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Abstract

In this paper we introduce a convergence concept for closed convex subsets of a finite
dimensional normed vector space. This convergence is called C-convergence. It is defined
by appropriate notions of upper and lower limits. We compare this convergence with the
well-known Painlevé-Kuratowski convergence and with scalar convergence. In fact, we
show that a sequence (A, )nen C-converges to A if and only if the corresponding support
functions converge pointwise, except at relative boundary points of the domain of the
support function of A, to the support function of A.

1 Introduction

In this paper we introduce a convergence concept in the space of closed convex subsets of a
finite dimensional normed vector space X, called C-convergence. We compare this concept
with the well-known Painlevé-Kuratowski convergence (shortly PK-convergence), e.g. [6], [2],
[9] as well as with scalar convergence (i.e., the pointwise convergence of support functions) of
convex sets [13], [10], [11], [12]. This paper is organized as follows. Section 2 is devoted to
upper and lower limits in complete lattices. In Section 3 we introduce the C-convergence by
upper and lower limits in the complete lattice (C, C) of all closed convex subsets of X. Section
4 is devoted to the relationship between PK-convergence and C-convergence. In Section 5 we
investigate the relationship between scalar convergence and C-convergence, which leads to a
characterization of C-convergence.

In the sequel X is a finite dimensional real normed vector space whose dimension is p > 1.
Of course, we could identify X with RP. For nonempty sets A, B C X and a € R we use the
usual Minkowski sum and multiplication:

A+B:={a+blac A, bec B}, aAd:=a-A:={aalac A}
moreover, we use the conventions:
A+0:=0+A=04+0:=0, 0-0:={0}, a-0:=0if a#0.

We denote by F := F(X) the space of closed subsets of X. In F we introduce an addition
@®: FxF — F, defined by A® B := cl(A + B), and a multiplication by real numbers,
defined as above. In the sequel F is equipped with the partial order defined by the usual set
inclusion C. Then F is a complete lattice; it is easily seen that the supremum and infimum
for a nonempty subset A C F, denoted by SUP A and INF A, can be expressed by

SUPA=cl [ J A  INFA= () A (1)
AcA AcA

As usual, we set INF() := SUPF = X and SUP () := INF F = ().



Let us recall some basic properties of the well-known PK-convergence. Our main reference
is the book of Rockafellar and Wets [9]. We use the following notation of [9]:

Noo :={N CN|N\ N finite} and NZ:={N c N|N infinite} . (2)
For a sequence (A,,)nen C F the outer and inner limits are the sets

LIMSUP A, = {z € X | 3N € NE, V¥n € N, Juy € Ay ; o 2 2},
ne

LIMINF A, := {z € X | 3N € Noo, ¥n € N, 3w, € Ay : 2 2,
ne

respectively. The limit of a sequence (A, )nen exists if its outer and inner limits coincide.
Then we speak about PK-convergence of (A;)nen and we write

LIM A,, := LIMINF A,, = LIMSUP A,,.

neN neN neN
As mentioned in [9, page 111], the natural setting for the study of PK-convergence is the
space F of closed subsets of X. In [9], the closedness of the members of the sequence is not
supposed a priori. However, as it can be seen in [9, Prop. 4.4], the outer and inner limits only
depend on the closure of the sequence’s members. In contrast to [9], we use capital letters in
the notation of the (outer and inner) limit. This is because the notation with small letters
is reserved for the (upper and lower) limit in the space C of closed convex sets of X to be
defined later on. It is an easy task (see [9, Exer. 4.2(b)]) to show that the outer and inner
limits of a sequence (A, )nen C F can be expressed by the formulas

LIMSUP 4,, = N o | 4n LIMINFE A,, = N o | 4n
NeN neN NeN# neN

The expressions above show that in the space F we have

LIMSUP A, = INF SUP A, LIMINF A, = INF SUP A,. (3)
Ne€No neEN NeNZ# neN
These formulas are the starting point for defining the upper and lower limits of a sequence in
C. First we give these definitions in a general complete lattice.

2 Lower and upper limits in complete lattices

Let (L, <) be a complete lattice, that is (L, <) is a partially ordered space with the property
that every nonempty subset A of L has a greatest lower bound, denoted by inf A, and a
smallest upper bound, denoted by sup A. In particular L has a smallest element [y = inf L
and a largest element [ = sup L. As usual, we consider that inf () := I; and sup () := ly. It is
obvious that for A € B C L we have inf A > inf B and sup A < sup B; moreover, if A # (),
inf A < sup A. Similarly to the definitions of N and NZ in (2), for an infinite subset M of
N we introduce the families

Noo(M):={P C M | M\ P finite} and NZ(M):={P C M | P infinite} .
It is clear that Noo(M) C NZ(M). Moreover, for M € NZ and N € NZ (M) one has
Noo(N)={PNN| P eNo(M)}, NEN)={PeNZL(M)|PCN}CNEM),



while for N € N (M) one has
NEN)={PNN|PeNLM)}, No(N)={PeNyo(M)|PCN}CNo(M). (4)

Consider an infinite set M C N (that is M € NZ) and (2,)near C L. Inspired by the
formulas for outer and inner limits of a sequence of elements of F in (3), we define the upper
and lower limits of (z,,)nenr by

limsupx, := inf supxz,, liminfz,:= inf supax,.
neM NeNw(M) neN neM NeNZ(M)neN

The following result is a collection of several simple, but useful, properties of these limits.

