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Abstract

We develop a duality theory for multiple objective linear programs which has several ad-
vantages in contrast to other theories. For instance, the dual variables are vectors rather
than matrices and the dual feasible set is a polyhedron. We use a set-valued dual objective
map where its values have a very simple structure, in fact they are hyperplanes. As in other
set-valued (but not in vector-valued) approaches, there is no duality gap in the case that the
right-hand side of the linear constraints is zero. Moreover, we show that the whole theory
can be developed by working in a complete lattice. Thus the duality theory has a high de-
gree of analogy to its classical counterpart. These advantages open the possibility of various
applications such as a dual simplex algorithm. Exemplarily, we discuss an application to a
Markowitz-type bicriterial portfolio optimization problem where the risk is measured by the
Conditional Value at Risk.

1 Introduction

Duality in Multiple Objective Linear Programming has been of interest to researchers for more
than 30 years, see e.g. Kornbluth [13], Roedder [20], Isermann [9, 10], Brumelle [1], Jahn
[11, 12], Luc [15] and Göpfert and Nehse [4]. Nevertheless the importance in applications is
not as high as the importance of duality in scalar optimization (see e.g. the corresponding
remark by Göpfert and Nehse [4, page 64]). For instance, no economical interpretation of these
vectorial dual problems is known to the authors. Important instruments like a dual simplex
algorithm are missing, because the dual variables are matrices (of rank 1) rather than vectors
and there is no counterpart to the important fact of the scalar theory that the solutions are
attained in vertices of the feasible polyhedron. The latter problem could be partially solved in
[6]. The attainment in vertices was shown under additional assumptions, which can be omitted
completely in the present approach. Simultaneously, we work with a simpler set-valued objective
map in comparison to [5, 6, 14]. The values are hyperplanes, whose parameters depend linearly
on the dual variables. Our duality theory provides the theoretical basis for a dual simplex
algorithm for multiple objective linear programs. By an example from Mathematical Finance,
we show that our duality theory also has practical relevance.

Another item in the present paper is the formulation of the duality results in terms of
infimum and supremum with respect to an appropriate complete lattice. The image space of
the objective function, which is usually IRq partially ordered by the ordinary ordering cone IRq

+,
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is embedded into a larger space. This larger space is a subset of the power set of IRq, in fact
the space of all self-infimal subsets of the power set. The ordering relation induced by the cone
IRq

+ is extended appropriately. The lattice structure allows us to carry over many formulations
and results from scalar linear programming. For instance, we can answer the question about a
natural and expedient concept of the attainment of a solution in multiple objective optimization.

A related approach with vector-valued primal and dual problems, called geometric duality,
is developed in [7]. These results are based on duality assertions between the two polyhedral
image sets in a similar manner like the classical duality of polytopes.

This paper is organized as follows. In Section 2 we develop our duality theory for multi-
objective linear problems. It is our intention to formulate this theory with easy notations and
independently from other works. For simplicity, we avoid discussing the theoretical background
when we develop the duality theory. But Section 3 is devoted to this topic. We reformulate the
duality results in terms of infimum and supremum in the underlying complete lattice and point
out the analogies to the classical scalar theory. The last section is devoted to an application
of the duality results to a Markowitz-type bicriterial portfolio optimization problem based on
the Conditional Value at Risk. We consider the linear approximation of the problem due to
Rockafellar and Uryasev [18, 19]. The dual variables and the dual solutions are interpreted by
practically relevant quantities.

2 Duality results

Let us first introduce some notations. For a set A ⊆ IRn we denote by clA, intA, bdA, riA and
rbdA, respectively, the closure, interior, boundary, relative interior and relative boundary of A.
Given two vectors y1, y2 ∈ IRn we write y1 ≤ y2 if y2−y1 ∈ IRn

+ := {y ∈ IRn | y1 ≥ 0, . . . , yn ≥ 0}
and y1 < y2 if y2 − y1 ∈ int IRn

+. We denote by

MinA :=
{
y ∈ A | ({y} − int IRq

+) ∩ A = ∅
}

is the set of weakly minimal points of a set A ⊆ IRq with respect to IRq
+. The set of weakly

maximal points of A is MaxA := −Min(−A).
Let m,n, q ∈ IN and A ∈ IRm×n,M ∈ IRq×n, b ∈ IRm be given. We consider the following

vector optimization problem

(P) Min(M [X ]+IRq
+), X := {x ∈ IRn | Ax ≥ b} ,

where
M [X ] :=

⋃
x∈X

{Mx} .

A point x0 ∈ X is called a weakly efficient solution of (P) iff

Mx0 ∈ Min M [X ] + IRq
+ or equivalently Mx0 ∈ Min M [X ].

Note the a point x0 is a weakly efficient solution of (P) if and only if it is a weakly efficient
solution of the more common problem

Min M [X ], X := {x ∈ IRn | Ax ≥ b} ,

even though the set MinM [X ] and Min(M [X ]+IRq
+) can be different. The set Min(M [X ]+IRq

+)
is closely related to the infimal set of M [X ]. The details are discussed in the next section.

Consider the following set-valued dual objective map

H : IRm × IRq ⇒ IRq, H(u, c) :=
{
y ∈ IRq | cT y = bT u

}
.
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We use the following notation

H[U ] :=
⋃

(u,c)∈U

H(u, c) and k := (1, 1, . . . , 1)T ∈ IRq.

As the dual problem to (P) we consider the problem

(D) MaxH[U ], U :=
{
(u, c) ∈ IRm×IRq | (u, c) ≥ 0, kT c = 1, AT u = MT c

}
.

