A Characterization of Maximal Monotone Operators

Andreas Löhne*

February 5, 2007 (last update: September 4, 2007)

Abstract

It is shown that a set-valued map $M : \mathbb{R}^q \Rightarrow \mathbb{R}^q$ is maximal monotone if and only if the following five conditions are satisfied: (i) M is monotone; (ii) M has a nearly convex domain; (iii) M is convex-valued; (iv) the recession cone of the values M(x) equals the normal cone to the closure of the domain of M at x; (v) M has a closed graph. We also show that the conditions (iii) and (v) can be replaced by Cesari's property (Q).

Mathematics Subject Classification (2000): 47H05, 58C07, 47H04.

Key words: monotone operators, semicontinuity, property (Q), maximal monotone.

1 Introduction

It is well-known (see e.g. [1, 8]) that a maximal monotone mapping $M : \mathbb{R}^q \rightrightarrows \mathbb{R}^q$ has the following properties:

- (i) M is monotone;
- (ii) M has a nearly convex domain;
- (iii) The values M(x) are convex;
- (iv) The recession cone of M(x) equals the normal cone to $\operatorname{cl} \operatorname{dom} M$ at every $x \in \operatorname{dom} M$;
- (v) The graph of M is closed.

We show that the conditions (i) to (v) are also sufficient for M being maximal monotone. Moreover it is shown that (iii) and (v) can be replaced by

(vi) M is upper C-semicontinuous (everywhere).

Upper C-semicontinuity is also known as Cesari's property (Q). It plays an important role in Optimal Control (see e.g. [2, 3, 4] and the references in [7]). It is known (see e.g. [5]) that a maximal monotone mapping satisfies property (Q).

In [6] we introduced upper and lower limits with respect to a complete lattice (compare also [9]). In the special case of the complete lattice \mathcal{F} of closed subsets of \mathbb{R}^q with respect

^{*}Martin-Luther-Universität Halle–Wittenberg, NWF III, Institut für Mathematik, D-06099 Halle, Germany, email: andreas.loehne@mathematik.uni-halle.de.

to inclusion, we obtain Painlevé-Kuratowski upper and lower limits (shortly PK-limits or \mathcal{F} limits), but if we consider the complete lattice \mathcal{C} of closed convex subsets of \mathbb{R}^q with respect to inclusion, we obtain the upper and lower \mathcal{C} -limits. In [6] it is shown that \mathcal{C} -convergence of a sequence of closed convex sets is closely related to scalar convergence (i.e., pointwise convergence of the support functions of these sets). Some related results from [6] are used to prove the result of the present article.

2 Preliminaries

If not stated otherwise, we use the notation of the book "Variational Analysis" by Rockafellar and Wets [8]. Let us recall some concepts which are used in the following. For a convex set $D \subset \mathbb{R}^q$ and some $x \in D$, we denote by

$$N_D(x) := \{ x^* \in \mathbb{R}^q | \forall w \in D : \langle x^*, w - x \rangle \le 0 \}$$

the normal cone of D at x. For points $x \notin D$ the normal cone is defined to be the empty set. The tangent cone of a convex set D at $x \in D$ is the set

$$T_D(x) := \operatorname{cl} \left\{ w \in \mathbb{R}^q | \exists \lambda > 0 : x + \lambda w \in D \right\}.$$

It is well-known that $N_D(x)$ is the polar cone of $T_D(x)$. A set $B \subset \mathbb{R}^q$ is said to be *nearly* convex if there exists a convex set C such that $C \subset B \subset \operatorname{cl} C$. The convex hull of a set $B \subset \mathbb{R}^q$ is denoted by $\operatorname{co} B$. Furthermore, $\operatorname{bd} B$ is the boundary and $\operatorname{lin} B$ the linear hull of B. A set-valued mapping $M : \mathbb{R}^q \Rightarrow \mathbb{R}^q$ is called monotone if

$$\forall (x, x^*), (y, y^*) \in \operatorname{gph} M : \langle y^* - x^*, y - x \rangle \ge 0.$$

A monotone mapping $M : \mathbb{R}^q \rightrightarrows \mathbb{R}^q$ is said to be *maximal monotone*, if its graph gph M is not contained in the graph of any other monotone mapping.