Proposition 2.1 Let M € N and consider the sequence (xp)nen C L.
(i) liminf,ecprr zp < limsup,,cps n.
(i) Assume that N € NZ(M); then

limsupz, <limsupx, and liminfz, > liminf x,.
neN neM neN neM

(iii) Assume that N € Noo(M); then

limsup x, = limsupx, and liminfz, = liminf x,.
neN neM neN neM

(iv) Let (yn)nen C L be another sequence and let N € Noo(M) be such that x, < y, for
every n € N, then

limsupz, <limsupy, and liminfz, <liminfy,.
neM neM neM neM

(v) Let be given a family of sequences (z})nen C L, where i belongs to a nonempty set I.
Then

limsup inf 2! <inf limsupz,, limsup supz, > sup limsup z’,
neM i€l i€l nem neM i€l i€l neM
liquré ]i\?f yg 2 < 12}' h}}é Ji\?f 2}, qugré ]i\?f SZIEJ? z > ilel? 111112 Ji\?f zL.
Proof. (i) Since Nuo(M) € NZ (M), it is clear that lim inf,cpr 2, < lim SUPpens Tn-
(i) Let N € NZ(M). Since Nog(N) = {PNN | P € Noo(M)}, we have

limsupz, = inf supz,= inf sup x, < inf supz, = limsup z,.
neN PEN(N) nep PeNo(M) ne PNN PENoo(M) neP neM

Since NZ(N) c NZ (M), we have

liminfx, = inf supz, > inf  sup x, = liminf z,,.
neN PeNZ(N)neP PeNZ (M) neP neM

(iii) Let N € Nuo(M). Since N € NZ (M), taking into account (i), we have only to
show that limsup,cy , > limsup,cy; x, and liminf, ey 2, < liminf,cps 2,. Indeed, since
Noo(N) C Noo(M) we have

limsupx, = inf supwz, > inf supz, =limsupx,;
neN PeNo(N) nep PENoo (M) nep neM



using (4) we deduce that

liminfz, = inf supxz, = inf sup z, < inf  supzx, = liminf z,.
nenN PeENZ(N)neP PeNZ (M) nePNN PeNZ (M) neP neM

(iv) By (iii) we may assume that N = M. Then the conclusion is immediate.
v) Let u, := inf;er 2!, and v, = sup;c; 2. Then u, < 2! < v, for every n € M an
Let inf;er 2}, and ier #n- Th < 2h < oy, fi y M and
i € I. The conclusion follows from (iv). O

Of course, when for (zy,)neny C Land M € Njé we have x := liminf,cpr x, = limsup,,c s Tn
we say that (z,,)nens is convergent to x and x is denoted by limy,cps .

Corollary 2.2 Let M € NZ and (n)nen C L. If x = limpepr 2 and N € Ni(M), then
r = limy,en Tp.

An important particular case is that of monotone sequences.

Proposition 2.3 Let (x)neny C L be a monotone sequence and N € ./\/Zi
(i) If (xn)nen is increasing, that is x, < Tpyq for allm € N, then lim, ey z, = sup,cy Zn.

(ii) If (xn)nen is decreasing, that is x, > Tpi1 for alln € N, then limyen ©p, = infen zp .

Proof. We only prove (ii) (because the proof of (i) is even easier). For k € N define the
set Py :={n € N|[n >k} € Noo(N). Since sup,,cp, n < 21, we have

limsupz, = inf supz, < sup z, < i
neN PeN(N) nep nePy,
for all k € N. Hence limsup,,cy 5, < infyenzr < liminf,cn x,. ]

Let (L', <) be another complete lattice. Then (L x L', <) is a complete lattice when the
order < on L x L' is defined coordinate-wise: (z,2") < (y,v) iff z <y and 2/ < y'. Moreover,
for A C L x L' and Prp,Pr;, being the projections of L x L’ onto L and L', respectively,
we have sup A = (sup Prp(A),sup Pry/(A)) and inf A = (inf Prz,(A),inf Pry/(A)). Using this
property we get immediately the next result.

Proposition 2.4 Let (xy)peny C L, ' € L' and M € NZ. Then

liminf(z,,2") = (liminf z,,, 2’ d lims ,2') = (lims ,z').
171211\}[1@%1‘) (lgéjl\/rfl Tn,2')  an Hrflej\zlp(a:nx) (121161\}[11)95”96)

Remark 2.5 It is easy to see that for a sequence (xy)neny C L, it holds limsup,cy 2, =
infyen SUp, >y, Tn, that is limsup,,cy 5 is the usual limit superior of (z,,)nen. On the other
hand, we always have liminf,ey x, > supgeyinf,>x z,. In general, this inequality is strict.

For this take the lattice (F,C) and the sequence (x,)nen With 7, == [(n +2)7%, (n + 1)1
Then liminf, ey 2, = {0} and supyey inf,>% x, = 0.

When (L, <) is the lattice (F, C), Propositions 2.1, 2.3 and Corollary 2.2 provide well-
known properties of the Painlevé—Kuratowski outer and inner limits.