This means the dual problem consists in determining weakly maximal points of the union of the
hyperplanes H(u, c) defined by the points (u, c) ∈ U . The new idea in this approach compared
to [14] and [6] consists in having a pair (u, c) of dual variables and having hyperplanes as values
of the dual objective without making any assumptions on the rank of M .

A point (u0, c0) ∈ U is called a weakly efficient solution of (D) iff

H(u0, c0) ∩MaxH[U ] 6= ∅,

or equivalently,

∃y0 ∈ H(u0, c0) : ∀(u, c) ∈ U :
({

y0
}

+ int IRq
+

)
∩H(u, c) = ∅. (1)

The subsequent weakly efficient solutions of (P) or (D) are referred to simply as solutions of (P)
or (D). The notion of a solution of problem (P) as a feasible point whose image is weakly minimal
is common in vector optimization. We adapt this concept for the set-valued dual problem by
defining solutions of (D) as feasible points whose image, which is a hyperplane, contains weakly
maximal points. Thus the solution concept for the dual problem (D) is different from those in
the literature.

In the following we prove weak and strong duality between the two problems directly. In the
proofs the following pairs of dual scalar linear optimization problems depending on parameters
c, y ∈ IRq play an important role.

(P1(c)) cT Mx → min s.t. Ax ≥ b, ,

(D1(c)) bT u → max s.t. u ≥ 0, AT u = MT c, ,

(P2(y)) z → min s.t. Ax ≥ b, Mx− kz ≤ y,

(D2(y)) bT u− yT c → max s.t. u, c ≥ 0, AT u−MT c = 0, kT c = 1. ,

The first pair of problems comes from classical linear scalarization and is mainly used for char-
acterizing solutions of (D). The second pair of problems is very useful for characterizing weakly
minimal and weakly maximal points in the image space IRq. Similar problems also occur, for in-
stance, in [8]. Note that the problems (P2(y)) also provide a very common scalarization method
in vector optimization, see e.g. [3, 16].

The following notion might also be useful for characterizing solutions of (P) and (D). A pair
of points (x, z) ∈ IRn × IR and (u, c) ∈ IRm × IRq is called complementary for the problems
(P2(y)) and (D2(y)) if uT (Ax− b) = 0 and cT (Mx− kz − y) = 0.

Lemma 1. If (x, z) ∈ IRn× IR and (u, c) ∈ U are complementary points for (P2(y)) and (D2(y))
then z = bT u− yT c.

Proof. If (u, c) ∈ U we have kT c = 1 and AT u = MT c. Hence cT (Mx − kz − y) = 0 and
uT (Ax− b) = 0 imply z = cT Mx− cT y = uT Ax− cT y = uT b− cT y.
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Subsequently, we use the following notation

M := M [X ] + IRq
+ = {y ∈ IRq | ∃x ∈ X : Mx ≤ y} , F(u, c) := H(u, c) ∩M.

The following lemma can be interpreted as evidence of weak duality. An interpretation of weak
duality with the help of set relations is given in the next section.

Lemma 2. If (u, c) ∈ U and y ∈M then cT y ≥ bT u.

Proof. Since y ∈M there is some x ∈ X such that y ≥ Mx. Hence (x, 0) is feasible for (P2(y)).
Duality between (P2(y)) and (D2(y)) implies bT u− yT c ≤ 0.

The next lemma states a sufficient optimality condition for (D), which is based on weak duality.

Lemma 3. If (u0, c0) ∈ U and y0 ∈ F(u0, c0) then y0 ∈ MaxH[U ].

Proof. Let (u0, c0) ∈ U and y0 ∈ F(u0, c0). Therefore we have y0 ∈ H[U ]. We show that({
y0
}

+ int IRq
+

)
∩ H(u, c) = ∅ for all (u, c) ∈ U . Assume on the contrary that there are

(u, c) ∈ U and y ∈ H(u, c) with y > y0. Since c ≥ 0, c 6= 0 this implies cT y > cT y0 ≥ bT u = cT y,
a contradiction.

The following theorem provides different characterizations of (weakly efficient) solutions of (D).

Theorem 4. Let (u0, c0) ∈ U . Then the following statements are equivalent.

(i) (u0, c0) is a solution of (D),

(ii) u0 solves (D1(c0)),

(iii) there exists some x0 ∈ X with c0T
Mx0 = bT u0,

(iv) F(u0, c0) is nonempty.

Proof. (i)⇒(ii). Assume u0 does not solve (D1(c0)). Then there is some u ∈ IRm such that
(u, c0) ∈ U and bT u > bT u0. But for each y ∈ H(u0, c0) we get

y + k(bT u− bT u0) ∈
(
{y}+ int IRq

+

)
∩H(u, c0)

contradicting (1), i.e., (u0, c0) being a solution of (D).
(ii)⇒(iii). If u0 solves (D1(c0)) then by duality between the problems (P1(c0)) and (D1(c0))

there is some x0 ∈ X such that c0T
Mx0 = bT u0.

(iii)⇒(iv). If (iii) holds then Mx0 ∈ H(u0, c0). Since Mx0 ∈M we have Mx0 ∈ F(u0, c0).
(iv)⇒(i). By Lemma 3.

We continue with a strong duality theorem in the sense that the set of weakly minimal points
for (P) and the set of weakly maximal points for (D) coincide.

Theorem 5. The following four statements are equivalent.

