . . , cq) is the duality parameter vector, see Section 1.5. Every vector
y = (y1, . . . , yq) of the upper image P satisfies (22). Moreover, (22) holds with equality on
some facet (that is, a (q − 1)-dimensional face) of P . In particular, this means that the
inequality representation obtained in this way does not contain any redundant inequality.

For the upper image of the dual problem in Section 1.6.3, the corresponding inequality
is

cq(y
∗
1y1 + · · ·+ y∗q−1yq−1) +

(
|cq|
cq
− c1y∗1 − · · · − cq−1y∗q−1

)
yq ≤ |cq|y∗q , (23)

For further details on duality the reader is referred to [7, 8].

7

2 License and citation policy

Bensolve is free software: you can redistribute it and/or modify it under the terms of
the GNU General Public License, see Appendix. This program is distributed in the hope
that it will be useful, but without any warranty; without even the implied warranty of
merchantability or fitness for a particular purpose. See Appendix for more details.

If you are using this version of Bensolve for scientific papers, please cite it as:

[A] Löhne, A, Weißing, B.: Bensolve - VLP solver, version 2.1.x, www.bensolve.org

[B] Löhne, A, Weißing, B.: The vector linear program solver Bensolve – notes on theoret-
ical background, European J. Oper. Res., 260(3):807–813, 2017

3 Installation

Bensolve is provided as source code. It is required to compile (build) an executable file
using a C compiler. We recommend to use the GNU Compiler Collection (GCC).

3.1 Linux and Mac OS

Before you can install (build) Bensolve on your computer, you need to install (build)
the Glpk library. Unless you are using a package manager, download the latest version of
Glpk at

http://ftp.gnu.org/gnu/glpk/

and proceed with the installation instructions (see e.g. Appendix A in the Glpk manual for
details). The Glpk library is a single file libglpk.a together with a header file glpk.h.
Their default locations are /usr/local/lib and /usr/local/include, respectively. In
order to prepare Bensolve for installation

1. copy the Bensolve distribution file bensolve-X.Y.Z.tgz to a working directory,

2. unarchive the distribution file with the command:

tar -xz < bensolve-X.Y.Z.tgz

A subdirectory bensolve-X.Y.Z will be created. Enter this directory and type ls, which
should produce the following output:

bslv_algs.c bslv_lp.c bslv_poly.c doc

bslv_algs.h bslv_lp.h bslv_poly.h ex

bslv_lists.c bslv_main.c bslv_vlp.c

bslv_lists.h bslv_main.h bslv_vlp.h

8

If the Glpk library is installed at the default location, type

gcc -std=c99 -O3 -o bensolve *.c -lglpk -lm

(note: -O3 like “Optimize3”) to compile (build) the program. Alternatively, you can copy
the files glpk.h and libglpk.a into your Bensolve directory bensolve-X.Y.Z and type:

gcc -std=c99 -O3 -o bensolve *.c libglpk.a

To test the installation type:

./bensolve ex/ex01.vlp

3.2 Windows

Install Cygwin, see https://www.cygwin.com, which provides functionality similar to a
Linux distribution on Windows. In addition to the default Cygwin packages, install:

gcc-core

libglpk-devel

by using the Cygwin setup program. After Cygwin has been installed, launch the Cyg-
win terminal and type

pwd

to display your current working directory. This produces an output similar to

/home/my_user_name

Copy the Bensolve distribution file bensolve-X.Y.Z.tgz to the Windows directory (sim-
ilar to)

C:\cygwin\home\my_user_name

Unarchive the distribution file by typing the following into the Cygwin terminal:

tar -xz < bensolve-X.Y.Z.tgz

This creates a subdirectory bensolve-X.Y.Z. Enter this subdirectory by typing

cd bensolve-X.Y.Z

Type

ls

which should produce the following output:

9

bslv_algs.c bslv_lp.c bslv_poly.c doc

bslv_algs.h bslv_lp.h bslv_poly.h ex

bslv_lists.c bslv_main.c bslv_vlp.c

bslv_lists.h bslv_main.h bslv_vlp.h

Type

gcc -std=c99 -O3 -o bensolve *.c -lglpk -lm

(note: -O3 like “Optimize3”) to compile (build) the program. To test the installation type:

