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Abstract

It is shown that a set-valued map M : Rq ⇒ Rq is maximal monotone if and only if the
following five conditions are satisfied: (i) M is monotone; (ii) M has a nearly convex
domain; (iii) M is convex-valued; (iv) the recession cone of the values M(x) equals the
normal cone to the closure of the domain of M at x; (v) M has a closed graph. We also
show that the conditions (iii) and (v) can be replaced by Cesari’s property (Q).
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1 Introduction

It is well-known (see e.g. [1, 8]) that a maximal monotone mapping M : Rq ⇒ Rq has the
following properties:

(i) M is monotone;

(ii) M has a nearly convex domain;

(iii) The values M(x) are convex;

(iv) The recession cone of M(x) equals the normal cone to cl dom M at every x ∈ dom M ;

(v) The graph of M is closed.

We show that the conditions (i) to (v) are also sufficient for M being maximal monotone.
Moreover it is shown that (iii) and (v) can be replaced by

(vi) M is upper C-semicontinuous (everywhere).

Upper C-semicontinuity is also known as Cesari’s property (Q). It plays an important role in
Optimal Control (see e.g. [2, 3, 4] and the references in [7]). It is known (see e.g. [5]) that a
maximal monotone mapping satisfies property (Q).

In [6] we introduced upper and lower limits with respect to a complete lattice (compare
also [9]). In the special case of the complete lattice F of closed subsets of Rq with respect
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to inclusion, we obtain Painlevé-Kuratowski upper and lower limits (shortly PK-limits or F-
limits), but if we consider the complete lattice C of closed convex subsets of Rq with respect
to inclusion, we obtain the upper and lower C-limits. In [6] it is shown that C-convergence
of a sequence of closed convex sets is closely related to scalar convergence (i.e., pointwise
convergence of the support functions of these sets). Some related results from [6] are used to
prove the result of the present article.

2 Preliminaries

If not stated otherwise, we use the notation of the book ”Variational Analysis” by Rockafellar
and Wets [8]. Let us recall some concepts which are used in the following. For a convex set
D ⊂ Rq and some x ∈ D, we denote by

ND(x) := {x∗ ∈ Rq| ∀w ∈ D : 〈x∗, w − x〉 ≤ 0}

the normal cone of D at x. For points x 6∈ D the normal cone is defined to be the empty set.
The tangent cone of a convex set D at x ∈ D is the set

TD(x) := cl {w ∈ Rq| ∃λ > 0 : x + λw ∈ D} .

It is well-known that ND(x) is the polar cone of TD(x). A set B ⊂ Rq is said to be nearly
convex if there exists a convex set C such that C ⊂ B ⊂ cl C. The convex hull of a set
B ⊂ Rq is denoted by coB. Furthermore, bd B is the boundary and linB the linear hull of
B. A set-valued mapping M : Rq ⇒ Rq is called monotone if

∀(x, x∗), (y, y∗) ∈ gphM : 〈y∗ − x∗ , y − x〉 ≥ 0.

A monotone mapping M : Rq ⇒ Rq is said to be maximal monotone, if its graph gphM is
not contained in the graph of any other monotone mapping.

We now turn to the notion of limits and semicontinuity with respect to the complete
lattice C of all closed convex subsets of Rq and with respect to set inclusion. We use the
following notation of [8] (but omit the index ∞):

N := {N ⊂ N| N \N finite} and N# := {N ⊂ N| N infinite} .

Similarly, for an infinite subset M of N we set

N (M) := {N ⊂ M | M \N finite} and N#(M) := {N ⊂ M | N infinite} .

For a sequence (An) of subsets of Rq the upper and lower PK-limits (in [8] called outer and
inner limits) are defined, respectively, by

Lim sup
n→∞

An =
⋂

N∈N
cl

⋃
n∈N

An, Lim inf
n→∞

An =
⋂

N∈N#

cl
⋃

n∈N

An,

whereas the upper and lower C-limits are defined, respectively, by

lim sup
n→∞

An =
⋂

N∈N
cl co

⋃
n∈N

An, lim inf
n→∞

An =
⋂

N∈N#

cl co
⋃

n∈N

An.
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Note that the sequence (An) has the same upper and lower C-limit than the sequence (cl co An),
therefore it is not necessary to restrict ourselves to sequences of closed convex sets. In the
following we only consider upper PK-limits and upper C-limits. Let us recall some related
results. The following characterization of the upper C-limit was shown in [6, Proposition 3.6].

Proposition 2.1 Consider a sequence (An) in C. Then x ∈ lim supn∈N An if and only if the
following assertion holds:

∃ (λn)n∈N ⊂ [0, 1]q+1, ∃ (kn)n∈N ⊂ Nq+1, ∃ (zn)n∈N ⊂ (Rq)q+1, ∀n ∈ N, ∀j ∈ {0, 1, . . . , q} :

kj
n ≥ n, zj

n ∈ A
kj

n
, x = lim

n∈N

q∑
i=0

λi
nzi

n.