(i) y0 ∈ MinM,

(ii) there is some x0 ∈ IRn such that (x0, 0) solves (P2(y0)),

(iii) there is some (u0, c0) ∈ U with bT u0 = y0T
c0 solving (D2(y0)),

(iv) y0 ∈ MaxH[U ].
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Proof. (ii)⇒(i). If (x0, 0) solves (P2(y0)) then x0 ∈ X and Mx0 ≤ y0 hence y0 ∈ M. Assume
that there is some y ∈ M (i.e., there is some x ∈ X with Mx ≤ y) with y < y0. Then there is
some z < 0 such that y ≤ y0 + kz. This implies Mx − kz ≤ y − kz ≤ y0, i.e., (x, z) is feasible
for (P2(y0)) and z < 0 contradicts the optimality of (x0, 0).

(i)⇒(ii). If y0 ∈ MinM then there exists some x0 ∈ X with Mx0 ≤ y0, i.e., (x0, 0) is feasible
for (P2(y0)). Assume that there is some (x, z) ∈ IRn+1 with z < 0 being feasible for (P2(y0)).
Let y := y0 + zk then y < y0 and Mx ≤ y0 + kz = y, i.e., y ∈ M contradicting the weak
minimality of y0.

(ii)⇔(iii). By duality of (P2(y0)) and (D2(y0)).
(iii)⇔(iv). We have y0 ∈ MaxH[U ] iff

y0 ∈ H[U ] (2)

and
y0 6∈ H[U ]− int IRq

+. (3)

Condition (2) is equivalent to

∃(u0, c0) ∈ U : y0T
c0 = bT u0, (4)

and (3) is equivalent to
∀(u, c) ∈ U : y0T

c ≥ bT u. (5)

Since (iii) is equivalent to (4) together with (5), the statement follows.

Now we are able to prove the following theorem which provides sufficient conditions for solutions
of (P) and (D).

Theorem 6. Let (u0, c0) ∈ U and x0 ∈ X be given. Then x0 is a solution of (P) and (u0, c0) is
a solution of (D) if one of the following equivalent conditions is satisfied.

(i) bT u0 = c0T
Mx0,

(ii) u0 solves (D1(c0)) and x0 solves (P1(c0)),

(iii) (x0, 0) solves (P2(Mx0)) and (u0, c0) solves (D2(Mx0)),

(iv) for all y ∈ IRq there is some z0 ∈ IR such that (x0, z0) and (u0, c0) are complementary
points for (P2(y)) and (D2(y)).

Proof. First we show the equivalence of the four conditions.
(i)⇔(ii). By duality between (P1(c0)) and (D1(c0)).
(i)⇔(iii). By duality between (P2(Mx0)) and (D2(Mx0)).
(i)⇔(iv). If (u0, c0) ∈ U , x0 ∈ X and

z0 = bT u0 − yT c0 (6)

then we have
u0T (Ax0 − b) = c0T (Mx0 − kz0 − y) = c0T

Mx0 − bT u0. (7)

If (i) holds we define z0 by (6) and then (i) and (7) imply (iv). If (iv) holds then (6) holds by
Lemma 1 and then then (iv) and (7) imply (i).

Now, sufficiency of these equivalent conditions for x0 and (u0, c0) being solutions of (P) and
(D) follows from Theorem 4 and Theorem 5.
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In the following we prove some statements showing the relationship between proper faces
(in particular facets) of M and solutions of (D). Let us recall some facts concerning the facial
structure of polyhedral sets. Let A ⊆ IRq be a convex set. A convex subset F ⊆ A is called a
face of A iff

y1, y2 ∈ A, λ ∈ (0, 1), λy1 + (1− λ)y2 ∈ F ⇒ y1, y2 ∈ F .

A face F of A is called proper iff ∅ 6= F 6= A. A set E ⊆ A is called an exposed face of A iff there
are c ∈ IRq and γ ∈ IR such that A ⊆

{
y ∈ IRq | cT y ≥ γ

}
and E =

{
y ∈ IRq | cT y = γ

}
∩ A.

The proper (r − 1)-dimensional faces of an r-dimensional polyhedral set A are called facets of
A. A point y ∈ A is called a vertex of A iff {y} is a face of A.

Theorem 7 ([21], Theorem 3.2.2). Let A be a polyhedral set in IRq. Then A has a finite number
of faces, each of which is exposed and a polyhedral set. Every proper face of A is the intersection
of those facets of A that contain it, and rbdA (the relative boundary of A) is the union of all
the facets of A. If A has a nonempty face of dimension s, then A has faces of all dimensions
from s to dimA.

Remark. If M 6= ∅ then M is a q-dimensional polyhedral set, hence the facets of M are the
(q − 1)-dimensional faces of M, i.e., the maximal (w.r.t. inclusion) proper faces. A subset
F ⊆M is a proper face iff it is a proper exposed face, i.e., iff there is a supporting hyperplane
H to M such that F = H ∩M. We call a hyperplane H :=

{
y ∈ IRq | cT y = γ

}
(i.e., c 6= 0)

supporting to M iff cT y ≥ γ for all y ∈M and there is some y0 ∈M such that cT y0 = γ.

Lemma 8. If H =
{
y ∈ IRq | cT y = γ

}
is a supporting hyperplane to M then c ≥ 0.

Proof. If H is a supporting hyperplane to M then there is some y0 ∈ M with cT y0 = γ and
cT y ≥ γ for all y ∈M. By definition of M we have y0 +w ∈M, for all w ∈ IRq

+, hence cT w ≥ 0
for all w ∈ IRq

+. This implies c ≥ 0.

Lemma 9. A set F ⊆ M is a proper face of M if and only if there is a solution (u, c) ∈ U of
(D) such that F = F(u, c).

