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Abstract

In this paper we introduce a convergence concept for closed convex subsets of a finite
dimensional normed vector space. This convergence is called C-convergence. It is defined
by appropriate notions of upper and lower limits. We compare this convergence with the
well-known Painlevé–Kuratowski convergence and with scalar convergence. In fact, we
show that a sequence (An)n∈N C-converges to A if and only if the corresponding support
functions converge pointwise, except at relative boundary points of the domain of the
support function of A, to the support function of A.

1 Introduction

In this paper we introduce a convergence concept in the space of closed convex subsets of a
finite dimensional normed vector space X, called C-convergence. We compare this concept
with the well-known Painlevé–Kuratowski convergence (shortly PK-convergence), e.g. [6], [2],
[9] as well as with scalar convergence (i.e., the pointwise convergence of support functions) of
convex sets [13], [10], [11], [12]. This paper is organized as follows. Section 2 is devoted to
upper and lower limits in complete lattices. In Section 3 we introduce the C-convergence by
upper and lower limits in the complete lattice (C,⊂) of all closed convex subsets of X. Section
4 is devoted to the relationship between PK-convergence and C-convergence. In Section 5 we
investigate the relationship between scalar convergence and C-convergence, which leads to a
characterization of C-convergence.

In the sequel X is a finite dimensional real normed vector space whose dimension is p ≥ 1.
Of course, we could identify X with Rp. For nonempty sets A,B ⊂ X and α ∈ R we use the
usual Minkowski sum and multiplication:

A + B := {a + b | a ∈ A, b ∈ B}, αA := α ·A := {αa | a ∈ A};
moreover, we use the conventions:

A + ∅ := ∅+ A := ∅+ ∅ := ∅, 0 · ∅ := {0}, α · ∅ := ∅ if α 6= 0.

We denote by F := F(X) the space of closed subsets of X. In F we introduce an addition
⊕ : F × F → F , defined by A ⊕ B := cl (A + B), and a multiplication by real numbers,
defined as above. In the sequel F is equipped with the partial order defined by the usual set
inclusion ⊂. Then F is a complete lattice; it is easily seen that the supremum and infimum
for a nonempty subset A ⊂ F , denoted by SUPA and INFA, can be expressed by

SUPA = cl
⋃

A∈A
A, INFA =

⋂

A∈A
A. (1)

As usual, we set INF ∅ := SUPF = X and SUP ∅ := INFF = ∅.
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Let us recall some basic properties of the well-known PK-convergence. Our main reference
is the book of Rockafellar and Wets [9]. We use the following notation of [9]:

N∞ := {N ⊂ N | N \N finite} and N#
∞ := {N ⊂ N | N infinite} . (2)

For a sequence (An)n∈N ⊂ F the outer and inner limits are the sets

LIMSUP
n∈N

An :=
{
x ∈ X | ∃N ∈ N#

∞, ∀n ∈ N, ∃xn ∈ An : xn
N−→ x

}
,

LIMINF
n∈N

An :=
{
x ∈ X | ∃N ∈ N∞, ∀n ∈ N, ∃xn ∈ An : xn

N−→ x
}
,

respectively. The limit of a sequence (An)n∈N exists if its outer and inner limits coincide.
Then we speak about PK-convergence of (An)n∈N and we write

LIM
n∈N

An := LIMINF
n∈N

An = LIMSUP
n∈N

An.

As mentioned in [9, page 111], the natural setting for the study of PK-convergence is the
space F of closed subsets of X. In [9], the closedness of the members of the sequence is not
supposed a priori. However, as it can be seen in [9, Prop. 4.4], the outer and inner limits only
depend on the closure of the sequence’s members. In contrast to [9], we use capital letters in
the notation of the (outer and inner) limit. This is because the notation with small letters
is reserved for the (upper and lower) limit in the space C of closed convex sets of X to be
defined later on. It is an easy task (see [9, Exer. 4.2(b)]) to show that the outer and inner
limits of a sequence (An)n∈N ⊂ F can be expressed by the formulas

LIMSUP
n∈N

An =
⋂

N∈N∞
cl

⋃

n∈N

An, LIMINF
n∈N

An =
⋂

N∈N#
∞

cl
⋃

n∈N

An.

The expressions above show that in the space F we have

LIMSUP
n∈N

An = INF
N∈N∞

SUP
n∈N

An, LIMINF
n∈N

An = INF
N∈N#

∞
SUP
n∈N

An. (3)

These formulas are the starting point for defining the upper and lower limits of a sequence in
C. First we give these definitions in a general complete lattice.

2 Lower and upper limits in complete lattices

Let (L,≤) be a complete lattice, that is (L,≤) is a partially ordered space with the property
that every nonempty subset A of L has a greatest lower bound, denoted by inf A, and a
smallest upper bound, denoted by supA. In particular L has a smallest element l0 = inf L
and a largest element l1 = sup L. As usual, we consider that inf ∅ := l1 and sup ∅ := l0. It is
obvious that for A ⊂ B ⊂ L we have inf A ≥ inf B and supA ≤ supB; moreover, if A 6= ∅,
inf A ≤ supA. Similarly to the definitions of N∞ and N#∞ in (2), for an infinite subset M of
N we introduce the families

N∞(M) := {P ⊂ M | M \ P finite} and N#
∞(M) := {P ⊂ M | P infinite} .

It is clear that N∞(M) ⊂ N#∞(M). Moreover, for M ∈ N#∞ and N ∈ N#∞(M) one has

N∞(N) = {P ∩N | P ∈ N∞(M)}, N#
∞(N) = {P ∈ N#

∞(M) | P ⊂ N} ⊂ N#
∞(M),
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while for N ∈ N∞(M) one has

N#
∞(N) = {P ∩N | P ∈ N#

∞(M)}, N∞(N) = {P ∈ N∞(M) | P ⊂ N} ⊂ N∞(M). (4)

Consider an infinite set M ⊂ N (that is M ∈ N#∞) and (xn)n∈M ⊂ L. Inspired by the
formulas for outer and inner limits of a sequence of elements of F in (3), we define the upper
and lower limits of (xn)n∈M by

lim sup
n∈M

xn := inf
N∈N∞(M)

sup
n∈N

xn, lim inf
n∈M

xn := inf
N∈N#

∞(M)
sup
n∈N

xn.

The following result is a collection of several simple, but useful, properties of these limits.

Proposition 2.1 Let M ∈ N#∞ and consider the sequence (xn)n∈N ⊂ L.
(i) lim infn∈M xn ≤ lim supn∈M xn.
(ii) Assume that N ∈ N#∞(M); then

lim sup
n∈N

xn ≤ lim sup
n∈M

xn and lim inf
n∈N

xn ≥ lim inf
n∈M

xn.