We now turn to the notion of limits and semicontinuity with respect to the complete lattice C of all closed convex subsets of \mathbb{R}^q and with respect to set inclusion. We use the following notation of [8] (but omit the index ∞):

$$\mathcal{N} := \{ N \subset \mathbb{N} | \mathbb{N} \setminus N \text{ finite} \} \quad \text{and} \quad \mathcal{N}^{\#} := \{ N \subset \mathbb{N} | N \text{ infinite} \}.$$

Similarly, for an infinite subset M of \mathbb{N} we set

$$\mathcal{N}(M) := \{ N \subset M | M \setminus N \text{ finite} \} \text{ and } \mathcal{N}^{\#}(M) := \{ N \subset M | N \text{ infinite} \}.$$

For a sequence (A_n) of subsets of \mathbb{R}^q the *upper* and *lower PK-limits* (in [8] called outer and inner limits) are defined, respectively, by

$$\limsup_{n \to \infty} A_n = \bigcap_{N \in \mathcal{N}} \operatorname{cl} \bigcup_{n \in N} A_n, \qquad \qquad \limsup_{n \to \infty} A_n = \bigcap_{N \in \mathcal{N}^{\#}} \operatorname{cl} \bigcup_{n \in N} A_n,$$

whereas the *upper* and *lower* C*-limits* are defined, respectively, by

$$\limsup_{n \to \infty} A_n = \bigcap_{N \in \mathcal{N}} \operatorname{cl} \operatorname{co} \bigcup_{n \in N} A_n, \qquad \qquad \liminf_{n \to \infty} A_n = \bigcap_{N \in \mathcal{N}^{\#}} \operatorname{cl} \operatorname{co} \bigcup_{n \in N} A_n.$$

Note that the sequence (A_n) has the same upper and lower C-limit than the sequence $(\operatorname{cl} \operatorname{co} A_n)$, therefore it is not necessary to restrict ourselves to sequences of closed convex sets. In the following we only consider upper PK-limits and upper C-limits. Let us recall some related results. The following characterization of the upper C-limit was shown in [6, Proposition 3.6].

Proposition 2.1 Consider a sequence (A_n) in C. Then $x \in \limsup_{n \in \mathbb{N}} A_n$ if and only if the following assertion holds:

$$\exists (\lambda_n)_{n \in \mathbb{N}} \subset [0,1]^{q+1}, \ \exists (k_n)_{n \in \mathbb{N}} \subset \mathbb{N}^{q+1}, \ \exists (z_n)_{n \in \mathbb{N}} \subset (\mathbb{R}^q)^{q+1}, \ \forall n \in \mathbb{N}, \ \forall j \in \{0,1,\dots,q\} :$$
$$k_n^j \ge n, \ z_n^j \in A_{k_n^j}, \ x = \lim_{n \in \mathbb{N}} \sum_{i=0}^q \lambda_n^i z_n^i.$$

As shown in [6, Lemma 4.3], for a sequence (A_n) of closed convex subsets of \mathbb{R}^q and a closed convex set $B \subset \mathbb{R}^m$ it holds

$$\limsup_{n \to \infty} B \times A_n = B \times \limsup A_n.$$
⁽¹⁾

By $\sigma_A : Y \to \overline{\mathbb{R}}$, we denote the support function of a set $A \subset Y$. The recession cone (or *horizon cone*) of a convex set A is denoted by A_{∞} and the *polar cone* of a cone C is denoted by C° . We write rint A for the *relative interior* of a set A. The term rint $(A_{\infty})^{\circ}$ has to be read as rint $((A_{\infty})^{\circ})$. For nonempty closed convex sets $A, B \subset \mathbb{R}^q$ it holds [6, Lemma 5.4]

$$A \subset B \quad \iff \quad \forall y \in \operatorname{rint} (B_{\infty})^{\circ} : \quad \sigma_A(y) \le \sigma_B(y).$$
 (2)

The following result [6, Lemma 5.8] plays a key role in the proof of our result.