./bensolve.exe ex/ex01.vlp

4 Using the program

4.1 Running test examples

The subdirectory ex contains several test examples. Larger problem instances can be found
at http://moplib.uni-jena.de. Type

./bensolve --help

(on Windows, replace bensolve by bensolve.exe), to display all options. Here are some
examples: The command

./bensolve ex/ex05.vlp -b

solves problem ex05.vlp in the subdirectory ex assuming that the problem is bounded
(which is the case for this example). This means that phases 0 and 1 of the algorithm are
skipped. The command

./bensolve ex/ex05.vlp -m 0

solves problem ex/ex05.vlp suppressing any output. Increase the number to get more
output. The command

./bensolve ex/ex05.vlp -s

solves problem ex/ex05.vlp and writes the primal and dual solution, see Sections 1.4 and
1.7, to the files ex/ex05_pre_img_p.sol and ex/ex05_pre_img_d.sol. To run the larger
example number 7, type:

./bensolve ex/ex07.vlp -l primal_simplex -e 0.05 -p

Here Bensolve uses the primal simplex method (the dual is default) and computes an
approximate solution with ε = 0.05. Moreover, graphics files to visualize the upper and
lower image are generated, see Section 4.4.5.

10

4.2 Problem generation from OCTAVE (or MATLAB)

The VLP input format is explained in the next section. One can easily generate problem
files in VLP format using Octave. To do this, enter the subdirectory ex. Modify and run
with Octave the files named like exampleXX.m.

4.3 VLP input format

The VLP input format is an extension of the GLPK LP format to the case of multiple
objective linear programs (MOLP) and vector linear programs (VLP). It is a DIMACS-
like format (see http://dimacs.rutgers.edu/Challenges/). A problem instance in VLP
format is stored as a plain ASCII text file containing lines of several types. Lines are
terminated by the end-of-line character. Each line begins with a one-character designator
to identify the line type. Valid line designators are:

c comment line
p program line
i row descriptor line
j column descriptor line
a constraint coefficient descriptor line
o objective coefficent descriptor line
k cone generator coefficient descriptor line (for VLP) or

duality parameter descriptor line (for VLP)
e end of file

The line designator is followed by several fields which are separated by at least one blank
space.

A comment line begins with the lower-case character c:

c This is a comment line

The first line which is not a comment line must be the program line. In case of a
MOLP, it begins with the lower-case character p followed by 7 fields:

p CLASS DIR ROWS COLS NZ OBJ OBJNZ

The CLASS field defines the problem class and must contain the keyword vlp. The DIR field
contains the optimization direction and must contain either min (for minimization) or max
(for maximization). The ROWS and COLS fields represent the number of rows and columns,
that is, the integers m and n in (2), respectively. The NZ field contains the number of
non-zero constraint coefficients, that is, the number of non-zero entries of the coefficient
matrix B in (2). The OBJ field contains the number of objectives, that is, the integer q
in (1). The field OBJNZ contains the number of non-zero objective coefficients, that is, the
number of non-zero entries of the q × n-matrix P in (1).

A row descriptor line specifies the type of a constraint in (2). Such a line has one of
the following formats:

11

i ROW f

i ROW l VAL1

i ROW u VAL1

i ROW d VAL1 VAL2

i ROW s VAL1

ROW contains the index of the constraint, which is an integer between 1 and m. The next
character (f, l, u, d, s) specifies the type of the constraint. VAL1 and VAL2 contain the
floating-point constraint values. For a constraint in (2), say the k-th constraint

ak ≤ Bk1x1 +Bk2x2 + · · ·+Bknxn ≤ bk,

the following types are possible:

f no bound ak = −∞ bk = +∞
l lower bound ak = VAL1 bk = +∞
u upper bound ak = −∞ bk = VAL1

