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1. Overview

The package bensolve tools contains the following components:

• polyh is a class for calculus of convex polyhedra. It is supplemented by the commands
ball, bensolvehedron, cart, chunion, cone, cube, emptyset, intsec, msum, origin,
point, simplex, space, see Section 5 for details.

• polyf is a class for calculus of polyhedral convex functions. It is supplemented by the
commands affine, fenv, finfc, fmax, fsum, gauge, indicator, maxnorm, sumnorm,
translative, see Section 6 for explanation.

• lpsolve solves linear programs (GLPK interface), see Section 7.

• pcpsolve solves polyhedral convex programs, see Section 8.

• qcsolve is a solver for global optimization problems with quasi-concave objective function
and linear constraints, see Section 9.

• molpsolve solves multiple objective linear programs, see Section 10.

• vlpsolve solves vector linear programs, see Section 11.

2. Theoretical Background

The package bensolve tools is based on the vector linear program solver bensolve [10]. As shown
in [11], vector linear programming is equivalent to polyhedral projection, which is the basis of all
polyhedral calculus tools. The global optimization solver, see Section 9, is based on a modified
version of bensolve using the theoretical results in [3].

In this exposition, we use several standard concepts from (polyhedral) Convex Analysis without
any further explanation. More information can be found in standard books on Convex Analysis,
such as [12], [7], [2].

For details about the algorithms used in bensolve, see e.g. [1], [5], [8], [6].

3. Citation Policy

Please cite the references [4] and [11] if you use bensolve tools in scientific papers. In case you
use the global optimization solver, please cite reference [3].

4. Installation and Testing

4.1. Installation for Matlab

We assume that Matlab version 2015b or newer is installed.

1. Go to http://bensolve.org/tools/download.html.

2. Download and unpack the file bt-X.Y.zip
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3. Run Matlab and change into the bensolve tools directory .../bt-X.Y.

Note that bensolve tools for Matlab uses a pre-compiled mex-file, see also Section 4.4.

4.2. Installation for Octave

It is necessary to generate a mex-file named bensolve.mex. Please follow the instructions
depending on your operating system.

Ubuntu

1. Open a terminal (Shift+Ctrl+T)

2. To install Octave (in case Octave is already installed, make sure ‘mkoctfile’ is available),
run:
sudo apt-get update
sudo apt-get install liboctave-dev

3. Go to http://bensolve.org/tools/download.html.

4. Download the file bt-X.Y.tgz.

5. Change into the folder where bt-X.Y.tgz is located by typing into the terminal:
cd path_to_your_folder

6. Unpack the files by typing into the terminal:
tar -xz < bt-X.Y.tgz

7. Change into the generated subdirectory:
cd bt-X.Y

8. Run:
mkoctfile --mex src/*.c -lglpk -O3 -o bensolve

MacOS

The following instructions are based on an installation of GNU Octave using the package manager
Homebrew. There are many other possibilities to install Octave, see Section 4.4 for possible
problems.

1. Install Homebrew: https://brew.sh

2. Install GNU Octave. Open a terminal and enter:
brew install octave

3. Go to http://bensolve.org/tools/download.html.

4. Download and unpack bt-X.Y.zip

5. Change into the directory bt-X.Y by typing into the terminal:
cd your_download_location/bt-X.Y
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6. Run Octave by entering:
octave

7. In the octave terminal, run:
make_oct

Windows

1. Go to https://ftp.gnu.org/gnu/octave/windows/.

2. Download and run the octave-X.Y.Z-w64-installer.exe to install Octave (we recommend
the latest version).

3. Go to http://bensolve.org/tools/download.html.

4. Download and unpack bt-X.Y.zip

5. Run Octave and move into the bensolve tools directory bt-X.Y

6. In the Octave terminal, run:
make_oct

4.3. Test your installation

To test your installation, enter

1 P=ball(2);
2 plot(P);

You can also try to generate a more complex image by entering the following commands:

1 P=bensolvehedron(3,3);
2 Q=cone(3);
3 R=P+Q;
4 opt.dirlength=100;
5 plot(R,opt);
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4.4. Trouble shooting

If bensolve tools does not work correctly, you can try to install a newer version of Matlab or
Octave.

Note that bensolve tools for Matlab uses a mex-file with the name bensolve.mexmaci64
(or similar, depending on the operating system). If the pre-compiled mex-file is not working
on your operating system, you can try to compile your own mex-file using the source code in
the subdirectory src. Some hints are given in the file generate_mex_file_matlab.txt in the
subdirectory doc.

If the mex file generation for Octave does not work, we recommend to check whether the
GLPK library is installed properly. The usual way to generate a mex file is to run the following
in a terminal (exit octave before):
cd your_path/bt-X.Y
mkoctfile --mex src/*.c -lglpk -O3 -o bensolve

Note that the O in -O3 stands for Optimization, ‘zero’ does not work. Sometimes glpk.h is
not found. For instance, if it is located in the directory /usr/include, enter:
mkoctfile --mex src/*.c -I/usr/include -lglpk -O3 -o bensolve

Sometimes it can be necessary to specify the glpk library libglpk.a. For instance, if it is located
in the directory /usr/lib, enter:
mkoctfile --mex src/*.c -I/usr/include /usr/lib/libglpk.a -O3 -o bensolve

4.5. Getting help

Use the help command to get help for a class or command (for classes in Matlab also the doc
command can be useful). For instance:

1 help msum

-- P = msum({P1,...,Pn}) Minkowski sum of n polyhedra

Input:
{P1,...,Pn}: finitely many polyhedra (cell array of polyh objects)

Output:
P: Minkowski sum (polyh object)

see also: polyh/plus, intsec, chunion, cart

5. polyh – Calculus of Convex Polyhedra

polyh is a class for computations with convex polyhedra. Throughout this section, a convex
polyhedron is called polyhedron for short. The most important operations are:

• computing vertices and extreme directions (V-representation)

• computing an inequality representation (H-representation)
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• image under linear transformation (in particular projection)

• inverse image under linear transformation

• lineality space, affine hull, dimension, recession cone

• cone generated by a polyhedron

• adjacency list, facet-vertex incidence list

• Minkowski sum of n polyhedra

• intersection of n polyhedra

• closed convex hull of the union of n polyhedra

• cartesian product of n polyhedra

• polar of a polyhedron

• polarcone of a polyhedron

• normal cone of a polyhedron at a point

• comparing polyhedra: subset, proper subset, equality

• plotting 2d and 3d polyhedra

5.1. Representing a convex polyhedron

A convex polyhedron P can be defined in three ways:

• An H-represenatation

P = {x ∈ Rn| a ≤ Bx ≤ b, l ≤ x ≤ u}

means that P is given by finitely many linear inequalities. Here B is an (m × n)-matrix.
The lower bound vector a has m components being either a real number or −∞. If a is not
specified, all of its components are −∞ by default. The remaining bounds have a similar
meaning.

• A V-representation

P = {x ∈ Rn| x = V λ+Dµ+ Lη, λ ≥ 0, µ ≥ 0, e⊤λ = 1}

means that P is given by a generalized convex hull of finitely many points (the columns
of the matrix V), finitely many directions (the columns of the matrix D) and finitely many
lineality directions (the columns of the matrix L). Here e = (1, . . . , 1)⊤ denotes the all-
one-vector.
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• A P-representation
P = {Mx ∈ Rq| a ≤ Bx ≤ b, l ≤ x ≤ u}

means that another polyhedron Q = {x ∈ Rn| a ≤ Bx ≤ b, l ≤ x ≤ u} is given by an
H-representation and P is the image of Q under the linear transformation x 7→ Mx , where
M is a (q × n)-matrix. The ‘P’ stands for “projection” and is motivated by the following
reformulation of P :

P = {y ∈ Rq| ∃x ∈ Rn : Mx − y = 0, a ≤ Bx ≤ b, l ≤ x ≤ u},

which shows that P is a projection of the polyhedron

Q = {((x, y) ∈ Rn × Rq| Mx − y = 0, a ≤ Bx ≤ b, l ≤ x ≤ u}

onto the space Rq. Both an H-representation and a V-representation are special cases of a
P-representation. The concept of a P-representation is often related to the term “lifting”
in the literature.

5.1.1. H-representation examples

Example 5.1 Let a cube in R3 be defined by

P = {x ∈ R3| − 1 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1, −1 ≤ x3 ≤ 1}.

A corresponding polyh instance is obtained and plotted by the following commands:

1 clear rep;
2 rep.l=[-1;-1;-1];
3 rep.u=[1;1;1];
4 P=polyh(rep,’h’);
5 plot(P);

2-1

-0.5

-1

0

1

0.5

1

0 0-11

rep is a structure to store a representation of the polyhedron. The command rep.l=[-1;-1;-1];
sets lower bounds x1 ≥ −1, x2 ≥ −1, x3 ≥ −1. Likewise, rep.u=[1;1;1]; sets upper bounds
x1 ≤ 1, x2 ≤ 1, x3 ≤ 1. The command P=polyh(rep,’h’); defines a polyh instance. The
option ’h’ is required to indicate that the polyhedron is given as an H-representation.
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To define a polyhedron by an H-representation, a structure (named rep here) with the fol-
lowing fields is used.

rep.B
rep.a
rep.b
rep.l
rep.u

Some fields are optional. Default values for a, l and b, u are vectors with entries −∞ and +∞,
respectively. At least one of the fields B, l, u is required.

Example 5.2 Let

P = {x ∈ R3| x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, 2x1 + x2 + x3 ≤ 3}.