Lemma 2.2 For any sequence (A_n) in \mathcal{C} with $A := \limsup_{n \to \infty} A_n \neq \emptyset$ it holds

$$\forall y \in \operatorname{rint} (A_{\infty})^{\circ}, \quad \limsup_{n \to \infty} \sigma_{A_n}(y) = \sigma_A(y).$$

We now use the C-limits to introduce a corresponding semicontinuity notion (compare [2, 3, 4, 7]). Let (X, d) be a metric space. The *upper C-limit* for a set-valued map $f : X \rightrightarrows \mathbb{R}^q$ at $\bar{x} \in X$ is defined as

$$\limsup_{x \to \bar{x}} f(x) = \bigcup_{x_n \to \bar{x}} \bigcap_{N \in \mathcal{N}} \operatorname{cl} \operatorname{co} \bigcup_{n \in N} f(x_n),$$

where $\bigcup_{x_n \to \bar{x}}$ stands for the union over all sequences converging to \bar{x} . As shown in [7], the upper C-limit can also be expressed as

$$\limsup_{x \to \bar{x}} f(x) = \bigcap_{\delta > 0} \operatorname{cl} \operatorname{co} \bigcup_{d(x, \bar{x}) < \delta} f(x).$$
(3)

We say $f : X \implies \mathbb{R}^q$ is upper *C*-semicontinuous at $\bar{x} \in X$ if $f(\bar{x}) \supset \limsup_{x \to \bar{x}} f(x)$. By (3) it is clear that upper *C*-semicontinuity is the same as Cesari's property (Q) [2, 3, 4]. If f is upper *C*-semicontinuous at every $\bar{x} \in X$ we just say f is upper *C*-semicontinuous. By (3), the upper *C*-limit $\limsup_{x \to \bar{x}} f(x)$ is always a closed convex set. For more details about *C*-semicontinuity the reader is referred to [7].

3 Results

Throughout this section we denote by M a set-valued mapping $M : \mathbb{R}^q \rightrightarrows \mathbb{R}^q$ and we set $D := \operatorname{cl}(\operatorname{dom} M)$. We start with an auxiliary assertion.

Proposition 3.1 Let M be monotone, let D be convex and $\bar{x} \in D$. Consider sequences $x_n \to \bar{x}, v_n \in M(x_n)$ and $\lambda_n \searrow 0$. If the sequence $\lambda_n v_n$ is bounded, then there is a subsequence of $\lambda_n v_n$ converging to some $v^* \in N_D(\bar{x})$.

Proof. Take $(y, y^*) \in \operatorname{gph} M$. Then $\langle y - x_n, y^* - x_n^* \rangle \geq 0$, and so $\langle y - x_n, \lambda_n y^* - \lambda_n x_n^* \rangle \geq 0$ for every *n*. The sequence $(\lambda_n x_n^*)$, being bounded, has a subsequence $(\lambda_n x_n^*)_{n \in P}$ (with $P \in \mathcal{N}^{\#}$) converging to some $v^* \in \mathbb{R}^q$. Taking the limit for $P \ni n \to \infty$ in the preceding inequality we get $\langle y - \bar{x}, v^* \rangle \leq 0$ for every $y \in \operatorname{dom} M$. The conclusion follows.

With a slightly more precise notation our conditions (i) to (v) reads as follows.

- (i) M is monotone;
- (ii) There is a convex set C such that $C \subset \operatorname{dom} M \subset \operatorname{cl} C$;
- (iii) M(x) is convex for every x;
- (iv) $\forall x \in \operatorname{dom} M : (M(x))_{\infty} = N_D(x);$
- (v) $\operatorname{gph} M$ is closed.