As shown in [6, Lemma 4.3], for a sequence (An) of closed convex subsets of Rq and a closed
convex set B ⊂ Rm it holds

lim sup
n→∞

B ×An = B × lim supAn. (1)

By σA : Y → R, we denote the support function of a set A ⊂ Y . The recession cone (or
horizon cone) of a convex set A is denoted by A∞ and the polar cone of a cone C is denoted
by C◦. We write rintA for the relative interior of a set A. The term rint (A∞)◦ has to be
read as rint

(
(A∞)◦

)
. For nonempty closed convex sets A,B ⊂ Rq it holds [6, Lemma 5.4]

A ⊂ B ⇐⇒ ∀y ∈ rint (B∞)◦ : σA(y) ≤ σB(y). (2)

The following result [6, Lemma 5.8] plays a key role in the proof of our result.

Lemma 2.2 For any sequence (An) in C with A := lim supn→∞An 6= ∅ it holds

∀y ∈ rint (A∞)◦, lim sup
n→∞

σAn(y) = σA(y).

We now use the C-limits to introduce a corresponding semicontinuity notion (compare [2, 3,
4, 7]). Let (X, d) be a metric space. The upper C-limit for a set-valued map f : X ⇒ Rq at
x̄ ∈ X is defined as

lim sup
x→x̄

f(x) =
⋃

xn→x̄

⋂
N∈N

cl co
⋃

n∈N

f(xn),

where
⋃

xn→x̄ stands for the union over all sequences converging to x̄. As shown in [7], the
upper C-limit can also be expressed as

lim sup
x→x̄

f(x) =
⋂
δ>0

cl co
⋃

d(x,x̄)<δ

f(x). (3)

We say f : X ⇒ Rq is upper C-semicontinuous at x̄ ∈ X if f(x̄) ⊃ lim supx→x̄ f(x). By
(3) it is clear that upper C-semicontinuity is the same as Cesari’s property (Q) [2, 3, 4]. If
f is upper C-semicontinuous at every x̄ ∈ X we just say f is upper C-semicontinuous. By
(3), the upper C-limit lim supx→x̄ f(x) is always a closed convex set. For more details about
C-semicontinuity the reader is referred to [7].
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3 Results

Throughout this section we denote by M a set-valued mapping M : Rq ⇒ Rq and we set
D := cl (dom M). We start with an auxiliary assertion.

Proposition 3.1 Let M be monotone, let D be convex and x̄ ∈ D. Consider sequences
xn → x̄, vn ∈ M(xn) and λn ↘ 0. If the sequence λnvn is bounded, then there is a subsequence
of λnvn converging to some v∗ ∈ ND(x̄).

Proof. Take (y, y∗) ∈ gphM. Then 〈y − xn, y∗ − x∗n〉 ≥ 0, and so 〈y − xn, λny∗ − λnx∗n〉 ≥ 0
for every n. The sequence (λnx∗n), being bounded, has a subsequence (λnx∗n)n∈P (with P ∈
N#) converging to some v∗ ∈ Rq. Taking the limit for P 3 n →∞ in the preceding inequality
we get 〈y − x̄, v∗〉 ≤ 0 for every y ∈ dom M. The conclusion follows. �

With a slightly more precise notation our conditions (i) to (v) reads as follows.

(i) M is monotone;

(ii) There is a convex set C such that C ⊂ dom M ⊂ cl C;

(iii) M(x) is convex for every x;

(iv) ∀x ∈ dom M : (M(x))∞ = ND(x);

(v) gphM is closed.

It is well-known that gphM is closed if and only if M is upper PK-semicontinuous (every-
where). Moreover, M being upper C-semicontinuous implies that M is upper PK-semicontinu-
ous. In [7] (based on [6]), conditions for the opposite implication are given. Although this
result does not apply here, we use a similar proof to obtain the following lemma.

Lemma 3.2 If M satisfies the conditions (i) to (v), then M is upper C-semicontinuous.

Proof. (A) In this first part of the proof we assume that int (dom M) 6= ∅. Let x̄ ∈ D

(the case x̄ 6∈ D is obvious) be arbitrarily chosen and let x̄∗ ∈ lim supx→x̄ M(x), i.e., there
is a sequence (xn) → x̄ such that x̄∗ ∈ lim supn→∞M(xn). By Proposition 2.1, there exist
sequences (λn)n∈N in [0, 1]q+1, (kn)n∈N in Nq+1, (zn)n∈N in (Rq)q+1 such that

∀n ∈ N, ∀j ∈ {0, 1, . . . , q} :
q∑

i=0

λi
n = 1, kj

n ≥ n, zj
n ∈ M(x

kj
n
), x̄∗ = lim

n∈N

q∑
i=0

λi
nzi

n.