The corresponding polyh instance is defined and plotted by the commands:

1 clear rep;
2 rep.B=[2 1 1];
3 rep.b=3;
4 rep.l=[0;0;0];
5 P=polyh(rep,’h’);
6 plot(P);
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5.1.2. V-representation examples

Example 5.3 A cube in R3, see Example 5.1, is also given by its eight vertices: (0, 0, 0)⊤,
(0, 0, 1)⊤, (0, 1, 0)⊤, (0, 1, 1)⊤, (1, 0, 0)⊤, (1, 0, 1)⊤, (1, 1, 0)⊤, (1, 1, 1)⊤. A corresponding
polyh instance is obtained and plotted by

1 clear rep;
2 rep.V=[0 0 0 0 1 1 1 1;0 0 1 1 0 0 1 1;0 1 0 1 0 1 0 1];
3 P=polyh(rep,’v’);
4 plot(P);
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To define a polyhedron by a V-representation, a structure (named rep here) with the following
fields must be given.

rep.V
rep.D
rep.L

The columns of rep.V refer to given points, the columns of rep.D refer to given directions and
the columns of rep.L refer to given lineality directions. At least one point is required to be
given.

Example 5.4 A polyh instance of the hyperplane

H =


32
5

+ η1
21
4

+ η2
−21
0

∣∣∣∣ η1, η2 ∈ R


can be generated by the commands:

1 clear rep;
2 rep.V=[3;2;5];
3 rep.L=[2 1 4;-2 1 0]’;
4 P=polyh(rep,’v’);
5 plot(P);

12



1-0.5

-1

0
0.50.5

1

0

01.5

1

Note that in case of a nontrivial lineality space, we plot only the polyhedron P ∩ U (which is a
single point in the previous example), where U is a space complementary to the lineality space.
Additionaly, lineality directions are drawn by blue lines. This principle becomes more clear by the
next example.

Example 5.5 Plotting the set P = {x ∈ R3| − 1 ≤ x1 ≤ 1, x2 ≥ 0, x3 ∈ R}:

1 P=ball(1):cone(1):space(1);
2 plot(P);
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The set P is composed as the cartesian product of three one-dimensional sets: ball(1) defines
the interval [−1, 1], cone(1) defines the nonnegative real numbers R+, and space(1) defines R.

Example 5.6 Let the polyhedron P be given as:

P := conv


10
0

01
0

00
1

+ cone

10
0

01
0

00
1

 .
1 clear rep;
2 rep.V=eye(3);
3 rep.D=eye(3);
4 P=polyh(rep,’v’);
5 plot(P);
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5.1.3. P-representation examples

Example 5.7 Let P be the image of the 3-dimensional unit cube mapped onto R2 by the mappingx1x2
x3

 7→ (
2x1 + x3
3x2 + x3

)
,

that is,

P =


(
2 0 1

0 3 1

)
·

x1x2
x3

∣∣∣∣
00
0

 ≤
x1x2
x3

 ≤
11
1

 .
A corresponding polyh instance is obtained and plotted by the following commands:

1 clear rep;
2 rep.l=zeros(3,1);
3 rep.u=ones(3,1);
4 rep.M=[2 0 1;0 3 1];
5 P=polyh(rep);
6 plot(P);

0 1 2 3

0

1

2

3

4

An alternative way to describe this polyhedron is first to define an H-representation of the 3-
dimensional unit cube Q and then to compute the image of Q under the linear transformation
M by the im command.
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1 clear rep;
2 rep.l=zeros(3,1);
3 rep.u=ones(3,1);
4 Q=polyh(rep,’h’);
5 M=[2 0 1;0 3 1];
6 P=im(Q,M);

Example 5.8 Another example can be found in the file bensolvehedron.m. The following
command yields the image of a 125-dimensional hypercube with respect to a (3 × 125)-matrix
which consists of all possible column-wise arrangements of the numbers −2,−1,−0,−1,−2.

1 P=bensolvehedron(3,2);
2 plot(P);

200
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-100

0

-100

100

0 -200100

5.2. Retrieving representations and evaluation of polyhedra

For a polyh instance P, an H-, V- or P-representation is returned as a structure, respectively,
by the commands:

hrep(P)
vrep(P)
prep(P)

A polyh instance stores (at least) a P-representation of the polyhedron. To obtain an H-
or an V-representation, an evaluation of the polyhedron is required. Evaluation can become
expensive, in particular, when the dimension increases.

Example 5.9 Evaluating the 2-dimensional standard cone

P = R2+ := {x ∈ R2| x1 ≥ 0, x2 ≥ 0} :

1 P=cone(2);
2 a=iseval(P)
3 P=eval(P);
4 b=iseval(P)

15



a = 0
b = 1

The following commands automatically evaluate a polyhedron if necessary:

eval
reinit
hrep
vrep
adj
inc
adj01
inc01
le / <=
ge / >=
eq / ==
ne / ~=
lt / <
gt / >
plot

All remaining operations do not require evaluation of the polyhedron. If more than one of the
listed functions is used, it is more efficient to store the evaluated polyhedron before calling the
commands. For instance

1 P=bensolvehedron(3,2);
2 P=eval(P);
3 hrep(P);
4 vrep(P);

is more efficient than

1 P=bensolvehedron(3,2);
2 hrep(P);
3 vrep(P);

because the first variant requires only one evaluation while the second variant requires two.
A P-representation of a polyh instance can be obtained directly by the prep command. An

evaluation is not necessary.

Example 5.10 Retrieving a P-representation of the 2-dimensional standard cone:

1 P=cone(2);
2 rep=prep(P)

16



scalar structure containing the fields:
B = [](0x2)
a = [](0x1)
b = [](0x1)
l =

0
0

u =
Inf
Inf

Example 5.11 Retrieving an H-representation of the 2-dimensional standard cone:

1 P=cone(2);
2 rep=hrep(P)

ans =
scalar structure containing the fields:

Beq = [](0x2)
beq = [](0x1)
B =

-1 0
0 -1

b =
0
0

Note the hrep returns an H-representation of the form

Bx ≤ b, Beqx = beq.

Example 5.12 Retrieving an V-representation of the 2-dimensional standard cone:

1 P=cone(2);
2 rep=vrep(P)

ans =
scalar structure containing the fields:

L = [](2x0)
V =

0
0

D =
1 0
0 1
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5.3. Adjacency lists and incidence lists

After evaluation of a polyh instance, adjacency information for vertices and extremal directions
is available. The command adj returns an adjacency list as a cell array, where indexing starts
from 1. Note that the indices of the adjacency list refer to the columns of matrix:

[vrep(P).V, vrep(P).D]

Moreover, in case of a nontrivial lineality space (that is vrep(P).L is nonempty), the adjacency
list of P ∩ U is returned, where U is a linear space complementary to the lineality space L, that
is L ∩ U = {0}, L+ U = Rn.

The command adj01 returns a sparse matrix that contains the same information stored by
zero and one entries.

Example 5.13 The 2-dimensional standard cone has one vertex (index 1), which is adjacent to
its two extremal directions (indices 2 and 3):

1 P=cone(2);
2 P=eval(P);
3 a=adj(P)
4 b=adj01(P)

a =
{
[1,1] = 2 3
[1,2] = 1
[1,3] = 1

}

b =
Compressed Column Sparse (rows = 3, cols = 3, nnz = 4 [44%])
(2, 1) -> 1
(3, 1) -> 1
(1, 2) -> 1
(1, 3) -> 1

After evaluation of a polyh instance, “facet-vertex” incidence information is available. Vertices
and extremal directions are indexed in the same way as for adjacency lists.

Example 5.14 The 2-dimensional standard cone shifted by the vector (5, 13)⊤ has one vertex
in (5, 13)⊤, which is adjacent to its two extremal directions (the two unit vectors):

1 P=cone(2);
2 P=P+[5;13];
3 P=eval(P);
4 inc(P)

18



ans =
{
[1,1] = 1 3
[1,2] = 1 2

}

The result tells us that the first facet contains “vertex 1” (which is indeed a vertex) and “vertex 3”
(which is an extremal direction). Let us verify this information, just for demonstration reasons:

1 ...
2 normalvector=hrep(P).B(1,:)
3 rhs=hrep(P).b(1)
4 M=[vrep(P).V,vrep(P).D];
5 vert1=M(:,1)
6 vert3=M(:,3)
7 a=(normalvector * vert1 == rhs)
8 b=(normalvector * vert3 == 0)

normalvector = -1 0
rhs = -5
vert1 =

5
13

vert3 =
0
1

a = 1
b = 1

5.4. Calculus examples

The Minkowski sum of two polyhedra P,Q ⊆ Rn is defined as

P +Q = {x ∈ Rn| ∃y ∈ P, ∃z ∈ Q : x = y + z}.

Example 5.15 The Minkowski sum can be computed by the + operator:

1 P=cube(3);
2 Q=ball(3);
3 R=P+Q;
4 plot(P);
5 plot(Q);
6 plot(R);
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Likewise one can compute

• the intersection of two polyhedra by the command: R=P&Q;

• the closed convex hull of the union of two polyhedra by the command: R=P|Q;

• a polyhedron scaled by a factor k: R=k*P;

• a polyhedron shifted by a (column) vector v: R=P+v;

The following example demonstrates how these operations can be combined.

Example 5.16 In line 3, we compute the closed convex hull of the 2-dimensional standard cone
and the point (−1/2, 1)⊤. In line 6, the result R is intersected (& operator) by the sum-norm
unit ball (generated by the command ball(2)), which is scaled by 2 and shifted by the vector
(1, 1)⊤:

1 P=cone(2);
2 Q=point([-1/2;1]);
3 R=Q|P;
4 S=R&(2*ball(2)+[1;1]);
5 plot(R);
6 plot(S);
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The polar of a polyhedron P ⊆ Rn is defined as

P ◦ = {y ∈ Rn| ∀x ∈ P : y⊤x ≤ 1}.
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Example 5.17 The polar of the 2-dimensional sum-norm unit ball is a square:

1 P=ball(2);
2 R=polar(P);
3 plot(P);
4 plot(R);
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An alternative way to express R=polar(P) is

1 R=P’;

If a polyhedron contains the origin, then the polar of the polar results into the original poly-
hedron.