3 (C-Convergence

In the sequel we shall mainly deal with the space C := C(X) of closed convex subsets of X;
we also set Cp := C\ {0}. The set C is equipped with the same operations and the same order
relation like F. Of course, C is also a complete lattice. It is easy to see that the supremum
and the infimum of the nonempty subset A C C, denoted by sup A and inf A, are expressed
by
sup A = clconv U A, inf A= ﬂ A. (5)
AcA AcA

As usual we set inf ) := supC = X and sup® := inf C = (). For nonempty subsets A,B C F
(or A,B C C) we set

A+B:={A®B|AcABecB}, A+0:=0+A:=0+0:=0.
It is easily seen that for arbitrary sets A, B C F and A, B C C the following statements hold:

INF(A+B) DINFA®INFB  and  inf(A+ B) D inf A inf B, (6)
SUP(A+B)=SUPA®SUPB  and  sup(A+ B) =sup.A@supB. (7)

As in the preceding section, the upper and lower limits of a sequence (Ay)neny C C are
defined, respectively, by

limsup A, := inf sup A, and liminfA, := inf sup A,.
neN NeNoo neN neN NeNZ neN

The upper and lower limits are used to introduce a convergence concept in C. So, we say that
a sequence (Ay)nen C C is C-convergent to some A € C if

A =limsup A,, = liminf A,.
neN ’I’LGN

In this case the limit A is denoted by lim,cn A, and we write A,, — A or A, LA Similarly,
if M € Njé, the upper and lower limits of (A;,)nen C C are defined by

limsup A, :=  inf sup A,, liminf A, :=  inf sup Ap;
neM NeNw(M) neN neM " NeNZ (M) neN "

we say that (A,)nem C-converges to A € C when A = limsup,c); Ap = liminf,cpr A, and
we write A = lim,cps Ay,. Proposition 2.1 and Corollary 2.2 apply immediately to sequences

(A;) C C. In the next examples we show that the inequalities in the assertions of Proposition
2.1(v) can be strict in the case of (C, C).

Example 3.1 Let (A4, )nen, (Br)neny € C(R), A, = {n}, B, = {—n}. Then lim,en 4, =
lim,en By, = 0, hence sup {lim, ey Ay, lim,en By} = 0. But, sup{A,,B,} = [-n,n| and
consequently, lim, ey sup{4,, B,} = R.

Note further that the sum of limits could be different from the limit of the sum.

Example 3.2 Let the sequences (A;,)neny and (Bp)nen as in Example 3.1. Then we have
0 = limpen Ay @ limyen By, # lim,en(An © Bn) = {0}.



In the next example we show that the sum of two C-convergent sequences in C is not
necessarily C-convergent.

Example 3.3 Let the sequences (Ay,)nen, (Bn)nen C C(R?) be defined by

A {(xl,(lfg)GRz | 2o = nxq, xQZO} if nisodd,
e {(1:1,$2) ER? |z =0, m3 > 0} if n is even,

B {(acl,:vz) €R? | z9 = —nxy, 22 < 0} if nisodd,
m {(:171,3:2) ER? |21 =0, 23 < ()} if n is even.

Then, (Ap)nen C-converges to A = {(0,z2) € R? | 23 > 0} and (By)nen C-converges to B =
{(0,22) € R? | 25 < 0}. But, the subsequence (A2,®Bay )nen C-converges to {(0,z2) | 2 € R}
and (Aapt1 ® Baopt1)nen C-converges to {(x1,z2) | x1 > 0, z2 € R}, and so (A, ® Bp)nen is
not C-convergent.

Proposition 3.4 Consider the sequence (xy)neny C X.

(i) If zp, — x for some x € X then {z,} <, {z}.

(ii) If ||lzn|| — oo then liminf,cy {x,} = 0; moreover, if ||z,|| ™" 2n — u for some u € X
then limyen{z,} = 0.

(iii) Assume that {x,} £, A€eC. Then either A =0 and |zn|| — o0, or A = {x} and
Tp — T for some x € X.

Proof. (i) follows from Proposition 5.1 below.

(i) Let ||zn|| — oo. First we assume that ||z,| 'z, — u for some u € X. Since
¢ (- Tn,u) — 1, we have (zp,,u) — co. Fix some r > 0; then there exists N € N, such
that (z,,u) > r for every n € N, and so sup,en{zn} C {z | (x,u) > r}. It follows that

limsup{z,} = inf sup{z,} C x| (xz,u) >r} =0,
nswp(e) = nf sl @ (e () 2 1)

and so limpen{zn} = 0. Assume now only that ||z,|| — co. Then there exists N € NZ

such that ||z,| 'z, N v e X. The argument above and Proposition 2.1(ii) imply that
liminf,en{z,} C liminf,en{x,} = limyen{z,} = 0.

(iii) Assume first that A = 0; then ||z, — co. Otherwise, there exist N € NZ and
xz € X such that ¢ = limpen z,,. By (i) we get limpen{z,} = {x}, contradicting the fact
that lim,en{x,} = 0 and Corollary 2.2. Assume now that A # (. If (z,,)nen is unbounded
then there exist N € N and v € X such that |z, X 00 and v = limpey |n|| " 2. Then,
from (ii), we have lim,en{z,} = 0, contradicting the fact that lim,en{z,} = A # 0 and
Corollary 2.2. Hence (z,)nen is bounded. Assuming that there are two subsequences with
distinct limits, by Corollary 2.2, we obtain again a contradiction. O

Without requiring that ( [ zp) is convergent in Proposition 3.4(ii) it is not possible
to obtain lim,en{z,} = 0.

