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Abstract

We present a minimal point theorem in a product space X ×Y , X being a separated uniform
space, Y a topological vector space under the weakest assumptions up to now. We state
Ekeland’s variational principle and Kirk-Caristi’s fixed point theorem for set-valued maps
and show the equivalence of all the three theorems. Using a new characterization of uniform
spaces we show that our theorems cover several recent results.
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1 Introduction

Ekeland’s variational principle [8] is an important tool in nonlinear analysis. In the
last decades various theorems had been presented which turned out to be equivalent
to Ekeland’s principle. One of them, a lemma due to R. R. Phelps (see [29] and
especially the version of [30] from 1989) can be considered as the first minimal point
theorem. Phelps’ lemma yields the existence of minimal points with respect to a
partial ordering in a subset of X × R, where X is a Banach space and R denotes
the reals.

Minimal point theorems in a product space X × Y were established by Göpfert
and Tammer [12], 1995 and generalized by Göpfert, Tammer and Zălinescu in [14],
2000 and in [13], 1999. In the latest version, X is a complete metric space and
Y is a separated locally convex space. These theorems are useful tools in vector
optimization. In [14], [13] a variational principle for vector-valued functions f :
X → Y was presented to be an easy consequence of the minimal point theorem.

A generalization of Ekeland’s variational principle with respect to the space X
was given by Fang [9], 1996. He introduced the concept of “F -type topological
spaces” generating the topology by families of quasi-metrics.

In this paper we generalize some of the minimal point theorems from [13], [14]
with respect to the space X. Instead of complete metric spaces we consider sepa-
rated uniform spaces. By the way we show that the class of Fang’s F -type spaces
coincides with the class of separated uniform spaces introduced by Weil [33], 1937.

We use the Brézis-Browder principle combined with a scalarization method for
proving our minimal point theorem. This admits a very short proof and shows the
power of the Brézis-Browder ordering principle

Sections 5 and 6 are concerned with Ekeland’s variational principle and Caristi’s
fixed point theorem for set-valued maps. We show that our minimal point theorem is
equivalent to both of this theorems and obtain a series of known results as corollaries.
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A similar variant of a variational principle for set-valued maps was given by
Chen, Huang and Hou [7], 2000 but using different assumptions.

Finally, we discuss the relationships of our results to well-known as well as re-
cently published theorems.

2 Uniform Spaces

In this section we present a characterization of uniform spaces via families of quasi-
metrics. This result is motivated by Fang [9] who introduced “F -type topological
spaces” in this way.

Initially, we shall recall the concept of a uniform space. For further details see
Kelly [21] or Köthe [22].

Let X be a nonempty set. We consider a system N of subsets N of X × X :=
{(x, y) : x, y ∈ X}. For N ⊂ X ×X we denote N−1 := {(y, x) : (x, y) ∈ N} and
N ◦ N := {(x, y) ∈ X ×X : ∃z ∈ X : (x, z) , (z, y) ∈ N}. The set ∆ := {(x, x) ∈
X × X} is called the diagonal. The set X is said to be a uniform space iff there
exists a filter N on X ×X satisfying

(N1) ∀N ∈ N : ∆ ⊂ N ;

(N2) N ∈ N ⇒ N−1 ∈ N;

(N3) ∀N ∈ N ∃M ∈ N : M ◦M ⊂ N .

The system N is called a uniformity on X. By the sets U(x) := {UN(x) : N ∈ N}
where UN(x) := {y ∈ X : (x, y) ∈ N} a topology is given, called the uniform
topology on X. Of course, a uniform space is already well-defined by a base of its
uniformity N, i.e. a filter base B of the uniformity N. The topology of a uniform
space is separated iff

(N4)
⋂

N∈N

N = ∆.

For a proof see [22, p. 32].
We recall a well-established result, the characterization of uniform spaces using

families of pseudo-metrics (see [21]).

Definition 1 Let X be a nonempty set. A function p : X ×X → [0,∞) is called
pseudo-metric on X iff for all x, y, z ∈ X the following conditions are satisfied:

(P1) p(x, x) = 0;

(P2) p(x, y) = p(y, x);

(P3) p(x, y) ≤ p(x, z) + p(z, y).

Moreover, let (Λ,≺) be a directed set. A system {pλ}λ∈Λ of pseudo-metrics pλ :
X ×X → [0,∞) satisfying

(P4) λ ≺ µ ⇒
(
∀x, y ∈ X : pλ(x, y) ≤ pµ(x, y)

)
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is called a family of pseudo-metrics. If additionally the condition

(P5)
(
∀λ ∈ Λ : pλ(x, y) = 0

)
⇒ x = y

holds, the family of pseudo-metrics is said to be separating.

Proposition 2 A topological space (X, τ) is a (separated) uniform space iff its
topology τ can be generated by a (separating) family of pseudo-metrics.

Proof. See [21, p. 188, Theorem 15] taking into account that by (P4) we deal with
bases instead of subbases. �

Fang [9] introduced so-called F -type topological spaces using families of quasi-
metrics. Our definition is slightly more general because (Q5) is an optional condi-
tion, not automatically satisfied in our case.