It is well-known that gph M is closed if and only if M is upper PK-semicontinuous (everywhere). Moreover, M being upper C-semicontinuous implies that M is upper PK-semicontinuous. In [7] (based on [6]), conditions for the opposite implication are given. Although this result does not apply here, we use a similar proof to obtain the following lemma.

Lemma 3.2 If M satisfies the conditions (i) to (v), then M is upper C-semicontinuous.

Proof. (A) In this first part of the proof we assume that $\operatorname{int} (\operatorname{dom} M) \neq \emptyset$. Let $\overline{x} \in D$ (the case $\overline{x} \notin D$ is obvious) be arbitrarily chosen and let $\overline{x}^* \in \limsup_{x \to \overline{x}} M(x)$, i.e., there is a sequence $(x_n) \to \overline{x}$ such that $\overline{x}^* \in \limsup_{n \to \infty} M(x_n)$. By Proposition 2.1, there exist sequences $(\lambda_n)_{n \in \mathbb{N}}$ in $[0, 1]^{q+1}$, $(k_n)_{n \in \mathbb{N}}$ in \mathbb{N}^{q+1} , $(z_n)_{n \in \mathbb{N}}$ in $(\mathbb{R}^q)^{q+1}$ such that

$$\forall n \in \mathbb{N}, \ \forall j \in \{0, 1, \dots, q\}: \ \sum_{i=0}^{q} \lambda_n^i = 1, \ k_n^j \ge n, \ z_n^j \in M(x_{k_n^j}), \ \bar{x}^* = \lim_{n \in \mathbb{N}} \sum_{i=0}^{q} \lambda_n^i z_n^i.$$

Without loss of generality we can assume that $\|\lambda_n^0 z_n^0\| \leq \|\lambda_n^1 z_n^1\| \leq \ldots \leq \|\lambda_n^q z_n^q\|$ for every $n \in \mathbb{N}$. There exists $N \in \mathcal{N}^{\#}$ such that

$$\forall j \in \{0, \dots, q\}: \qquad (\lambda_n^j) \xrightarrow{N} \lambda^j \in [0, 1].$$

Assume that the sequence $(\lambda_n^q z_n^q)_{n \in N}$ is unbounded. Hence there exists $N' \in \mathcal{N}^{\#}(N)$ such that $(\|\lambda_n^q z_n^q\|)_{n \in N'} \to \infty$. Consequently, there exists $N'' \in \mathcal{N}^{\#}(N')$ such that

$$\forall j \in \{0, \dots, q\}: \qquad (\|\lambda_n^q z_n^q\|^{-1} \lambda_n^j z_n^j) \xrightarrow{N''} y^j \in \mathbb{R}^q.$$

We have $(\lambda_n^j / \|\lambda_n^q z_n^q\|)_{n \in N''} \to 0$ for all $j \in \{0, \ldots, q\}$. By Proposition 3.1 it follows that $y^j \in N_D(\bar{x})$ for all j. Setting $v_n := \sum_{i=0}^q \lambda_n^i z_n^i$ we have $v_n \to \bar{x}^*$. Passing to the limit (for $n \in N''$) in the relation

$$\|\lambda_n^q z_n^q\|^{-1} v_n = \sum_{j=0}^q \|\lambda_n^q z_n^q\|^{-1} \lambda_n^j z_n^j$$

we obtain $0 = \sum_{j=0}^{q} y^{j}$. Thus we get $y^{q} \in N_{D}(\bar{x}) \cap -N_{D}(\bar{x})$. Since $\operatorname{int} D \neq \emptyset$, $N_{D}(\bar{x})$ is pointed. Whence the contradiction $y^{q} = 0$ (because $||y^{q}|| = 1$). It follows that the sequences $(\lambda_{n}^{j} z_{n}^{j})_{n \in \mathbb{N}}$ are bounded for all j. Hence there exists $N' \in \mathcal{N}^{\#}(N)$ such that $(\lambda_{n}^{j} z_{n}^{j}) \xrightarrow{N'} w^{j}$ for all j. If $\lambda^{j} \neq 0$ we have $z_{n}^{j} \xrightarrow{N'} z^{j} := (\lambda^{j})^{-1} w^{j}$. Since gph M is closed, we obtain $z^{j} \in M(\bar{x})$. Otherwise, if $\lambda^{j} = 0$, Proposition 3.1 yields that $w^{j} \in N_{D}(\bar{x})$. As $M(\bar{x})$ and $N_{D}(\bar{x})$ are convex we get

