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Abstract

It is shown that a set-valued map M : R? = RY is maximal monotone if and only if the
following five conditions are satisfied: (i) M is monotone; (ii) M has a nearly convex
domain; (iii) M is convex-valued; (iv) the recession cone of the values M (x) equals the
normal cone to the closure of the domain of M at z; (v) M has a closed graph. We also
show that the conditions (iii) and (v) can be replaced by Cesari’s property (Q).
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1 Introduction

It is well-known (see e.g. [1, 8]) that a maximal monotone mapping M : R? = R? has the
following properties:

(i) M is monotone;
(ii) M has a nearly convex domain;
(iii) The values M (zx) are convex;
(iv) The recession cone of M (x) equals the normal cone to cldom M at every x € dom M;
(v) The graph of M is closed.

We show that the conditions (i) to (v) are also sufficient for M being maximal monotone.
Moreover it is shown that (iii) and (v) can be replaced by

(vi) M is upper C-semicontinuous (everywhere).

Upper C-semicontinuity is also known as Cesari’s property (Q). It plays an important role in
Optimal Control (see e.g. [2, 3, 4] and the references in [7]). It is known (see e.g. [5]) that a
maximal monotone mapping satisfies property (Q).

In [6] we introduced upper and lower limits with respect to a complete lattice (compare
also [9]). In the special case of the complete lattice F of closed subsets of R? with respect
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to inclusion, we obtain Painlevé-Kuratowski upper and lower limits (shortly PK-limits or F-
limits), but if we consider the complete lattice C of closed convex subsets of R? with respect
to inclusion, we obtain the upper and lower C-limits. In [6] it is shown that C-convergence
of a sequence of closed convex sets is closely related to scalar convergence (i.e., pointwise
convergence of the support functions of these sets). Some related results from [6] are used to
prove the result of the present article.

2 Preliminaries

If not stated otherwise, we use the notation of the book ” Variational Analysis” by Rockafellar
and Wets [8]. Let us recall some concepts which are used in the following. For a convex set
D C R? and some z € D, we denote by

Np(z) :={a* e R VYw e D: (z",w—z) <0}

the normal cone of D at z. For points x ¢ D the normal cone is defined to be the empty set.
The tangent cone of a convex set D at x € D is the set

Tp(z) :=cl{weRY3IN>0: z+ Iw e D}.

It is well-known that Np(z) is the polar cone of Tp(x). A set B C RY is said to be nearly
convex if there exists a convex set C' such that C C B C clC. The conver hull of a set
B C R? is denoted by co B. Furthermore, bd B is the boundary and lin B the linear hull of
B. A set-valued mapping M : R? = R? is called monotone if

V(z,2"),(y,y") €gph M : (y* — ",y —x) > 0.

A monotone mapping M : R? = R? is said to be maximal monotone, if its graph gph M is
not contained in the graph of any other monotone mapping.

We now turn to the notion of limits and semicontinuity with respect to the complete
lattice C of all closed convex subsets of R? and with respect to set inclusion. We use the
following notation of [8] (but omit the index oo):

N :={N cN|N\N finite} and N7¥ :={N C N| N infinite}.
Similarly, for an infinite subset M of N we set
N(M):={N c M| M\ N finite} and N7#(M):={N C M| N infinite} .

For a sequence (4,,) of subsets of RY the upper and lower PK-limits (in [8] called outer and
inner limits) are defined, respectively, by

Limsup A,, = m cl U Ay, Liminf A, = ﬂ cl U Ay,

n—oo n—oo

NeN neN NeN# neN

whereas the upper and lower C-limits are defined, respectively, by

limsup 4,, = m clco U Ay, liminf A,, = m clco U A,.

n—oo
n—oo NeN neN NeN# neN



Note that the sequence (A,,) has the same upper and lower C-limit than the sequence (clco A,,),
therefore it is not necessary to restrict ourselves to sequences of closed convex sets. In the
following we only consider upper PK-limits and upper C-limits. Let us recall some related
results. The following characterization of the upper C-limit was shown in [6, Proposition 3.6].