Proof. ”if”. If (u, c) ∈ U is a solution of (D) then there is some x0 ∈ X such that Mx0 ∈ H(u, c),
hence Mx0 ∈ F(u, c). Moreover, if y ∈ M then cT y ≥ bT u by Lemma 2. Consequently, H(u, c)
is a supporting hyperplane to M and F(u, c) is a proper face of M.

”only if”. If F is a proper face of M then there is some c ∈ IRq \ {0}, γ ∈ IR such that
H :=

{
y ∈ IRq | cT y = γ

}
is a supporting hyperplane to M and F = H ∩M. By Lemma 8 we

have c ≥ 0. Since c 6= 0 we obtain kT c > 0. Without loss of generality we can assume that
kT c = 1. Since H is a supporting hyperplane, we have cT y ≥ γ for all y ∈ M and cT y0 = γ for
some y0 ∈M. Hence there is some x0 ∈ X such that cT Mx0 = cT y0 = γ, i.e.,

γ = cT Mx0 = min
{
cT Mx : x ∈ X

}
.

By duality between (P1(c)) and (D1(c)), problem (D1(c)) has a solution u with bT u = γ =
cT Mx0. Thus (u, c) ∈ U is a solution of (D) by Theorem 4, and H(u, c) = H. Hence F =
F(u, c).

Corollary 10. Each proper face of M is weakly minimal.

Proof. Let F be a proper face of M. By the preceding lemma there is a solution (u, c) ∈ U of
(D) such that F = F(u, c). Let y ∈ F = F(u, c), then y ∈ M (implying the existence of x ∈ X
such that Mx ≤ y, i.e., (x, 0) is feasible for (P2(y))) and bT u = cT y. Duality between (P2(y))
and (D2(y)) implies that (u, c) is optimal in (D2(y)) and (x, 0) is optimal in (P2(y)) hence y is
weakly minimal by Theorem 5.
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Corollary 11. MinM 6= ∅ if and only if ∅ 6= M 6= IRq.

Proof. This is a direct consequence of Corollary 10, Theorem 7 and the fact that a nonempty
set in A ⊆ IRq has a nonempty boundary iff A 6= IRq.

The following lemma shows that facets of M may be described by extreme solutions of (D)
(i.e. solutions of (D) being a vertex of the feasible set U).

Lemma 12. If F is a facet of M then there is an extreme solution (u0, c0) of (D) such that
F = F(u0, c0).

Proof. Let
Ū := {(u, c) ∈ U | F(u, c) = F} .

By Theorem 4, all points of Ū are solutions of (D) because F is nonempty as a facet of M. Let
y ∈ riF be arbitrary. Since F is a (q − 1)-dimensional face we have (u, c) ∈ Ū if and only if
(u, c) ∈ U and y ∈ H(u, c), i.e., bT u = yT c. Hence Ū = U ∩Hy with

Hy :=
{
(u, c) ∈ IRm × IRq | yT c− bT u = 0

}
.

Since y ∈ MinM by Corollary 10, Theorem 5 implies that Hy is a supporting hyperplane to
U , hence Ū is a nonempty face of U . Since Ū ⊆ U ⊆ IRm+q

+ contains no lines there is a vertex
(u0, c0) of Ū (see [17, Cor. 18.5.3]). Hence (u0, c0) is also a vertex of U , i.e. an extreme solution
of (D).

We define the following sets.

pFaces(M) := {F ⊆M | F is a proper face of M} ,

Facets(M) := {F ⊆M | F is a facet of M} ,

Sol(D) := {(u, c) ∈ U | (u, c) is a solution of (D)} ,

ExtrSol(D) := {(u, c) ∈ Sol(D) | (u, c) is a vertex of U} .

Now we can extend the strong duality result in Theorem 5. In the next section we interprete the
following result as the attainment of the supremum in the dual problem in extreme solutions.

Theorem 13. We have the following chain of equalities.

MinM = bdM =
⋃

(u,c)∈ExtrSol(D)

F(u, c) = MaxH[ExtrSol(D)] = MaxH[U ].

Proof. Theorem 7, Lemma 12, Lemma 9 and Corollary 10 imply the following chain of inclusions

bdM =
⋃

F∈Facets(M)

F ⊆
⋃

(u,c)∈ExtrSol(D)

F(u, c) ⊆
⋃

(u,c)∈Sol(D)

F(u, c)

=
⋃

F∈pFaces(M)

F ⊆ MinM⊆ bdM.

Hence the first two equalities hold.
The equality MinM = MaxH[U ] was already shown in Theorem 5. Thus it remains to show

that
⋃

(u,c)∈ExtrSol(D)F(u, c) = MaxH[ExtrSol(D)].
If y ∈

⋃
(u,c)∈ExtrSol(D)F(u, c) then there exists some (u, c) ∈ ExtrSol(D) such that y ∈

F(u, c) = H(u, c) ∩ M, i.e. y ∈ H[ExtrSol(D)]. Since (u, c) is a solution of (D) we have
(y+int IRq

+)∩H[U ] = ∅, hence (y+int IRq
+)∩H[ExtrSol(D)] = ∅ implying y ∈ MaxH[ExtrSol(D)].