d double-sided bound ak = VAL1 bk = VAL2

s equation ak = VAL1 bk = VAL1

A line of the form

i ROW f

is a default row descriptor line and can be omitted.
A column descriptor line specifies the type of a variable in (3). Such a line has one

of the following formats:

j COL f

j COL l VAL1

j COL u VAL1

j COL d VAL1 VAL2

j COL s VAL1

COL contains the index of the variable, which is an integer between 1 and n. The next
character (f, l, u, d, s) specifies the type of the variable. VAL1 and VAL2 contain the
floating-point values of the variable bounds. For the variable xk in (3), we have lk ≤ xk ≤
uk. The following variable types are possible:

f free variable lk = −∞ sk = +∞
l variable with lower bound lk = VAL1 sk = +∞
u variable with upper bound lk = −∞ sk = VAL1

d double-bounded variable lk = VAL1 sk = VAL2

s fixed variable lk = VAL1 sk = VAL1

The default column descriptor line

12

j COL s 0

can be omitted.
A constraint coefficient descriptor line has the format:

a ROW COL VAL

For every non-zero constraint coefficient Bij in (2), exactly one coefficient descriptor line
must be specified. ROW and COL contain the row number i and the column number j of the
coefficient Bij, respectively. VAL contains the floating-point coefficient Bij. A coefficient
descriptor line where VAL equals zero is allowed. The number of constraint coefficient
descriptor lines must be exactly the same as specified in the field NZ of the problem line.

An objective coefficient descriptor line has the format:

o ROW COL VAL

For every non-zero objective coefficient Pij in (1), exactly one coefficient descriptor line
must be specified. ROW and COL contain the row and column numbers i and j of Pij and
VAL contains the floating-point value of Pij. A coefficient descriptor line where VAL equals
zero is allowed. The number of constraint coefficient descriptor lines must be exactly the
same as specified in the field OBJNZ of the problem line.

In case of a vector linear program (beyond the special case of MOLP), the program line
has 10 fields (i.e. three additional fields):

p CLASS DIR ROWS COLS NZ OBJ OBJNZ CTYPE GEN GENNZ

The CTYPE field specifies the type of cone representation, compare Section 1.2. Valid entries
are cone and dualcone. If CTYPE is specified, the fields GEN and GENNZ must be specified,
too. The GEN field is the number of generating vectors, i.e., either o in (5) or p in (6).
The GENNZ field contains the number of non-zero cone coefficients, that is, the number of
non-zero entries of either the matrix Y or the matrix Z, dependent of which one is given.

A cone coefficient descriptor line has the format:

k ROW COL VAL

For every non-zero cone coefficient Yij in (5), respectively, Zij in (6), exactly one cone
descriptor line must be specified. If CTYPE=cone, ROW and COL contain the row and column
numbers 1 ≤ i ≤ q and 1 ≤ j ≤ o and VAL contains the floating-point value of Yij. If
CTYPE=dualcone, ROW and COL contain the row and column numbers 1 ≤ i ≤ q and
1 ≤ j ≤ p and VAL contains the floating-point value of Zij. A cone descriptor line where
VAL equals zero is allowed. The number of cone coefficient descriptor lines must be exactly
the same as specified in the field GENNZ of the problem line.

A duality parameter descriptor line has the format:

k ROW 0 VAL

Do not count duality parameter descriptor lines in the field GENNZ of the problem line.

13

4.4 Output format

Bensolve writes computational results to different files. Part of the results is displayed
on the screen. To explain the format, we assume that we solve a minimization problem,
which is stored in ex01.vlp.

4.4.1 Upper and lower images

The vertices and extreme directions of the upper image P and lower image D (see Sections
1.3 and 1.7) are written line-wise to the files ex01_img_p.sol and ex01_img_d.sol.

The first column consists of either 1 or 0 indicating that a line represents a vertex or a
direction. For instance, the line

1 1.5 2.5

means that y = (1.5, 2.5) is a vertex of P , whereas

0 1 0

means that y = (1, 0) is an extreme direction of P .
An adjacency list for P is written to ex01_adj_p.sol. Line i in this file corresponds

to vertex (or extreme direction) i of P stored in line i of ex01_img_p.sol. Line i of the
adjacency list consists of the line numbers of vertices or extreme directions adjacent to
vertex (or extreme direction) i. Line numbering starts with 0.