(iii) Assume that N ∈ N∞(M); then

lim sup
n∈N

xn = lim sup
n∈M

xn and lim inf
n∈N

xn = lim inf
n∈M

xn.

(iv) Let (yn)n∈N ⊂ L be another sequence and let N ∈ N∞(M) be such that xn ≤ yn for
every n ∈ N , then

lim sup
n∈M

xn ≤ lim sup
n∈M

yn and lim inf
n∈M

xn ≤ lim inf
n∈M

yn.

(v) Let be given a family of sequences (zi
n)n∈N ⊂ L, where i belongs to a nonempty set I.

Then

lim sup
n∈M

inf
i∈I

zi
n ≤ inf

i∈I
lim sup

n∈M
zi
n, lim sup

n∈M
sup
i∈I

zi
n ≥ sup

i∈I
lim sup

n∈M
zi
n,

lim inf
n∈M

inf
i∈I

zi
n ≤ inf

i∈I
lim inf
n∈M

zi
n, lim inf

n∈M
sup
i∈I

zi
n ≥ sup

i∈I
lim inf
n∈M

zi
n.

Proof. (i) Since N∞(M) ⊂ N#∞(M), it is clear that lim infn∈M xn ≤ lim supn∈M xn.
(ii) Let N ∈ N#∞(M). Since N∞(N) = {P ∩N | P ∈ N∞(M)}, we have

lim sup
n∈N

xn = inf
P∈N∞(N)

sup
n∈P

xn = inf
P∈N∞(M)

sup
n∈P∩N

xn ≤ inf
P∈N∞(M)

sup
n∈P

xn = lim sup
n∈M

xn.

Since N#∞(N) ⊂ N#∞(M), we have

lim inf
n∈N

xn = inf
P∈N#

∞(N)
sup
n∈P

xn ≥ inf
P∈N#

∞(M)
sup
n∈P

xn = lim inf
n∈M

xn.

(iii) Let N ∈ N∞(M). Since N ∈ N#∞(M), taking into account (ii), we have only to
show that lim supn∈N xn ≥ lim supn∈M xn and lim infn∈N xn ≤ lim infn∈M xn. Indeed, since
N∞(N) ⊂ N∞(M) we have

lim sup
n∈N

xn = inf
P∈N∞(N)

sup
n∈P

xn ≥ inf
P∈N∞(M)

sup
n∈P

xn = lim sup
n∈M

xn;
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using (4) we deduce that

lim inf
n∈N

xn = inf
P∈N#

∞(N)
sup
n∈P

xn = inf
P∈N#

∞(M)
sup

n∈P∩N
xn ≤ inf

P∈N#
∞(M)

sup
n∈P

xn = lim inf
n∈M

xn.

(iv) By (iii) we may assume that N = M . Then the conclusion is immediate.
(v) Let un := infi∈I zi

n and vn := supi∈I zi
n. Then un ≤ zi

n ≤ vn for every n ∈ M and
i ∈ I. The conclusion follows from (iv). ¤

Of course, when for (xn)n∈N ⊂ L and M ∈ N#∞ we have x := lim infn∈M xn = lim supn∈M xn

we say that (xn)n∈M is convergent to x and x is denoted by limn∈M xn.

Corollary 2.2 Let M ∈ N#∞ and (xn)n∈N ⊂ L. If x = limn∈M xn and N ∈ N#∞(M), then
x = limn∈N xn.

An important particular case is that of monotone sequences.

Proposition 2.3 Let (xn)n∈N ⊂ L be a monotone sequence and N ∈ N#∞.
(i) If (xn)n∈N is increasing, that is xn ≤ xn+1 for all n ∈ N, then limn∈N xn = supn∈N xn.
(ii) If (xn)n∈N is decreasing, that is xn ≥ xn+1 for all n ∈ N, then limn∈N xn = infn∈N xn.

Proof. We only prove (ii) (because the proof of (i) is even easier). For k ∈ N define the
set Pk := {n ∈ N | n ≥ k} ∈ N∞(N). Since supn∈Pk

xn ≤ xk, we have

lim sup
n∈N

xn = inf
P∈N∞(N)

sup
n∈P

xn ≤ sup
n∈Pk

xn ≤ xk

for all k ∈ N. Hence lim supn∈N xn ≤ infk∈N xk ≤ lim infn∈N xn. ¤
Let (L′,≤) be another complete lattice. Then (L× L′,≤) is a complete lattice when the

order ≤ on L×L′ is defined coordinate-wise: (x, x′) ≤ (y, y′) iff x ≤ y and x′ ≤ y′. Moreover,
for A ⊂ L × L′ and PrL, PrL′ being the projections of L × L′ onto L and L′, respectively,
we have supA = (sup PrL(A), supPrL′(A)) and inf A = (inf PrL(A), inf PrL′(A)). Using this
property we get immediately the next result.

Proposition 2.4 Let (xn)n∈N ⊂ L, x′ ∈ L′ and M ∈ N#∞. Then

lim inf
n∈M

(xn, x′) =
(
lim inf
n∈M

xn, x′
)

and lim sup
n∈M

(xn, x′) =
(
lim sup

n∈M
xn, x′

)
.

Remark 2.5 It is easy to see that for a sequence (xn)n∈N ⊂ L, it holds lim supn∈N xn =
infk∈N supn≥k xn, that is lim supn∈N xn is the usual limit superior of (xn)n∈N. On the other
hand, we always have lim infn∈N xn ≥ supk∈N infn≥k xn. In general, this inequality is strict.
For this take the lattice (F ,⊂) and the sequence (xn)n∈N with xn := [(n + 2)−1, (n + 1)−1].
Then lim infn∈N xn = {0} and supk∈N infn≥k xn = ∅.

When (L,≤) is the lattice (F ,⊂), Propositions 2.1, 2.3 and Corollary 2.2 provide well-
known properties of the Painlevé–Kuratowski outer and inner limits.
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3 C-Convergence

In the sequel we shall mainly deal with the space C := C(X) of closed convex subsets of X;
we also set C0 := C \ {∅}. The set C is equipped with the same operations and the same order
relation like F . Of course, C is also a complete lattice. It is easy to see that the supremum
and the infimum of the nonempty subset A ⊂ C, denoted by supA and inf A, are expressed
by

supA = cl conv
⋃

A∈A
A, inf A =

⋂

A∈A
A. (5)

As usual we set inf ∅ := sup C = X and sup ∅ := inf C = ∅. For nonempty subsets A,B ⊂ F
(or A,B ⊂ C) we set

A+ B := {A⊕B | A ∈ A, B ∈ B} , A+ ∅ := ∅+A := ∅+ ∅ := ∅.