On the other hand, if y ∈ MaxH[ExtrSol(D)] then y ∈ H[ExtrSol(D)] and y 6∈ H[ExtrSol(D)]−
int IRq

+. This is equivalent to

∃(ū, c̄) ∈ ExtrSol(D) : yT c̄ = bT ū (8)
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and
∀(u, c) ∈ ExtrSol(D) : yT c ≥ bT u. (9)

By Theorem 4, ū solves (D1(c̄)) hence X 6= ∅ by duality of (P1(c̄)) and (D1(c̄)).Thus the
feasible set for (P2(y)) is nonempty as well. Since (ū, c̄) ∈ U , i.e. U 6= ∅, problem (D2(y))
has an optimal solution (u0, c0) being a vertex of U . Optimality of (u0, c0) for (D2(y)) implies
optimality of u0 for (D1(c0)) hence (u0, c0) ∈ ExtrSol(D) by Theorem 4. Now, (9) implies that
yT c0 ≥ bT u0. Moreover, optimality of (u0, c0) for (D2(y)) implies bT u0 − yT c0 ≥ bT ū− yT c̄ = 0,
i.e. yT c0 = bT u0. Consequently we have y ∈ H(u0, c0) and y ∈ MinM⊆M by Theorem 5, i.e.
y ∈

⋃
(u,c)∈ExtrSol(D)F(u, c).

3 Lattice theoretical interpretation

In this section, we discuss the theoretical background of the duality assertions developed in the
previous section. On the one hand, this provides a motivation of the solution concepts for the
dual problem introduced above, which differs from those in the literature. On the other hand we
see that vector optimization and scalar optimization can be considered in a common framework,
i.e., duality assertions for vector optimization problems can be expressed in the same way as the
corresponding scalar results.

First we embed the image space IRq of the given vector-valued objective function in a com-
plete lattice. The appropriate lattice is introduced in the first subsection. Then, we can refor-
mulate our pair of dual problems in terms of this lattice. Finally we obtain duality and dual
attainment assertions being analogous to the classical scalar results.

3.1 The space I of self-infimal sets

Let us recall some facts about self-infimal sets. For a more detailed discussion the reader is
referred to [14]. The infimal set of a subset A of IRq := IRq ∪ {−∞,+∞} is defined by

Inf A :=


{−∞} if −∞ ∈ A or A + IRq

+ ⊇ IRq

{+∞} if A ⊆ {+∞}
Min cl ((A \ {+∞}) + IRq

+) otherwise

Note that the closure operation is only necessary for the case that (A\{+∞}) is not polyhedral.
The supremal set of a set A ⊆ IRq is defined analogously and is denoted by SupA. It holds
SupA = − Inf(−A).

Let I be the family of all self-infimal subsets of IRq, i.e., all sets A ⊆ IRq satisfying Inf A = A.
In I we introduce an order relation 4 as follows:

A 4 B : ⇐⇒


(
A,B ⊆ IRq and A + int IRq

+ ⊇ B + int IRq
+

)
or

A = {−∞} or
B = {+∞} .

As shown in [14, Proposition 3.4 and Theorem 3.5], (I,4) is a complete lattice and for arbitrary
sets A ⊆ I it holds that

inf A = Inf
⋃

A∈A
A, supA = Sup

⋃
A∈A

A.

Note that we use
⋃

A∈∅A = ∅. The preceding result shows that the infimum and supremum in
I are closely related to the usual solution concepts in vector optimization.
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3.2 Reformulation of the problems using the space I

In Section 2 we considered the linear vector optimization problem (P). It is easy to see that
Min(M [X ] + IRq

+) = Inf M [X ] iff X 6= ∅ and M [X ] + IRq
+ 6= IRq. Our aim is to reformulate

problem (P) and its dual problem (D) as optimization problems with I-valued objective function.
Consider the function

P : IRn → I, P (x) := Inf {Mx} = {Mx}+ bd IRq
+.

It holds
Inf M [X ] = Inf

⋃
x∈X

{Mx} = Inf
⋃

x∈X
Inf {Mx} = inf

x∈X
P (x).

Hence, we have

inf
x∈X

P (x) =


{+∞} if X = ∅
{−∞} if M = IRq

MinM otherwise.

Note that, by Corollary 11, MinM 6= ∅ iff ∅ 6= M 6= IRq. This means, if the set MinM is
nonempty, it coincides with infx∈X P (x), otherwise if MinM is empty, we distinguish between
two cases: infx∈X P (x) = {+∞} if X = ∅ and infx∈X P (x) = {+∞} otherwise. Thus, (P) is
essentially equivalent to

(P′) inf
x∈X

P (x), X := {x ∈ IRn | Ax ≥ b} .

Moreover, it is easy to see that x ∈ X is a (weakly efficient) solution of (P) if and only if(
x ∈ X , P (x) 4 P (x0)

)
⇒ P (x) = P (x0) (10)

The above considerations show the relationships between the concepts used in the previous
section and lattice theoretical solution concepts for the primal problem.

We next want to reformulate the dual problem (D) using the supremum in I. We first
consider two auxiliary assertions.

Lemma 14. The set H[U ]− IRq
+ is closed.

Proof. Let {yi}i∈IN be a sequence in H[U ] − IRq
+ converging to ȳ ∈ IRq, thus for each i there is

some (ui, ci) ∈ U with yi ∈ H(ui, ci) − IRq
+, i.e., yT

i ci ≤ bT ui. We have to show that there is
some (ū, c̄) ∈ U with ȳT c̄ ≤ bT ū.

Assume on the contrary that ȳT c− bT u > 0 for all (u, c) ∈ U . Since U is polyhedral there is
some γ > 0 with ȳT c− bT u ≥ γ for all (u, c) ∈ U . Take i0 ∈ IN such that ‖yi0 − ȳ‖∞ < γ, then

(ȳ − yi0)
T ci0 ≤ ‖yi0 − ȳ‖∞‖ci0‖1 < γ

hence
ȳT ci0 − bT ui0 < yT

i0ci0 + γ − bT ui0 ≤ γ,

a contradiction.

Lemma 15. It holds Max
(
H[U ]− IRq

+

)
= MaxH[U ].