A “facet-vertex” incidence list of P is written to ex01_inc_p.sol. Line i in this file
refers to vertex (extreme direction) i of D, which refers to a (ideal) facet of P , compare
Section 1.8. Line i contains the line numbers of vertices and extreme directions of P , which
are incident to this facet.

Likewise ex01_adj_d.sol and ex01_inc_d.sol contain an adjacency list and a “facet-
vertex” incidence list of D.

4.4.2 Duality parameter vector

The duality parameter vector c, which is either computed or scaled by Bensolve, is stored
in ex01_c.sol.

4.4.3 Primal and dual solution

Solutions are not stored by default. Use option -s to store primal and dual solutions. The
command

./bensolve ex/ex01.vlp -s

generates the files ex01_pre_img_p.sol and ex01_pre_img_d.sol, where the first file
contains a primal solution and the second one a dual solution. The finitely many vectors
of a solution are stored line-wise. They appear in the same order than the corresponding

14

image points, see Section 4.4.1. There is no leading 0 or 1. To decide whether a vector is
a point or a direction, the leading 0 or 1 of the corresponding image point can be used.

For dual solutions, only the u and w components (but not the v components) are stored,
that is, every line has the format u1, . . . , um, w1, . . . , wq.

Use option -f short, to obtain a short and easier to read format.

4.4.4 Ordering cone

The extreme directions (together with the one and only vertex, the origin) of the or-
dering cone and the dual of the ordering cone are written to the files ex01_p.cone and
ex01_d.cone. As for the upper and lower images, adjacency and incidence lists are written
to files. Input data of the ordering cone may contain redundant vectors, but the results
does not.

4.4.5 Graphical output

Bensolve supports the generation of graphics files for problems with 3 objectives. Using
option -p, for instance,

./bensolve ex/ex10.vlp -p

Bensolve produces two graphics files in OFF format, which contain a visualization of
the upper (lower) image of the primal problem and the lower (upper) image of the dual
problem. In this example, the files ex10_p.off and ex10_d.off are generated. They are
located in the subdirectory ex.

OFF files can be displayed, for instance, with Geomview, see http://geomview.org,
or Javaview, see http://javaview.de.

Option -p also generates the files ex10_p.inst and ex10_d.inst to plot a scaled version
of the upper and lower images with Geomview. To scale with Javaview, load the .off

files and use the menu “Inspector → Camara → Box Ratio”.
The above example produces the bensolvehedron, which is displayed on the front cover

of this manual.

References

[1] H. Benson. Further analysis of an outcome set-based algorithm for multiple-objective
linear programming. Journal of Optimization Theory and Applications, 97(1):1–10,
1998.

[2] H. Benson. An outer approximation algorithm for generating all efficient extreme
points in the outcome set of a multiple objective linear programming problem. Journal
of Global Optimization, 13:1–24, 1998.

[3] J. P. Dauer. Analysis of the objective space in multiple objective linear programming.
J. Math. Anal. Appl., 126(2):579–593, 1987.

15

[4] J. P. Dauer and Y.-H. Liu. Solving multiple objective linear programs in objective
space. European J. Oper. Res., 46(3):350–357, 1990.

[5] M. Ehrgott, A. Löhne, and L. Shao. A dual variant of Benson’s outer approximation
algorithm. Journal of Global Optimization, 52(4):757–778, 2012.

[6] A. H. Hamel, A. Löhne, and B. Rudloff. A Benson type algorithm for linear vector
optimization and applications. Journal of Global Optimization, 59(4):811–836, 2014.

[7] F. Heyde and A. Löhne. Geometric duality in multiple objective linear programming.
SIAM J. Optim., 19(2):836–845, 2008.

[8] A. Löhne. Vector Optimization with Infimum and Supremum. Vector Optimization.
Springer, Berlin, 2011.