It is easily seen that for arbitrary sets A,B ⊂ F and Ā, B̄ ⊂ C the following statements hold:

INF(A+ B) ⊃ INFA⊕ INFB and inf(Ā+ B̄) ⊃ inf Ā ⊕ inf B̄, (6)
SUP(A+ B) = SUPA⊕ SUPB and sup(Ā+ B̄) = sup Ā ⊕ sup B̄. (7)

As in the preceding section, the upper and lower limits of a sequence (An)n∈N ⊂ C are
defined, respectively, by

lim sup
n∈N

An := inf
N∈N∞

sup
n∈N

An and lim inf
n∈N

An := inf
N∈N#

∞
sup
n∈N

An.

The upper and lower limits are used to introduce a convergence concept in C. So, we say that
a sequence (An)n∈N ⊂ C is C-convergent to some A ∈ C if

A = lim sup
n∈N

An = lim inf
n∈N

An.

In this case the limit A is denoted by limn∈NAn and we write An → A or An
C−→ A. Similarly,

if M ∈ N#∞, the upper and lower limits of (An)n∈M ⊂ C are defined by

lim sup
n∈M

An := inf
N∈N∞(M)

sup
n∈N

An, lim inf
n∈M

An := inf
N∈N#

∞(M)
sup
n∈N

An;

we say that (An)n∈M C-converges to A ∈ C when A = lim supn∈M An = lim infn∈M An and
we write A = limn∈M An. Proposition 2.1 and Corollary 2.2 apply immediately to sequences
(An) ⊂ C. In the next examples we show that the inequalities in the assertions of Proposition
2.1(v) can be strict in the case of (C,⊂).

Example 3.1 Let (An)n∈N, (Bn)n∈N ⊂ C(R), An = {n}, Bn = {−n}. Then limn∈NAn =
limn∈NBn = ∅, hence sup {limn∈NAn, limn∈NBn} = ∅. But, sup{An, Bn} = [−n, n] and
consequently, limn∈N sup{An, Bn} = R.

Note further that the sum of limits could be different from the limit of the sum.

Example 3.2 Let the sequences (An)n∈N and (Bn)n∈N as in Example 3.1. Then we have
∅ = limn∈NAn ⊕ limn∈NBn 6= limn∈N(An ⊕Bn) = {0}.
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In the next example we show that the sum of two C-convergent sequences in C is not
necessarily C-convergent.

Example 3.3 Let the sequences (An)n∈N, (Bn)n∈N ⊂ C(R2) be defined by

An :=
{ {

(x1, x2) ∈ R2 | x2 = nx1, x2 ≥ 0
}

if n is odd,{
(x1, x2) ∈ R2 | x1 = 0, x2 ≥ 0

}
if n is even,

Bn :=
{ {

(x1, x2) ∈ R2 | x2 = −nx1, x2 ≤ 0
}

if n is odd,{
(x1, x2) ∈ R2 | x1 = 0, x2 ≤ 0

}
if n is even.

Then, (An)n∈N C-converges to A =
{
(0, x2) ∈ R2 | x2 ≥ 0

}
and (Bn)n∈N C-converges to B ={

(0, x2) ∈ R2 | x2 ≤ 0
}
. But, the subsequence (A2n⊕B2n)n∈N C-converges to {(0, x2) | x2 ∈ R}

and (A2n+1 ⊕ B2n+1)n∈N C-converges to {(x1, x2) | x1 ≥ 0, x2 ∈ R}, and so (An ⊕ Bn)n∈N is
not C-convergent.

Proposition 3.4 Consider the sequence (xn)n∈N ⊂ X.
(i) If xn → x for some x ∈ X then {xn} C−→ {x}.
(ii) If ‖xn‖ → ∞ then lim infn∈N {xn} = ∅; moreover, if ‖xn‖−1 xn → u for some u ∈ X

then limn∈N{xn} = ∅.
(iii) Assume that {xn} C−→ A ∈ C. Then either A = ∅ and ‖xn‖ → ∞, or A = {x} and

xn → x for some x ∈ X.

Proof. (i) follows from Proposition 5.1 below.
(ii) Let ‖xn‖ → ∞. First we assume that ‖xn‖−1xn → u for some u ∈ X. Since〈 ‖xn‖−1 xn, u

〉 → 1, we have 〈xn, u〉 → ∞. Fix some r > 0; then there exists N ∈ N∞ such
that 〈xn, u〉 ≥ r for every n ∈ N , and so supn∈N{xn} ⊂ {x | 〈x, u〉 ≥ r}. It follows that

lim sup
n∈N

{xn} = inf
N∈N∞

sup
n∈N

{xn} ⊂
⋂

r>0

{x | 〈x, u〉 ≥ r} = ∅,

and so limn∈N{xn} = ∅. Assume now only that ‖xn‖ → ∞. Then there exists N ∈ N#∞
such that ‖xn‖−1 xn

N→ v ∈ X. The argument above and Proposition 2.1(ii) imply that
lim infn∈N{xn} ⊂ lim infn∈N{xn} = limn∈N{xn} = ∅.

(iii) Assume first that A = ∅; then ‖xn‖ → ∞. Otherwise, there exist N ∈ N#∞ and
x ∈ X such that x = limn∈N xn. By (i) we get limn∈N{xn} = {x}, contradicting the fact
that limn∈N{xn} = ∅ and Corollary 2.2. Assume now that A 6= ∅. If (xn)n∈N is unbounded
then there exist N ∈ N#∞ and v ∈ X such that ‖xn‖ N→∞ and v = limn∈N ‖xn‖−1 xn. Then,
from (ii), we have limn∈N{xn} = ∅, contradicting the fact that limn∈N{xn} = A 6= ∅ and
Corollary 2.2. Hence (xn)n∈N is bounded. Assuming that there are two subsequences with
distinct limits, by Corollary 2.2, we obtain again a contradiction. ¤

Without requiring that
( ‖xn‖−1 xn

)
is convergent in Proposition 3.4(ii) it is not possible

to obtain limn∈N{xn} = ∅.

