
Optimization with set relations: Conjugate Duality

Andreas Löhne∗
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convex set–valued maps. The basic idea is to understand a convex set–valued map as a function with
values in the space of closed convex subsets of Rp. The usual inclusion of sets provides a natural
ordering relation in this space. Infimum and supremum with respect to this ordering relation can
be expressed with the aid of union and intersection. Our main result is a strong duality assertion
formulated along the lines of classical duality theorems for extended real–valued convex functions.

Keywords: set–valued optimization; set relations; duality; power structures; embedding of convex sets

Mathematics Subject Classification 2000: 90C48; 52A41; 90C29

1 Introduction

Set–valued optimization problems have been investigated by many authors, see Jahn [9] and
the references therein. Set–valued problems naturally occur in vector optimization, for in-
stance, as dual problems, and, of course, vector optimization problems provide a very im-
portant special case of set–valued optimization with numerous applications. Set–valued opti-
mization theory is well developed, so there are many papers on optimality conditions, duality
theory as well as related topics. For instance, in Hamel et al. [7] a set–valued approach is
used to solve the problem of the duality gap in linear vector optimization in the case that
the right hand side of the inequality constraints is zero. Given a set–valued objective map
F : X ⇒ Y and a set of feasible points S ⊆ X, where X and Y are linear spaces and Y is
partially ordered by convex pointed cone, in set–valued optimization one deals with minimal
points of the set F (S) :=

⋃
x∈S F (x), where the minimality notion is understood with respect

to the partial ordering in the space Y .
Optimization with set relations provides quite a different approach to set–valued opti-

mization. The main idea is to understand the set–valued objective map f : X ⇒ Y as a
function f : X → P̂(Y ) into the space P̂(Y ) of all subsets of Y . This space is provided with
an appropriate ordering relation. Ordering relations on power structures have been investi-
gated, for instance, by Brink [3]. In the special case that Y is a linear space, K ⊆ Y a convex
pointed cone (containing zero) and A,B ⊆ Y these relations can be expressed by

A 4K B :⇔ B ⊆ A + K and A 2K B :⇔ A ⊆ B −K.
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Kuroiwa [11] formulated corresponding optimization problems. Further references about the
origin of these ordering relations can be found in Hamel [6].

In this paper, we investigate convex problems in this context. It turns out that the
relations introduced above can be replaced by the usual inclusion of sets in order to describe
all the relevant assertions in the paper’s framework. This is due to the fact that the relations
are not antisymmetric. In order to obtain antisymmetry it is necessary to switch over to
equivalence classes. Choosing appropriate representatives of these equivalence classes is the
same as using the usual inclusion of sets. A more detailed discussion can be found in [6],
[13]. Infimum and supremum with respect to the relation ”inclusion of sets” are expressed
via union and intersection. We develop a set–valued conjugate duality theory, based on the
relation ”inclusion of sets”, and we proceed completely analogous to the scalar theory of
conjugate duality. This work is organized as follows.

In the next section, we investigate the structure of the objective function’s image space,
namely, the space of closed convex subsets of Rp. We observe that this space is not a linear
space. Moreover, it is not possible to embed this space into a linear space. However, as we
will see in the third section, certain subsets of this space can be embedded. Essentially, a
convex function only attains values in such a subset. This ensures the linear structure of
the image space, which is usually needed in duality theory. Furthermore, it is necessary to
observe whether infimum and supremum are changed while the embedding procedure. We
observe that the infimum is not changed, but the supremum is so. At the first glance, this
problem seems to be asymmetric in this sense. With the aid of the concept of oriented sets,
due to Rockafellar [18], the symmetry can be re–established. For the details we also refer
to [13]. In Section 4, we develop the duality theory. Weak and strong duality assertions are
proven. The last section is devoted to some examples.

As for prerequisites, the reader is expected to be familiar with Rockafellar’s ”Convex
Analysis” [18]. Up to a few exceptions, we frequently use the notation therein. The following
notations are not in accordance with Rockafellar’s book. The symbol ⊕ does not mean the
direct sum, because it will get an other meaning. If A is a real m × n matrix, rg A :=
{Ax ∈ Rm| x ∈ Rn} denotes the range of A and AT is the transposed matrix. Further, we
write Rn

+ := {x ∈ Rn| ∀i ∈ {1, ..., n} : xi ≥ 0}, Rn− := −Rn
+ and R+ := R1

+.
The main results of this paper were announced in [12].

2 The structure of the image space

Throughout the paper, Y stands for the Euclidian space Rp, where p is a positive integer.
The space of all nonempty closed convex subsets of Y is denoted by C(Y ). For simplicity of
notation, we write C instead of C(Y ). In C we introduce an addition ⊕ : C × C → C and a
multiplication by nonnegative real numbers · : R+ × C → C, defined by

∀A,B ∈ C : A⊕B := cl (A + B) = cl {a + b| a ∈ A, b ∈ B} ,

∀A ∈ C, α ≥ 0 : α A := α · A := {α a| a ∈ A} .
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Clearly, both operations are well–defined and for all A,B, C ∈ C and all α, β ∈ R+ the
following calculus rules hold true:

(C1) (A⊕B)⊕ C = A⊕ (B ⊕ C), (C2) {0} ⊕A = A,
(C3) A⊕B = B ⊕A, (C4) α (β A) = (αβ)A,
(C5) 1 ·A = A, (C6) α (A⊕B) = α A⊕ α B,
(C7) 0 ·A = {0}, (C8) α A⊕ β A = (α + β) A.

In Hamel [6], a set (W,⊕, ·) is called a conlinear space if the axioms (C1)–(C7) are satisfied.
In this manner, C is a conlinear space where, additionally, the second distributive law (C8)
holds true. For further concepts of this type we refer to [6], [10] and the references therein.
It is easy to see that C is not a linear space, since the axiom of the existence of an inverse
element is violated. Moreover, it is not possible to embed C into a linear space. Indeed, assume
there is an injective homomorphism j (an embedding) from C into a linear space L. Given a
nonempty closed convex cone K ⊆ Y such that K 6= {0} we have K ∈ C and K = K ⊕K.
Hence j(K) = j(K) + j(K) 6= 0. Then there must be an inverse element l ∈ L of j(K), i.e.,
j(K) + l = 0. It follows 0 = j(K) + l = j(K) + l + j(K) = j(K), a contradiction.

Although, C is not a linear space nor can it be embedded into a linear space, its structure
is rich enough to define the concept of convexity and that of a cone. A subset A ⊆ C is said
to be convex if A,B ∈ A implies that λA⊕ (1− λ)B ∈ A for all λ ∈ [0, 1]. A subset A ⊆ C is
said to be a cone if A ∈ A implies that αA ∈ A for all α > 0.