$$\bar{x}^* = \lim_{n \in \mathbb{N}} \sum_{i=0}^{q} \lambda_n^i z_n^i = \sum_{\substack{i \in \{0, \dots, q\}\\\lambda^i \neq 0}} \lambda^i z^i + \sum_{\substack{i \in \{0, \dots, q\}\\\lambda^i = 0}} w^i \in M(\bar{x}) + N_D(\bar{x}) \stackrel{\text{(iv)}}{=} M(\bar{x}).$$

(B) It remains to prove the case where int (dom M) is empty. Without loss of generality we can assume that $0 \in \text{dom } M$. Set $X_0 := \text{lin } D$. We have $X_0^{\perp} \subset N_D(x) = (M(x))_{\infty}$ and hence $M(x) + X_0^{\perp} = M(x)$ for all $x \in D$. We define a map $M_0 : X_0 \rightrightarrows X_0$ as follows:

$$M_0(x) := M(x) \cap X_0.$$

Letting $N_D^0(x)$ be the normal cone relative to X_0 , we have

$$(M_0(x))_{\infty} = (M(x) \cap X_0)_{\infty} = (M(x))_{\infty} \cap X_0$$
 and $N_D^0(x) = N_D(x) \cap X_0$.

Now it is easy to see that the conditions (i) to (v) are satisfied for M_0 , and int $(\operatorname{dom} M_0) \neq \emptyset$. Part (A) yields that M_0 is upper \mathcal{C} -semicontinuous. Taking into account the relation $M(x) = M_0(x) \times X_0^{\perp}$ and (1), we conclude that M is upper \mathcal{C} -semicontinuous.

The preceeding lemma shows that, in the presence of (i), (ii) and (iv), a map $M : \mathbb{R}^q \rightrightarrows \mathbb{R}^q$ has property (Q) if and only if it has a closed graph and convex values.

Corollary 3.3 A monotone map $M : \mathbb{R}^q \rightrightarrows \mathbb{R}^q$ with convex values is upper PK-semicontinuous at some $\bar{x} \in \text{int dom } M$ if and only if it is upper C-semicontinuous at this point.

Proof. Restrict M to an open ball $B \subset \text{dom } M$ around \bar{x} . The resulting map M_B satisfies the conditions (i) to (iv). As in the proof of Lemma 3.2 we see that upper PK-semicontinuity at \bar{x} implies upper C-semicontinuity at \bar{x} (because only local continuity properties are used in the proof). The opposite implication is obvious.

It follows our main result, a characterization of maximal monotone mappings.

Theorem 3.4 A mapping $M : \mathbb{R}^q \rightrightarrows \mathbb{R}^q$ is maximal monotone if and only if the conditions (i) to (v) are satisfied. **Proof.** The conditions (i) to (v) are well-known properties of maximal monotone mappings, see e.g. [8]. Therefore it remains to show that the conditions (i) to (v) imply that M is maximal monotone.