Example 3.5 Let (xn)n∈N, (zn)n∈N ⊂ R2 be defined by x2n := (n, 0), x2n+1 := (−n, 0),
z2n := (n, n1/2), z2n+1 := (−n, n1/2) for n ∈ N. Then lim supn∈N{xn} = R × {0} and
lim supn∈N{zn} = ∅.
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The following characterization of the upper limit is useful to show further properties of
the upper and lower limits. For simplicity of notation we denote the set {m,m+1, . . . , k} ⊂ N
(m, k ∈ N, m ≤ k) by m, k. Further we set ∆p :=

{
λ ∈ [0, 1]p | ∑

i∈0,p−1 λi
n = 1

}
.

Proposition 3.6 Consider a sequence (An)n∈N ⊂ C. Then x ∈ lim supn∈NAn if and only if
the following assertion holds:

∃ (λn)n∈N ⊂ ∆p+1, ∃ (kn)n∈N ⊂ Np+1, ∃ (zn)n∈N ⊂ Xp+1, ∀n ∈ N, ∀j ∈ 0, p :

kj
n ≥ n, zj

n ∈ A
kj

n
, x = lim

n∈N

∑

i∈0,p

λi
nzi

n.

Proof. For the necessity part, let x ∈ A := lim supn∈NAn. It is easy to see that A =⋂
n∈N clVn, where Vn := conv Zn with Zn :=

⋃
k≥n Ak. Hence x ∈ cl Vn for all n ∈ N. This

yields
∀n ∈ N, ∀ε > 0, ∃vn,ε ∈ Vn : ‖x− vn,ε‖ < ε.

Choosing ε := 1/(n + 1) and setting xn := vn,1/(n+1), we obtain a sequence (xn)n∈N ⊂ X
converging to x. Since xn ∈ conv Zn with Zn ⊂ X, by the Carathéodory theorem, for every
j ∈ 0, p there exist λj

n ∈ [0, 1] and zj
n ∈ Zn such that

∑
i∈0,p λi

n = 1 and xn =
∑

i∈0,p λi
nzi

n.
Since zj

n ∈ Zn =
⋃

k≥n Ak, there exists kj
n ≥ n such that zj

n ∈ A
kj

n
.

For the sufficiency part observe that for an arbitrary m ∈ N we have

x = lim
n∈N

∑

i∈0,p

λi
nzi

n = lim
n≥m

∑

i∈0,p

λi
nzi

n.

Hence x ∈ cl conv
⋃

k≥m Ak for all m ∈ N. This yields x ∈ lim supAn. ¤

Remark 3.7 Of course, the previous proposition remains true if one replaces 0, p by 0, q with
q ≥ p.

4 PK-convergence versus C-convergence

The following examples show that (in case of existence) the limit with respect to PK-
convergence can be different from the limit with respect to C-convergence. It can be seen
that neither C-convergence implies PK-convergence nor vice versa.

Example 4.1 PK-convergence does not coincide with C-convergence:
(i) Let (An)n∈N ⊂ C(R2) be defined by An :=

{
(x1, x2) ∈ R2 | x2 ≤ nx1

}
. By an easy

calculation it can be seen that
{
(x1, x2) ∈ R2 | 0 ≤ x1

}
= LIM

n∈N
An 6= lim

n∈N
An = R2.

(ii) Let (An)n∈N ⊂ C(R2) be defined by

An :=
{ {

(x1, x2) ∈ R2 | x2 ≤ nx1

}
if n is odd,

R2 if n is even.

In view of (i), it can be easily seen that limn∈NAn = R2, but LIMn∈NAn does not exist. In
fact, we have LIMSUPn∈NAn = R2, but LIMINFn∈NAn =

{
(x1, x2) ∈ R2 | 0 ≤ x1

}
.
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(iii) Let (An)n∈N ⊂ C(R2) be defined by

An :=
{ {

(x1, x2) ∈ R2 | x2 ≤ nx1

}
if n is odd,{

(x1, x2) ∈ R2 | 0 ≤ x1

}
if n is even.

By (i), it can be easily seen that LIMn∈NAn =
{
(x1, x2) ∈ R2 | 0 ≤ x1

}
, but limn∈NAn does

not exist. In fact, we have lim infn∈NAn =
{
(x1, x2) ∈ R2 | 0 ≤ x1

}
and lim supn∈NAn = R2.

Of course, we have the following relationships between the outer and inner limits, and the
upper and lower limits of a sequence (An)n∈N ⊂ C ⊂ F :

LIMSUP
n∈N

An ⊂ lim sup
n∈N

An, LIMINF
n∈N

An ⊂ lim inf
n∈N

An.

In this section, we are looking for conditions which ensure the opposite inclusions. We start
with a technical assertion, which is used several times in the sequel. Before stating it we recall
that the recession cone of A ∈ C0 is the set 0+A := {u ∈ X | a + tu ∈ A ∀a ∈ A, ∀t ≥ 0};
moreover, 0+∅ := {0}. Furthermore, the lineality space of A ∈ C is the linear space L(A) :=
0+A ∩ (−0+A). The representation of A ∈ C in the following lemma was observed in [14, p.
268] in the particular case where A is a closed convex cone and Y is its lineality space.

Lemma 4.2 Let A ∈ C0 and let Y ⊂ 0+A be a linear space. If Z ⊂ X is a linear space
such that X = Y + Z and Y ∩ Z = {0} (that is X is the direct sum of Y and Z) then
A = Y + (A ∩ Z) and 0+(A ∩ Z) = Z ∩ 0+A; in particular, if Y is the lineality space of A
then {0} is the lineality space of A ∩ Z.

Proof. We have Y + (A ∩ Z) ⊂ Y + A = A. Conversely, let x ∈ A. Then x = y + z with
y ∈ Y and z ∈ Z. Since A + Y = A, we obtain z = x + (−y) ∈ A, and so x ∈ Y + (A ∩ Z).
Moreover, 0+(A ∩ Z) = 0+A ∩ 0+(Z) = 0+A ∩ Z. ¤

Another useful auxiliary result is the following.

Lemma 4.3 Let Y, Z be two finite dimensional normed vector spaces, B ∈ C(Y ) and (Ci)i∈I ⊂
C(Z). Then

SUP
i∈I

B × Ci = B × SUP
i∈I

Ci, INF
i∈I

B × Ci = B × INF
i∈I

Ci,

sup
i∈I

B × Ci = B × sup
i∈I

Ci, inf
i∈I

B × Ci = B × inf
i∈I

Ci.

Moreover, if N ∈ N#∞ and (Dn)n∈N ⊂ C(Z), then

LIMSUP
n∈N

B ×Dn = B × LIMSUP
n∈N

Dn, LIMINF
n∈N

B ×Dn = B × LIMINF
n∈N

Dn,

lim sup
n∈N

B ×Dn = B × lim sup
n∈N

Dn, lim inf
n∈N

B ×Dn = B × lim inf
n∈N

Dn.