Rockafellar [18, Section 39] introduced the concept of orientation of convex sets in Y .
A convex set A ⊆ Y that is identified with its convex indicator function δ( · |A) is said to
be supremum oriented and a convex set A ⊆ Y that is identified with the concave function
−δ( · |A) is called infimum oriented. This concept plays a crucial role in our theory. Thus
we introduce the following notation: The space C? is defined to be the space of all nonempty
closed convex subset of Y having supremum orientation. By C¦ we denote the space of all
nonempty closed convex subsets of Y having infimum orientation. If not stated otherwise,
the orientation is not changed while manipulating sets. For instance, this means C? and C¦
are conlinear spaces, the recession cone of a supremum (infimum) oriented set is supremum
(infimum) oriented, and so on.

Let K ⊆ Y be a nonempty closed convex cone. The set CK ⊆ C is defined to be the set
of all elements A ∈ C with 0+A = K. If these sets additionally have an orientation, we write
C?

K and C¦K , respectively.

Proposition 2.1 CK is a convex cone in C.

Proof. Let A, B ∈ CK . It remains to show 0+(A ⊕ B) = K. This is a consequence of [18,
Corollary 9.1.1] if we can verify the following condition: If z1 ∈ 0+A and z2 ∈ 0+B are such
that z1 + z2 = 0, then z1 belongs to the lineality space of A and z2 belongs to the lineality
space of B. Indeed, we have 0+A = 0+B = K and the lineality spaces of A and B are equal,
namely 0+A ∩ (−0+A) = 0+B ∩ (−0+B) = K ∩ (−K). Hence the mentioned condition is
satisfied. ¤
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Note that [18, Corollary 9.1.1] also implies that in CK ⊆ C the addition ⊕ reduces to the
usual Minkowski addition +, i.e., the closure operation is superfluous.

The space C is now equipped with one of the reflexive, transitive and antisymmetric
relations ⊇ and ⊆. We establish standard relations, in dependence of the orientation of the
members of the space. In fact, let the standard relation be ⊇ in the space C? and ⊆ in
C¦. Both these standard relations have the meaning of ”less or equal”. This identification
makes it easier to distinguish between convex and concave functions with values in C (which
is defined below).

We observe the following relation between the conlinear structure and the ordering struc-
ture in (C,⊇) and (C,⊆).

∀A,B,C, D ∈ C, ∀α ∈ R+ : A ⊇ B, C ⊇ D ⇒ α (A⊕ C) ⊇ α (B ⊕D).

In [6], a conlinear space equipped with a partial ordering and satisfying the latter condition
is called an ordered conlinear space. This means our spaces C? and C¦ (with its standard
relations) are ordered conlinear spaces.

We now repeat some concepts with respect to partially ordered sets, for instance, see [20].
Moreover, we illustrate some crucial facts according to these concepts by simple examples.
If (W,≤) is a partially ordered set, V is a subset of W and the point w0 ∈ W satisfies
v ≤ w0 for all v ∈ V , then w0 is called an upper bound of V . The subset V is now said to be
bounded above. The definitions of bounded below and lower bound are analogous. Note that
the boundedness depends on the ”basis set” W . For instance, letting W = R, ordered by the
usual ordering ≤, the open interval V = (0, 1) is bounded. If we take instead W = (0, 1), then
the same set V = (0, 1) is not bounded. If w0 ∈ W is an upper bound of V such that w0 ≤ w̄

for any other upper bound w̄ ∈ W of V , then w0 is called least upper bound or supremum of
V and is denoted by supV . If V has a supremum then it is uniquely defined. This is an easy
consequence of the antisymmetry of the relation ≤. The greatest lower bound or infimum is
analogously defined and is denoted by inf V . Supremum and infimum of a set V ⊆ W also
depend on the ”basis set” W as the following example shows. As above, let W = R and
V = (0, 1). Then, supV = 1. If we have W = {r ∈ R| r < 1 ∨ r ≥ 2} instead, supV = 2. In
case of W = {r ∈ R| r < 1 ∨ r > 2}, the supremum of V does not exist. A partially ordered
set W is said to be order complete if every subset of W has supremum and infimum. If W

is order complete and V = ∅, then supV = inf W and inf V = supW . The set W is called
Dedekind complete if every nonempty subset of W that is bounded above (bounded below)
has a supremum (infimum). Note that for Dedekind completeness an one–sided condition is
already sufficient, this means W is Dedekind complete if and only if every nonempty subset
of W which is bounded above has a supremum [20, Theorem 1.4]. An element w̄ ∈ W is
called the largest element of (W,≤) if w ≤ w̄ for all w ∈ W . The smallest element is defined
analogously. If (W,≤) has a largest (smallest) element, then it is uniquely defined.

Let us apply these concepts to the spaces C? and C¦.
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Proposition 2.2 The spaces C? and C¦ are Dedekind complete and the infimum and supre-
mum can be expressed as follows:

(i) ∅ 6= A ⊆ C? bounded above ⇒ supA =
⋂

A∈A
A,

(ii) ∅ 6= A ⊆ C? ⇒ inf A = cl conv
⋃

A∈A
A,

(iii) ∅ 6= A ⊆ C¦ ⇒ supA = cl conv
⋃

A∈A
A,

(iv) ∅ 6= A ⊆ C¦ bounded below ⇒ inf A =
⋂

A∈A
A.

Proof. (i) Set S :=
⋂

A∈AA. Let Ā be an upper bound of A, i.e., A ⊇ Ā for all A ∈ A.
Hence S 6= ∅. Of course, S is convex and closed. Thus, S belongs to C?. For all A ∈ A we
have A ⊇ S, i.e., S is an upper bound of A. Let S̄ ∈ C? be another upper bound of A, i.e.,
for all A ∈ A it holds A ⊇ S̄, then it follows

⋂
A∈AA ⊇ S̄, i.e., S ⊇ S̄.

(ii) Set I := cl conv
⋃

A∈AA. Of course, I ∈ C?. For all A ∈ A we have I ⊇ A, i.e., I

is a lower bound of A. Let Ī ∈ C? be another lower bound of A, i.e., for all A ∈ A it holds
Ī ⊇ A, then it follows Ī ⊇ ⋃

A∈AA. Since Ī is closed and convex, we obtain Ī ⊇ I. The same
reasoning applies to (iii) and (iv). ¤

In many situations, it is convenient to extend a Dedekind complete partially ordered set by
a smallest or largest element in order to obtain an order complete set. In C? there already
exists the smallest element, namely Y ∈ C?. Therefore, we extend the space C? only by the
largest element. Intuitively, we denote this element by ∅ (and identify it with the empty set).
Then, we have A ⊇ ∅ for all A ∈ C. This new element is also provided with an orientation, in
this case with supremum orientation. Addition and multiplication with this new element are
defined by

∀A ∈ C ∪ {∅} : A⊕ ∅ = ∅ ⊕A = ∅, ∀α > 0 : α · ∅ = ∅, 0 · ∅ = {0} .