[9] A. Löhne and B. Weißing. The vector linear program solver Bensolve – notes on
theoretical background. European J. Oper. Res., 260(3):807–813, 2017.

[10] L. Shao and M. Ehrgott. Approximately solving multiobjective linear programmes in
objective space and an application in radiotherapy treatment planning. Math. Methods
Oper. Res., 68(2):257–276, 2008.

16

APPENDIX: GNU GENERAL PUBLIC LICENSE

Copyright c© 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds
of works.

The licenses for most software and other practical works are designed to take away your
freedom to share and change the works. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change all versions of a program–to make
sure it remains free software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to any other work
released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for them if you wish), that you receive source code or can get
it if you want it, that you can change the software or use pieces of it in new free programs,
and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking
you to surrender the rights. Therefore, you have certain responsibilities if you distribute
copies of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must pass on to the recipients the same freedoms that you received. You must make sure
that they, too, receive or can get the source code. And you must show them these terms
so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copy-
right on the software, and (2) offer you this License giving you legal permission to copy,
distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no
warranty for this free software. For both users’ and authors’ sake, the GPL requires that
modified versions be marked as changed, so that their problems will not be attributed
erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of
the software inside them, although the manufacturer can do so. This is fundamentally
incompatible with the aim of protecting users’ freedom to change the software. The sys-
tematic pattern of such abuse occurs in the area of products for individuals to use, which
is precisely where it is most unacceptable. Therefore, we have designed this version of the
GPL to prohibit the practice for those products. If such problems arise substantially in

17

other domains, we stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not
allow patents to restrict development and use of software on general-purpose computers,
but in those that do, we wish to avoid the special danger that patents applied to a free
program could make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

Terms and Conditions

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such
as semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each
licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or
organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion
requiring copyright permission, other than the making of an exact copy. The resulting
work is called a “modified version” of the earlier work or a work “based on” the earlier
work.

A “covered work” means either the unmodified Program or a work based on the
Program.

To “propagate” a work means to do anything with it that, without permission, would
make you directly or secondarily liable for infringement under applicable copyright
law, except executing it on a computer or modifying a private copy. Propagation
includes copying, distribution (with or without modification), making available to
the public, and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to
make or receive copies. Mere interaction with a user through a computer network,
with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that
it includes a convenient and prominently visible feature that (1) displays an appro-
priate copyright notice, and (2) tells the user that there is no warranty for the work
(except to the extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If the interface
presents a list of user commands or options, such as a menu, a prominent item in the
list meets this criterion.

18

1. Source Code.

The “source code” for a work means the preferred form of the work for making
modifications to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined
by a recognized standards body, or, in the case of interfaces specified for a particular
programming language, one that is widely used among developers working in that
language.

The “System Libraries” of an executable work include anything, other than the work
as a whole, that (a) is included in the normal form of packaging a Major Component,
but which is not part of that Major Component, and (b) serves only to enable use
of the work with that Major Component, or to implement a Standard Interface for
which an implementation is available to the public in source code form. A “Major
Component”, in this context, means a major essential component (kernel, window
system, and so on) of the specific operating system (if any) on which the executable
work runs, or a compiler used to produce the work, or an object code interpreter
used to run it.

The “Corresponding Source” for a work in object code form means all the source code
needed to generate, install, and (for an executable work) run the object code and to
modify the work, including scripts to control those activities. However, it does not
include the work’s System Libraries, or general-purpose tools or generally available
free programs which are used unmodified in performing those activities but which are
not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries
and dynamically linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those subprograms
and other parts of the work.

The Corresponding Source need not include anything that users can regenerate au-
tomatically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the
Program, and are irrevocable provided the stated conditions are met. This License
explicitly affirms your unlimited permission to run the unmodified Program. The
output from running a covered work is covered by this License only if the output,
given its content, constitutes a covered work. This License acknowledges your rights
of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without
conditions so long as your license otherwise remains in force. You may convey covered
works to others for the sole purpose of having them make modifications exclusively

19

for you, or provide you with facilities for running those works, provided that you
comply with the terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for you must
do so exclusively on your behalf, under your direction and control, on terms that
prohibit them from making any copies of your copyrighted material outside their
relationship with you.