Proof. It is sufficient to observe that for E ⊂ Y and F ⊂ Z we have cl(E×F ) = cl E×cl F
and conv(E × F ) = conv E × conv F . ¤

The next two theorems provide sufficient conditions for the coincidence of PK-convergence
and C-convergence. The statements refer to the class CK of those sets A ∈ C0 with 0+A = K,
where K ⊂ X is a fixed closed convex cone. For the special case K = {0}, the statement of
the next theorem can be found in [1, Lemma 1.1.9].
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Theorem 4.4 Let K ⊂ X be a closed convex cone and let (An)n∈N ⊂ CK be such that
supn∈NAn ∈ CK . Then,

lim sup
n∈N

An = cl conv LIMSUP
n∈N

An.

Proof. Since LIMSUPn∈NAn ⊂ lim supn∈NAn, it remains to prove the inclusion A :=
lim supn∈NAn ⊂ cl conv LIMSUPn∈NAn.

(a) Assume that K is pointed, that is K ∩ −K = {0}. Take x ∈ A. By Proposition 3.6
we have

∃ (λn)n∈N ⊂ ∆p+1, ∃ (kn)n∈N ⊂ Np+1, ∃ (zn)n∈N ⊂ Xp+1, ∀n ∈ N, ∀j ∈ 0, p :

kj
n ≥ n, zj

n ∈ A
kj

n
, x = lim

n∈N

∑

i∈0,p

λi
nzi

n.

Set vn :=
∑

i∈0,p λi
nzi

n. Without loss of generality we assume that

∀n ∈ N :
∥∥λ0

nz0
n

∥∥ ≤ ∥∥λ1
nz1

n

∥∥ ≤ ... ≤ ‖λp
nzp

n‖ 6= 0. (8)

There exists N ∈ N#∞ such that

∀j ∈ 0, p : λj
n

n∈N−→ λj ∈ [0, 1], ‖λp
nzp

n‖−1 λj
nzj

n
n∈N−→ yj ∈ X. (9)

Assume that the sequence (λp
nzp

n)n∈N is unbounded. It follows that there exists N ′ ∈ N#∞(N)

such that ‖λp
nzp

n‖ n∈N ′−→ ∞, whence λj
n/ ‖λp

nzp
n‖ n∈N ′−→ 0 for all j ∈ 0, p. By the characterization

of recession cones in [8, Th. 8.2] applied to the set supn∈NAn, we deduce that yj ∈ K for all
j ∈ 0, p. Passing to the limit in the relation

‖λp
nzp

n‖−1 vn =
∑

j∈0,p

‖λp
nzp

n‖−1 λj
nzj

n

we obtain 0 =
∑p

j=0 yj . Thus we get yp ∈ K∩−K = {0}, a contradiction (because ‖yp‖ = 1).
Hence the sequence (λj

nzj
n)n∈N is bounded for each j ∈ 0, p. It follows that there exists

N ′ ∈ N#∞(N) such that λj
nzj

n
n∈N ′→ vj ∈ X for every j ∈ 0, p. Let q ∈ 0, p be such that

λj 6= 0 for j ∈ 0, q and λj = 0 for j ∈ q + 1, p. If λj = 0, as above, vj ∈ K. Fix
j ∈ 0, q. Then λj 6= 0, and so zj

n
n∈N ′→ zj := (λj)−1vj . Since zj

n ∈ ∪k≥nAk, we obtain
zj ∈ LIMSUPn∈N ′ An ⊂ LIMSUPn∈NAn. Setting k :=

∑p
j=q+1 vj (k := 0 if q = p), we obtain

x = k +
∑

j∈0,q

λjzj ∈ K + conv LIMSUP
n∈N

An ⊂ K + cl conv LIMSUP
n∈N

An = cl conv LIMSUP
n∈N

An.

(b) We now turn to the general case, i.e., the lineality space Y := K∩−K is not necessarily
{0}. Take a linear subspace Z ⊂ X such that X = Y + Z and Y ∩ Z = {0}. Of course, we
can identify X with Y ×Z, and so, by Lemma 4.2, every set A ∈ CK is identified with Y ×B,
where B := A ∩ Z. In particular, we have An = Y × Bn with Bn ∈ C{0}(Z). By Lemma 4.3
it follows that

LIMSUP
n∈N

An = Y × LIMSUP
n∈N

Bn, lim sup
n∈N

An = Y × lim sup
n∈N

Bn.

Moreover, supn∈NBn ∈ C{0}(Z). The conclusion now follows from (a). ¤
An analogous result for the lower and inner limits can be obtained even under weaker

assumptions. The result is proved using the previous theorem.
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Theorem 4.5 Let (An)n∈N ⊂ C be a sequence such that for all N ∈ N#∞ there exist some N ′ ∈
N#∞(N) and some closed convex cone K ⊂ X such that (An)n∈N ′ ⊂ CK and supn∈N ′ An ∈ CK .
Then

lim inf
n∈N

An = LIMINF
n∈N

An.

Proof. Clearly, we have A := lim infn∈NAn ⊃ LIMINFn∈NAn. To show the opposite
inclusion fix N ∈ N#∞. By the cluster point description of outer limits [9, Prop. 4.19]
there exists some N ′ ∈ N#∞(N) such that (An)n∈N ′ is PK-convergent. By assumption,
there exist N ′′ ∈ N#∞(N ′) and a closed convex cone K such that An ∈ CK for n ∈ N ′′ and
supn∈N ′′ An ∈ CK . Of course, (An)n∈N ′′ is PK-convergent, too. It follows that LIMn∈N ′′ An =
LIMINFn∈N ′′ An = LIMSUPn∈N ′′ An; moreover, LIMSUPn∈N ′′ An is closed and convex, be-
cause LIMINFn∈N ′′ An is so (An being convex for every n). Using also Proposition 2.1(ii), (i)
and Theorem 4.4 we deduce that

A = lim inf
n∈N

An ⊂ lim inf
n∈N ′′

An ⊂ lim sup
n∈N ′′

An = cl conv LIMSUP
n∈N ′′

An

= LIMSUP
n∈N ′′

An ⊂ cl
⋃

n∈N ′′
An ⊂ cl

⋃

n∈N

An.

Since N ∈ N#∞ was chosen arbitrarily, it follows that A ⊂ LIMINFn∈NAn. ¤
An immediate consequence of Theorems 4.4 and 4.5 is the next result.