Proposition 2.1 Consider a sequence (A,) in C. Then x € limsup,,cy Ay, if and only if the
following assertion holds:

3 (An)pen C [0,1)7) I (kn) ey € NI 3 (20) 0y € (RO, VRN, Vj € {0,1,...,q} -
q
kL >mn, 2 € Ay, T = }Lié?\l N2t
=0
As shown in [6, Lemma 4.3], for a sequence (4,,) of closed convex subsets of R? and a closed
convex set B C R™ it holds

limsup B x A, = B x limsup 4. (1)

n—oo

By 04 : Y — R, we denote the support function of a set A C Y. The recession cone (or
horizon cone) of a convex set A is denoted by Ao, and the polar cone of a cone C' is denoted
by C°. We write rint A for the relative interior of a set A. The term rint (Ax)° has to be
read as rint ((Aoo)o). For nonempty closed convex sets A, B C R? it holds [6, Lemma 5.4]

ACB = Vy €rint (Bso)® 1 oa(y) < op(y). (2)
The following result [6, Lemma 5.8] plays a key role in the proof of our result.

Lemma 2.2 For any sequence (A;) in C with A :=limsup,,_, A, # 0 it holds

Vy € rint (As)®, limsupoa, (y) = ca(y).

n—oo

We now use the C-limits to introduce a corresponding semicontinuity notion (compare [2, 3,
4, 7]). Let (X,d) be a metric space. The upper C-limit for a set-valued map f : X = R? at
T € X is defined as

limsup f(z) = U m clco U f(zn),

T T —T NEN neEN

where | stands for the union over all sequences converging to z. As shown in [7], the
upper C-limit can also be expressed as

limsup f(z) = ﬂ clco U f(z). (3)

o 650 d(z,z)<6

Tn—T

We say f : X = R? is upper C-semicontinuous at & € X if f(z) D limsup,_,; f(x). By
(3) it is clear that upper C-semicontinuity is the same as Cesari’s property (Q) [2, 3, 4]. If
f is upper C-semicontinuous at every £ € X we just say f is upper C-semicontinuous. By
(3), the upper C-limit limsup,_,; f(x) is always a closed convex set. For more details about
C-semicontinuity the reader is referred to [7].



3 Results

Throughout this section we denote by M a set-valued mapping M : R? = R? and we set
D :=cl(dom M). We start with an auxiliary assertion.

Proposition 3.1 Let M be monotone, let D be convex and T € D. Consider sequences
Ty — T, Uy € M(xy) and Ny, \, 0. If the sequence A\, vy, is bounded, then there is a subsequence
of Apvyn, converging to some v* € Np().

Proof. Take (y,y*) € gph M. Then (y — x,,y* — z}) > 0, and so (y — xn, A\ny* — Apzl) >0
for every n. The sequence (\,x;,), being bounded, has a subsequence (A\,z},),cp (With P €
N7#) converging to some v* € RY. Taking the limit for P 3 n — oo in the preceding inequality
we get (y — Z,v*) < 0 for every y € dom M. The conclusion follows. O

With a slightly more precise notation our conditions (i) to (v) reads as follows.

(iv) Ve € dom M : (M(x))s = Np(z);

It is well-known that gph M is closed if and only if M is upper PK-semicontinuous (every-
where). Moreover, M being upper C-semicontinuous implies that M is upper PK-semicontinu-
ous. In [7] (based on [6]), conditions for the opposite implication are given. Although this
result does not apply here, we use a similar proof to obtain the following lemma.

Lemma 3.2 If M satisfies the conditions (i) to (v), then M is upper C-semicontinuous.