Proof. We have

y ∈ MaxH[U ] ⇐⇒
(
y ∈ H[U ] and y 6∈ H[U ]− int IRq

+

)
and

y ∈ Max
(
H[U ]− IRq

+

)
⇐⇒

(
y ∈ H[U ]− IRq

+ and y 6∈ H[U ]− int IRq
+

)
.

9



Thus it remains to show that(
y ∈ H[U ]− IRq

+ and y 6∈ H[U ]− int IRq
+

)
=⇒ y ∈ H[U ].

Indeed, y 6∈ H[U ]− int IRq
+ implies yT c ≥ bT u for all (u, c) ∈ U and y ∈ H[U ]− IRq

+ implies the
existence of some (ū, c̄) ∈ U with yT c̄ ≤ bT ū. Thus we obtain yT c̄ = bT ū, i.e., y ∈ H[U ].

Note that the hyperplane H(u, c) ⊆ IRq is a self-infimal set, whenever (u, c) ∈ U . Therefore the
term sup(u,c)∈U H(u, c) is well defined. The next lemma clarifies the relationship between this
supremum and the solution concept of problem (D).

Lemma 16. It holds

sup
(u,c)∈U

H(u, c) =


{−∞} if U = ∅
{+∞} if H[U ]− IRq

+ = IRq

MaxH[U ] otherwise.

Proof. (i) If U = ∅, we have sup(u,c)∈U H(u, c) = SupH[U ] = Sup ∅ = {−∞}, by definition.
(ii) The case H[U ]− IRq

+ = IRq follows from the definition of the supremal set.
(iii) Since H[U ] ⊆ IRq, we have

sup
(u,c)∈U

H(u, c) = SupH[U ] = Max cl (H[U ]− IRq
+),

by the definition of the supremal set. Lemma 14 and Lemma 15 yield that Max cl (H[U ]−IRq
+) =

MaxH[U ].

Remark. The preceding three lemmas remain valid if the set U is replaced by any finite or
polyhedral subset.

Lemma 16 shows in fact the relationship between problem (D) and the following problem,

(D′) sup
(u,c)∈U

H(u, c), U :=
{
(u, c) ∈ IRm × IRq | (u, c) ≥ 0, kT c = 1, AT u = MT c

}
.

Indeed, if the set MaxH[U ] is nonempty, it coincides with sup(u,c)∈U H(u, c) in problem (D′).
Otherwise, if MaxH[U ] is empty, we distinguish between the following two cases:

sup
(u,c)∈U

H(u, c) =
{
{−∞} when U = ∅
{+∞} otherwise.

The solution concept for (D) as introduced in Section 2 can be expressed in terms of the ordering
relation in the complete lattice I. This characterization is completely analogous to (10). So we
obtain yet another motivation for this solution concept.

Lemma 17. A point (u0, c0) ∈ U is a (weakly efficient) solution of (D) if and only if(
(u, c) ∈ U , H(u0, c0) 4 H(u, c)

)
⇒ H(u0, c0) = H(u, c). (11)

Proof. Let (u0, c0) ∈ U be a solution of (D). Hence u0 solves (D1(c0)) by Theorem 4. Consider
(u, c) ∈ U with H(u0, c0) 4 H(u, c). Then we have c0 = c and bT u0 ≤ bT u. Since c0 = c, u
is feasible for (D1(c0)) hence bT u ≤ bT u0 and consequently bT u0 = bT u. This means we have
H(u0, c0) = H(u, c).

Let (u0, c0) ∈ U be no solution of (D). By Theorem 4 there exists some ū ≥ 0 with AT ū =
MT c0 and bT ū > bT u0. Hence, we have H(u0, c0) 4 H(ū, c0) but H(u0, c0) 6= H(ū, c0), i.e., (11)
is not satisfied.
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3.3 Duality and dual attainment

As a consequence of the duality assertion given in Section 2 and the above considerations, we
present here duality assertions for vector optimization problems, formulated along the lines of
the classical scalar duality theory. The complete lattice (I,4) of self-infimal subsets of IRq plays
a key role in these results.

The first result shows that we have weak duality between (P′) and (D′).

Theorem 18 (weak duality). Let x ∈ X and (u, c) ∈ U . Then it holds

H(u, c) 4 P (x).

Proof. For all y ∈ P (x) = {(}Mx) + bd IRq
+ ⊆ M, Lemma 2 yields yT c ≥ bT u, hence P (x) ⊆

H(u, c) + IRq
+. This implies H(u, c) 4 P (x).

The next result shows strong duality between (P′) and (D′). The following distinction
between the three cases is well-known from scalar linear programming.

Theorem 19 (strong duality). Let at least one of the sets X and U be nonempty. Then it holds
strong duality between (P′) and (D′), i.e.,

V := sup
(u,c)∈U

H(u, c) = inf
x∈X

P (x).

Moreover, the following statements are true.

(i) If X 6= ∅ and U 6= ∅, then {−∞} 6= V 6= {+∞} and

V = MaxH[U ] = MinP [X ] 6= ∅.

(ii) If X = ∅ and U 6= ∅, then V = {+∞}.

(iii) If X 6= ∅ and U = ∅, then V = {−∞}.

Proof. By the weak duality we have

sup
(u,c)∈U

H(u, c) 4 inf
x∈X

P (x).

(i) If X 6= ∅ and U 6= ∅, this implies that neither sup(u,c)∈U H(u, c) nor infx∈X P (x) can be
{−∞} or {+∞}. Hence, Theorem 5 implies

sup
(u,c)∈U

H(u, c) = MaxH[U ] = MinM = inf
x∈X

P (x).