Example 3.5 Let (2,)nen, (2n)neny € R? be defined by 29, := (n,0), z2,+1 := (—n,0),
zon = (n, n1/2), Zont1 = (—n, n1/2) for n € N. Then limsup,cn{z,} = R x {0} and
lim sup,,en{2n} = 0.



The following characterization of the upper limit is useful to show further properties of
the upper and lower limits. For simplicity of notation we denote the set {m m+1,...,k} CN
(m,k € N, m < k) by m, k. Further we set A, := {\ € [0,1]7| > icop=T M }

Proposition 3.6 Consider a sequence (Ay)nen C C. Then x € limsup, ey Ay if and only if
the following assertion holds:

3 (Mn)pen C Api1s I (kn)peny C NPT 3 (zn)neN Cc XPH vneN, Vjel,p :

J > e A = lim i
kL, >n, 2z, € Ky €= lim An?
1€0,p

Proof. For the necessity part, let + € A := limsup,,cy A,. It is easy to see that A =
Mpen €l Vi, where V,, := conv Z,, with Z, := |J;~,, Ax. Hence z € clV}, for all n € N. This
yields

VneN, Ve >0, Ju,. €V, @ |z —vpe <e.

Choosing ¢ := 1/(n + 1) and setting z,, := vy, 1/(n41), We obtain a sequence (zn)nen C X

converging to x. Since x, € conv Z, with Z, C X, by the Caratheodory theorem, for every
j€0,p D there exist A, € [0,1] and 2}, € Z, such that ZzEOp n=1land @z, = 37,55 N2

Since zn €z, = Uk>n Ap, there exists k] > n such that 2, € A K
For the sufficiency part observe that for an arbitrary m € N we have

z = lim E A2t = lim Z:)\izZ

Hence = € clconv UkZm Ay, for all m € N. This yields z € limsup A,,. O

Remark 3.7 Of course, the previous proposition remains true if one replaces 0, p by 0, ¢ with
q=p.

4 PK-convergence versus C-convergence

The following examples show that (in case of existence) the limit with respect to PK-
convergence can be different from the limit with respect to C-convergence. It can be seen
that neither C-convergence implies PK-convergence nor vice versa.

Example 4.1 PK-convergence does not coincide with C-convergence:
(i) Let (An)nen C C(R?) be defined by A, := {(z1,22) € R* |z < nax1}. By an easy
calculation it can be seen that

R?|0< = LIM A,, # lim A,, = R?.
{(xl,mg) € |0 < :L“l} LIM + nlé%

(ii) Let (An)nen C C(R?) be defined by

{(:El,l‘z) ER? |2y < nxl} if nisodd,
An = 2 . .
R if n is even.

In view of (i), it can be easily seen that lim,en 4, = R?, but LIM, ey A,, does not exist. In
fact, we have LIMSUP ey A, = R?, but LIMINF,,eny 4y, = {(z1,22) € R? | 0 < 31},

7



(iii) Let (Apn)nen C C(R?) be defined by

A {(xl,xg) ER? |2y < nwl} if nisodd,
T {(m1,22) €R?P [0 < 2} if nis even.

By (i), it can be easily seen that LIM,cn 4, = {(.731,332) cR?2|0< xl}, but lim,cy A, does
not exist. In fact, we have liminf ey A, = {(z1,22) € R? | 0 < 21} and limsup,,cy 4, = R?.

Of course, we have the following relationships between the outer and inner limits, and the
upper and lower limits of a sequence (Ay)neny C C C F:

LIMSUP A4,, C limsup 4, LIMINF A,, C liminf A,,.
neN neN neN neN
In this section, we are looking for conditions which ensure the opposite inclusions. We start
with a technical assertion, which is used several times in the sequel. Before stating it we recall
that the recession cone of A € Cy is the set 0T A:={u € X |a+tu € AVa € A, Vt > 0};
moreover, 07() := {0}. Furthermore, the lineality space of A € C is the linear space L(A) :=
0t AN (—0TA). The representation of A € C in the following lemma was observed in [14, p.
268] in the particular case where A is a closed convex cone and Y is its lineality space.

Lemma 4.2 Let A € Cy and let Y C 0T A be a linear space. If Z C X is a linear space
such that X =Y + Z and Y N Z = {0} (that is X is the direct sum of Y and Z) then
A=Y +(ANZ) and 0N (AN Z) = ZNO0TA; in particular, if Y is the lineality space of A
then {0} is the lineality space of AN Z.

Proof. We have Y + (AN Z) CY + A= A. Conversely, let € A. Then z = y + z with
yeY and z € Z. Since A+Y = A, weobtain z=z+ (—y) € A,andsoz € Y + (AN Z).
Moreover, 0T (AN Z)=0TAN0H(Z)=0TANZ. O

Another useful auxiliary result is the following.