Corollary 4.6 Let K ⊂ X be a closed convex cone and let (An)n∈N ⊂ CK be a sequence with
supn∈NAn ∈ CK . Then, (An)n∈N is C-convergent if and only if (An)n∈N is PK-convergent. In
case of convergence both limits coincide.

5 Scalar convergence versus C-convergence

Let us recall another convergence for sequences of closed convex sets. For this recall that the
support function of the subset A of X is the function

σA : X∗ → R, σA(x∗) := sup{〈x, x∗〉 | x ∈ A},

where X∗ is the (topological) dual of X and 〈x, x∗〉 := x∗(x) for x ∈ X and x∗ ∈ X∗ (and
sup ∅ = −∞). We say that the sequence (An)n∈N ⊂ C scalar converges (or simply S-converges)
to A ∈ C and we write An

S→ A or A = S-limn∈NAn if

σAn(x∗) → σA(x∗) ∀x∗ ∈ X∗.

This convergence was introduced by Wijsman [13] and studied by several authors (see Salinetti
and Wets [11], De Blasi and Myjak [3], Sonntag and Zălinescu [12], and Beer [2] for an overview
and further references). Note that σA = σcl convA and σA(0) = 0 for every nonempty set A;
this shows that the natural framework for this convergence is the class C0 of nonempty closed
convex subsets of X. In this section we investigate the relationship between scalar convergence
and C-convergence. We start with an extension of a result of Sonntag and Zălinescu [12].

Proposition 5.1 Assume that (An)n∈N ⊂ C0 is S-convergent to A ∈ C0. Then An
C−→ A.
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Proof. In [12, Prop. 1] it is shown that A = lim supn∈NAn. In order to show that A =
lim infn∈NAn, fix some N ∈ N#∞. Of course, A = S-limn∈N An, and so A = lim supn∈N An ⊂
supn∈N An. Since N ∈ N#∞ is arbitrary, we obtain A ⊂ lim infn∈NAn. Hence An

C−→ A. ¤
It is easy to see that the reverse implication is not true in C. For this just take An := {n} ⊂

R; then An
C→ ∅, but (An) does not S-converge (in fact if An

S→ ∅ then {n | An = ∅} ∈ N∞).
Even for A,An ∈ C0 (n ∈ N) the reverse implication is not true.

Example 5.2 Consider the sets A := {(0, x2) ∈ R2 | x2 ≥ 0} ∈ C0(R2) and An :=
{(x1, nx1) ∈ R2 | x1 ≥ 0} ∈ C0(R2) for n ∈ N. It is easy to see that An

C→ A. However
σAn(1, 0) = ∞→∞ 6= 0 = σA(1, 0), whence (An) does not S-converge to A.

An easy calculation shows that in the previous example the domain domσA of σA is the
set {(u1, u2) ∈ R2 | u2 ≤ 0} and σAn(u1, u2) → σA(u1, u2) for every (u1, u2) ∈ R2 \bd domσA.
In fact this characterizes the C-convergence of (An) to A. Below we will show that a sequence
(An)n∈N C-converges to A ∈ C if and only if (σAn)n∈N converges pointwise to σA excepting
the relative boundary points of domσA. We start with some auxiliary assertions.

The next result, related to proper lower semicontinuous convex functions, will be useful.
For a nonempty convex set A ⊂ X we set rbdA := clA \ riA, the relative boundary of A.

Proposition 5.3 Let f, g : X → R be two proper lower semicontinuous convex functions.
(i) If f(x) ≤ g(x) for every x ∈ ri dom g then f ≤ g.
(ii) If dom g ∩ ri dom f 6= ∅ and f(x) ≤ g(x) for every x ∈ X \ rbd dom f then f ≤ g.
(iii) If aff dom f ⊂ aff dom g (in particular if int dom g 6= ∅) and f(x) ≤ g(x) for every

x ∈ X \ rbd dom f then f ≤ g.
(iv) If f(x) = g(x) for every x ∈ X \ (rbd dom f ∪ rbd dom g). Then f = g.
(v) For every x∗ ∈ X∗ one has f∗(x∗) = sup{〈x, x∗〉 − f(x) | x ∈ ri dom f}.

Proof. Note that in (i), (ii) and (iii) we have to prove f(x) ≤ g(x) for x ∈ dom g.
(i) Fix some x0 ∈ ri dom g and take x ∈ dom g. Then ]x, x0] := {(1 − λ)x + λx0 | λ ∈

(0, 1]} ⊂ ri dom g, and so f((1 − λ)x + λx0) ≤ g((1 − λ)x + λx0) for every λ ∈ (0, 1]. Since
the restrictions of g to the segment [x0, x] is continuous (see [15, Prop. 2.1.6]) and f is lsc,
we obtain f(x) ≤ g(x) (taking the limit for λ ↓ 0).

(ii) If x /∈ cl dom f then x ∈ X \ rbd dom f , and so ∞ = f(x) ≤ g(x). Hence dom g ⊂
cl dom f . Fix x0 ∈ dom g ∩ ri dom f and take x ∈ dom g. Then [x0, x] ⊂ dom g and ]x, x0] ⊂
ri dom f . As in (i) we obtain f(x) ≤ g(x).

(iii) As in (ii) we have dom g ⊂ cl dom f , whence aff dom g ⊂ aff cl dom f = aff dom f .
Hence aff dom f = aff dom g. Doing a translation, we may assume that X0 := aff dom g is
a linear space. Since outside X0, f and g coincide, we may assume that X0 = X, and so
int dom g 6= ∅. From the inclusion dom g ⊂ cl dom f we obtain int dom g ⊂ int cl dom f =
int dom f , and so dom g ∩ ri dom f 6= ∅. The conclusion follows from (ii).

(iv) First observe that ri dom f ⊂ cl dom g. Indeed, if x ∈ ri dom f and x /∈ cl dom g then
x ∈ X \ (rbd dom f ∪ rbd dom g), and so f(x) = g(x) < ∞. It follows that x ∈ dom g ⊂
cl dom g, a contradiction. Similarly, we have ri dom g ⊂ cl dom f . Since dom f and dom g are
convex subsets of a finite dimensional space, we obtain ri dom f = ri dom g and cl dom f =
cl dom g, and so rbd dom f = rbddom g. The conclusion follows using (i) or (ii).
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(v) Let x∗ ∈ X∗. Of course,

f∗(x∗) := sup{〈x, x∗〉 − f(x) | x ∈ X} ≥ sup{〈x, x∗〉 − f(x) | x ∈ ri dom f} := γ.