Without loss of generality we can assume that ‖λ0
nz0

n‖ ≤ ‖λ1
nz1

n‖ ≤ . . . ≤ ‖λq
nzq

n‖ for every
n ∈ N. There exists N ∈ N# such that

∀j ∈ {0, . . . , q} : (λj
n) N−→ λj ∈ [0, 1].

Assume that the sequence (λq
nzq

n)n∈N is unbounded. Hence there exists N ′ ∈ N#(N) such
that (‖λq

nzq
n‖)n∈N ′ →∞. Consequently, there exists N ′′ ∈ N#(N ′) such that

∀j ∈ {0, . . . , q} : (‖λq
nzq

n‖
−1 λj

nzj
n) N ′′
−→ yj ∈ Rq.
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We have (λj
n/ ‖λq

nzq
n‖)n∈N ′′ → 0 for all j ∈ {0, . . . , q}. By Proposition 3.1 it follows that

yj ∈ ND(x̄) for all j. Setting vn :=
∑q

i=0 λi
nzi

n we have vn → x̄∗. Passing to the limit (for
n ∈ N ′′) in the relation

‖λq
nzq

n‖
−1 vn =

q∑
j=0

‖λq
nzq

n‖
−1 λj

nzj
n

we obtain 0 =
∑q

j=0 yj . Thus we get yq ∈ ND(x̄) ∩ −ND(x̄). Since intD 6= ∅, ND(x̄) is
pointed. Whence the contradiction yq = 0 (because ‖yq‖ = 1). It follows that the sequences(
λj

nzj
n

)
n∈N

are bounded for all j. Hence there exists N ′ ∈ N#(N) such that
(
λj

nzj
n

) N ′
−→ wj

for all j. If λj 6= 0 we have zj
n

N ′
−→ zj := (λj)−1wj . Since gphM is closed, we obtain

zj ∈ M(x̄). Otherwise, if λj = 0, Proposition 3.1 yields that wj ∈ ND(x̄). As M(x̄) and
ND(x̄) are convex we get

x̄∗ = lim
n∈N

q∑
i=0

λi
nzi

n =
∑

i∈{0,...,q}
λi 6=0

λizi +
∑

i∈{0,...,q}
λi=0

wi ∈ M(x̄) + ND(x̄)
(iv)
= M(x̄).

(B) It remains to prove the case where int (dom M) is empty. Without loss of generality
we can assume that 0 ∈ dom M . Set X0 := lin D. We have X⊥

0 ⊂ ND(x) = (M(x))∞ and
hence M(x) + X⊥

0 = M(x) for all x ∈ D. We define a map M0 : X0 ⇒ X0 as follows:

M0(x) := M(x) ∩X0.

Letting N0
D(x) be the normal cone relative to X0, we have

(M0(x))∞ = (M(x) ∩X0)∞ = (M(x))∞ ∩X0 and N0
D(x) = ND(x) ∩X0.

Now it is easy to see that the conditions (i) to (v) are satisfied for M0, and int (dom M0) 6= ∅.
Part (A) yields that M0 is upper C-semicontinuous. Taking into account the relation M(x) =
M0(x)×X⊥

0 and (1), we conclude that M is upper C-semicontinuous. �

The preceeding lemma shows that, in the presence of (i), (ii) and (iv), a map M : Rq ⇒ Rq

has property (Q) if and only if it has a closed graph and convex values.

Corollary 3.3 A monotone map M : Rq ⇒ Rq with convex values is upper PK-semicontinu-
ous at some x̄ ∈ int dom M if and only if it is upper C-semicontinuous at this point.

Proof. Restrict M to an open ball B ⊂ dom M around x̄. The resulting map MB satisfies
the conditions (i) to (iv). As in the proof of Lemma 3.2 we see that upper PK-semicontinuity
at x̄ implies upper C-semicontinuity at x̄ (because only local continuity properties are used
in the proof). The opposite implication is obvious. �

It follows our main result, a characterization of maximal monotone mappings.

Theorem 3.4 A mapping M : Rq ⇒ Rq is maximal monotone if and only if the conditions
(i) to (v) are satisfied.
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Proof. The conditions (i) to (v) are well-known properties of maximal monotone mappings,
see e.g. [8]. Therefore it remains to show that the conditions (i) to (v) imply that M is
maximal monotone.