Lemma 4.3 LetY, Z be two finite dimensional normed vector spaces, B € C(Y) and (C;)ier C
C(Z). Then

SUP B x C; = B x SUP C;, IN}FB xC; =B xIN}?CZ»,
1€ 1€

icl icl
supB x C; =B xsupC;, inf Bx C; = B x inf C;.
el iel icl icl

Moreover, if N € N and (Dp)nen C C(Z), then
LIMSUP B x D, = B x LIMSUP D,,, LIMINF B x D,, = B x LIMINF D,,,
neN neN neN neN

limsup B x D,, = B x limsup D,,, liminf B x D,, = B x liminf D,,.
nenN nenN neN neN

Proof. It is sufficient to observe that for £ C Y and F' C Z we have cl(Ex F) = cl ExclF

and conv(E x F') = conv E x conv F. O

The next two theorems provide sufficient conditions for the coincidence of PK-convergence
and C-convergence. The statements refer to the class Cx of those sets A € Cy with 0T A = K,
where K C X is a fixed closed convex cone. For the special case K = {0}, the statement of
the next theorem can be found in [1, Lemma 1.1.9].



Theorem 4.4 Let K C X be a closed conver cone and let (Ap)nen C Cr be such that
sup,en An € Cx. Then,
limsup A,, = clconv LIMSUP A4,,.
neN neN

Proof. Since LIMSUP,cny A,, C limsup,cy Ay, it remains to prove the inclusion A :=
lim sup,,cy An C clconv LIMSUP,, ey A,,.

(a) Assume that K is pointed, that is K N —K = {0}. Take x € A. By Proposition 3.6
we have

I (M) pen € Apits 3 (kn)peny C NPT 3 (20) 00y € X, VR EN, Vj€0,p -
kil >n, 2 € A, = lim P

neN
1€0,p

Set vn ==} o5 Aé 24 . Without loss of generality we assume that

vneN : ||A)z0]| < [[Ahzn|l < . S [IAR2E] # 0. (8)

There exists N € NZ such that
Viep : N SN €01, [IAD2E) T Nzl "yl e X, 9)
Assume that the sequence (Aﬁzﬁ)ne  1s unbounded. It follows that there exists N’ € /\/Z%(N )

such that |22 "X oo, whence X,/ | AL2E|| S 0 for all j € 0, p. By the characterization
of recession cones in [8, Th. 8.2] applied to the set sup,,cy An, we deduce that 3/ € K for all
j € 0, p. Passing to the limit in the relation

I8 o = > (IAR2R ] M2
j€0,p
we obtain 0 = 30_ y/. Thus we get y? € KN—K = {0}, a contradiction (because ||y?| = 1).
Hence the sequence ()\%z%)ne ~ is bounded for each j € 0,p. It follows that there exists
N’ € NZ(N) such that )\%;ZL "EYV i e X for every j € 0,p. Let ¢ € 0,p be such that
M # 0for j € 0,gand MW = 0 for j € ¢q+1,p. If ¥ = 0, as above, v/ € K. Fix
j € 0,q. Then X # 0, and so 2z}, = (M)~1wi. Since 2, € Ug>nAg, we obtain
2 € LIMSUP,,cnv A, C LIMSUP,,cry A,,. Setting k := Z?:q—i—l v/ (k := 0if ¢ = p), we obtain

z=k+ Y Nz €K+ convLIMSUP A, C K + clconv LIMSUP A,, = clconv LIMSUP A,,.
— neN neN neN
J€0,q

(b) We now turn to the general case, i.e., the lineality space Y := KN—K is not necessarily
{0}. Take a linear subspace Z C X such that X =Y + Z and Y N Z = {0}. Of course, we
can identify X with Y x Z, and so, by Lemma 4.2, every set A € Ck is identified with Y x B,
where B := AN Z. In particular, we have A,, =Y x B,, with B,, € C{O}(Z). By Lemma 4.3
it follows that

LIMSUP A,, =Y x LIMSUP B,,, limsupA, =Y X limsup B,,.
neN neN neN neN

Moreover, sup,,cy By € Ci}(Z). The conclusion now follows from (a). O

An analogous result for the lower and inner limits can be obtained even under weaker
assumptions. The result is proved using the previous theorem.



Theorem 4.5 Let (A,)nen C C be a sequence such that for all N € NZ there exist some N’ €
NZ(N) and some closed convex cone K C X such that (Ap)nen’ C Ci and sup,,ecn An € Ck.
Then
liminf A, = LIMINF A,,.
neN neN

Proof. Clearly, we have A := liminf,cy A, O LIMINF,cx A,. To show the opposite
inclusion fix N € NZ. By the cluster point description of outer limits [9, Prop. 4.19]
there exists some N’ € NZ(N) such that (A,)nens is PK-convergent. By assumption,
there exist N € NZ(N') and a closed convex cone K such that A, € Cx for n € N” and
sup, ey An € Ck. Of course, (Ay)nenr is PK-convergent, too. It follows that LIM,en» Ay, =
LIMINF,,cn# A, = LIMSUP,,c nv A,,; moreover, LIMSUP,,cn» A;, is closed and convex, be-
cause LIMINF,,c y» A, is so (A, being convex for every n). Using also Proposition 2.1(ii), (i)
and Theorem 4.4 we deduce that

A =liminf A, C liminf A,, C limsup A,, = clconv LIMSUP A,,
neN neN” neN" neN”

= LIM .
nel%gPAn Cecl U A, Ccl U A,
neN” neN

Since N € ./\/2‘2é was chosen arbitrarily, it follows that A C LIMINF, cn Ay, O
An immediate consequence of Theorems 4.4 and 4.5 is the next result.
Corollary 4.6 Let K C X be a closed convex cone and let (Ay)nen C Ci be a sequence with

sup,en An € Cx. Then, (An)nen is C-convergent if and only if (An)nen is PK-convergent. In
case of convergence both limits coincide.