If γ = ∞ there is nothing to prove. Let γ ∈ R and take g(x) := 〈x, x∗〉−γ. Then g(x) ≤ f(x)
for every x ∈ ri dom f . Using (i) we obtain g ≤ f , and so f∗(x∗) ≤ γ. ¤

The next result is a refinement of some well-known assertions of Convex Analysis.

Lemma 5.4 Let A,B ∈ C0. Then

ri(0+A)◦ ⊂ domσA ⊂ (0+A)◦, rbd(0+A)◦ = rbd domσA, (10)

A =
⋂

x∗∈ri(0+A)◦
{x ∈ X | 〈x, x∗〉 ≤ σA(x∗)} , (11)

A ⊂ B ⇔ ∀x∗ ∈ ri(0+B)◦ : σA(x∗) ≤ σB(x∗). (12)

Moreover, if L(B) ⊂ L(A), then

A ⊂ B ⇔ ∀x∗ ∈ X \ rbd(0+A)◦ : σA(x∗) ≤ σB(x∗). (13)

Proof. As a consequence of [8, Th. 14.2] we have cl domσA = (0+A)◦ (compare [5, Th.
2.2.4], too). Together with [8, Th. 6.3] this yields ri(0+A)◦ = ri cl domσA = ri domσA ⊂
domσA ⊂ (0+A)◦. Therefore, (10) holds. Since A ∈ C0, we have ιA = (ιA)∗∗ = (σA)∗ (where
ιA(x) := 0 if x ∈ A and ιA(x) := ∞ if x 6∈ A). Using Proposition 5.3(v) we obtain (11) as
follows:

x ∈ A ⇔ ιA(x) = sup{〈x, x∗〉 − σA(x∗) | x∗ ∈ ri domσA} = 0
⇔ ∀x∗ ∈ ri dom σA = ri(0+A)◦ : 〈x, x∗〉 ≤ σA(x∗).

Since A ⊂ B ⇔ σA ≤ σB and riσB = ri(0+B)◦, (12) is an immediate consequence of
Proposition 5.3(i). Furthermore, (13) follows from Proposition 5.3(iii) if we succeed to prove
that aff domσA ⊂ aff domσB whenever L(B) ⊂ L(A). For this recall that for closed convex
cones P, Q ⊂ X we have (P ∩Q)◦ = cl(P ◦ + Q◦). It follows that (P ∩−P )◦ = cl(P ◦ −P ◦) =
cl aff P ◦ = aff P ◦ (because every linear subspace of a finite dimensional normed vector space
is closed). Therefore L(B) ⊂ L(A) implies that (in fact is equivalent to) aff domσA ⊂
aff domσB. ¤

Note that (13) is not sufficient for A ⊂ B without the assumption L(B) ⊂ L(A). In-
deed, consider A = R2

+ :=
{
x ∈ R2 |x1, x2 ≥ 0

}
and B =

{
x ∈ R2 |x1 ≥ 1

}
. Then we have

(0+B)◦ ⊂ rbd(0+A)◦ and, by (10), the righthand side of (13) is satisfied. But A 6⊂ B.

The next easy result is an immediate consequence of [8, Cor. 16.5.1].

Proposition 5.5 Let (Ai)i∈I ⊂ C and set B := infi∈I Ai and C := supi∈I Ai. Then σB ≤
infi∈I σAi and σC = supi∈I σAi.

Proposition 5.6 Let K ⊂ X be a pointed closed convex cone. Then 〈x, x∗〉 < 0 for all
x∗ ∈ riK◦ and x ∈ K \ {0}.
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Proof. Let x∗ ∈ riK◦ and x ∈ K \ {0}. Since K is pointed, we have intK◦ 6= ∅, and
so x∗ ∈ intK◦. Let x∗ ∈ X∗ be such that 〈x, x∗〉 = 1. There exists some ε > 0 such that
x∗ + εx∗ ∈ K◦. Then 〈x, x∗〉+ ε = 〈x, x∗ + εx∗〉 ≤ 0, whence 〈x, x∗〉 < 0. ¤

Proposition 5.7 Let (An)n∈N ⊂ C be such that lim supn∈NAn 6= ∅ and let (xn)n∈N ⊂ X \{0}
be a sequence such that xn ∈ An for all n ∈ N, ‖xn‖ → ∞ and xn/ ‖xn‖ → u. Then
u ∈ 0+ lim supn∈NAn.

Proof. We show that x + tu ∈ A := lim supn∈NAn for every x ∈ A and t > 0. Fix x ∈ A
and t > 0. Then, by Proposition 3.6,

∃ (λn)n∈N ⊂ ∆p+1, ∃ (kn)n∈N ⊂ Np+1, ∃ (zn)n∈N ⊂ Xp+1, ∀n ∈ N, ∀j ∈ 0, p :

kj
n ≥ n, zj

n ∈ A
kj

n
, x = lim

n∈N

∑

i∈0,p

λi
nzi

n.

Hence
x + tu = lim

n∈N

∑

i∈0,p

λi
nzi

n + lim
n∈N

t
xn

‖xn‖ .

Setting λp+1
n := t ‖xn‖−1, zp+1

n := xn, kp+1
n := n and λ̃j

n := λj
n

(
1 + λp+1

n

)−1 for j ∈ 0, p + 1,
we obtain

x + tu = lim
n∈N

(
1 + λp+1

n

) ∑

j∈0,p+1

λ̃j
nzj

n = lim
n∈N

∑

j∈0,p+1

λ̃j
nzj

n.

By Proposition 3.6 and taking into account Remark 3.7 we obtain x + tu ∈ A. ¤

Lemma 5.8 Let (An)n∈N ⊂ C be such that A := lim supn∈NAn 6= ∅. Then

∀x∗ ∈ ri(0+A)◦ : lim sup
n∈N

σAn(x∗) = σA(x∗).

Proof. Let K := 0+A. From Proposition 5.5 we easily deduce σA ≤ lim supn∈N σAn . It
remains to show that lim supn∈N σAn(x∗) ≤ σA(x∗) for all x∗ ∈ riK◦.

(a) We first prove the case where K is pointed. Assume the assertion is not true. This
means there exists some x∗ ∈ riK◦ such that lim supn∈N σAn(x∗) > σA(x∗). Hence, there are
ε > 0 and N ∈ N#∞ such that σAn(x∗) > σA(x∗) + ε for all n ∈ N . It follows that

∀n ∈ N, ∃xn ∈ An : 〈xn, x∗〉 > σA(x∗) + ε. (14)

We distinguish between two cases.
(i) There exists some N ′ ∈ N#∞(N) such that xn → x ∈ X. Then x ∈ LIMSUPn∈NAn ⊂

lim supn∈NAn = A, which contradicts (14).