1 P=ball(2);
2 R=P’’;
3 plot(P);
4 plot(R);
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Otherwise it is the closed convex hull of the origin and the original polyhedron.
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1 P=ball(2)+[1;1];
2 R=P’;
3 S=R’;
4 plot(P);
5 plot(R);
6 plot(S);
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5.5. Class polyh – list of methods

-- polyh : class for calculus of convex polyhedra

5.5.1. Initialization and evaluation

-- P = polyh(REP,REPTYPE) constructor

constructor of polyh class

Input:
REP: representation of the polyhedron (struct)

Optional input:
REPTYPE: type of representation (char: ’v’, ’h’, ’p’)

: reptype ’v’:
: V matrix of points
: D matrix of directions
: L matrix of lineality directions
: reptype ’h’
: fields B, a, b, l, u according to the H-representation
: P = { x | a <= Bx <= b, l <= x <= u}
: reptype ’p’ (default)
: fields M, B, a, b, l, u according to the P-representation
: P = { Mx | a <= Bx <= b, l <= x <= u}

Output:
P: polyhedron (polyh object)
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-- R = eval(P) evaluate polyh object

i.e. compute H- and V-representation, adjacency list, incidence list

Input:
P: polyhedron (polyh object)

Output:
R: evaluated polyhedron (polyh object)

-- R = reinit(P,REPTYPE) re-initialize polyh object

re-initialize polyh object using its V- or H-representation
(can simplify further computations but requires evaluation)

Input:
P: polyhedron (polyh object)

Optional input:
REPTYPE: type of representation: ’v’ (default) or ’h’ (char)

Output:
R: polyhedron (polyh object)

5.5.2. Polyhedral calculus

-- R = plus(P,Q) sum
R = P + Q

compute the Minkowski sum of two polyhedra or
sum of polyhedron and vector

Input:
P, Q: two polyhedra (polyh objects)

: or one polyhedron and one vector
Output:
R: Minkowski sum (polyh object)

-- R = mtimes(k,P) scaling
R = k * P

scaling of polyhedron

Input:
k: scaling factor (number)
P: polyhedron (polyh object)

Output:
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R: scaled polyhedron (polyh object)

-- R = minus(P,Q) difference
R = P - Q

compute the Minkowski difference of two polyhedra or
sum of polyhedron and vector

Input:
P, Q: two polyhedra (polyh objects)

: or one polyhedron and one vector
Output:
R: Minkowski difference (polyh object)

-- R = uminus(P) negative of
R = -P

compute negative of polyhedron

Input:
P: polyhedron (polyh object)

Output:
R: polyhedron (polyh object)

-- R = and(P,Q) intersection
R = P & Q

compute the intersection of two polyhedra

Input:
P, Q: two polyhedra (polyh objects)

Output:
R: intersection (polyh object)

-- R = or(P,Q) closed convex hull of union of two polyhedra
R = P | Q

Input:
P, Q: two polyhedra (polyh objects)

Output:
R: closed convex hull of union (polyh object)
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-- R = colon(P,Q) cartesian product of two or three polyhedra
R = colon(P,Q,S)
R = P : Q
R = P : Q : S

Input:
P, Q: two polyhedra (polyh objects)

Optional input:
S: third polyhedron (polyh object)

Output:
R: cartesian product (polyh object)

-- R = im(P,M) image under linear transformation

Input:
P: polyhedron (polyh object)
M: linear transformation (matrix)

Output:
R: image M(P) (polyh object)

-- R = inv(P,M) inverse image of polyhedron under linear transformation

Input:
P: polyhedron (polyh object)
M: linear transformation (matrix)

Output:
R: inverse image {x | Mx in P} (polyh object)

5.5.3. Retrieving properties and related objects

-- d = sdim(P) space dimension

Input:
P: polyhedron (polyh object)

Output:
d: space dimension of P (number)

-- d = dim(P) dimension of polyhedron

Input:
P: polyhedron (polyh object)

Output:
d: dimension of P (number)
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-- d = ldim(P) lineality space dimension

Input:
P: polyhedron (polyh object)

Output:
d: lineality space dimension of P (number)

-- v = getpoint(P) point belonging to polyhedron

Input:
P: polyhedron (polyh object)

Output:
v: if P is nonempty: point v belonging to polyhedron P (column vector)
: if P is empty: (spacedim x 0) matrix

-- v = rint(P) relative interior point

Input:
P: polyhedron (polyh object)

Output:
v: if P is nonempty: relative interior point v of P (column vector)
: if P is empty: (spacedim x 0) matrix

-- [R,d] = affine(P) affine hull

Input:
P: polyhedron (polyh object)

Output:
R: affine hull of P (polyh object)
d: dimension of P (number)

-- R = lin(P) lineality space

Input:
P: polyhedron (polyh object)

Output:
R: lineality space of P (polyh object)

-- R = polar(P) polar set of nonempty polyhedron
R = P’

Input:
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P: polyhedron (polyh object)
Output:
R: polar set of P (polyh object)

-- R = polarcone(P) polar cone of nonempty polyhedron

Input:
P: polyhedron (polyh object)

Output:
R: polar cone of P (polyh object)

-- R = conic(P) closed cone generated by polyhedron

Input:
P: polyhedron (polyh object)

Output:
R: closed conic hull of P (polyh object)

-- R = ncone(P,v) normal cone of polyhedron P at point v

Input:
P: polyhedron (polyh object)
v: column vector

Output:
R: normal cone of P at v (polyh object)

-- R = recc(P) reccesion cone of polyhedron

Input:
P: polyhedron (polyh object)

Output:
R: recession cone of P (polyh object)

5.5.4. Property checking

-- flag = isempty(P) test whether polyhedron is empty

Input:
P: polyhedron (polyh object)

Output:
flag: nonzero if P is empty (number)
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-- flag = iselem(P,v) test whether point belongs to polyhedron

Input:
P: polyhedron (polyh object)
v: point (column vector)

Output:
flag: nonzero if v belongs to P (number)

-- flag = iseval(P) check whether polyhedron is evaluated

Input:
P: polyhedron (polyh object)

Output:
flag: nonzero if polyhedron is evaluated (number)

-- flag = isbounded(P,C,POLARCONE_D,POLARCONE_L) check boundedness

test polyhedron P for being bounded (w.r.t. cone C,
i.e. there is a bounded set B such that P is contained in B+C)

Input:
P : polyhedron (polyh object)

Optional input:
C : cone (polyh object)
POLARCONE_D : see remark
POLARCONE_L : see remark

Output:
flag: nonzero if P is bounded or C-bounded (number)

Remark: since the cone C needs to be evaluated, it can be more
efficient to enter a V-representation of the polar cone (if known)

5.5.5. Retrieving representations

-- REP = hrep(P) H-representation

retrieve H-representation of polyhedron

Input:
P: polyhedron (polyh object)

Output:
REP: H-representation of P (struct)
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-- REP = vrep(P) V-representation

retrieve V-representation of polyhedron

Input:
P: polyhedron (polyh object)

Output:
REP: V-representation of P (struct)

-- REP = prep(P) P-representation

retrieve P-representation of polyhedron

Input:
P: polyhedron (polyh object)

Output:
REP: P-representation of P (struct)

5.5.6. Retrieving adjacency and incidence lists

-- A = adj(P) adjacency list

retrieve adjacency list (cell array) of polyhedron

Input:
P: polyhedron (polyh object)

Output:
A: adjacency list of P (cell array)

Remark: In case of a nontrivial lineality space, the list
corresponds to the intersection of P with
a complement of the lineality space.

-- M = adj01(P) adjacency list

retrieve 0-1 adjacency list of polyhedron

Input:
P: polyhedron (polyh object)

Output:
M: adjacency list of P (sparse matrix)

Remark: In case of a nontrivial lineality space, the list
corresponds to the intersection of P with
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a complement of the lineality space.

-- A = inc(P) incidence list

retrieve facet-vertex incidence list (cell array) of polyhedron

Input:
P: polyhedron (polyh object)

Output:
A: incidence list of P (cell array)

Remark: In case of a nontrivial lineality space, the list
corresponds to the intersection of P with
a complement of the lineality space.

-- M = inc01(P) incidence list

retrieve 0-1 incidence list of polyhedron

Input:
P: polyhedron (polyh object)

Output:
M: incidence list of P (sparse matrix)

Remark: In case of a nontrivial lineality space, the list
corresponds to the intersection of P with
a complement of the lineality space.