Proof. (A) In this first part of the proof we assume that int (dom M) # 0. Let z € D
(the case T ¢ D is obvious) be arbitrarily chosen and let z* € limsup,_,; M (z), i.e., there
is a sequence (x,) — Z such that z* € limsup,,_,., M(z,). By Proposition 2.1, there exist
sequences (Ap),cy in [0,1]97 (kp), ey in N9 (2,), o in (R9)7T! such that

q q
VneN, Vje{0,1,...,q}: Z)\;:l, k‘%Zn, zflGM(mk%), 5:*:7112%2)\%2%.
=0 =0

Without loss of generality we can assume that [|A020| < [[ALzL]] < ... < |[MLzh|| for every
n € N. There exists N € N'# such that

Vief{o,....q}: ()5 M eo,1l.

Assume that the sequence (A}21),c is unbounded. Hence there exists N’ € N'#(N) such
that (|[Mz2]|)nen’ — co. Consequently, there exists N” € N'#(N') such that

Vie{0,...,qb: (N2 N 2) syl e RY.



We have (X,/ [A2m])pen” — 0 for all j € {0,...,q}. By Proposition 3.1 it follows that
v/ € Np(z) for all j. Setting v, := Y%, Al 2% we have v, — Z*. Passing to the limit (for

=0 ""n“n
n € N”) in the relation
q

N2l o = D NG 2E T N2,
=0
we obtain 0 = Z?:o y/. Thus we get y? € Np(Z) N —Np(z). Since int D # 0, Np(z) is
pointed. Whence the contradiction y? = 0 (because ||y?|| = 1). It follows that the sequences
()\%z%)neN are bounded for all j. Hence there exists N’ € N#(N) such that (A%z%) EL

for all j. If A # 0 we have z}, N, o= (M)~tw’. Since gph M is closed, we obtain
2 € M(z). Otherwise, if M = 0, Proposition 3.1 yields that w’ € Np(z). As M(z) and
Np(x) are convex we get

q .
F=lm > Nzh= > N+ Y w'eM(z)+ Np(@) N (@),
i=0 i€{0;...,q} i€{0,....q}
AP0 Ai=0

(B) It remains to prove the case where int (dom M) is empty. Without loss of generality
we can assume that 0 € dom M. Set X := lin D. We have X5 C Np(z) = (M(z)) and
hence M (z) + Xy = M (z) for all x € D. We define a map My : Xo = X as follows:

My(z) := M(z) N Xo.
Letting NY(x) be the normal cone relative to Xy, we have
(Mo(2))oo = (M(2) N X0)oo = (M(2))oo N Xo and NP (z) = Np(x) N Xo.

Now it is easy to see that the conditions (i) to (v) are satisfied for My, and int (dom M) # 0.
Part (A) yields that My is upper C-semicontinuous. Taking into account the relation M (z) =
Mo(z) x Xg and (1), we conclude that M is upper C-semicontinuous. O

The preceeding lemma shows that, in the presence of (i), (ii) and (iv), a map M : R? = R?
has property (Q) if and only if it has a closed graph and convex values.

Corollary 3.3 A monotone map M : RY = RY with convex values is upper PK-semicontinu-
ous at some T € intdom M if and only if it is upper C-semicontinuous at this point.

Proof. Restrict M to an open ball B C dom M around Z. The resulting map Mp satisfies
the conditions (i) to (iv). As in the proof of Lemma 3.2 we see that upper PK-semicontinuity
at & implies upper C-semicontinuity at & (because only local continuity properties are used
in the proof). The opposite implication is obvious. O

It follows our main result, a characterization of maximal monotone mappings.

Theorem 3.4 A mapping M : R? = R? is mazimal monotone if and only if the conditions
(i) to (v) are satisfied.



Proof. The conditions (i) to (v) are well-known properties of maximal monotone mappings,
see e.g. [8]. Therefore it remains to show that the conditions (i) to (v) imply that M is
maximal monotone.