The resulting order complete conlinear space is denoted by Ĉ?. In the same way the space C¦
is extended by the smallest (infimum oriented) element ∅ and the resulting order complete
conlinear space is denoted by Ĉ¦.

In every order complete ordered conlinear space (W,⊕, · ,≤) it is evident that

inf(A+ B) ≥ inf A⊕ inf B and sup(A+ B) ≤ supA⊕ supB, (1)

where A+ B := {A⊕B| A ∈ A, B ∈ B}. In general, (1) does not hold with equality.

Example 2.3 Let Y = R2, K = R2
+, B :=

{
x ∈ R2| ‖x‖ ≤ 1

}
, A,B ⊆ C?, A := {{(0, 1)T }+

K, {(1, 0)T }+K}, B := {B}. Then, supA⊕supB =
(
({(0, 1)T }+K)∩({(1, 0)T }+K)

)
+B ={

(1, 1)T
}

+ K +B. However, sup(A+B) =
({

(0, 1)T
}

+ K +B
)∩ ({

(1, 0)T
}

+ K +B
)

= K.
Hence, sup(A+ B) 6= supA⊕ supB.
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However, for the infimum in C? and the supremum in C¦, (1) even holds with equality.

Proposition 2.4 For nonempty sets A,B ⊆ C? and Ā, B̄ ⊆ C¦ it holds

inf(A+ B) = inf A⊕ inf B and sup(Ā+ B̄) = sup Ā ⊕ sup B̄.

Proof. For nonempty subsets A,B ⊆ Y it holds conv A + conv B = conv (A + B), for
instance, see [16]. Furthermore, it is easy to check that cl (clA + clB) = cl (A + B). Hence,
we conclude cl (cl conv A + cl conv B) = cl conv (A + B). This yields

inf(A+ B) Prop. 2.2= cl conv
⋃

C∈A+B
C = cl conv

⋃

A∈A, B∈B
{A⊕B}

⊇ cl conv
⋃

A∈A, B∈B
{A + B} = cl conv

( ⋃

A∈A
A +

⋃

B∈B
B

)

= cl

(
cl conv

⋃

A∈A
A + cl conv

⋃

B∈B
B

)
Prop. 2.2= inf A⊕ inf B.

By (1) (or directly) we deduce equality. The second part is completely the same. ¤

The following definitions of convex and concave functions are clear having in mind that
both the standard relation ⊇ in C? and ⊆ in C¦ have the meaning of ”less or equal”. Let X

be a linear space and S ⊆ X convex. A function f : S → Ĉ? is said to be convex if

∀λ ∈ [0, 1], ∀x, u ∈ S : f(λ · x + (1− λ) · u) ⊇ λ f(x)⊕ (1− λ) f(u). (2)

However, if a function f : S → Ĉ¦ satisfies (2) it is said to be concave. Analogously, a function
f : S → Ĉ? is concave and a function f : S → Ĉ¦ is convex if the following dual condition is
satisfied:

∀λ ∈ [0, 1], ∀x, u ∈ S : f(λ · x + (1− λ) · u) ⊆ λ f(x)⊕ (1− λ) f(u).

At the first glance, a convex function f : S → Ĉ? does not subsume the important case of
an extended real–valued convex function. In Example 4.5 that follows, however, we see that
extended real–valued problems are equivalent to special set–valued problems.

Up to now, all the operations used did not influence the orientation of a set. We want to
express the change of the orientation of a set as follows: Given an oriented set A we denote
by ¢A the same set, but with opposite orientation. As usual, the negative of a convex set A

is defined by
−A := {y ∈ Y | − y ∈ A} .

By convention, if A is an oriented set, this operation does not manipulate the orientation of
A. In contrast to this, we introduce a second concept of a negative of a convex set which
does so. Given an oriented set A we define ¯A being the set −A, but with the opposite
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orientation. Instead of two signs, we now have four signs, namely +,−,¢,¯. Obviously, the
following assertions hold true:

A = ¢ ¢ A = ¯ ¯ A, −A = ¢ ¯ A = ¯ ¢ A,

¢A = + ¢ A = −¯ A, ¯A = + ¯ A = −¢ A.

Clearly, an expression is independent of the order of the signs. Note that ¢ and ¯ are signs
but not operations. This means, adding elements A ∈ C? with elements B ∈ C¦ is not allowed.
Nevertheless, we write A ¢ B := A + (¢B) and A ¯ B := A + (¯B), if these expressions are
defined, i.e., A and B are contrarily oriented. If ∅? is the largest element in Ĉ? and ∅¦ is the
smallest element in C¦, then let us use the convention ¯∅¦ = ∅?. Thus we obtain the well–
known convexity–concavity dualism also for convex functions with values in Ĉ. A function
f : S → Ĉ? is convex (concave) if and only if ¯f : S → Ĉ¦ is concave (convex). For a given
set A ⊆ Ĉ? and using the notation ¯A := {¯A| A ∈ A}, it can be easily shown (Proposition
2.2) that

¯ inf A = sup¯A and ¯ supA = inf ¯A. (3)

A further motivation for the usage of the sign ¯ will be given in the next section.

3 Embedding subsets of C into a linear space

Embedding of spaces of convex sets into linear spaces was investigated by R̊adström [17]. For
further results in this field, compare [1] and the references therein.

The aim of this section is to embed the convex cone CK ⊆ C into a partially ordered linear
space. In dependence of the orientation of the members of CK we use different embedding
maps. This procedure allows us to re–interpret the inverse element of the embedding map’s
image of a member of CK as an element of C−K having the opposite orientation.

The following lemma is an important tool in the proof of the duality theorem in the next
section. It is a refinement of [18, Theorem 13.1]. Denoting the polar cone of a cone K ⊆ Y

by K◦, it is shown that only the set ri (0+A)◦ := ri ((0+A)◦) (instead of the whole space
Y ∗ = Rp) is essential for the description of a nonempty closed convex set via its support
function.

Lemma 3.1 Let A be a nonempty closed convex subset of Y . Then

A =
⋂

y∗∈ri (0+A)◦
{y ∈ Y | 〈y∗, y〉 ≤ δ∗ (y∗|A )} .