5.5.7. Comparison of polyhedra

-- f = le(P,Q,epsilon) subset
P <= Q

test: P subset of Q

Input:
P, Q: two polyhedra (polyh objects)

Optional Input:
epsilon: tolerance (number)

default: 1e-6
Output:
f: flag to indicate whether P is subset of Q (number)
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-- f = ge(P,Q,epsilon) superset
P >= Q

test: P superset of Q

Input:
P, Q: two polyhedra (polyh objects)

Optional Input:
epsilon: tolerance (number)

see polyh/le for details
Output:
f: flag to indicate whether P is superset of Q (number)

-- f = eq(P,Q,epsilon) equal
P == Q

test: P equal to Q

Input:
P, Q: two polyhedra (polyh objects)

Optional Input:
epsilon: tolerance (number)

see polyh/le for details
Output:
f: flag to indicate whether P is equal to Q (number)

-- f = ne(P,Q,epsilon) unequal
P ~= Q

test: P unequal to Q

Input:
P, Q: two polyhedra (polyh objects)

Optional Input:
epsilon: tolerance (number)

see polyh/le for details
Output:
f: flag to indicate whether P is unequal to Q (number)

-- f = lt(P,Q,epsilon) proper subset
P < Q

test: P proper subset of Q
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Input:
P, Q: two polyhedra (polyh objects)

Optional Input:
epsilon: tolerance (number)

see polyh/le for details
Output:
f: flag to indicate whether P is proper subset of Q (number)

-- f = gt(P,Q,epsilon) proper superset
P > Q

test: P proper superset of Q

Input:
P, Q: two polyhedra (polyh objects)

Optional Input:
epsilon: tolerance (number)

see polyh/le for details
Output:
f: flag to indicate whether P is proper superset of Q (number)

5.5.8. Plotting of polyhedra

-- plot(P,OPT) plot

plot polyhedron

Input:
P: polyhedron (polyh object)

Optional Input:
OPT: options (struct)

------------------------------------------------------------------
option default value explanation
------------------------------------------------------------------
color [3/4 4/5 17/20] color as [r,g,b]
color2d color color of 2d faces
color1d 0.7*color color of 1d faces
color0d 0.4*color color of 0d faces
edgewidth 1 edge width
dirlength 1 lentgh of extremal directions
vertexsize 1.3 vertex size
alpha 0.4 transparency
------------------------------------------------------------------
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5.6. Class polyh – list of supplementary functions in alphabetical order

-- P = ball(d) sum-norm unit ball

Input:
d: dimension (number)

Output:
P: unit ball (polyh object)

-- P = bensolvehedron(d,m) bensolvehedron

that is, a projection of a hypercube of dimension (2m+1)^d
where the columns of the projection matrix consist of all
possible arrangements of the set {-m,-(m-1),...,-1,0,1,...,m-1,m}

Input:
d: dimension
m: parameter, e.g., 1,2,3,... (number)

Output:
P: bensolvehedron (polyh object)

-- P = cart({P1,...,Pn}) cartesian product of n polyhedra

Input:
{P1 ,..., Pn}: finitely many polyhedra (cell array of polyh objects)

Output:
P: cartesian product (polyh object)

-- P = chunion({P1,...,Pn}) closed convex hull of union of n polyhedra

Input:
{P1,...,Pn}: finitely many polyhedra (cell array of polyh objects)

Output:
P: closed convex hull of union (polyh object)

-- P = cone(d) standard cone

Input:
d: dimension

Output:
P: standard cone (polyh object)

-- P = cube(d) max-norm unit ball
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Input:
d: dimension

Output:
P: max-norm unit ball (polyh object)

-- P = emptyset(d) empty set

Input:
d: space dimension

Output:
P: empty set (polyh object)

-- P = intsec({P1,...,Pn}) intersection of n polyhedra

Input:
{P1,...,Pn}: finitely many polyhedra (cell array of polyh objects)

Output:
P: intersection (polyh object)

-- P = msum({P1,...,Pn}) Minkowski sum of n polyhedra

Input:
{P1,...,Pn}: finitely many polyhedra (cell array of polyh objects)

Output:
P: Minkowski sum (polyh object)

-- P = origin(d) origin

Input:
d: space dimension

Output:
P: origin (polyh object)

-- P = point(v) point

Input:
v: column vector

Output:
P: point (polyh object)

-- P = simplex(d) regular simplex
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Input:
d: dimension (number)

Output:
P: simplex (polyh object)

-- P = space(d) whole space polyhedron

Input:
d: space dimension

Output:
P: space (polyh object)

-- carr = faces(P,k) l-faces of P

Input:
P: polyhedron (polyh object)

Optional input:
k: dimension of faces (number)

default: return all proper faces
Output:
carr: cell array of faces

-- G = hasse(P,k,inv) Hasse diagram of polyhedron

Input:
P: polyhedron (polyh object)

Optional input:
k: dimension (number, default: dim of P)
inv: flag to indicate inverse order (bool, default: false)

Output:
G: Hasse diagram (cell array)

The nodes of G correspond to the faces of P. An arc from node
A to node B means that A subset B and dim A + 1 = dim B. If
inv==true, an arc from node A to node B means that A supset B
and dim A = dim B + 1.

G is stored as cell array of nodes, each cell has 4 entries:
1: successor nodes
2: vertex indices of the face
3: polyh object of the face
4: dimension of the face

For details of the algorithm, see V. Kaibel, M. E. Pfetsch:
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Computing the face lattice of a polytope from its vertex-facet
incidences, Computational Geometry 23 (2002) 281-290

6. polyf – Calculus of Polyhedral Convex Functions

polyf is a class for computations with polyhedral convex functions. As we only consider convex
functions, we say polyhedral function for short. The most important operations for polyhedral
functions are:

• pointwise maximum of n polyhedral functions

• lower closed convex envelope of n polyhedral functions

• infimal convolution of n polyhedral functions

• pointwise sum of n polyhedral functions

• conjugate of a polyhedral function

• recession function of a polyhedral function

• computation of domain, range, level sets, recession cone of a polyhedral function

• computation of the subdifferential at some point

• test for pointwise ordering and equality of two polyhedral functions

• plot of polyhedral functions with one or two variables

6.1. Representing polyhedral convex functions

A polyhedral convex function f : Rn → [−∞,+∞] is represented by its epigraph

epi f = {(x, r) ∈ Rn × R| r ≥ f (x)},

which is a convex polyhedron. The epigraph of f is stored as a polyh object, see Section 5.

Example 6.1 Consider the sum norm ∥x∥1 ..=
∑n
i=1 |xi | in Rn. Its epigraph is the cone generated

by the set B × {1}, where B ..= {x ∈ Rn| ∥x∥1 ≤ 1}. To create a polyh instance of B, we can
use the command ball, see Section 5.

1 epi=conic(ball(2):point(1));
2 f=polyf(epi);
3 plot(f)
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Alternatively the sum norm can be defined by composition of affine functions:

1 f1=affine([1;0],0);
2 f2=affine([0;1],0);
3 f3=affine([-1;0],0);
4 f4=affine([0;-1],0);
5 g=fmax(f1,f3) + fmax(f2,f4);

The easiest way is to use the sumnorm command:

1 h=sumnorm(2);

All three definitions generate the same function:

1 f==g
2 g==h

ans =
1

ans =
1

The value of f at x , say at x = (1, 2)⊺, can be computed as:

1 f=sumnorm(2);
2 val(f,[1;2])

ans =
3

Note that the value of f at x is obtained from the epigraph of f by solving the linear program

min r s.t. (x, r)⊺ ∈ epi f .

Since epi f is stored as a P-representation, compare Section 5, the linear program has more than
one variable in general.

A polyf instance with one ore two variables can be plotted. By default, the plotting region
is the interval [−1, 1] and the square [−1, 1] × [−1, 1], respectively. Other plotting regions are
possible:
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1 f=sumnorm(2)
2 R=bensolvehedron(2,2);
3 plot(R);
4 plot(f,R);
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6.2. Calculus examples

Example 6.2 Subdifferential: We compute the subdifferential of the indicator function of the
sum-norm unit ball B at x = (1, 0, 0)⊺ and, which is known to be the same, the normal cone of
B at x . Then we compute the subdifferential at x = (1/2, 1/2, 0)⊺:

1 B=ball(3);
2 f=indicator(B);
3 P=subdiff(f,[1;0;0]);
4 Q=ncone(B,[1;0;0]);
5 P==Q
6 plot(P);
7 R=subdiff(f,[1/2;1/2;0]);
8 plot(R);

ans =
1

38



0.5

-0.5

0

0

0

0.5

0.5 -0.5

0.5-0.5

0

0

0.5

00.5

Example 6.3 Assume we want to compose a polyhedral function of the form

f (x) =

k∑
i=1

di(A
ix + bi)

where di : Rm → (−∞,∞] is a gauge function of a polytope Bi ∈ Rm with 0 ∈ Bi , Ai ∈ Rm×n,
bi ∈ Rm, for i = 1, . . . , k . To illustrate the idea, we use a small sample instance with m = 3,
n = 2, k = 2:

1 A1=[1 2;2 3;3 4]; b1=[1;2;3];
2 A2=[3 2;1 4;3 2]; b2=[2;1;0];
3 B1=ball(3);
4 B2=bensolvehedron(3,1);
5 f=precomp(gauge(B1),A1,b1)+precomp(gauge(B2),A2,b2);
6 plot(f);
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6.3. Class polyf – list of methods

-- polyh : class for calculus of polyhedral convex functions

Public properties:
nvar : number of variables
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6.3.1. Initialization and evaluation

-- f = polyf(P) constructor

constructor of polyf class

Input:
P: epigraph of polyhedral convex function (polyh object)

Output:
f: polyhedral convex function (polyf object)

-- h = eval(f) evaluate polyf object

i.e. evaluate epigraph

Input:
f: function (polyf object)

Output:
h: evaluated function (polyf object)

-- h = reinit(f,REPTYPE) re-initialize function

re-initialize polyf object using the V- or H-representation of the epigraph
(can simplify further computations but requires evaluation)

Input:
f: function (polyf object)

Optional input:
REPTYPE: type of representation: ’v’ (default) or ’h’ (char)

Output:
h: function (polyh object)

6.3.2. Basic operations and retrieving related objects

-- y = val(f,x) value y=f(x)

Input:
f: function (polyf object)
x: argument (column vector)

Output:
y: value y=f(x) (number)

Remark: command requires to solve one linear program
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-- P = epi(f) epigraph

epigraph of function f

Input:
f: function (polyf object)

Output:
P: epigraph of f (polyh object)

-- P = dom(f) domain

domain of function f

Input:
f: function (polyf object)