Conveying under any other circumstances is permitted solely under the conditions
stated below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any
applicable law fulfilling obligations under article 11 of the WIPO copyright treaty
adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention
of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention
of technological measures to the extent such circumvention is effected by exercising
rights under this License with respect to the covered work, and you disclaim any
intention to limit operation or modification of the work as a means of enforcing,
against the work’s users, your or third parties’ legal rights to forbid circumvention of
technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in
any medium, provided that you conspicuously and appropriately publish on each
copy an appropriate copyright notice; keep intact all notices stating that this License
and any non-permissive terms added in accord with section 7 apply to the code; keep
intact all notices of the absence of any warranty; and give all recipients a copy of this
License along with the Program.

You may charge any price or no price for each copy that you convey, and you may
offer support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it
from the Program, in the form of source code under the terms of section 4, provided
that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified it, and giving
a relevant date.

b) The work must carry prominent notices stating that it is released under this
License and any conditions added under section 7. This requirement modifies
the requirement in section 4 to “keep intact all notices”.

20

c) You must license the entire work, as a whole, under this License to anyone who
comes into possession of a copy. This License will therefore apply, along with
any applicable section 7 additional terms, to the whole of the work, and all its
parts, regardless of how they are packaged. This License gives no permission to
license the work in any other way, but it does not invalidate such permission if
you have separately received it.

d) If the work has interactive user interfaces, each must display Appropriate Legal
Notices; however, if the Program has interactive interfaces that do not display
Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which
are not by their nature extensions of the covered work, and which are not combined
with it such as to form a larger program, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the compilation and its resulting copyright are
not used to limit the access or legal rights of the compilation’s users beyond what
the individual works permit. Inclusion of a covered work in an aggregate does not
cause this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4
and 5, provided that you also convey the machine-readable Corresponding Source
under the terms of this License, in one of these ways:

a) Convey the object code in, or embodied in, a physical product (including a
physical distribution medium), accompanied by the Corresponding Source fixed
on a durable physical medium customarily used for software interchange.

b) Convey the object code in, or embodied in, a physical product (including a
physical distribution medium), accompanied by a written offer, valid for at least
three years and valid for as long as you offer spare parts or customer support
for that product model, to give anyone who possesses the object code either
(1) a copy of the Corresponding Source for all the software in the product that
is covered by this License, on a durable physical medium customarily used for
software interchange, for a price no more than your reasonable cost of physically
performing this conveying of source, or (2) access to copy the Corresponding
Source from a network server at no charge.

c) Convey individual copies of the object code with a copy of the written offer to
provide the Corresponding Source. This alternative is allowed only occasionally
and noncommercially, and only if you received the object code with such an
offer, in accord with subsection 6b.

d) Convey the object code by offering access from a designated place (gratis or
for a charge), and offer equivalent access to the Corresponding Source in the
same way through the same place at no further charge. You need not require
recipients to copy the Corresponding Source along with the object code. If the

21

place to copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party) that supports
equivalent copying facilities, provided you maintain clear directions next to the
object code saying where to find the Corresponding Source. Regardless of what
server hosts the Corresponding Source, you remain obligated to ensure that it
is available for as long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided you inform
other peers where the object code and Corresponding Source of the work are
being offered to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the
Corresponding Source as a System Library, need not be included in conveying the
object code work.

A “User Product” is either (1) a “consumer product”, which means any tangible
personal property which is normally used for personal, family, or household purposes,
or (2) anything designed or sold for incorporation into a dwelling. In determining
whether a product is a consumer product, doubtful cases shall be resolved in favor
of coverage. For a particular product received by a particular user, “normally used”
refers to a typical or common use of that class of product, regardless of the status of
the particular user or of the way in which the particular user actually uses, or expects
or is expected to use, the product. A product is a consumer product regardless of
whether the product has substantial commercial, industrial or non-consumer uses,
unless such uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, autho-
rization keys, or other information required to install and execute modified versions
of a covered work in that User Product from a modified version of its Corresponding
Source. The information must suffice to ensure that the continued functioning of
the modified object code is in no case prevented or interfered with solely because
modification has been made.