Proof. As a consequence of [18, Theorem 14.2] we have cl dom δ∗( · |A ) = (0+A)◦ (compare
[8, Theorem 2.2.4], too). Together with [18, Theorem 6.3] this yields

ri (0+A)◦ = ri cl dom δ∗( · |A ) ⊆ dom δ∗( · |A ) ⊆ (0+A)◦. (4)

By [18, Theorem 13.1] and (4) we obtain

A =
⋂

y∗∈Y ∗

{
y ∈ Y | 〈y∗, y〉 ≤ δ∗ (y∗|A )

}
=

⋂

y∗∈(0+A)◦

{
y ∈ Y | 〈y∗, y〉 ≤ δ∗ (y∗|A )

}
.
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It remains to show

Y1 :=
⋂

y∗∈(0+A)◦

{
y ∈ Y | 〈y∗, y〉 ≤ δ∗ (y∗|A )

}
=

⋂

y∗∈ri (0+A)◦

{
y ∈ Y | 〈y∗, y〉 ≤ δ∗ (y∗|A )

}
=: Y2.

The inclusion Y1 ⊆ Y2 is obvious. In order to show Y2 ⊆ Y1 let y ∈ Y2 be arbitrarily chosen.
It holds 〈y∗, y〉 ≤ δ∗ (y∗|A ) for all y∗ ∈ ri (0+A)◦. Let ȳ∗ ∈ (0+A)◦ and y∗ ∈ ri (0+A)◦, then
λȳ∗ + (1− λ)y∗ ∈ ri (0+A)◦ for all λ ∈ [0, 1) (compare [18, Theorem 6.1]). It follows

〈λȳ∗ + (1− λ)y∗, y〉 ≤ δ∗ (λȳ∗ + (1− λ)y∗|A ) ≤ λ δ∗ (ȳ∗|A ) + (1− λ)δ∗ (y∗|A ) .

By virtue of (4), we deduce that δ∗ (y∗|A ) < +∞. Letting λ → 1 we obtain 〈ȳ∗, y〉 ≤
δ∗ (ȳ∗|A ), i.e., y ∈ Y1. ¤

With the aid of the preceeding lemma we are able to give an equivalent characterization of
the ordered conlinear spaces C?

K and C¦K (the axioms (C1) – (C8) are satisfied, if we replace
{0} by K, i.e., K is the neutral element). This can be used to embed the spaces C?

K and C¦K
into a linear space. This gives a further motivation of oriented sets and the usage of the sign
¯ introduced above and sheds new light on the structure of the objective function’s image
space C.

Let Γ?
K be the space of all positively homogeneous concave functions from riK◦ into R and

let Γ¦K be the space of all positively homogeneous convex functions from riK◦ into R. The
spaces Γ?

K and Γ¦K are conlinear spaces, with respect to the addition and the multiplication
by nonnegative real numbers, defined pointwise using the corresponding operations in R.
Moreover, Γ?

K and Γ¦K , equipped with the ordering relation ≤, defined pointwise using the
usual ≤ relation in R, are ordered conlinear spaces.

Corollary 3.2 Let K ⊆ Y be a nonempty closed convex cone. Then, the following assertions
hold true:

(i) There exists a bijective map j? : C?
K → Γ?

K such that for all A,B ∈ C?
K and all positive

real numbers α > 0:

(a) j?(A + B) = j?(A) + j?(B), (b) j?(αA) = αj?(A),

(c) j?(K) = 0Γ?
K
, (d) A ⊇ B ⇔ j?(A) ≤ j?(B).

(ii) There exists a bijective map j¦ : C¦−K → Γ¦K such that for all A,B ∈ C¦−K and all positive
real numbers α > 0:

(a) j¦(A + B) = j¦(A) + j¦(B), (b) j¦(αA) = αj¦(A),

(c) j¦(−K) = 0Γ¦K , (d) A ⊆ B ⇔ j¦(A) ≤ j¦(B).
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Proof. (i) Consider the map j? which assigns every A ∈ C?
K the negative support function

of the set A ⊆ Y , restricted to the set riK◦ ⊆ Y ∗. More precisely, γA = j?(A) is defined by
γA : riK◦ → R ∪ {±∞}, γA(y∗) := −δ∗(y∗|A ). Of course, j? is a function. Moreover, j? is a
function from C?

K into Γ?
K . Indeed, let A ∈ C?

K . Since A is nonempty, we have δ∗(y∗|A ) > −∞
for all y∗ ∈ Y ∗. With the aid of (4) we obtain δ∗(y∗|A ) < +∞ for all y∗ ∈ riK◦. Hence
γA = j?(A) only attains values in R. Since support functions are sublinear and riK◦ is a
convex cone, γA = j?(A) is positively homogeneous and concave on riK◦. Hence j?(A) ∈ Γ?

K .
j? : C?

K → Γ?
K is injective. Indeed, let A,B ∈ C?

K such that j?(A) = j?(B). Note that A

and B are nonempty, closed, convex and 0+A = 0+B = K. Lemma 3.1 yields A = B.
j? : C?

K → Γ?
K is surjective. Indeed, given an element γ ∈ Γ?

K , define a function d : Y ∗ →
R ∪ {+∞} by

d(y∗) :=

{
−γ(y∗) if y∗ ∈ riK◦

+∞ else.

Then d is convex, positively homogeneous, not identically +∞ and d > −∞. With the aid
of [18, Corollary 13.2.1] we conclude that cl d is the support function of the nonempty closed
convex set

Aγ :=
⋂

y∗∈ri K◦
{y ∈ Y | 〈y∗, y〉 ≤ d(y∗)} =

⋂

y∗∈ri K◦
{y ∈ Y | 〈y∗, y〉 ≤ −γ(y∗)} .

Applying [18, Corollary 8.3.3], taking into account the considerations in [18, page 62] and
applying Lemma 3.1 we obtain

0+Aγ =
⋂

y∗∈ri K◦
0+ {y ∈ Y | 〈y∗, y〉 ≤ d(y∗)} =

⋂

y∗∈ri K◦
{y ∈ Y | 〈y∗, y〉 ≤ 0} = K.

By definition, we have j?(Aγ)(y∗) = −cl d(y∗) for all y∗ ∈ riK◦. With the aid of [18, Theorem
7.4] we have cl d(y∗) = d(y∗) for all y∗ ∈ riK◦. Hence j?(Aγ) = γ.

(i)(a) and (i)(b) follow from elementary properties of the supremum in R, compare [18,
page 113], too. (i)(c) follows from the definition of the polar cone and of the support function.
(i)(d) is a consequence of [18, Corollary 13.1.1].

(ii) Define j¦(A) := −j?(¯A) and use (i). ¤

Let ΓK be the space of all positively homogeneous (and not necessarily convex or concave)
functions γ : riK◦ → R. Let ΓK be equipped with an addition and a multiplication by scalars,
defined pointwise using the corresponding operations in R, and with an ordering relation ≤,
defined pointwise using the usual ≤ relation in R. Then, the space ΓK is a partially ordered
linear space. Corollary 3.2 yields that (C?