Output:
P: domain of f (polyh object)

-- P = level(f,a) sublevel set

sublevel set of function of f w.r.t. level a

Input:
f: function (polyf object)
a: level (number)

Output:
P: sublevel set (polyh object)

-- P = recc(f) recession cone of polyf object

i.e. the recession cone of nonempty sublevel sets

Input:
f: function (polyf object)

Output:
P: recession cone of f (polyh object)

-- P = subdiff(f,x) subdifferential

subdifferential of proper function f at argument x

Input:
f: function (polyf object)

41



x: argument (column vector)
Output:
P: subdifferential (polyh object)

6.3.3. Property checking

-- flag = iseval(f) check whether function is evaluated

Input:
f: function (polyf objects)

Output:
flag: nonzero if function is evaluated (number)

-- flag = isimproper(f) check whether function is improper

Input:
f: function (polyf objects)

Output:
flag:

0 = proper
1 = improper with nonempty domain
2 = improper with empty domain

6.3.4. Calculus and composition of polyhedral convex functions

-- h = fmax(f,g) pointwise maximum of two functions
h = f & g

Input:
f,g: two functions (polyf objects)

Output:
h: pointwise maximum function (polyf object)

-- h = finfc(f,g) infimal convolution of two functions

Input:
f,g: two functions (polyf objects)

Output:
h: infimal convolution (polyf object)

-- h = fenv(f,g) lower closed convex envelope of two functions
h = f | g
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Input:
f,g: two functions (polyf objects)

Output:
h: lower closed convex envelope (polyf object)

-- h = fsum(f,g) sum of two functions
h = f + g

Input:
f,g: two functions (polyf objects)

Output:
h: sum (polyf object)

-- h = mtimes(k,f) scaling
h = k * f

nonnegative scaling of function values

Input:
k: scaling factor (nonnegative number)
f: function (polyf object)

Output:
h: scaled function (polyf object)

-- h = precomp(f,M,v) pre-composition with affine transformation

h(x) = f(M x + v)

Input:
f: function (polyf object)
M: matrix
v: column vector

Output:
h: function (polyf object)

-- h = conj(f) conjugate function

Input:
f: function (polyf object)

Output:
h: conjugate function (polyf object)
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-- h = recf(f) recession function

recession function of f

Input:
f: function (polyf object)

Output:
h: recession function of f (polyf object)

6.3.5. Comparing polyhedral convex functions

-- flag = le(f,g) <= for two functions
f <= g

Input:
f,g: two functions (polyf objects)

Output:
flag: nonzero if f(x)<=g(x) for all x (number)

-- flag = ge(f,g) >= for two functions
f >= g

Input:
f,g: two functions (polyf objects)

Output:
flag: nonzero if f(x)>=g(x) for all x (number)

-- flag = eq(f,g) == for two functions
f == g

Input:
f,g: two functions (polyf objects)

Output:
flag: nonzero if f(x)==g(x) for all x (number)

-- flag = ne(f,g) ~= for two functions
f ~= g

Input:
f,g: two functions (polyf objects)

Output:
flag: nonzero if f(x)~=g(x) for some x (number)
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-- flag = lt(f,g) (<= and ~=) for two functions
f < g

Input:
f,g: two functions (polyf objects)

Output:
flag: nonzero if f(x)<=g(x) for all x and f(x)<g(x) for some x (number)

-- flag = gt(f,g) (>= and ~=) for two functions
f > g

Input:
f,g: two functions (polyf objects)

Output:
flag: nonzero if f(x)>=g(x) for all x and f(x)>g(x) for some x (number)

6.3.6. Plotting polyhedral convex functions

-- plot(f,opt) plot function

Input:
f: function (polyf object)
opt: optional options (struct)

---------------------------------------------------------------------------
option default value explanation
---------------------------------------------------------------------------
color [3/4 4/5 17/20] color as [r,g,b]
color2d color color for 2d faces
color1d 0.7*color color for 1d faces
color0d 0.4*color color for 0d faces
edgewidth 1 edge width
vertexsize1 1.3 vertex size for singleton domain
alpha 0.4 transparency (Matlab only)
range cube(sdim-1) plot range for functions (polyh object)
showrange true show the range for function plots
rangecolor [14/15 14/15 14/15] color of range for function plots
---------------------------------------------------------------------------

6.4. Class polyf – list of supplementary functions in alphabetical order

-- f = affine(a,b) affine function

f(x)=a^T x + b
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Input:
a: column vector a

Optional input:
b: number b

default: 0
Output:
f: affine function (polyf object)

-- f = fenv({f1,...,fn}) lower closed convex envelope

lower closed convex envelope of n polyhedral functions

corresponds to convex hull of the union of epigraphs

Input:
{f1,...,fn}: n polyhedral convex functions with same number

of variables (cell array of polyf objects)
Output:
f: lower closed convex envelope (polyf object)

-- f = finfc({f1,...,fn}) infimal convolution

infimal convolution of n polyhedral functions

corresponds to Minkowski sum of epigraphs

Input:
{f1,...,fn}: polyhedral convex functions with same number

of variables (cell array of polyf objects)
Output:
f: infimal convolution (polyf object)

-- f = fmax({f1,...,fn}) pointwise maximum

pointwise maximum of n polyhedral functions

corresponds to intersection of epigraphs

Input:
{f1,...,fn}: polyhedral convex functions with same number

of variables (cell array of polyf objects)
Output:
f: pointwise maximum (polyf object)
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-- f = fsum({f1,...,fn}) pointwise sum of n polyhedral functions

Input:
{f1,...,fn}: n polyhedral convex functions with same number

of variables (cell array of polyf objects)
Output:
f: pointwise sum (polyf object)

-- f = gauge(P) gauge function

gauge function f of a polyhedral set P,
where zero must be contained in P

f(x) = inf{r > 0 | x \in r P}

Input:
P: polyhedon (polyh object)

Output:
f: gauge function (polyf object)

-- f = indicator(P) indicator function

indicator function f of a polyhedral set P

Input:
P: polyhedon (polyh object)

Output:
f: indicator function (polyf object)

-- f = maxnorm(n) maximum norm

Input:
n: number of variables

Output:
f: maximum norm (polyf object)

-- f = sumnorm(n) sum norm

Input:
n: number of variables

Output:
f: sum norm (polyf object)
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-- f = support(P) support function

Input:
P: polyhedon (polyh object)

Output:
f: support function (polyf object)

-- f = translative(P,C,k) translative function

translative function of polyhedron P, polyhedral cone C, vector k in C

f(x)=inf{r : x + r*k in P+C}

Input:
P: polyhedron (polyh object)
C: polyhedral cone (polyh object)
k: column vector

Output:
f: translative function (polyf object)

7. lpsolve – Solving Linear Programs

lpsolve can be used to solve linear programs. It is based on the GNU linear programming
kit (GLPK). The input data consist of the objective function c , which is a column vector, the
feasible set S, which is a polyh object, and an optimization direction.

-- [optval,sol_p,sol_d,status] = lpsolve(c,S,optdir) solve linear program

min c^T y s.t. y in S

where S is given by a P-representation:

S = {Mx : l <= x <= u, a <= Bx <= b}

Input:
c objective function (column vector)
S feasible set (polyh object)
optdir ’min’ (default) or ’max’

Output:
optval optimal value of the problem (number)
sol_p primal solution (column vector)
sol_d dual solution (column vector)
status solution status (string)
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Remark:
the dual solution refers to the P-representation of S and consists of
row variables: the first m entries
column variables: the last n entries
where [m,n] = size(S.prep.B)

Example 7.1 Consider the minimization problem with c⊺ = (0, . . . , 0, 1, . . . , 1) where the fea-
sible set is the sum-norm unit ball.

1 n=5;
2 k=2;
3 c=[zeros(n-k,1);ones(k,1)];
4 S=ball(n);
5 [optval,sol_p]=lpsolve(c,S)

optval = -1
sol_p =

0
0
0
0

-1

The following code computes the set of all optimal solutions:

1 ...
2 rep.B=c’;
3 rep.b=optval;
4 H=polyh(rep,’h’);
5 P=S&H;
6 vrep(P)

An alternative variant using the polyf class is:

1 ...
2 P=S&level(affine(c,0),optval);
3 vrep(P)

ans =
scalar structure containing the fields:

L = [](5x0)
V =

0 0
0 0
0 0
-1 0
0 -1

D = [](5x0)
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Note that the last command (computation of a V-representation) requires evaluation and is
therefore expensive in larger example. Less expensive is, for instance, the computation of the
dimension of the set of all solutions:

1 ...
2 dim(P)

ans = 1

8. pcpsolve – Solving Polyhedral Convex Programs

The command pcpsolve provides a convenient way to solve polyhedral convex programs. Inter-
nally, the polyhedral convex program is reformulated as a linear program and solved by GLPK.

-- [optval, sol]=pcpsolve(f,S) solve polyhedral convex program

minimize f(x) s.t. x in S

where S is given by a P-representation:

S = {Mx : a <= Bx <= b , l <= x <= u}

Input:
f polyhedral convex objective function (polyf object)
S feasible set (polyh object)

Output:
optval: optimal value
sol: an optimal solution (column vector)

Example 8.1 Locational analysis: Given five points in the plane: a(1) = (1, 4)⊺, a(2) = (2, 2)⊺,
a(3) = (3, 3)

⊺, a(4) = (1, 2)⊺, a(5) = (6, 5)⊺, we are looking for x ∈ R2 minimizing the function

5∑
i=1

∥x − a(i)∥1

subject to the constraint x1 + x2 ≤ 2:

1 A=[1 2 3 1 6;4 2 3 2 5];
2 m=size(A,2);
3 C=cell(m,1);
4 for i=1:m
5 C{i,1}=precomp(sumnorm(2),eye(2),-A(:,i));
6 end
7 S=level(affine([1;1],0),2);
8 [optval,sol]=pcpsolve(fsum(C),S)
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optval = 19
sol =

0
2

Example 8.2 Chebyshev Approximation: The function f (x) = cos(x)+ sin(x) is approximated
by a polynomial ga(x) = a4x4 + a3x3 + a2x2 + a1x + a0 of degree 4 at a finite set X =
[−2,−1, 0, 1, 2] by solving the polyhedral convex optimization problem

min
a∈R5
max
x∈X
|f (x)− ga(x)|.