If you convey an object code work under this section in, or with, or specifically for
use in, a User Product, and the conveying occurs as part of a transaction in which
the right of possession and use of the User Product is transferred to the recipient in
perpetuity or for a fixed term (regardless of how the transaction is characterized),
the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any
third party retains the ability to install modified object code on the User Product
(for example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement
to continue to provide support service, warranty, or updates for a work that has been
modified or installed by the recipient, or for the User Product in which it has been
modified or installed. Access to a network may be denied when the modification

22

itself materially and adversely affects the operation of the network or violates the
rules and protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord
with this section must be in a format that is publicly documented (and with an
implementation available to the public in source code form), and must require no
special password or key for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by
making exceptions from one or more of its conditions. Additional permissions that
are applicable to the entire Program shall be treated as though they were included
in this License, to the extent that they are valid under applicable law. If additional
permissions apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by this License
without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any
additional permissions from that copy, or from any part of it. (Additional permissions
may be written to require their own removal in certain cases when you modify the
work.) You may place additional permissions on material, added by you to a covered
work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered
work, you may (if authorized by the copyright holders of that material) supplement
the terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the terms of sections
15 and 16 of this License; or

b) Requiring preservation of specified reasonable legal notices or author attribu-
tions in that material or in the Appropriate Legal Notices displayed by works
containing it; or

c) Prohibiting misrepresentation of the origin of that material, or requiring that
modified versions of such material be marked in reasonable ways as different
from the original version; or

d) Limiting the use for publicity purposes of names of licensors or authors of the
material; or

e) Declining to grant rights under trademark law for use of some trade names,
trademarks, or service marks; or

f) Requiring indemnification of licensors and authors of that material by anyone
who conveys the material (or modified versions of it) with contractual assump-
tions of liability to the recipient, for any liability that these contractual assump-
tions directly impose on those licensors and authors.

23

All other non-permissive additional terms are considered “further restrictions” within
the meaning of section 10. If the Program as you received it, or any part of it, contains
a notice stating that it is governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains a further
restriction but permits relicensing or conveying under this License, you may add to
a covered work material governed by the terms of that license document, provided
that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in
the relevant source files, a statement of the additional terms that apply to those files,
or a notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a
separately written license, or stated as exceptions; the above requirements apply
either way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided under
this License. Any attempt otherwise to propagate or modify it is void, and will
automatically terminate your rights under this License (including any patent licenses
granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently
if the copyright holder notifies you of the violation by some reasonable means, this
is the first time you have received notice of violation of this License (for any work)
from that copyright holder, and you cure the violation prior to 30 days after your
receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, you do not qualify to receive new
licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the
Program. Ancillary propagation of a covered work occurring solely as a consequence
of using peer-to-peer transmission to receive a copy likewise does not require accep-
tance. However, nothing other than this License grants you permission to propagate
or modify any covered work. These actions infringe copyright if you do not accept

24

this License. Therefore, by modifying or propagating a covered work, you indicate
your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license
from the original licensors, to run, modify and propagate that work, subject to this
License. You are not responsible for enforcing compliance by third parties with this
License.

An “entity transaction” is a transaction transferring control of an organization, or
substantially all assets of one, or subdividing an organization, or merging organiza-
tions. If propagation of a covered work results from an entity transaction, each party
to that transaction who receives a copy of the work also receives whatever licenses
to the work the party’s predecessor in interest had or could give under the previous
paragraph, plus a right to possession of the Corresponding Source of the work from
the predecessor in interest, if the predecessor has it or can get it with reasonable
efforts.