(A) In the first part of the proof we assume that int dom $M \neq \emptyset$. Assume that M is not maximal monotone. Then there exists a maximal monotone mapping $M' : \mathbb{R}^q \rightrightarrows \mathbb{R}^q$ such that gph $M' \supseteq$ gph M. Set $D' := \operatorname{cl} \operatorname{dom} M'$. Since M' is maximal monotone, D' is convex. Let $(\bar{x}, \bar{x}^*) \in \operatorname{gph} M' \setminus \operatorname{gph} M$. We distinguish three cases:

a) $\bar{x} \in \text{dom } M$. We have $\bar{x}^* \notin M(\bar{x})$. By (2), there exists some

$$\bar{y} \in \operatorname{rint} \left((M(\bar{x}))_{\infty} \right)^{\circ} \stackrel{(\mathrm{iv})}{=} \operatorname{rint} \left(N_D(\bar{x}) \right)^{\circ} = \operatorname{rint} T_D(\bar{x})$$

such that

$$\langle \bar{y}, \bar{x}^* \rangle > \sigma_{M(\bar{x})}(\bar{y}).$$

Since $\operatorname{int} T_D(\bar{x}) = \{ w \in \mathbb{R}^q | \exists \lambda > 0 : \bar{x} + \lambda w \in \operatorname{int} D \}$ [8, Theorem 6.9], we have

$$\exists \lambda > 0: \quad \bar{x} + \lambda \bar{y} \in \operatorname{int} D = \operatorname{int} \operatorname{cl} \operatorname{dom} M \subset \operatorname{int} \operatorname{dom} M,$$

where the latter inclusion follows from the fact that dom M is nearly convex (i.e., there exists a convex set C such that $C \subset \text{dom } M \subset \text{cl } C$). Consider the sequence $(x_n) \to \bar{x}$ where

$$x_n := \begin{cases} \bar{x} + \frac{\lambda}{n}\bar{y} & \text{if } n \text{ is odd} \\ \bar{x} & \text{if } n \text{ is even} . \end{cases}$$
(4)

Since M' is monotone, for n being odd and all $x_n^* \in M(x_n)$ we have

$$\langle \bar{y}, x_n^* - \bar{x}^* \rangle = \frac{n}{\lambda} \langle x_n - \bar{x}, x_n^* - \bar{x}^* \rangle \ge 0.$$
 (5)

Hence, for odd $n \in \mathbb{N}$ we have $\sigma_{M(x_n)}(\bar{y}) \geq \langle \bar{y}, x_n^* \rangle \geq \langle \bar{y}, \bar{x}^* \rangle$. It follows that

$$\limsup_{n \to \infty} \sigma_{M(x_n)}(\bar{y}) \ge \limsup_{n \to \infty} \sigma_{M(x_{2n+1})}(\bar{y}) \ge \langle \bar{y}, \ \bar{x}^* \rangle > \sigma_{M(\bar{x})}(\bar{y}).$$
(6)

From Lemma 3.2 we conclude that $\limsup_{n\to\infty} M(x_n) = M(\bar{x}) \neq \emptyset$, where the equality follows from the fact that (x_n) contains a subsequence all whose members equal \bar{x} . But, Lemma 2.2 implies

$$\forall y \in \operatorname{rint} \left((M(\bar{x}))_{\infty} \right)^{\circ} : \limsup_{n \to \infty} \sigma_{M(x_n)}(y) = \sigma_{M(\bar{x})}(y),$$

which contradicts (6).

b) $\bar{x} \in D$ and $M(\bar{x}) = \emptyset$. From int $D \neq \emptyset$ we conclude that int $T_D(\bar{x})$ is nonempty. Choose an arbitrary point $\bar{y} \in \operatorname{int} T_D(\bar{x})$ and consider the sequence $x_n := \bar{x} + \frac{\lambda}{n}\bar{y}$, where λ is chosen as (4), and a sequence $x_n^* \in M(x_n)$. Since $(\bar{x}, \bar{x}^*) \in \operatorname{gph} M'$, we see as above that (5) holds. Assuming that (x_n^*) is unbounded, we obtain some $N \in \mathcal{N}^{\#}$ such that $x_n^* / \|x_n^*\| \xrightarrow{N} v^* \neq 0$. By Proposition 3.1 we get $v^* \in N_D(\bar{x})$. It follows that $\langle \bar{y}, v^* \rangle < 0$. But (5) yields the contradiction

$$0 \leq \frac{1}{\|x_n^*\|} \left\langle \bar{y}, \ x_n^* - \bar{x}^* \right\rangle \xrightarrow{N} \left\langle \bar{y}, v^* \right\rangle.$$