K ,⊇) and (C¦−K ,⊆) are isomorphic to convex cones in
the partially ordered linear space (ΓK ,≤). Let j? : C?

K → ΓK be the injective homomorphism
which embeds C?

K into ΓK and let j¦ : C¦−K → ΓK be the injective homomorphism which
embeds C¦−K into ΓK . Then, it easily follows that

∀A ∈ C?
K : j?(A) + j¦(¯A) = 0, ∀A ∈ C¦−K : j¦(A) + j?(¯A) = 0. (5)
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In this sense, ¯A can be regarded as the ”inverse element” of a nonempty closed convex set
A. However, this does not imply that C?

K ∪C¦−K is a linear space, because it is not a conlinear
space.

The possibility of embedding seems to be the natural background of the duality theory,
although the embedding is not explicitely used in the proof of the duality theorem in the next
section. It can be shown (see [14], [13]) that a convex function f : X → Ĉ? essentially (i.e., on
the interior of its domain or, under the additional assumption of lower semi–continuity [13],
everywhere on its domain) attains values in C?

K . This means, these values can be embedded
into a linear space.

The next proposition tells us what happens to the infimum and supremum while the
embedding procedure. A more detailed discussion in terms of the isomorphisms j? and j¦ can
be found in [13].

Proposition 3.3 For an arbitrary index set I, let be given a set A := {Ai ∈ Ĉ?| i ∈ I} ⊆ Ĉ?.
Then it holds

∀y∗ ∈ Y ∗ : −δ∗
(
y∗| inf

i∈I
Ai

)
= inf

i∈I

{−δ∗
(
y∗|Ai

)}
,

∀y∗ ∈ Y ∗ : −δ∗
(
y∗| sup

i∈I
Ai

) ≥ sup
i∈I

{−δ∗
(
y∗|Ai

)}
.

Proof. Without loss of generality we can assumeA ⊆ C?. We have infi∈I Ai = cl conv
⋃

i∈I Ai.
Hence, the first assertion follows from the first part of [18, Corollary 16.5.1].

Taking into account that supi∈I Ai =
⋂

i∈I Ai, the second part of [18, Corollary 16.5.1]
yields δ∗

( · | supi∈I Ai

)
= cl conv

{
δ∗

( · |Ai

) | i ∈ I
}
, where the convex hull of a collection

of functions is defined as the convex hull of the pointwise infimum of the collection, i.e.,
cl conv

{
δ∗

( · |Ai

) | i ∈ I
}

= cl conv infi∈I δ∗
( · |Ai

)
, compare [18, page 37]. It follows that

δ∗
( · | supi∈I Ai

) ≤ infi∈I δ∗
( · |Ai

)
, which proves the second assertion. ¤

4 Conjugate duality

In this section, the conjugate duality theory for optimization problems based on set relations
is developed. We start with two auxiliary assertions, which will be used in the proof of the
duality theorem.

Lemma 4.1 Let A ⊆ Y be a nonempty closed convex set and K ⊆ Y be a nonempty closed
convex cone. Then

(∀y∗ ∈ riK◦ : δ∗(y∗|A) < +∞) ⇒ K ⊇ 0+A.

Proof. From (4) we conclude that riK◦ ⊆ dom δ∗( · |A) ⊆ (0+A)◦. With the aid of [18,
Theorem 6.3] we obtain K◦ ⊆ (0+A)◦. It easily follows that K◦◦ ⊇ (0+A)◦◦. The bipolar
theorem [18, Theorem 14.1] yields K ⊇ 0+A. ¤
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Lemma 4.2 Let K ⊆ Y be a nonempty closed convex cone which is not a linear subspace of
Y . Then it holds

(y ∈ riK ∧ y∗ ∈ riK◦) ⇒ 〈y∗, y〉 < 0.

Proof. Assume the contrary. By the definition of the polar cone this means there exists
ȳ ∈ riK and ȳ∗ ∈ riK◦ such that 〈ȳ∗, ȳ〉 = 0. We show that

∀y∗ ∈ K◦ : 〈y∗, ȳ〉 = 0. (6)

Assume that (6) is not true. Then, there is some ỹ∗ ∈ K◦ such that 〈ỹ∗, ȳ〉 < 0. Since
ȳ∗ ∈ riK◦ there exists some µ > 1 such that ŷ∗ := µȳ∗ + (1− µ)ỹ∗ ∈ K◦. Hence 〈ŷ∗, ȳ〉 > 0,
which contradicts ŷ∗ ∈ K◦.

With the aid of (6) and the bipolar theorem [18, Theorem 14.1] we obtain −ȳ ∈ K◦◦ = K.
Since K is a convex cone and ȳ ∈ K ∩ (−K) we have K = K + {−ȳ}. From ȳ ∈ riK we
conclude 0 ∈ riK + {−ȳ} = ri (K + {−ȳ}) = ri K. This implies linK = aff K = K, i.e., K is
a linear subspace of Y , a contradiction. ¤

Let X := Rn, U := Rm (hence X∗ = Rn, U∗ = Rm) and let f : X → Ĉ? be a function.
Recall that both the standard relation ⊇ in Ĉ? the standard relation ⊆ in Ĉ¦ have the meaning
of ”less or equal”. Therefore, we write ≤ instead of ⊇ and ⊆ in order to emphasize the analogy
of our statements to the well–known scalar case. So, the interpretation of ≤ depends on the
orientation of the sets being compared.

Let c ∈ Y and let {c} be infimum oriented. The function f∗c : X∗ → Ĉ¦, defined by

f∗c (x∗) := sup
x∈X

{〈x∗, x〉 · {c}¯ f(x)} ,

is said to be the conjugate of f with respect to c. From (1) we conclude that f∗c is convex
(even if f is not). As an easy consequence of the definition of f∗c , we obtain the Fenchel–Young
inequality

∀x ∈ X, x∗ ∈ X∗, c ∈ Y : f∗c (x∗) ≥ 〈x∗, x〉 · {c}¯ f(x). (7)

For functions f : X → Ĉ? and h : X → Ĉ? it is evident that

(∀x ∈ X : f(x) ≤ h(x)
) ⇒ (∀x∗ ∈ X∗,∀c ∈ Y : f∗c (x∗) ≥ h∗c(x

∗)
)
.

It follows the main result of this paper, a duality theorem for functions with values in the
space of closed convex subsets of Y = Rp.