5 Scalar convergence versus C-convergence

Let us recall another convergence for sequences of closed convex sets. For this recall that the
support function of the subset A of X is the function

oa: X" =R, oa(x") :=sup{(z,2*) |z € A},

where X* is the (topological) dual of X and (z,z*) := z*(x) for z € X and 2* € X* (and
sup ) = —o0). We say that the sequence (Ay,)nen C C scalar converges (or simply S-converges)
to A € C and we write A, S Aor A= S-lim,en Ay if

oa,(z") — oa(z™) Va*e X

This convergence was introduced by Wijsman [13] and studied by several authors (see Salinetti
and Wets [11], De Blasi and Myjak [3], Sonntag and Zalinescu [12], and Beer [2] for an overview
and further references). Note that o4 = 0¢lconva and 04(0) = 0 for every nonempty set A;
this shows that the natural framework for this convergence is the class Cgy of nonempty closed
convex subsets of X. In this section we investigate the relationship between scalar convergence
and C-convergence. We start with an extension of a result of Sonntag and Zalinescu [12].

Proposition 5.1 Assume that (Ap)nen C Co is S-convergent to A € Cy. Then A, Ny
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Proof. In [12, Prop. 1] it is shown that A = limsup,,cy An. In order to show that A =
liminf,cy Ay, fix some N € NZ. Of course, A = S-lim,en Ay, and so A = limsup,cy Ay C

sup,,cn A,. Since N € ./\/Z% is arbitrary, we obtain A C liminf,cy A,. Hence A, A O

It is easy to see that the reverse implication is not true in C. For this just take A, := {n} C
R; then A, 5 0, but (A;,) does not S-converge (in fact if A, 5, § then {n| A, =0} € Nw).
Even for A, A,, € Cy (n € N) the reverse implication is not true.

Example 5.2 Consider the sets 4 := {(0,z2) € R? | 22 > 0} € Co(R?) and A4, :=

{(z1,nz1) € R? | 21 > 0} € Co(R?) for n € N. It is easy to see that A, £ A. However
04, (1,0) =00 — 00 #0=04(1,0), whence (A4,) does not S-converge to A.

An easy calculation shows that in the previous example the domain domo g of o4 is the
set {(u1,u2) € R? | ug <0} and a4, (u1,u2) — oa(u,us) for every (ui,us) € R\ bddomoa.
In fact this characterizes the C-convergence of (A,) to A. Below we will show that a sequence
(Ap)nen C-converges to A € C if and only if (04, ),y converges pointwise to o4 excepting
the relative boundary points of dom o 4. We start with some auxiliary assertions.

The next result, related to proper lower semicontinuous convex functions, will be useful.
For a nonempty convex set A C X we set rbd A := cl A\ ri A, the relative boundary of A.

Proposition 5.3 Let f,g: X — R be two proper lower semicontinuous convex functions.
(i) If f(z) < g(z) for every x € ridom g then f < g.
(i) If domg Nridom f # 0 and f(x) < g(x) for every x € X \ rbddom f then f < g.
(iii) If aff dom f C aff domg (in particular if intdomg # 0) and f(z) < g(x) for every
x € X \rbddom f then f <g.
(iv) If f(z) = g(z) for every x € X \ (rbddom f Urbddomg). Then f =g.
(v) For every z* € X* one has f*(z*) = sup{(z,z*) — f(x) | x € ridom f}.

Proof. Note that in (i), (ii) and (iii) we have to prove f(z) < g(z) for z € dom g.

(i) Fix some z¢ € ridomg and take z € domg. Then |z, z¢] := {(1 — Nz + Azg | A €
(0,1]} € ridomg, and so f((1 — Nz + Axg) < g((1 — N)z + Azg) for every A € (0,1]. Since
the restrictions of g to the segment [z¢, x| is continuous (see [15, Prop. 2.1.6]) and f is Isc,
we obtain f(z) < g(z) (taking the limit for A | 0).

(ii) If © ¢ cldom f then z € X \ rbddom f, and so oo = f(z) < g(z). Hence domg C
cldom f. Fix zp € domg Nridom f and take x € domg. Then [z, z] C dom g and |z, zg] C
ridom f. As in (i) we obtain f(z) < g(z).

(iii) As in (ii) we have domg C cldom f, whence aff dlomg C aff cldom f = aff dom f.
Hence aff dom f = aff domg. Doing a translation, we may assume that Xy := aff dom g is
a linear space. Since outside Xy, f and g coincide, we may assume that Xy = X, and so
intdomg # (). From the inclusion domg C cldom f we obtain intdomg C intcldom f =
int dom f, and so dom g Nridom f # (). The conclusion follows from (ii).