(ii) Otherwise there is some N ′ ∈ N#∞(N) such that ‖xn‖ 6= 0 for n ∈ N ′, ‖xn‖ N ′→∞ and

‖xn‖−1 xn
N ′→ u ∈ X. From Proposition 5.7 we deduce that u ∈ K = 0+A. Proposition 5.6

yields 〈u, x∗〉 < 0. On the other hand, dividing both sides of the inequality in (14) by ‖xn‖
for n ∈ N ′ and taking the limit we obtain 〈u, x∗〉 ≥ 0, a contradiction.

(b) Let Y := K∩−K 6= {0}. First observe that A = lim supn∈NA′n, where A′n := An⊕Y ∈
C. For this, set AN := supn∈N An = cl conv (∪n∈NAn) for every N ∈ N∞. Since A ⊂ AN

we have Y ⊂ 0+A ⊂ 0+AN , and so AN = Y + AN . It follows that for every n ∈ N we
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have An ⊂ A′n ⊂ AN ⊕ Y = AN , whence AN = supn∈N An ⊂ supn∈N A′n ⊂ AN . Hence
A = lim supn∈NA′n. Moreover, σA′n = σAn + σY if An 6= ∅ and σA′n = σAn if An = ∅, and
so σA′n(x∗) = σAn(x∗) for every x∗ ∈ K◦ (because K◦ ⊂ Y ◦ = Y ⊥, and so σY (x∗) = 0 for
every x∗ ∈ K◦). These arguments show that, without loss of generality, we may assume that
An + Y = An for every n ∈ N. Consider a linear space Z ⊂ X such that X = Y + Z and
Y ∩Z = {0}. Then An = Y +(Z ∩An). Setting Bn := Z ∩An ∈ C(Z) and identifying X with
Y ×Z, we have An = Y ×Bn for every n ∈ N. Taking B := lim supn∈NBn, by Lemma 4.3 we
have A = Y ×B and K = 0+A = Y × 0+B, whence K◦ = {0}× (0+B)◦. Since Y = K ∩−K,
it follows that 0+B is pointed. Moreover, riK◦ = {0}× ri(0+B)◦ and σA(y∗, z∗) = σB(z∗) for
y∗ = 0, σA(y∗, z∗) = ∞ for y∗ 6= 0 (and similarly for A,B replaced by An, Bn, respectively).
The conclusion follows applying (a). ¤

We now state the main result of this paper, a characterization of C-convergence.

Theorem 5.9 Let (An)n∈N ⊂ C and A ∈ C0; the following statements are equivalent:
(i) An

C−→ A,
(ii) ∀x∗ ∈ X∗ \ rbd(0+A)◦ : limn∈N σAn(x∗) = σA(x∗).

Proof. (i) ⇒ (ii). We have A = lim supn∈NAn = lim infn∈NAn. From Proposition 5.5 we
easily obtain σA ≤ lim infn∈N σAn , and so

σA ≤ lim inf
n∈N

σAn ≤ lim sup
n∈N

σAn . (15)

Since domσA ⊂ (0+A)◦ (see (10)), it follows that limn∈N σAn(x∗) = σA(x∗) = ∞ for every
x∗ ∈ X∗ \ (0+A)◦. It remains to show that limn∈N σAn(x∗) = σA(x∗) for every x∗ ∈ ri(0+A)◦.
This follows from Lemma 5.8 and (15).

(ii) ⇒ (i). First note that An ∈ C0 for n ∈ N0 for some N0 ∈ N∞ and so we may assume
that An ∈ C0 for every n. Moreover, rbd domσA = rbd(0+A)◦.

Let us prove that A ⊂ lim infn∈NAn. First we prove that A ⊂ B := lim supn∈NAn.
Assuming that this is done, for N ∈ N#∞ we have limn∈N σAn(x∗) = σA(x∗) for every
x∗ ∈ X∗ \ rbd(0+A)◦, whence A ⊂ lim supn∈N An ⊂ supn∈N An. It follows that A ⊂
inf

N∈N#
∞

supn∈N An = lim infn∈NAn.
In order to show that A ⊂ lim supn∈NAn, let Bn := supk≥n Ak. Since Bn+1 ⊂ Bn, we

have σBn+1 ≤ σBn for every n ∈ N. It follows that

lim sup
n∈N

σAn(x∗) = inf
n∈N

sup
k≥n

σAk
(x∗) = inf

n∈N
σBn(x∗) = lim

n∈N
σBn(x∗)

and so
∀n ∈ N, ∀x∗ ∈ X∗ \ rbd domσA : σA(x∗) ≤ σBn(x∗) . (16)

On the other hand, because L(Bn+1) ⊂ L(Bn) for every n, there exists some n0 such that
L(Bn) = Y for n ≥ n0. We show that Y ⊂ L(A). Indeed, take x∗ ∈ X∗ \ Y ⊥; then
x∗ /∈ (0+Bn)◦, and so σBn(x∗) = ∞ for every n. If x∗ /∈ rbd domσA, by hypothesis, we
obtain σA(x∗) = ∞. Hence x∗ ∈ X∗ \ ri domσA. It follows that ri domσA ⊂ Y ⊥, whence
(0+A)◦ = cl domσA ⊂ Y ⊥. Thus we obtain Y ⊂ 0+A, hence Y ⊂ L(A). It follows that
L(Bn) ⊂ L(A) for every n ≥ n0. Taking into account (16), from (13) we conclude that
A ⊂ Bn for every n ≥ n0, and so A ⊂ Bn for every n. This proves that A ⊂ lim supAn = B.
Hence, as observed above, A ⊂ lim infn∈NAn.
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But B = infn∈NBn, and so, by Proposition 5.5, we have

σB ≤ inf
n∈N

σBn = inf
b∈N

sup
k≥n

σAk
= lim sup

n∈N
σAn .

It follows that σB(x∗) ≤ σA(x∗) for every x∗ ∈ X∗ \ rbd(0+A)◦. Using (12) we obtain B ⊂ A.
Hence A = lim An. ¤
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[5] Hiriart-Urruty, J.-B.; Lemaréchal, C.: Convex Analysis and Minimization Algorithms.
Part 1: Fundamentals, Grundlehren der Mathematischen Wissenschaften, 305: Springer-
Verlag, Berlin, 1993

[6] Kuratowski, C.: Topologie. Vol. I., Panstwowe Wydawnictwo Naukowe, Warszawa, 1958
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