1 X=-2:1:2;
2 m=length(X);
3 f=@(x)cos(x)+sin(x);
4 g=@(x)([x.^4;x.^3;x.^2;x.^1;x.^0]);
5 C=cell(2*m,1);
6 for i=1:m
7 C{i,1} = affine( g(X(i)),-f(X(i)));
8 C{i+m,1}= affine(-g(X(i)), f(X(i)));
9 end

10 [approx_error,a]=pcpsolve(fmax(C),space(5))
11 h=@(x)(a’*g(x));
12 x=-2.5:.1:2.5;
13 plot(x,h(x),x,f(x));

approx_error = 0
a =

0.035220
-0.128941
-0.494918
0.970412
1.000000

-2 0 2

-1.5

-1

-0.5

0

0.5

1

1.5
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9. qcsolve – Global Optimization Solver

The command qcsolve provides a solver for a class of global optimization problems with quasi-
concave objective function. For more information about the theoretical background, the reader
is referred to [3].

-- [fmin,x] = qcsolve (S,fname,P,args) solve quasi-concave program

solve quasi-concave global optimization problem

minimze f(Px) s.t. x in S

where

-- f is a function from R^p to [-inf,Inf) which is quasi-concave
(i.e. f has convex super-level sets)

-- P is a p times n matrix
-- S is a polyhedral feasible set in R^n such that P[S] is bounded

If f is monotone with respect to a polyhedral pointed convex cone C
on dom f = {y | f(y) > -Inf}, then C can be used as optional input
argument. Specifying such a cone can speed up the algorithm.
Moreover, boundedness of P[S] can be weakened to C-boundedness of
P[S]. C-monotonicity is not checked by the program and has to be
ensured by the user.

Input:
S: feasible set S (polyh object)
fname: name of the objective function (string)

for requirements of the function itself, see below.
P: matrix
args: optional arguments:

args.C: monotonicity cone C (polyh object)
args.opt.display flag to display solution

Output:
fmin: optimal value
x: optimal solution

Remark: The objective function f is required to be given as
Matlab/Octave function. It is not allowed to use functions of
bensolve tools in the definition of f. A single argument
of f is a column vector. It is important to guarantee, that
multiple arguments are possible: If the input for f is a
matrix X the output of f is expected to be a row vector
the entries of which are the functions values of the
corresponding columns of X.
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Example 9.1 Concave quadratic programming: Let Q ∈ Rn×n be a positive semi-definite sym-
metric matrix. Then, the function g : Rn → R with g(x) = −x⊺Qx is concave, hence quasi-
concave. In order to minimize g under linear constraints, Q can be factorized, i.e. Q = P ⊺P for
some matrix P ∈ Rp×n. We obtain an appropriated problem instance

min f (Px) s.t. x ∈ S

for qcsolve with f : Rp → R with f (y) := −y⊺y .
Let us solve this global optimization problem for the choice (compare [9, 3])

Pi j = ⌊p · sin((j − 1) · p + i)⌋,

where ⌊x⌋ := max{z ∈ Z | z ≤ x} and S = {x ∈ Rn | − e ≤ x ≤ e}.
First, we need to store the objective function f in a file, say in f.m:

1 function y=f(x)
2 y=-sum(x.^2);
3 end

To illustrate the preceding remark about multiple arguments of f , consider:

1 X=[1 2 3;3 4 5]
2 Y=f(X)

X =
1 2 3
3 4 5

Y =
-10 -20 -34

The correct result is obtained with our function, whereas y=-X’*X yields a wrong result in case
X has more than one column.

Next we generate the matrix P and the feasible region S and call qcsolve:

1 n=1000; p=6;
2 P=floor(p*sin(reshape(1:p*n,p,n)));
3 S=cube(n);
4 qcsolve(S,’f’,P)

In order to run the dual algorithm described in [3], an option for bensolve must be set:

1 set_bensolve_option(’a’,’dual’);

See Section 12 for more details.
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10. molpsolve – Multiple Objective Linear Programming Solver

The command molpsolve can be used to solve a multiple objective linear program of the form

minPx s.t. x ∈ S. (MOLP)

where the feasible set S is a polyhedron given as a polyh object, see Section 5, and P is a q×n
matrix. For more information see e.g. [10].

-- [img_p,img_d,sol_p,sol_d]=molpsolve(P,S,optdir) solve MOLP

solve multiple objective linear program

minimize Px s.t x in S

where S is given by a P-representation:

S = {Mx : l <= x <= u, a <= Bx <= b}

Input:
P: objective matrix
S: feasible set (polyh object)
optdir: ’min’ (default) or ’max’

Output:
img_p: extended image of the primal problem (polyh object)
img_d: extended image of the dual problem (polyh object)
sol_p: primal solution (matrix)
sol_d: dual solution (matrix)

Remark:
the dual solution refers to the P-representation of S and consists of
row variables: the first m entries
column variables: the next n entries
weight variables: the last q entries
where [m,n] = size(S.prep.B) and q is the number of objectives
see Section 1.7 at http://bensolve.org/files/manual.pdf

Example 10.1 Consider the following MOLP with two objectives:

min

(
x1 − x2
x1 + x2

)
s.t. 6 ≤ 2x1 + x2, 6 ≤ x1 + 2x2, x1 ≥ 0, x2 ≥ 0
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1 clear(’rep’);
2 rep.B=[2 1;1 2];
3 rep.a=[6;6];
4 rep.l=[0;0];
5 S=polyh(rep,’h’);
6 P=[1 -1; 1 1];
7 [PP,DD,sol]=molpsolve(P,S);
8 ploteff(PP)
9 ploteff(DD)

The picture shows the upper image of (MOLP) and the lower image of its dual problem. The
Pareto frontier is shown in red. Note that, as usual, maximization w.r.t. the ordering cone
K = {x ∈ R2 | x1 = 0, x2 ≥ 0} is done in the dual problem.

sol =
0 2 0 0
6 2 1 0

To interpret the solution we need to know the number of vertices of the V-representation of PP:

1 size(vrep(PP).V,2)

ans = 2

There are two vertices, hence the first two columns of sol are points and the third column is a
direction. Zero directions are not part of the solution of (MOLP). Here the fourth column of
sol corresponds to

1 [vrep(PP).V, vrep(PP).D](:,4)

ans =
1
0

The vector (1, 0)⊺ belongs to the ordering cone R2+. Therefore it is not a minimal direction and
does not belong to a solution, see e.g. [10] for further explanation.
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11. vlpsolve – Vector Linear Programming Solver

The command vlpsolve provides a convenient way to use the VLP solver bensolve.

-- [img_p,img_d,c,sol_p,sol_d]=vlpsolve(P,S,optdir,C,c) solve VLP

solve vector linear program

minimize Px s.t x in S w.r.t ordering cone C

where S is given by a P-representation:

S = {Mx : l <= x <= u, a <= Bx <= b}

Input:
P objective matrix
S feasible set (polyh object)
optdir ’min’ (default) or ’max’
C ordering cone (polyh object)
c duality parameter vector

Output:
img_p: extended image of the primal problem (polyh object)
img_d: extended image of the dual problem (polyh object)
c_ret: duality parameter corresponding to dual solution
sol_p: primal solution (matrix)
sol_d: dual solution (matrix)

Remark:
the dual solution refers to the P-representation of S and consists of
row variables: the first m entries
column variables: the next n entries
weight variables: the last q entries
where [m,n] = size(S.prep.B) and q is the number of objectives
see Section 1.7 at http://bensolve.org/files/manual.pdf

Example 11.1 Let the following code define the feasible set S of a vector linear program:

1 clear(’rep’);
2 rep.B=[ones(1,3);1 2 2;2 2 1;2 1 2];
3 rep.a=[1;3/2;3/2;3/2];
4 rep.l=[0;0;0];
5 S=polyh(rep,’h’);

The objective matrix of the vector linear program is:

1 P=[1 0 1; 1 1 0; 0 1 1];
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Let the ordering cone C be generated by the vectors10
0

 01
0

 −10
2

  0−1
2

 ,

which can be entered as:

1 clear (’rep’);
2 rep.V=[0 0 0]’;
3 rep.D=[1 0 0; 0 1 0; -1 0 2; 0 -1 2]’;
4 C=polyh(rep,’v’);

It is possible to specify a geometric duality parameter vector c . It must belong in the interior of
C and must have a nonzero last component. If c is not specified, it is computed by the solver.

1 c=[2;2;2];

Now the vector linear programming solver is called.