(iv) First observe that ridom f C cldom g. Indeed, if x € ridom f and x ¢ cldom g then
z € X \ (rbddom f Urbddomg), and so f(z) = g(z) < oo. It follows that x € domg C
cldom g, a contradiction. Similarly, we have ridom g C cldom f. Since dom f and dom g are
convex subsets of a finite dimensional space, we obtain ridom f = ridom g and cldom f =
cldom g, and so rbd dom f = rbd dom g. The conclusion follows using (i) or (ii).
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(v) Let z* € X*. Of course,

fH(x") == sup{(z,2™) — f(z) |z € X} > sup{(z,z*) — f(x) | x € ridom f} := .

If v = oo there is nothing to prove. Let v € R and take g(z) := (z,z*) —v. Then g(z) < f(z)
for every x € ridom f. Using (i) we obtain g < f, and so f*(z*) < ~. O

The next result is a refinement of some well-known assertions of Convex Analysis.

Lemma 5.4 Let A,B € Cy. Then

ri(07A)° C domo s C (07 A)°, rbd(0" A)° = rbddom o 4, (10)

A= [ {zeX|(z2") <oala")}, (11)
z*€ri(0+ A)°

ACB & V2* cri(0"B)°: oa(2*) < op(z™). (12)

Moreover, if L(B) C L(A), then
ACB & V" € X\1bd(07A)°: oa(z*) < op(x¥). (13)

Proof. As a consequence of [8, Th. 14.2] we have cldomo4 = (07 A)° (compare [5, Th.
2.2.4], too). Together with [8, Th. 6.3] this yields ri(0TA)° = ricldomos = ridomos C
domoy C (01 A)°. Therefore, (10) holds. Since A € Cy, we have 14 = (14)** = (04)* (where
ta(z) :=0if z € A and 14(x) := o0 if x ¢ A). Using Proposition 5.3(v) we obtain (11) as
follows:

x €A p(x) =sup{(z,z*) —oa(z") | 2* €ridomos} =0
& Vz* €ridomoy =1i(07A)° : (z,2*) < oa(x”).

Since A C B & 04 < op and ricp = 1i(0TB)°, (12) is an immediate consequence of
Proposition 5.3(i). Furthermore, (13) follows from Proposition 5.3(iii) if we succeed to prove
that aff domoy C aff domop whenever L(B) C L(A). For this recall that for closed convex
cones P,Q C X we have (PN Q)° = cl(P°+ Q°). It follows that (PN —P)° = cl(P° — P°) =
claff P° = aff P° (because every linear subspace of a finite dimensional normed vector space
is closed). Therefore L(B) C L(A) implies that (in fact is equivalent to) affdomoy C
aff domopg. ]

Note that (13) is not sufficient for A C B without the assumption L(B) C L(A). In-
deed, consider A = Ri = {:c € R?|xy, 29 > 0} and B = {a: €ER? |z > 1}. Then we have
(0T B)° C rbd(0" A)° and, by (10), the righthand side of (13) is satisfied. But A ¢ B.

The next easy result is an immediate consequence of [8, Cor. 16.5.1].

Proposition 5.5 Let (A;)icr C C and set B := infc; A; and C := sup;c; A;. Then op <
infier o4, and oc = sup;cro4,.

Proposition 5.6 Let K C X be a pointed closed conver cone. Then (x,z*) < 0 for all
z* €riK°® and x € K \ {0}.
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Proof. Let z* € riK° and x € K \ {0}. Since K is pointed, we have int K° # (), and
so z* € int K°. Let ¥ € X* be such that (z,Z*) = 1. There exists some ¢ > 0 such that
¥ +ex* € K°. Then (x,z*) + ¢ = (z,2* + ex*) <0, whence (z,z*) < 0. O

Proposition 5.7 Let (A,)nen C C be such that limsup,,cy Ay # 0 and let (25)neny C X \ {0}
be a sequence such that x, € A, for alln € N, ||z,]| — oo and x,/||z,|| — u. Then
u € 07 lim sup,, ey An-

Proof. We show that « + tu € A := limsup, cy Ay, for every z € Aand ¢t > 0. Fixzx € A
and ¢ > 0. Then, by Proposition 3.6,

(M) pen € Apits 3 (kn)pey C NPT 3 (zn)neN C XP YneN, Vje0,p :

k% >n Z% cA; r = lim )\
’ kin? neN
1€0,p

Hence

m+tu—hm )\ +hmt
Z neN Han
zeO,p

Setting Xo™" i= t ||z, 7t 2T = @, KT = noand N, = N (14 )\Iﬁﬂ)_l for j € 0,p+1,
we obtain

x +tu = lim 1+)\p+1 Z )\]zj—hm Z VS

nEN

j€0,p+1 ]60 p+1

By Proposition 3.6 and taking into account Remark 3.7 we obtain x + tu € A. g
Lemma 5.8 Let (Ay)nen C C be such that A :=limsup, ey An # 0. Then

Va* € 1i(07A)° : limsupoa, (v*) = oa(z*).
neN

Proof. Let K := 0" A. From Proposition 5.5 we easily deduce o4 < limsup,cyoa,. It
remains to show that limsup,cyoa, (2*) < oa(z*) for all 2* € i K°.