On the other hand, if (x_n^*) is bounded, there is some $N' \in \mathcal{N}^{\#}(N)$ such that $(x_n, x_n^*) \xrightarrow{N'} (\bar{x}, \bar{z}^*)$. As gph M is closed, we get $\bar{x} \in \text{dom } M$, a contradiction.

c) $\bar{x} \notin D$. Let $x^0 \in \text{int } D$ and let $\hat{x} \in \text{bd } D$ such that $\hat{x} = \lambda x^0 + (1 - \lambda)\bar{x} \in \text{bd } D$ where $\lambda \in (0,1)$ is uniquely defined. If $M(\hat{x}) \neq M'(\hat{x})$, we have the situation of either a) or b). Otherwise, $M(\hat{x})$ is nonempty and bounded as $\hat{x} \in \text{int } D'$. But $N_D(\hat{x}) = (M(\hat{x}))_{\infty}$ is unbounded, a contradiction.

(B) We now prove the case where int $(\operatorname{dom} M)$ is empty. We consider the map M_0 : $X_0 \rightrightarrows X_0$ as defined in the proof of Lemma 3.2. We have seen there that M_0 satisfies the conditions (i) to (v) and int $(\operatorname{dom} M_0) \neq \emptyset$. By Part (A) of the proof we conclude that M_0 is maximal monotone. It follows that M is maximal monotone. Indeed, if we assume the contrary, there exists a maximal monotone extension M' of M. As M' satisfies (i) to (v), we get by $M'_0: X_0 \rightrightarrows X_0, M'_0(x) := M'(x) \cap X_0$ a maximal monotone extension of M_0 (see Part (B) of the proof of Lemma 3.2).

We easily conclude the following characterization of maximal monotone mappings by upper C-semicontinuity (Cesari's property (Q)).

Corollary 3.5 The mapping $M : \mathbb{R}^q \rightrightarrows \mathbb{R}^q$ is maximal monotone if and only if the conditions (i), (ii), (iv) and

(vi) M is upper C-semicontinuous (everywhere);

are satisfied.

Proof. This follows from Lemma 3.2 and Theorem 3.4 and the fact that condition (vi) implies the conditions (iii) and (v). \Box

Acknowledgments. The author wishes to express his gratitude to C. Zălinescu for the many helpful suggestions to simplify the proofs and to make this article more concise.

References

- Borwein, J.; Lewis, A.: Convex Analysis and Nonlinear Optimization, Springer, New York, 2000
- [2] Cesari, L.: I: Existence theorems for weak and usual optimal solutions in Lagrange problems with unilateral constraints. II: Existence theorems for weak solutions, *Trans. Am. Math. Soc.* **124**, (1966), 369–412, 413–430
- [3] Cesari, L.: Optimization Theory and Applications. Problems with Ordinary Differential Equations, Applications of Mathematics, 17., Springer, New York - Heidelberg - Berlin, 1983
- [4] Cesari, L.; Suryanarayana, M. B.: Convexity and property (Q) in optimal control theory, SIAM J. Control 12, (1974), 705–720
- Hou, S. H.: On property (Q) and other semi-continuity properties of multifunctions, Pacific J. Math. 103 No. 1, (1982), 39-56
- [6] Löhne, A.; Zălinescu, C.: On convergence of closed convex sets, J. Math. Anal. Appl., 319 No. 2, (2006), 617–634

- [7] Löhne, A.: On semicontinuity of convex-valued multifunctions and Cesari's property (Q), submitted to *J. Conv. Anal.*, 2005
- [8] Rockafellar, R. T.; Wets, R. J.-B.: Variational Analysis, Springer, Berlin, 1998
- [9] Suryanarayana, M. B.: Upper semicontinuity of set-valued functions, J. Optimization Theory Appl. 41 No. 1, (1983), 185–211