1 [img_p,img_d,c,sol_p]=vlpsolve(P,S,’min’,C,c);

We plot the upper image of the primal problem and the lower image of the dual problem:

1 plot(img_p);
2 plot(img_d);

2
1

2

2

1.5

0

1

0.5

0
1

0

-1

0

0.5 1

0

0.5
1 0

1

Now we display a V-representation of the upper image of the primal problem:

1 vrep(img_p)

V =
1.5 0.5 0.5 1
1.5 1 0.5 0.5
0 0.5 1 0.5

D =
0 1 -0.5 0
1 0 0 -0.5
0 0 1 1

L = [](3x0)
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The duality parameter vector is returned by the solver. Displaying the returned vector shows
that c is scaled by the solver. The dual lower image is defined with respected to this scaled
vector c .

c =
1
1
1

Now a solution of the vector linear program is displayed:

1 sol_p

sol_p =
1.5 0.5 0 0.5 0 0 0 0
0 0.5 0.5 0 0 0 0 0
0 0 0.5 0.5 0 0 0 0

A solution has to be interpreted together with the V-representation of the upper image of the
primal problem. The upper image has four vertices, hence the first four columns of the solution
are points and the remaining columns are directions. The V-representation of the optimal
solution has four extremal directions, however all four belong to the ordering cone. Thus the
last four zero columns are just place holders, they do not belong to the solution.

Further details can be found in [10] and in the bensolve reference manual1.

Faces of the upper and lower images can be checked for being efficient (i.e. all their points
are minimal or maximal w.r.t. some cone) be using the following command.

-- flag = isefficient(F,P,C) efficiency test

Input:
F: polyhedron (polyh object)
P: polyhedron (polyh object)

Optional input:
C: pointed ordering cone (polyh object)

default: standard cone
Output:
flag

Test whether the polyhedron F consists of only efficient points
of the polyhedron P w.r.t. the cone C.

The efficient frontier can be visualized by the ploteff command.

1http://bensolve.org/files/manual.pdf
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-- plotefficient(P,C,OPT) plot efficient faces in different color

Input:
P: polyhedron (polyh object)

Optional input:
C: pointed polyhedral ordering cone (polyh object)

default: standard cone
OPT: options (struct)

-----------------------------------------------------------------------
option default value explanation
-----------------------------------------------------------------------
color [3/4 4/5 17/20] color nonefficient faces as [r,g,b]
effcolor [1 1/3 1/3] color efficient faces as [r,g,b]
edgewidth 1.2 edge width
dirlength 1 lentgh of extremal directions
vertexsize 1.3 vertex size
alpha 0.4 transparency
-----------------------------------------------------------------------

Plot a polyhedron, where efficient faces are displayed in red.

In the above example we can highlight the C-minimal faces of the upper image and the K-
maximal faces of the lower image of the dual problem, where as usual for the dual problem the
cone K = {x ∈ R3 | x1 = x2 = 0, x3 ≥ 0} is used.

1 ploteff(img_p,C);
2 K=origin(2):cone(1);
3 ploteff(img_d,-K);

12. Bensolve options

bensolve tools is based on the VLP solver bensolve. The command qcsolve is based on a
modified variant of bensolve. An option for bensolve can be set globally using the command
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set_bensolve_option.

-- set_bensolve_option(fn,val) set options for bensolve

Input:
fn: fieldname (string)
val: value (of different type)

No input:
reset of options

-------------------------------------------------------------------------
fn val explanation
-------------------------------------------------------------------------
’b’ 0 1 assume VLP to be bounded (can be faster)
’g’ 0 1 enable global optimization mode (for internal use)
’s’ 0 1 enable outut of solutions (pre-image information)
’k’ * (see below) simplex type in phase 0 of Benson’s algorithm
’L’ * (see below) simplex type in phase 1 of Benson’s algorithm
’l’ * (see below) simplex type in phase 2 of Benson’s algorithm
’m’ ’0’ ’1’ ’2’ ’3’ display less or more messages
’M’ ’0’ ’1’ ’2’ ’3’ display less or more messages of internal lp solver
’A’ ’primal’ ’dual’ type of Benson algorithm in phase 1
’a’ ’primal’ ’dual’ type of Benson algorithm in phase 2
’E’ e.g. ’1e-6’ epsilon for Benson algorithm in phase 1
’e’ e.g. ’1e-6’ epsilon for Benson algorithm in phase 2
-------------------------------------------------------------------------

* ’primal_simplex’ ’dual_simplex’ ’dual_primal_simplex’

Example 12.1 Increasing the message level of bensolve:

1 set_bensolve_option(’m’,’3’);
2 A=eval(ball(2));

Choosing the dual variant of Benson’s algorithm:

1 set_bensolve_option(’a’,’dual’);
2 A=eval(ball(2));

Reset to default options:

1 set_bensolve_option();
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A. APPENDIX: GNU GENERAL PUBLIC LICENSE

Copyright © 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of
works.

The licenses for most software and other practical works are designed to take away your
freedom to share and change the works. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change all versions of a program–to make
sure it remains free software for all its users. We, the Free Software Foundation, use the GNU
General Public License for most of our software; it applies also to any other work released this
way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free
software (and charge for them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new free programs, and that you
know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking you
to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of
the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must
pass on to the recipients the same freedoms that you received. You must make sure that they,
too, receive or can get the source code. And you must show them these terms so they know
their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright
on the software, and (2) offer you this License giving you legal permission to copy, distribute
and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no warranty
for this free software. For both users’ and authors’ sake, the GPL requires that modified versions
be marked as changed, so that their problems will not be attributed erroneously to authors of
previous versions.

Some devices are designed to deny users access to install or run modified versions of the
software inside them, although the manufacturer can do so. This is fundamentally incompatible
with the aim of protecting users’ freedom to change the software. The systematic pattern of
such abuse occurs in the area of products for individuals to use, which is precisely where it is most
unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for
those products. If such problems arise substantially in other domains, we stand ready to extend
this provision to those domains in future versions of the GPL, as needed to protect the freedom
of users.

Finally, every program is threatened constantly by software patents. States should not allow
patents to restrict development and use of software on general-purpose computers, but in those
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that do, we wish to avoid the special danger that patents applied to a free program could make
it effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render
the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

Terms and Conditions

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as
semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each licensee
is addressed as “you”. “Licensees” and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion
requiring copyright permission, other than the making of an exact copy. The resulting
work is called a “modified version” of the earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, would make
you directly or secondarily liable for infringement under applicable copyright law, except
executing it on a computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the public, and in some
countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make or
receive copies. Mere interaction with a user through a computer network, with no transfer
of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it
includes a convenient and prominently visible feature that (1) displays an appropriate
copyright notice, and (2) tells the user that there is no warranty for the work (except to
the extent that warranties are provided), that licensees may convey the work under this
License, and how to view a copy of this License. If the interface presents a list of user
commands or options, such as a menu, a prominent item in the list meets this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modifications
to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined by a
recognized standards body, or, in the case of interfaces specified for a particular program-
ming language, one that is widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other than the work as
a whole, that (a) is included in the normal form of packaging a Major Component, but
which is not part of that Major Component, and (b) serves only to enable use of the
work with that Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A “Major Component”, in
this context, means a major essential component (kernel, window system, and so on) of
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the specific operating system (if any) on which the executable work runs, or a compiler
used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code
needed to generate, install, and (for an executable work) run the object code and to
modify the work, including scripts to control those activities. However, it does not include
the work’s System Libraries, or general-purpose tools or generally available free programs
which are used unmodified in performing those activities but which are not part of the
work. For example, Corresponding Source includes interface definition files associated
with source files for the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require, such as by intimate
data communication or control flow between those subprograms and other parts of the
work.

The Corresponding Source need not include anything that users can regenerate automat-
ically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program,
and are irrevocable provided the stated conditions are met. This License explicitly affirms
your unlimited permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its content, constitutes
a covered work. This License acknowledges your rights of fair use or other equivalent, as
provided by copyright law.

You may make, run and propagate covered works that you do not convey, without condi-
tions so long as your license otherwise remains in force. You may convey covered works
to others for the sole purpose of having them make modifications exclusively for you, or
provide you with facilities for running those works, provided that you comply with the terms
of this License in conveying all material for which you do not control copyright. Those
thus making or running the covered works for you must do so exclusively on your behalf,
under your direction and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated
below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any
applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted
on 20 December 1996, or similar laws prohibiting or restricting circumvention of such
measures.

When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising rights
under this License with respect to the covered work, and you disclaim any intention to
limit operation or modification of the work as a means of enforcing, against the work’s
users, your or third parties’ legal rights to forbid circumvention of technological measures.

64



4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an ap-
propriate copyright notice; keep intact all notices stating that this License and any non-
permissive terms added in accord with section 7 apply to the code; keep intact all notices
of the absence of any warranty; and give all recipients a copy of this License along with
the Program.

You may charge any price or no price for each copy that you convey, and you may offer
support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from
the Program, in the form of source code under the terms of section 4, provided that you
also meet all of these conditions:

a) The work must carry prominent notices stating that you modified it, and giving a
relevant date.

b) The work must carry prominent notices stating that it is released under this License
and any conditions added under section 7. This requirement modifies the requirement
in section 4 to “keep intact all notices”.

c) You must license the entire work, as a whole, under this License to anyone who comes
into possession of a copy. This License will therefore apply, along with any applicable
section 7 additional terms, to the whole of the work, and all its parts, regardless of
how they are packaged. This License gives no permission to license the work in any
other way, but it does not invalidate such permission if you have separately received
it.

d) If the work has interactive user interfaces, each must display Appropriate Legal No-
tices; however, if the Program has interactive interfaces that do not display Appro-
priate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which are
not by their nature extensions of the covered work, and which are not combined with it
such as to form a larger program, in or on a volume of a storage or distribution medium, is
called an “aggregate” if the compilation and its resulting copyright are not used to limit the
access or legal rights of the compilation’s users beyond what the individual works permit.
Inclusion of a covered work in an aggregate does not cause this License to apply to the
other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and
5, provided that you also convey the machine-readable Corresponding Source under the
terms of this License, in one of these ways:

a) Convey the object code in, or embodied in, a physical product (including a physical
distribution medium), accompanied by the Corresponding Source fixed on a durable
physical medium customarily used for software interchange.
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b) Convey the object code in, or embodied in, a physical product (including a physical
distribution medium), accompanied by a written offer, valid for at least three years and
valid for as long as you offer spare parts or customer support for that product model,
to give anyone who possesses the object code either (1) a copy of the Corresponding
Source for all the software in the product that is covered by this License, on a durable
physical medium customarily used for software interchange, for a price no more than
your reasonable cost of physically performing this conveying of source, or (2) access
to copy the Corresponding Source from a network server at no charge.

c) Convey individual copies of the object code with a copy of the written offer to provide
the Corresponding Source. This alternative is allowed only occasionally and noncom-
mercially, and only if you received the object code with such an offer, in accord with
subsection 6b.

d) Convey the object code by offering access from a designated place (gratis or for a
charge), and offer equivalent access to the Corresponding Source in the same way
through the same place at no further charge. You need not require recipients to
copy the Corresponding Source along with the object code. If the place to copy the
object code is a network server, the Corresponding Source may be on a different
server (operated by you or a third party) that supports equivalent copying facilities,
provided you maintain clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the Corresponding Source,
you remain obligated to ensure that it is available for as long as needed to satisfy
these requirements.

e) Convey the object code using peer-to-peer transmission, provided you inform other
peers where the object code and Corresponding Source of the work are being offered
to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corre-
sponding Source as a System Library, need not be included in conveying the object code
work.