You may not impose any further restrictions on the exercise of the rights granted or
affirmed under this License. For example, you may not impose a license fee, royalty,
or other charge for exercise of rights granted under this License, and you may not
initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for sale, or importing
the Program or any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the
Program or a work on which the Program is based. The work thus licensed is called
the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled
by the contributor, whether already acquired or hereafter acquired, that would be
infringed by some manner, permitted by this License, of making, using, or selling
its contributor version, but do not include claims that would be infringed only as
a consequence of further modification of the contributor version. For purposes of
this definition, “control” includes the right to grant patent sublicenses in a manner
consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license
under the contributor’s essential patent claims, to make, use, sell, offer for sale, import
and otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or
commitment, however denominated, not to enforce a patent (such as an express
permission to practice a patent or covenant not to sue for patent infringement).

25

To “grant” such a patent license to a party means to make such an agreement or
commitment not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corre-
sponding Source of the work is not available for anyone to copy, free of charge and
under the terms of this License, through a publicly available network server or other
readily accessible means, then you must either (1) cause the Corresponding Source to
be so available, or (2) arrange to deprive yourself of the benefit of the patent license
for this particular work, or (3) arrange, in a manner consistent with the requirements
of this License, to extend the patent license to downstream recipients. “Knowingly
relying” means you have actual knowledge that, but for the patent license, your con-
veying the covered work in a country, or your recipient’s use of the covered work in
a country, would infringe one or more identifiable patents in that country that you
have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey,
or propagate by procuring conveyance of, a covered work, and grant a patent license
to some of the parties receiving the covered work authorizing them to use, propagate,
modify or convey a specific copy of the covered work, then the patent license you
grant is automatically extended to all recipients of the covered work and works based
on it.

A patent license is “discriminatory” if it does not include within the scope of its
coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or
more of the rights that are specifically granted under this License. You may not
convey a covered work if you are a party to an arrangement with a third party that
is in the business of distributing software, under which you make payment to the
third party based on the extent of your activity of conveying the work, and under
which the third party grants, to any of the parties who would receive the covered
work from you, a discriminatory patent license (a) in connection with copies of the
covered work conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that contain the covered
work, unless you entered into that arrangement, or that patent license was granted,
prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied li-
cense or other defenses to infringement that may otherwise be available to you under
applicable patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise)
that contradict the conditions of this License, they do not excuse you from the con-
ditions of this License. If you cannot convey a covered work so as to satisfy simul-
taneously your obligations under this License and any other pertinent obligations,
then as a consequence you may not convey it at all. For example, if you agree to

26

terms that obligate you to collect a royalty for further conveying from those to whom
you convey the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or
combine any covered work with a work licensed under version 3 of the GNU Affero
General Public License into a single combined work, and to convey the resulting work.
The terms of this License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License, section 13,
concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that
a certain numbered version of the GNU General Public License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
numbered version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of the GNU General Public License,
you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU
General Public License can be used, that proxy’s public statement of acceptance of
a version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no
additional obligations are imposed on any author or copyright holder as a result of
your choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PER-
MITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR
OR CORRECTION.

16. Limitation of Liability.

27

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO
IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY
WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE,
BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPE-
CIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIM-
ITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given
local legal effect according to their terms, reviewing courts shall apply local law that
most closely approximates an absolute waiver of all civil liability in connection with
the Program, unless a warranty or assumption of liability accompanies a copy of the
Program in return for a fee.

End of Terms and Conditions

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve this is to make it free software which everyone
can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to
the start of each source file to most effectively state the exclusion of warranty; and
each file should have at least the “copyright” line and a pointer to where the full
notice is found.

<one line to give the program’s name and a brief idea of what it does.>

Copyright (C) <textyear> <name of author>

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

28

You should have received a copy of the GNU General Public License

along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when
it starts in an interactive mode:

<program> Copyright (C) <year> <name of author>

This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands show w and show c should show the appropriate parts of
the General Public License. Of course, your program’s commands might be different;
for a GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to
sign a “copyright disclaimer” for the program, if necessary. For more information on
this, and how to apply and follow the GNU GPL, see http://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may consider it
more useful to permit linking proprietary applications with the library. If this is what
you want to do, use the GNU Lesser General Public License instead of this License.
But first, please read http://www.gnu.org/philosophy/why-not-lgpl.html.

29