(A) In the first part of the proof we assume that int dom M 6= ∅. Assume that M is not
maximal monotone. Then there exists a maximal monotone mapping M ′ : Rq ⇒ Rq such
that gph M ′ ) gphM . Set D′ := cl dom M ′. Since M ′ is maximal monotone, D′ is convex.
Let (x̄, x̄∗) ∈ gphM ′ \ gphM . We distinguish three cases:

a) x̄ ∈ dom M . We have x̄∗ 6∈ M(x̄). By (2), there exists some

ȳ ∈ rint ((M(x̄))∞)◦
(iv)
= rint (ND(x̄))◦ = rintTD(x̄)

such that
〈ȳ, x̄∗〉 > σM(x̄)(ȳ).

Since intTD(x̄) = {w ∈ Rq| ∃λ > 0 : x̄ + λw ∈ intD} [8, Theorem 6.9], we have

∃λ > 0 : x̄ + λȳ ∈ intD = int cl dom M ⊂ int dom M,

where the latter inclusion follows from the fact that dom M is nearly convex (i.e., there exists
a convex set C such that C ⊂ dom M ⊂ cl C). Consider the sequence (xn) → x̄ where

xn :=
{

x̄ + λ
n ȳ if n is odd

x̄ if n is even .
(4)

Since M ′ is monotone, for n being odd and all x∗n ∈ M(xn) we have

〈ȳ, x∗n − x̄∗〉 =
n

λ
〈xn − x̄, x∗n − x̄∗〉 ≥ 0. (5)

Hence, for odd n ∈ N we have σM(xn)(ȳ) ≥ 〈ȳ, x∗n〉 ≥ 〈ȳ, x̄∗〉. It follows that

lim sup
n→∞

σM(xn)(ȳ) ≥ lim sup
n→∞

σM(x2n+1)(ȳ) ≥ 〈ȳ, x̄∗〉 > σM(x̄)(ȳ). (6)

From Lemma 3.2 we conclude that lim supn→∞M(xn) = M(x̄) 6= ∅, where the equality follows
from the fact that (xn) contains a subsequence all whose members equal x̄. But, Lemma 2.2
implies

∀y ∈ rint ((M(x̄))∞)◦ : lim sup
n→∞

σM(xn)(y) = σM(x̄)(y),

which contradicts (6).
b) x̄ ∈ D and M(x̄) = ∅. From int D 6= ∅ we conclude that int TD(x̄) is nonempty. Choose

an arbitrary point ȳ ∈ intTD(x̄) and consider the sequence xn := x̄ + λ
n ȳ, where λ is chosen

as (4), and a sequence x∗n ∈ M(xn). Since (x̄, x̄∗) ∈ gphM ′, we see as above that (5) holds.
Assuming that (x∗n) is unbounded, we obtain some N ∈ N# such that x∗n/ ‖x∗n‖

N−→ v∗ 6= 0.
By Proposition 3.1 we get v∗ ∈ ND(x̄). It follows that 〈ȳ, v∗〉 < 0. But (5) yields the
contradiction

0 ≤ 1
‖x∗n‖

〈ȳ, x∗n − x̄∗〉 N−→ 〈ȳ, v∗〉 .

On the other hand, if (x∗n) is bounded, there is some N ′ ∈ N#(N) such that (xn, x∗n) N ′
−→

(x̄, z̄∗). As gph M is closed, we get x̄ ∈ dom M , a contradiction.
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c) x̄ 6∈ D. Let x0 ∈ intD and let x̂ ∈ bd D such that x̂ = λx0 + (1 − λ)x̄ ∈ bd D

where λ ∈ (0, 1) is uniquely defined. If M(x̂) 6= M ′(x̂), we have the situation of either a)
or b). Otherwise, M(x̂) is nonempty and bounded as x̂ ∈ intD′. But ND(x̂) = (M(x̂))∞ is
unbounded, a contradiction.

(B) We now prove the case where int (dom M) is empty. We consider the map M0 :
X0 ⇒ X0 as defined in the proof of Lemma 3.2. We have seen there that M0 satisfies the
conditions (i) to (v) and int (dom M0) 6= ∅. By Part (A) of the proof we conclude that M0

is maximal monotone. It follows that M is maximal monotone. Indeed, if we assume the
contrary, there exists a maximal monotone extension M ′ of M . As M ′ satisfies (i) to (v), we
get by M ′

0 : X0 ⇒ X0, M ′
0(x) := M ′(x) ∩X0 a maximal monotone extension of M0 (see Part

(B) of the proof of Lemma 3.2). �

We easily conclude the following characterization of maximal monotone mappings by upper
C-semicontinuity (Cesari’s property (Q)).

Corollary 3.5 The mapping M : Rq ⇒ Rq is maximal monotone if and only if the conditions
(i), (ii), (iv) and

(vi) M is upper C-semicontinuous (everywhere);

are satisfied.

Proof. This follows from Lemma 3.2 and Theorem 3.4 and the fact that condition (vi)
implies the conditions (iii) and (v). �
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