A “User Product” is either (1) a “consumer product”, which means any tangible personal
property which is normally used for personal, family, or household purposes, or (2) anything
designed or sold for incorporation into a dwelling. In determining whether a product is a
consumer product, doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, “normally used” refers to a typical or common use of
that class of product, regardless of the status of the particular user or of the way in which
the particular user actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial commercial,
industrial or non-consumer uses, unless such uses represent the only significant mode of
use of the product.

“Installation Information” for a User Product means any methods, procedures, authorization
keys, or other information required to install and execute modified versions of a covered
work in that User Product from a modified version of its Corresponding Source. The
information must suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because modification has been made.

If you convey an object code work under this section in, or with, or specifically for use
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in, a User Product, and the conveying occurs as part of a transaction in which the right
of possession and use of the User Product is transferred to the recipient in perpetuity or
for a fixed term (regardless of how the transaction is characterized), the Corresponding
Source conveyed under this section must be accompanied by the Installation Information.
But this requirement does not apply if neither you nor any third party retains the ability to
install modified object code on the User Product (for example, the work has been installed
in ROM).

The requirement to provide Installation Information does not include a requirement to
continue to provide support service, warranty, or updates for a work that has been modified
or installed by the recipient, or for the User Product in which it has been modified or
installed. Access to a network may be denied when the modification itself materially
and adversely affects the operation of the network or violates the rules and protocols for
communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with this
section must be in a format that is publicly documented (and with an implementation
available to the public in source code form), and must require no special password or key
for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by making
exceptions from one or more of its conditions. Additional permissions that are applicable
to the entire Program shall be treated as though they were included in this License, to the
extent that they are valid under applicable law. If additional permissions apply only to part
of the Program, that part may be used separately under those permissions, but the entire
Program remains governed by this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any additional
permissions from that copy, or from any part of it. (Additional permissions may be written
to require their own removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work, for which you have or
can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered
work, you may (if authorized by the copyright holders of that material) supplement the
terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and
16 of this License; or

b) Requiring preservation of specified reasonable legal notices or author attributions in
that material or in the Appropriate Legal Notices displayed by works containing it; or

c) Prohibiting misrepresentation of the origin of that material, or requiring that modified
versions of such material be marked in reasonable ways as different from the original
version; or

d) Limiting the use for publicity purposes of names of licensors or authors of the material;
or

e) Declining to grant rights under trademark law for use of some trade names, trade-
marks, or service marks; or
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f) Requiring indemnification of licensors and authors of that material by anyone who
conveys the material (or modified versions of it) with contractual assumptions of
liability to the recipient, for any liability that these contractual assumptions directly
impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within the
meaning of section 10. If the Program as you received it, or any part of it, contains a notice
stating that it is governed by this License along with a term that is a further restriction, you
may remove that term. If a license document contains a further restriction but permits
relicensing or conveying under this License, you may add to a covered work material
governed by the terms of that license document, provided that the further restriction does
not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the
relevant source files, a statement of the additional terms that apply to those files, or a
notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately
written license, or stated as exceptions; the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided under this
License. Any attempt otherwise to propagate or modify it is void, and will automatically
terminate your rights under this License (including any patent licenses granted under the
third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copy-
right holder is reinstated (a) provisionally, unless and until the copyright holder explicitly
and finally terminates your license, and (b) permanently, if the copyright holder fails to
notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first
time you have received notice of violation of this License (for any work) from that copyright
holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have been
terminated and not permanently reinstated, you do not qualify to receive new licenses for
the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program.
Ancillary propagation of a covered work occurring solely as a consequence of using peer-
to-peer transmission to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or modify any covered
work. These actions infringe copyright if you do not accept this License. Therefore, by
modifying or propagating a covered work, you indicate your acceptance of this License to
do so.

10. Automatic Licensing of Downstream Recipients.
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Each time you convey a covered work, the recipient automatically receives a license from
the original licensors, to run, modify and propagate that work, subject to this License. You
are not responsible for enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or sub-
stantially all assets of one, or subdividing an organization, or merging organizations. If
propagation of a covered work results from an entity transaction, each party to that trans-
action who receives a copy of the work also receives whatever licenses to the work the
party’s predecessor in interest had or could give under the previous paragraph, plus a right
to possession of the Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or
affirmed under this License. For example, you may not impose a license fee, royalty, or
other charge for exercise of rights granted under this License, and you may not initiate
litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent
claim is infringed by making, using, selling, offering for sale, or importing the Program or
any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the Program
or a work on which the Program is based. The work thus licensed is called the contributor’s
“contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by
the contributor, whether already acquired or hereafter acquired, that would be infringed
by some manner, permitted by this License, of making, using, or selling its contributor
version, but do not include claims that would be infringed only as a consequence of further
modification of the contributor version. For purposes of this definition, “control” includes
the right to grant patent sublicenses in a manner consistent with the requirements of this
License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under
the contributor’s essential patent claims, to make, use, sell, offer for sale, import and
otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or com-
mitment, however denominated, not to enforce a patent (such as an express permission
to practice a patent or covenant not to sue for patent infringement). To “grant” such a
patent license to a party means to make such an agreement or commitment not to enforce
a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding
Source of the work is not available for anyone to copy, free of charge and under the terms
of this License, through a publicly available network server or other readily accessible
means, then you must either (1) cause the Corresponding Source to be so available, or
(2) arrange to deprive yourself of the benefit of the patent license for this particular work,
or (3) arrange, in a manner consistent with the requirements of this License, to extend
the patent license to downstream recipients. “Knowingly relying” means you have actual
knowledge that, but for the patent license, your conveying the covered work in a country, or
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your recipient’s use of the covered work in a country, would infringe one or more identifiable
patents in that country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey,
or propagate by procuring conveyance of, a covered work, and grant a patent license
to some of the parties receiving the covered work authorizing them to use, propagate,
modify or convey a specific copy of the covered work, then the patent license you grant is
automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its coverage,
prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights
that are specifically granted under this License. You may not convey a covered work if
you are a party to an arrangement with a third party that is in the business of distributing
software, under which you make payment to the third party based on the extent of your
activity of conveying the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory patent license (a)
in connection with copies of the covered work conveyed by you (or copies made from those
copies), or (b) primarily for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement, or that patent license
was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or
other defenses to infringement that may otherwise be available to you under applicable
patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions of
this License. If you cannot convey a covered work so as to satisfy simultaneously your
obligations under this License and any other pertinent obligations, then as a consequence
you may not convey it at all. For example, if you agree to terms that obligate you to
collect a royalty for further conveying from those to whom you convey the Program, the
only way you could satisfy both those terms and this License would be to refrain entirely
from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or combine
any covered work with a work licensed under version 3 of the GNU Affero General Public
License into a single combined work, and to convey the resulting work. The terms of
this License will continue to apply to the part which is the covered work, but the special
requirements of the GNU Affero General Public License, section 13, concerning interaction
through a network will apply to the combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU General
Public License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a
certain numbered version of the GNU General Public License “or any later version” applies
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to it, you have the option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software Foundation. If the Program
does not specify a version number of the GNU General Public License, you may choose
any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General
Public License can be used, that proxy’s public statement of acceptance of a version
permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no ad-
ditional obligations are imposed on any author or copyright holder as a result of your
choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMIT-
TED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING
THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PRO-
GRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRIT-
ING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES
AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSE-
QUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES
OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given
local legal effect according to their terms, reviewing courts shall apply local law that most
closely approximates an absolute waiver of all civil liability in connection with the Program,
unless a warranty or assumption of liability accompanies a copy of the Program in return
for a fee.

End of Terms and Conditions

How to Apply These Terms to Your New Programs
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If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve this is to make it free software which everyone can
redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively state the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>

Copyright (C) <textyear> <name of author>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it
starts in an interactive mode:

<program> Copyright (C) <year> <name of author>

This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands show w and show c should show the appropriate parts of the
General Public License. Of course, your program’s commands might be different; for a
GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to sign
a “copyright disclaimer” for the program, if necessary. For more information on this, and
how to apply and follow the GNU GPL, see http://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into propri-
etary programs. If your program is a subroutine library, you may consider it more useful
to permit linking proprietary applications with the library. If this is what you want to do,
use the GNU Lesser General Public License instead of this License. But first, please read
http://www.gnu.org/philosophy/why-not-lgpl.html.
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