Theorem 4.3 (Duality theorem) For given functions f : X → Ĉ? and g : U → Ĉ?, a
linear map A : X → U and a vector c ∈ Y , let

p : X → Ĉ? and dc : U∗ → Ĉ?

be defined, respectively, by

p(x) := f(x)⊕ g(Ax) and dc(u∗) := ¯
(
f∗c (AT u∗)⊕ g∗c (−u∗)

)
.
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These functions satisfy the weak duality inequality

Dc := sup
u∗∈U∗

dc(u∗) ≤ inf
x∈X

p(x) =: P. (8)

Furthermore, let f and g be convex, let

0 ∈ ri (dom g −A dom f) (9)

and, in dependence of K := 0+P , let the element c ∈ Y be chosen as follows:

(i) c ∈ riK ∪ (−riK), if K ( Y is not a linear subspace of Y or K = Y ,

(ii) c ∈ Y \K, if K ( Y is a linear subspace of Y .

Then, we have strong duality, i.e., Dc = P .

Proof. Let x ∈ X, u∗ ∈ U∗ and c ∈ Y be arbitrarily given and let u := Ax. With the aid
of the Fenchel–Young inequality (7) we obtain the weak duality inequality (8) as follows:

dc(u∗) = ¯
(
f∗c (AT u∗)⊕ g∗c (−u∗)

)

≤ (
f(x) ¯

〈
AT u∗, x

〉 · {c})⊕ (
g(Ax) ¯ 〈−u∗, Ax〉 · {c})

=
(
f(x)⊕ g(Ax)

)
¯ 〈u∗, Ax〉 · {c}¢ 〈u∗, Ax〉 · {c} = p(x).

The proof of the strong duality assertion is organized as follows. We start with case (i). Then
we show that case (ii) is a consequence of case (i).

(i) In case of K = Y there is nothing to prove because the strong duality immediately
follows from the weak duality assertion. Therefore, let K ( Y be not a linear subspace of Y .
It is easy to verify that Dc = D−c. Hence it suffices to consider the case c ∈ riK.

With the aid of Proposition 3.3 it follows that

∀y∗ ∈ Y ∗ : −δ∗(y∗|P ) = −δ∗(y∗| inf
x∈X

p(x)) = inf
x∈X

{−δ∗
(
y∗| p(x)

)}
.

By the extended real–valued functions fy∗ : X → R ∪ {−∞, +∞} and gy∗ : U → R ∪
{−∞, +∞} being defined, respectively, by fy∗(x) := −δ∗

(
y∗| f(x)

)
and gy∗(u) := −δ∗

(
y∗| g(u)

)

this can be rewritten as a collection of scalar optimization problems

∀y∗ ∈ Y ∗ : −δ∗(y∗|P ) = inf
x∈X

{
fy∗(x) + gy∗(Ax)

}
. (10)

The convexity of f and g implies the convexity of fy∗ and gy∗ , respectively. Clearly, we have
dom f = dom fy∗ and dom g = dom gy∗ . Hence, (9) implies that 0 ∈ ri (dom gy∗ −A dom fy∗).
A scalar duality theorem, for instance [2, Theorem 3.3.5], now yields that

∀y∗ ∈ Y ∗ : −δ∗(y∗|P ) = sup
u∗∈U∗

{−f∗y∗(A
T u∗)− g∗y∗(−u∗)

}
. (11)

Let y∗ ∈ riK◦ be arbitrarily given. Since c ∈ riK, Lemma 4.2 yields that 〈y∗, c〉 < 0. Hence
there exists αy∗ > 0 such that 〈αy∗y

∗, c〉 = −1. This can be rewritten as

∀t ∈ R : −δ∗
(
αy∗y

∗| {t · c}) = −〈αy∗y
∗, t · c〉 = t. (12)
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For α := αy∗ > 0 we have

α · (−δ∗ (y∗|P )
)

= −δ∗ (αy∗|P )
(11)
= sup

u∗∈U∗

{−f∗αy∗(A
T u∗)− g∗αy∗(−u∗)

}

= sup
u∗∈U∗

{
inf
x∈X

{− 〈
AT u∗, x

〉
+ fαy∗(x)

}
+ inf

u∈U
{〈u∗, u〉+ gαy∗(u)}

}

(12)
= sup

u∗∈U∗

{
inf
x∈X

{−δ∗
(
αy∗|¢ (− 〈

AT u∗, x
〉 · {c}))− δ∗

(
αy∗|f(x)

)}

+ inf
u∈U

{−δ∗
(
αy∗|¢ (〈u∗, u〉 · {c}))− δ∗

(
αy∗|g(u)

)}}

= sup
u∗∈U∗

{
inf
x∈X

{−δ∗
(
αy∗

∣∣ ¯
〈
AT u∗, x

〉 {c}+ f(x)
)}

+ inf
u∈U

{−δ∗
(
αy∗

∣∣ ¯ 〈−u∗, u〉 {c}+ g(u)
)}}

Prop. 3.3= sup
u∗∈U∗

{
−δ∗

(
αy∗

∣∣ inf
x∈X

{
¯

〈
AT u∗, x

〉 {c}+ f(x)
})

−δ∗
(
αy∗

∣∣ inf
u∈U

{
¯ 〈−u∗, u〉 {c}+ g(u)

})}

(3)
= sup

u∗∈U∗

{
−δ∗

(
αy∗

∣∣ ¯ sup
x∈X

{〈
AT u∗, x

〉 {c}¯ f(x)
})

−δ∗
(
αy∗

∣∣ ¯ sup
u∈U

{〈−u∗, u〉 {c}¯ g(u)
})}

= sup
u∗∈U∗

{
−δ∗

(
αy∗

∣∣∣∣ ¯ sup
x∈X

{〈
AT u∗, x

〉 {c}¯ f(x)
}

⊕ ¯ sup
u∈U

{〈−u∗, u〉 {c}¯ g(u)
})}

Prop. 3.3

≤ −δ∗
(

αy∗
∣∣∣∣ sup

u∗∈U∗

{
¯ sup

x∈X

{〈
AT u∗, x

〉 {c}¯ f(x)
}

⊕ ¯ sup
u∈U

{〈−u∗, u〉 {c}¯ g(u)
}})

= −δ∗
(

αy∗
∣∣∣∣ sup

u∗∈U∗

{
¯f∗c (AT u∗)⊕¯g∗c (−u∗)

})

= −δ∗ (αy∗|Dc) = α · (−δ∗ (y∗|Dc)
)
.

Since y∗ ∈ riK◦ was arbitrarily chosen and taking into account (4), we obtain

∀y∗ ∈ riK◦ : δ∗(y∗|Dc) ≤ δ∗(y∗|P ) < ∞.