(ii) If X = ∅ and U 6= ∅, we have infx∈X P (x) = {+∞}. Theorem 5 implies that

MaxH[U ] = MinM = ∅.

Since U 6= ∅, we conclude H[U ]− IRq
+ = IRq and Lemma 16 yields sup(u,c)∈U H(u, c) = {+∞}.

(iii) If X 6= ∅ and U = ∅, we have sup(u,c)∈U H(u, c) = {−∞}. Theorem 5 implies that

MinM = MaxH[U ] = ∅.

Since X 6= ∅, we obtain M = IRq, hence infx∈X P (x) = {−∞}.

In scalar linear programming, the attainment of the supremum of the problem in a vertex of
the feasible set plays a key role in the simplex algorithm. It is therefore sufficient to search for a
solution on a finite subset of the feasible set. The next result shows that we have a corresponding
result for our dual problem. Typically, in our case, the supremum in (D′) is not attained in a
single vertex, but in a finite number of vertices, namely, in the set of those vertices of U being
solutions of (D), i.e., the set ExtrSol(D) of extreme solutions of (D).
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Theorem 20 (dual attainment in vertices). Let X 6= ∅ and U 6= ∅. Then the supremum in the
dual problem (D′) is attained in extreme solutions of (D), i.e.,

sup
(u,c)∈U

H(u, c) = sup
(u,c)∈ExtrSol(D)

H(u, c).

Proof. Since U 6= ∅ and X 6= ∅ we have

sup
(u,c)∈U

H(u, c) = MaxH[U ]

by Theorem 19. MaxH[U ] = MaxH[ExtrSol(D)] follows from Theorem 13.
It remains to show that

MaxH[ExtrSol(D)] = sup
(u,c)∈ExtrSol(D)

H(u, c).

If X 6= ∅ and U 6= ∅ then we conclude from Theorem 19 and Corollary 11 that ∅ 6= M 6= IRq. Thus
M has a facet and consequently ExtrSol(D) 6= ∅ by Lemma 12. Moreover, H[ExtrSol(D)]−IRq

+ ⊆
H[U ]− IRq

+ 6= IRq. Hence the desired statement follows from the remark after Lemma 16.

4 An example from Mathematical Finance

We consider a Markowitz-type bicriterial portfolio optimization problem, where the expected
return of the portfolio should be maximized and the risk of the portfolio, measured by the
Conditional Value at Risk, should be minimized. For details about the Conditional Value at
Risk (sometimes also called Average Value at Risk) see e.g. [19] or [2, Section 4.4].

We consider a market with n different financial instruments with returns rj , j = 1, ..., n
being random variables combined in a random vector r = (r1, ..., rn)T with a given probability
distribution P . The decision vector x ∈ IRn represents a portfolio of these instruments, where
the components xj denote the fraction of the capital invested in instrument j. This yields the
constraints

x ≥ 0,
n∑

j=1

xj = 1.

The return of a portfolio x equals rT x so the bicriterial optimization problem consists in min-
imizing the negative expected return, i.e., −E(rT x) and the Conditional Value at Risk of the
return, i.e., CV aRβ(rT x), for a given risk level β ∈ [0, 1). We can approximate this problem
by a linear one by sampling the probability distribution of r like it is done in [18]. If r1, ..., rm

denotes a sample of size m then

E(rT x) ≈ 1
m

m∑
k=1

rkT
x

and

CV aRβ(rT x) ≈ inf

{
α +

1
(1− β)m

m∑
k=1

zk | α ∈ IR,∀k ∈ {1, ...,m} : zk ∈ IR+, rkT
x + α + zk ≥ 0

}
.

Then the given problem accords essentially with the following linear vector optimization problem:

(PM) Min
(
f [X ] + IR2

+

)
,

where

X :=

(x, z, α) ∈ IRn
+ × IRm

+ × IR |
n∑

j=1

xj = 1,∀k ∈ {1, ...,m} : rkT
x + α + zk ≥ 0


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and

f(x, z, α) =


− 1

m

m∑
k=1

rkT
x

α +
1

(1− β)m

m∑
k=1

zk

 .

As already noted in Section 2, finding solutions of (PM) is equivalent to finding weakly efficient
solutions of the problem Min f [X ].

We set

M :=

− 1
m1T

mRT 0 0

0 1
(1−β)m1T

m 1

 , A :=



In 0 0

0 Im 0

1T
n 0 0

−1T
n 0 0

RT Im 1m


, b :=



0

0

1

−1

0


,

where

R :=

r1
1 · · · rm

1
...

. . .
...

r1
n · · · rm

n

 ,

I` is the `-dimensional identity matrix and 1` is the `-dimensional vector with all components
being 1. Then the problem (PM) is equivalent to

Min(M [X ] + IRq
+), X :=

{
x̄ ∈ IRn+m+1 | Ax̄ ≥ b

}
,

a problem of type (P).
As the corresponding dual problem to (PM) we derive the following problem as a special case

of problem (D):

(DM) MaxH[U ], U =
{
(ū, c) ∈ IRn+2m+2

+ × IR2
+ | c1 + c2 = 1, AT u = MT c

}
In fact, we have

U =

{
(w, p, v1, v2, u, c) ∈ IRn

+ × IRm
+ × IR+ × IR+ × IRm

+ × IR2
+ | c1 + c2 = 1,

w + 1n(v1 − v2) + Ru = R1m
−c1

m
, p + u = 1m

c2

(1− β)m
, 1T

mu = c2

}

and the set-valued objective map is given

H(w, p, v1, v2, u, c) =
{
y ∈ IR2 | c1y1 + c2y2 = v1 − v2

}
.