(A) In the first part of the proof we assume that int dom M # (). Assume that M is not
maximal monotone. Then there exists a maximal monotone mapping M’ : R? = RY such
that gph M" 2 gph M. Set D’ := cldom M’. Since M’ is maximal monotone, D’ is convex.
Let (z,z*) € gph M’ \ gph M. We distinguish three cases:

a) € dom M. We have * ¢ M (z). By (2), there exists some

7 € rint (M(2))oo)® ¥ rint (Np(z))° = rint Tp(z)
such that
(7,2%) > ona) (Y)-
Since int Tp(z) = {w € R IA > 0: T + \w € int D} [8, Theorem 6.9], we have

dIA>0: T4+ Ay e€int D =intcldom M C int dom M,

where the latter inclusion follows from the fact that dom M is nearly convex (i.e., there exists
a convex set C' such that C C dom M C clC'). Consider the sequence (x,) — & where

(4)

N T+2y ifnisodd
[ if n is even .

Since M’ is monotone, for n being odd and all z}, € M(x,) we have

(@, &) = 5w — 7, 2, -7 2 0. (5)
Hence, for odd n € N we have oy, (¥) > (¥, z;,) > (y, 7). It follows that
im sup o a7 (q,) (9) > WM sup oaz(zy,,,)(9) > (Y T°) > oprz)(9)- (6)

From Lemma 3.2 we conclude that limsup,, ., M (z,,) = M (&) # (), where the equality follows
from the fact that (x,) contains a subsequence all whose members equal Z. But, Lemma 2.2
implies

Vy € rint (M (7))oo)” : i sup oaz(a,,) (¥) = onrz)(y),

n—oo

which contradicts (6).

b) z € D and M(Z) = 0. From int D # () we conclude that int Tp(Z) is nonempty. Choose
an arbitrary point y € int Tp(Z) and consider the sequence z,, := T + %gj, where A is chosen
as (4), and a sequence ), € M (xy). Since (Z,Z*) € gph M’, we see as above that (5) holds.

Assuming that (27) is unbounded, we obtain some N € N'# such that =/ ||z} || ANV # 0.

By Proposition 3.1 we get v* € Np(z). It follows that (g,v*) < 0. But (5) yields the
contradiction
Lo ey N
0< * <Z/, :En—ﬂf> (y,v).
[l

!

On the other hand, if (x%) is bounded, there is some N’ € N#(N) such that (x,,z}) EAIN
(z,z*). As gph M is closed, we get & € dom M, a contradiction.



)z ¢ D. Let 2° € int D and let & € bd D such that 2 = A\z° + (1 — A\)z € bd D
where A\ € (0,1) is uniquely defined. If M(Z) # M'(&), we have the situation of either a)
or b). Otherwise, M(Z) is nonempty and bounded as & € int D’. But Np(&) = (M(Z))so is
unbounded, a contradiction.

(B) We now prove the case where int (dom M) is empty. We consider the map M :
Xy = X as defined in the proof of Lemma 3.2. We have seen there that M, satisfies the
conditions (i) to (v) and int (dom My) # (). By Part (A) of the proof we conclude that My
is maximal monotone. It follows that M is maximal monotone. Indeed, if we assume the
contrary, there exists a maximal monotone extension M’ of M. As M’ satisfies (i) to (v), we
get by M} : Xo = Xo, M{(z) := M'(x) N X a maximal monotone extension of My (see Part
(B) of the proof of Lemma 3.2). O
We easily conclude the following characterization of maximal monotone mappings by upper
C-semicontinuity (Cesari’s property (Q)).

Corollary 3.5 The mapping M : RY = RY is maximal monotone if and only if the conditions
(i), (ii), (iv) and

(vi) M is upper C-semicontinuous (everywhere);

are satisfied.

Proof. This follows from Lemma 3.2 and Theorem 3.4 and the fact that condition (vi)
implies the conditions (iii) and (v). O
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