Lemma 4.1 and the weak duality inequality yield 0+Dc = K. By Lemma 3.1 we obtain
P ⊇ Dc. Finally, the weak duality inequality yields P = Dc.

(ii) Let K ( Y be a linear subspace of Y and let c ∈ Y \ K. Consider the set B :=
¢R+ {c} ⊆ C?. We define a new objective function by p̃ : X → Ĉ?, p̃(x) := p(x) ⊕ B =
f(x) ⊕ (g(Ax) ⊕ B). By Proposition 2.4, we have P̃ := infx∈X p̃(x) =

(
infx∈X p(x)

) ⊕ B =
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P ⊕ B. With the aid of [18, Corollary 9.1.2] we conclude that P̃ = P ⊕ B = P + B and
K̃ := 0+P̃ = 0+P + B = K + B. Clearly, K̃ is not a linear space and c ∈ ri K̃. It is an
easy task to show that g̃ : U → Ĉ?, g̃(·) := g(·) ⊕ B is convex and (9) remains true for the
new problem, hence, we have strong duality by part (i) of this theorem. For the conjugate
g̃∗c : U∗ → Ĉ¦ of g̃ it holds

g̃∗c (u
∗) = sup

u∈U
{〈u, u∗〉 {c}¯ (g(u)⊕B)}

= sup
u∈U

{(〈u, u∗〉 {c}¯ g(u)
)⊕¯B

} Prop. 2.4= g∗c (u
∗)⊕¯B.

Hence, the dual objective function d̃ : U∗ → Ĉ? for the problem infx∈X p̃(x) is given by

d̃c(u∗) = ¯f∗c (AT u∗)⊕¯g∗c (−u∗)⊕B = dc(u∗)⊕B.

Since 0 ∈ B we deduce that d̃c ≤ dc, hence D̃c := supu∗∈U∗ d̃c(u∗) ≤ Dc. The strong duality
assertion for the problem infx∈X p̃(x) yields P + B = P̃ = D̃c ≤ Dc. Analogously (replace c

by −c) it follows P −B ≤ D−c = Dc. Hence, (P + B) ∩ (P −B) ≤ Dc.
We next show that P ≤ (P +B)∩ (P −B). By the definition of the space C, P is a convex

subset of Y . Let y ∈ (P +B)∩ (P −B) be given. This means y = p1 +r1c = p2−r2c for some
elements p1, p2 ∈ P and real numbers r1, r2 ≥ 0. If r1 + r2 = 0 there is nothing to prove. For
r1 + r2 > 0 it follows

y =
r2

r1 + r2
(p1 + r1c) +

r1

r1 + r2
(p2 − r2c) =

r2

r1 + r2
p1 +

r1

r1 + r2
p2 ∈ P.

Hence, P ⊇ (P + B) ∩ (P −B), this means P ≤ (P + B) ∩ (P −B).
Together we have shown that P ≤ Dc. Taking into account the weak duality assertion we

obtain P = Dc. ¤
We next express the preceeding theorem by conventional notations. Although the analogy to
the scalar theory is more difficult to see, this form is more convenient for applications. Let
f : Rn ⇒ Rp be a set–valued map. As usual, the set gr f = {(x, y) ∈ Rn × Rp| y ∈ f(x)} is
called the graph of f . We say f has closed (convex) values if f(x) ⊆ Rp is closed (convex) for
all x ∈ Rn. Clearly, if f has a closed (convex) graph, then f has closed (convex) values. The
opposite implication is not true, in general. The map f has closed values and a convex graph
if and only if f can be interpreted as a convex function f : Rn → Ĉ?.

Corollary 4.4 For given set–valued maps f : Rn ⇒ Rp and g : Rm ⇒ Rp, a linear map
A : Rn → Rm and a vector c ∈ Rp, we have

⋃

x∈Rn

{f(x) + g(Ax)} ⊆
⋂

u∗∈Rm

{ ⋃

x∈Rn

{
f(x)− 〈

AT u∗, x
〉 {c}} +

⋃

u∈Rm

{
g(u) + 〈u∗, u〉 {c}}

}
.

If, furthermore, f and g have convex graphs and closed values and satisfy the condition 0 ∈
ri (dom g−A dom f) and, in dependence of K := 0+(cl conv

⋃
x∈Rn

(
f(x)+g(Ax)

)
, the vector

c ∈ Rp is chosen as in Theorem 4.3, we have strong duality, i.e.,

cl
⋃

x∈Rn

{f(x) + g(Ax)} =
⋂

u∗∈Rm

cl
( ⋃

x∈Rn

{
f(x)− 〈

AT u∗, x
〉 {c}}+

⋃

u∈Rm

{
g(u)+ 〈u∗, u〉 {c}}

)
.
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Proof. For all u∗ ∈ Rm, we have
⋃

x∈Rn

{f(x) + g(Ax)} =
⋃

x∈Rn

{
f(x)− 〈

AT u∗, x
〉 {c}+ g(Ax) + 〈u∗, Ax〉 {c}}

⊆
⋃

x∈Rn

{
f(x)− 〈

AT u∗, x
〉 {c}} +

⋃

u∈Rm

{g(u) + 〈u∗, u〉 {c}} .

Taking the intersection over all u∗ ∈ Rm we obtain the weak duality inclusion.
Let f and g have convex graphs and closed values. This means that f and g can

be interpreted as convex functions f : Rn → Ĉ? and g : Rm → Ĉ?. The expression
infx∈Rn {f(x)⊕ g(Ax)} in Theorem 4.3 has the meaning of cl conv

⋃
x∈Rn cl

(
f(x) + g(Ax)

)
.

We next show that this expression can be simplified in the present case, namely

inf
x∈Rn

{f(x)⊕ g(Ax)} = cl
⋃

x∈Rn

{f(x) + g(Ax)} . (13)

It is easy to show that the set
⋃

x∈Rn cl
(
f(x) + g(Ax)

)
is convex. Moreover, one can easily

verify that cl
⋃

x∈Rn cl p(x) = cl
⋃

x∈Rn p(x), where p(x) = f(x) + g(Ax). Together we obtain
(13). By analogous arguments the right–hand side of the strong duality equality equals the
dual value Dc in Theorem 4.3. ¤

In the next example we show that the duality theorem for extended real–valued convex func-
tions (which was used in the proof) follows from the set–valued duality theorem by a simple
reformulation of the problem.

Example 4.5 Let f : Rn → R ∪ {+∞} and g : Rm → R ∪ {+∞} be convex functions
satisfying the condition 0 ∈ ri (dom g − A dom f). A given extended real–valued problem
P = infx∈Rn

{
f(x) + g(Ax)

}
can be rewritten as P = inf

⋃
x∈Rn

{{f(x)} + {g(Ax)} + R+

}
.