Interpreting w and p as slack variables and defining v := v1 − v2 we arrive at

U =

{
(v, u, c) ∈ IR× IRm

+ × IR2
+ | c1 + c2 = 1, 1T

mu = c2,

1nv + Ru ≤ R1m
−c1

m
, u ≤ 1m

c2

(1− β)m

}
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and
H(v, u, c) =

{
y ∈ IR2 | c1y1 + c2y2 = v

}
.

The following transformation of the dual variables results in dual variables being interpretable
as probabilities. Note that H does not depend on u and for each (v, u, c) ∈ U there is

(v, q, c) ∈ Ū :=

{
(v, q, c) ∈ IR× IRm

+ × IR2
+ | c1 + c2 = 1, 1T

mq = 1,

1nv + Rqc2 ≤ R1m
−c1

m
, q ≤ 1m

1
(1− β)m

}
,

where q is given by 1
c2

u if c2 6= 0 and can be chosen as qk = 1
m for all k if c2 = 0. On the other

hand for each (v, q, c) ∈ Ū we have (v, c2q, c) ∈ U , hence U can be replaced by Ū and problem
(DM) is equivalent to

(D̄M)



MaxH[Ū ]

Ū =

{
(v, q, c) ∈ IR× IRm × IR2 | c ≥ 0, c1 + c2 = 1,

m∑
k=1

qk = 1,

∀k = 1, ...,m : 0 ≤ qk ≤
1

(1− β)m
, ∀j = 1, ..., n : v ≤ −

m∑
k=1

(
1
m

rk
j c1 + rk

j qkc2

)}
.

Applying Theorem 4 we can characterize the solutions of (D̄M). A triple (v∗, q∗, c∗) ∈ Ū is a
solution of (D̄M) if and only if

v∗ = max
{
v | (v, q∗, c∗) ∈ Ū

}
= max

{
v | (v, q, c∗) ∈ Ū

}
,

i.e., if and only if

v∗ = min
j=1,...,n

−
m∑

k=1

(
1
m

rk
j c∗1 + rk

j q∗kc
∗
2

)
= max

q∈Q
min

j=1,...,n
−

m∑
k=1

(
1
m

rk
j c∗1 + rk

j qkc
∗
2

)
with

Q :=

{
q ∈ IRm |

m∑
k=1

qk = 1, ∀k = 1, ...,m : 0 ≤ qk ≤
1

(1− β)m

}
Since q ≥ 0 and

∑m
k=1 qk = 1, the numbers qk may be interpreted as probabilities describing

an alternative probability distribution Pq for the samples rk. Then
∑m

k=1 rk
j qk = EPq(rj), the

expectation of rj under the alternative distribution Pq, and
∑m

k=1
1
mrk

j = EP (rj), the expectation
of rj under the given distribution P . The numbers qk are related to the dual description of
the coherent risk measure Conditional Value at Risk. This dual description signifies that the
Conditional Value at Risk of some financial position equals the worst case expected loss of this
position under a certain set of alternative probability distributions (for deatails see e.g. [2,
Theorem 4.47]). Moreover, the scalarization weights c1 and c2 describe the model uncertainty,
i.e., c1 can be interpreted as the probability for P being the right probability distribution and
c2 as the probability that Pq provides the appropriate distribution. Then P(c,q) := c1P + c2Pq

describes a probability distribution being a mixture of P and Pq and EP(c,q)(rj) = c1E
P (rj) +

c2E
Pq(rj). Hence, a solution for the dual problem consists of some (c∗, q∗) determining an

alternative probability distribution P(c∗,q∗) and a number v∗ = minj=1,...,n−EP(c∗,q∗)(rj) where
the vector q∗ ∈ Q must be chosen such that it maximizes minj=1,...,n−EP(c∗,q)(rj) or minimizes
maxj=1,...,n EP(c∗,q)(rj), i.e., the largest expected return of the n given financial instruments,
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given the value of c∗. That means, (c∗, q∗) provides the worst case for the expected return of the
”best” of the given financial instruments under the considered alternative probabilities P(c∗,q).

Using the results of Section 2 we can see that a point (x∗, z∗, α∗) ∈ X is a solution of (PM)
if and only if there is a solution (v∗, q∗, c∗) of (D̄M) such that

−c∗1
m

m∑
k=1

rkT
x∗ + c∗2

(
α∗ +

1
(1− β)m

m∑
k=1

z∗k

)
= v∗ = min

j=1,...,n
−EP(c∗,q∗)(rj)

or equivalently if

−c∗1E
appr(rT x∗) + c∗2CV aRappr

β (rT x∗) = v∗ = min
j=1,...,n

−EP(c∗,q∗)(rj), (12)

where Eappr and CV aRappr
β are the approximations of the expectation and the Conditional Value

at Risk with the help of the samples. Thus one can find a solution of the portfolio optimization
problem by first determining some ”worst case” alternative probability P(c∗,q∗) belonging to a
solution (v∗, q∗, c∗) of (D̄M) and then searching for a portfolio x∗ such that (12) is satisfied.

For vector optimization problems one often does not want to chose a scalarization in advance
and prefers computing the whole set of efficient solutions. Concerning the dual problem, it might
be also useful to compute all solutions of (D̄M) together with the corresponding efficient portfolios
and to provide the decision maker (the investor) with this information because from solving the
dual problem the investor gets an information about the relationship between the scalarization
weights c∗ and the ”worst case” alternative probability scenario P(c∗,q∗) taken into account under
this scalarization.

Acknowledgments. The authors would like to express their gratitude to Matthias Ehrgott for several
useful remarks on the manuskript of this article.
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