(a) We first prove the case where K is pointed. Assume the assertion is not true. This
means there exists some z* € ri K° such that limsup,,cyoa, (z*) > 04(z*). Hence, there are

e>0and N € N such that oa, (%) > oca(x*)+ e for all n € N. It follows that
Vn €N, Jz, € Ay, ¢ (zp,2") > oa(z¥) + €. (14)

We distinguish between two cases.
(i) There exists some N’ € NZ(N) such that #,, — = € X. Then z € LIMSUP, ey Ay, C
lim sup,,cy A, = A, which contradicts (14).

(ii) Otherwise there is some N’ € NZ(N) such that ||z,|| # 0 for n € N, ||z, N 5 and

2z~ @n N w € X. From Proposition 5.7 we deduce that u € K = 0T A. Proposition 5.6
yields (u,xz*) < 0. On the other hand, dividing both sides of the inequality in (14) by ||z,||
for n € N’ and taking the limit we obtain (u,z*) > 0, a contradiction.

(b) Let Y := KN—K # {0}. First observe that A = limsup,,cy A4},, where A}, := A, &Y €
C. For this, set Ay = sup,cny An = clconv (UpenA,) for every N € Ny. Since A C Ay
we have Y C 0TA C 0t Ay, and so Ay = Y + Ay. It follows that for every n € N we
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have A, C A, C AN ®Y = Ay, whence Ay = sup,cn An C sup,cny 4, C Ay. Hence
A = limsup,cy A;,. Moreover, 041 = 04, +oy if Ay # 0 and o4 = 04, if A, =0, and
so oar (z*) = oa,(z*) for every 2* € K° (because K° C Y° = Y, and so oy (z*) = 0 for
every z* € K°). These arguments show that, without loss of generality, we may assume that
A, +Y = A, for every n € N. Consider a linear space Z C X such that X =Y + Z and
YNZ = {0}. Then A, =Y +(ZNA,). Setting B,, := ZNA,, € C(Z) and identifying X with
Y x Z, we have A,, =Y x B, for every n € N. Taking B := limsup,,cy Bp, by Lemma 4.3 we
have A=Y xBand K =07"A =Y x 0" B, whence K° = {0} x (0" B)°. Since Y = KN —K,
it follows that 0" B is pointed. Moreover, ri K° = {0} x ri(0" B)® and o 4(y*, 2*) = op(2*) for
y* =0, oa(y*, z*) = oo for y* # 0 (and similarly for A, B replaced by A,, B, respectively).
The conclusion follows applying (a). O

We now state the main result of this paper, a characterization of C-convergence.

Theorem 5.9 Let (A,)nen C C and A € Cy; the following statements are equivalent:
(i) A > 4,
(ii) Vz* € X*\ rbd(0T A)° : limyenoa, () = oa(z®).

Proof. (i) = (ii). We have A = limsup,,cy A, = liminf, ey A,. From Proposition 5.5 we
easily obtain 04 < liminf, enyo4,, and so

o4 <liminfoy, <limsupog,. (15)
neN neN

Since domo s C (0T A)° (see (10)), it follows that lim,enoa, (z*) = oa(z*) = oo for every
x* € X*\ (0T A)°. Tt remains to show that lim,enoa, (z*) = oa(z*) for every z* € ri(0TA)°.
This follows from Lemma 5.8 and (15).

(ii) = (i). First note that A,, € Cy for n € Ny for some Ny € N and so we may assume
that A,, € Cy for every n. Moreover, rbd dom o4 = rbd (0" A)°.

Let us prove that A C liminf,cy A,. First we prove that A C B := limsup,,cy An-
Assuming that this is done, for N € NZ we have limpen o4, (z*) = oa(z*) for every
z* € X*\ rbd(0"A)°, whence A C limsup,cy 4n C sup,eny An. It follows that A C
ianeNgﬁ sup,cn An = liminf,en Ay,.

In order to show that A C limsup,cy Ay, let B, := supy>,, Ax. Since B,41 C B, we
have op, , < op, for every n € N. It follows that -

e o) = e ) = J e ) = e (@)

and so
Vn eN, Vz* € X*\rbddomog : oa(z*) <op,(z"). (16)

On the other hand, because L(By+1) C L(B,) for every n, there exists some ng such that
L(B,) = Y for n > ng. We show that Y C L(A). Indeed, take z* € X*\ Y'; then
z* ¢ (07 B,)°, and so op, (z*) = oo for every n. If z* ¢ rbddomoy, by hypothesis, we
obtain o4(z*) = co. Hence z* € X* \ ridomoy. It follows that ridomo, C Y+, whence
(0*A)° = cldomoa C Y*. Thus we obtain Y C 0% A, hence Y C L(A). It follows that
L(B,) C L(A) for every n > ng. Taking into account (16), from (13) we conclude that
A C B, for every n > ng, and so A C B,, for every n. This proves that A C limsup A4,, = B.
Hence, as observed above, A C liminf,,cn A,.
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But B = inf,cn Bj,, and so, by Proposition 5.5, we have

op < inf og, = inf supoy, = limsupoy, .
neN " beN k>n k neN "

It follows that op(z*) < o4(z*) for every z* € X*\ rbd(0" A)°. Using (12) we obtain B C A.

Hence A =1lim A,,. O
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