Consider the inner (set–valued) problem. It is easy to see that (9) is satisfied for this problem.
If P is finite, we have K = R+. Hence the choice c = 1 is possible in order to obtain
strong duality by Corollary 4.4. By some simple calculations (using Corollary 4.4) we obtain
P = inf

⋃
x∈Rn

{{f(x)} + {g(Ax)} + R+

}
= inf

⋂
u∗∈Rm

{{−f∗(AT u∗)} − {g∗(−u∗)} + R+

}
,

where f∗ and g∗ are the classical conjugate functions of f and g. It is an easy task to show
that inf

⋂
u∗∈Rm

{{−f∗(AT u∗)}−{g∗(−u∗)}+R+

}
= supu∗∈Rm

{−f∗(AT u∗)−g∗(−u∗)
}
. The

latter expression is exactly the classical dual problem for the extended real–valued problem.

Optimization problems with set relations naturally occur in vector optimization (for instance,
see [15], [5]) and in set–valued optimization in the sense of [9]. Let p : X → Y ∪ {+∞} or
p : X ⇒ Y , and let C ⊆ Y be a closed convex and pointed (C ∩−C = {0}) cone. Usually one
asks for the set Eff [P ;C] of efficient points of the set P :=

⋃
x∈X p(x) with respect to C. If

the assumptions of Theorem 4.3 are satisfied, and if we can ensure that
⋃

x∈X p(x) is closed
(by additional assumptions), this problem can be equivalently expressed by

Eff
[ ⋃

x∈X

p(x);C
]

= Eff
[ ⋂

u∗∈U∗
dc(u∗);C

]
,
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For the details we refer to [13]. There, we also prove a biconjugation theorem as well as a
strong duality assertion for the Lagrange duality approach. Furthermore, the relationship to
the usual duality in set–valued and vector–valued optimization (e.g., [4], [15], [19], [5], [9]) is
investigated.

5 Some special cases

We consider the problem of minimizing a convex function f : Rn → Ĉ? with respect to a
nonempty closed convex set S ⊆ Rn. This problem can be formulated as

inf
x∈Rn

{
f(x) + g(Ax)

}
,

where A : Rn → Rn is the identity map, and g : Rn → Ĉ? is the ”set–valued indicator
function”, defined by

g(x) :=

{
{0} if x ∈ S

∅ else.

The conjugate function g∗c : Rn → Ĉ¦ of g can be understood as the ”set–valued support
function” of the set S. It is given by

g∗c (x
∗) = cl

⋃

x∈S

{〈x∗, x〉 {c}} =
[−δ∗(x∗,−S), δ∗(x∗, S)

] · {c} ,

where, by convention,

∀α ∈ R : [−∞, α] {c} := (−∞, α] {c} =
⋃

λ≤α

{
λ {c}},

∀α ∈ R : [α, +∞] {c} := [α,+∞) {c} =
⋃

λ≥α

{
λ {c}},

[−∞, +∞] {c} := (−∞, +∞) {c} = R · {c} =
⋃

λ∈R

{
λ {c}},

[+∞,−∞] {c} := ∅ (this case occurs if S = ∅).
As a special case, let us consider f(x) = {M · x} where M is a real p × n matrix. An easy
computation shows that

f∗c (x∗) =
⋃

x∈Rn

{
(c · (x∗)T −M) · x}

=
(
c · (x∗)T −M

) · Rn.

In the special case of Y = Rn and M := I being the n × n unit matrix, Corollary 4.4
yields the following dual description of a nonempty closed convex set S ⊆ Rn. In contrast
to the usual dual description S =

⋂
x∗∈Rn {x ∈ Rn| 〈x∗, x〉 ≤ δ∗(x∗|S)} we have a different

parameterization in the following formula, i.e., the same x∗ may generate different sets. This
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parameterization depends on the choice of c. If 0+S is not a linear subspace of Rn, for all
c ∈ ri (0+S) ∪ (−ri (0+S)) it holds

S =
⋂

x∗∈Rn

(
(I − c · (x∗)T ) · Rn +

[−δ∗(x∗,−S), δ∗(x∗, S)
] · {c}

)
. (14)

Moreover, if 0+S is a linear subspace of Rn, (14) is valid for all c ∈ Rn \ 0+S. Note that in
(14) the constraint qualification (9) is superfluous, see Remark 5.1 below.

We next turn to the case of linear inequality constraints. Let A be a real m × n matrix
and b ∈ Rm a given vector. We write u ≤ v if v − u ∈ Rm

+ . Consider the problem

inf
x∈S

{Mx} , S = {x ∈ X| Ax ≥ b} . (15)

Since S is polyhedral, we have infx∈S {Mx} =
⋃

x∈S {Mx} =: M ·S. We introduce g : Rm →
Ĉ? as

g(u) :=

{
{0} if u ≥ b

∅ else.

Thus, (15) can be rewritten as infx∈Rn

{
f(x) + g(Ax)

}
. A simple calculation yields

g∗c (u
∗) =

⋃

u≥b

{〈u∗, u〉 {c}} =
⋃

u≥0

{〈u∗, u + b〉 {c}}

=
{
c · (u∗)T · b} +

⋃

u≥0

{〈u∗, u〉 {c}} =
{
c · (u∗)T · b} + hc(u∗),

where

hc(u∗) :=
⋃

u≥0

{〈u∗, u〉 {c}} =





R− · {c} if u∗ ∈ Rm− \ {0}
R+ · {c} if u∗ ∈ Rm

+ \ {0}
{0} if u∗ = 0

R · {c} else

is the ”set–valued support function” of Rm
+ . Note that h(u∗) = −h(−u∗), hence, the dual

objective function is given by

dc(u∗) = (M − c · (AT · u∗)T ) · Rn +
{
c · (u∗)T · b} + h(u∗).

By Theorem 4.3 we obtain the following strong duality assertion. Let K := 0+(M · S). If
there exists some x ∈ Rn such that Ax ≥ b, then, respectively, for all c ∈ riK ∪ (−riK) if K

is not a linear space and for all c ∈ Y \K if K is a linear subspace of Y it is true that

M · S =
⋂

u∗∈Rm

{(
M − c · (AT · u∗)T

) · Rn +
{
c · (u∗)T · b} + h(u∗)

}
. (16)

Remark 5.1 In Theorem 4.3 (duality theorem) we suppose the constraint qualification (9).
In the proof of this theorem we use this condition in order to obtain the corresponding
condition for the scalar problems (10). If all these problems are polyhedral, (9) can be
replaced by dom g ∩ Adom f 6= ∅, compare e.g. [2, Corollary 5.1.9]. Hence, in (14) and (16)
the constraint qualification reduces to S 6= ∅.
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