Definition 3 Let X be a nonempty set and let (Λ,≺) be a directed set. A system
{qλ}λ∈Λ of functions qλ : X ×X → [0,∞) satisfying

(Q1) ∀λ ∈ Λ ∀x ∈ X : qλ(x, x) = 0;

(Q2) ∀λ ∈ Λ ∀x, y ∈ X : qλ(x, y) = qλ(y, x);

(Q3) ∀λ ∈ Λ ∃µ ∈ Λ with λ ≺ µ : ∀x, y, z ∈ X : qλ(x, y) ≤ qµ(x, z) + qµ(z, y);

(Q4) λ ≺ µ ⇒
(
∀x, y ∈ X : qλ(x, y) ≤ qµ(x, y)

)
is called a family of quasi-metrics. If, in addition, the condition

(Q5)
(
∀λ ∈ Λ : qλ(x, y) = 0

)
⇒ x = y

is satisfied, the family of quasi-metrics is said to be separating.

The stage is set for our first result clarifying the relation between separated uniform
spaces and F -type topological spaces.

Theorem 4 A topological space (X, τ) is a (separated) uniform space iff its topology
τ can be generated by a (separating) family of quasi-metrics.

Proof. Let (X, τ) be a topological space where τ is generated by a family {qλ}λ∈Λ

of quasi-metrics, i.e. τ is given by

U(x) := {Ux(λ, t) : λ ∈ Λ, t > 0}

where
Ux(λ, t) := {y ∈ X : qλ(x, y) < t} .

We claim that a base of a uniformity is given by the system

B := {N(λ, t) : λ ∈ Λ, t > 0}

where
N(λ, t) := {(x, y) ∈ X ×X : qλ(x, y) < t} .
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To show that B is a filter base let λ1, λ2 ∈ Λ and t1, t2 > 0 be arbitrarily given.
Since Λ is a directed set, there exists µ ∈ Λ with λ1 ≺ µ and λ2 ≺ µ. With
t := min{t1, t2} we show that

N(µ, t) ⊂ N(λ1, t1) ∩N(λ2, t2).

Indeed, let (x̄, ȳ) ∈ N(µ, t), i.e. qµ(x̄, ȳ) < t. It follows that

qλi
(x̄, ȳ)

(Q4)

≤ qµ(x̄, ȳ) < t ≤ ti (i = 1, 2) ,

hence
(x̄, ȳ) ∈ N(λ1, t1) ∩N(λ2, t2).

Furthermore, ∅ 6∈ B since each N(λ, t) contains the diagonal.
Let N be the filter generated by B. We shall show that for N the axioms (N1) to

(N3) are satisfied. Obviously, (Q1) and (Q2) imply (N1) and (N2), respectively. To
verify (N3) let N ∈ N arbitrarily given. Then there exists λ ∈ Λ and t > 0 such that
N(λ, t) ∈ B and N(λ, t) ⊂ N . Taking µ = µ(λ) from (Q3) we set M := N(µ, t/2).
Then we have M ◦M ⊂ N . Indeed, let (x̄, ȳ) ∈ M ◦M , i.e.

∃z ∈ X : qµ(x̄, z) <
t

2
, qµ(z, ȳ) <

t

2
,

hence

qλ(x̄, ȳ)
(Q3)

≤ qµ(x̄, z) + qµ(z, ȳ) < t.

It follows that (x̄, ȳ) ∈ N(λ, t) ⊂ N . Consequently, N is a uniformity generating
the topology τ .

If additionally the family {qλ}λ∈Λ of quasi-metrics is separating, (N4) holds, i.e.
the uniform space (X, τ) is separated.

The opposite assertion follows by Proposition 2 taking into account that a family
of pseudo-metrics is in particular a family of quasi-metrics. �

Due to this result we suggest to use the well-established term uniform space instead
of F -type topological space.

An important class of uniform spaces is the class of topological vector spaces.
Therefore, Theorem 4 has a counterpart for topological vector spaces where the
topology can be generated by families of quasi-norms. This result is due to Hyers
[18], 1939 who used the term “pseudo-norms” instead of “quasi-norms”. For more
details compare [24].

3 Main Tools

For the convenience of the reader we present the main tools for the proof of our
minimal point theorem. The first one is the Brézis-Browder principle.

Theorem 5 Let (W,�) be a quasi-ordered set (i.e. � is a reflexive and transitive
relation) and let φ : W → R be a function satisfying
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(A1) φ is bounded below;

(A2) w1 � w2 ⇒ φ(w1) ≤ φ(w2);

(A3) For every �-decreasing sequence {wn}n∈N ⊂ W there exists some w ∈ W
such that w � wn for all n ∈ N.

Then, for every w0 ∈ W there exists some w̄ ∈ W such that

(i) w̄ � w0;

(ii) ŵ � w̄ ⇒ φ(ŵ) = φ(w̄).

In particular, if we strengthen (A2) to

(A2’)
(
w1 � w2, w1 6= w2

)
⇒ φ(w1) < φ(w2)

it holds

(ii’) ŵ � w̄ ⇒ ŵ = w̄, i.e. w̄ is �-minimal in W .

Proof. See [2, Corollary 1]. �

Note that (A2’) implies the antisymmetry of the relation �.
A second important tool is a scalarization method established by Gerstewitz

(Tammer), Iwanow [11] and Gerth (Tammer), Weidner [10] and applied in [14],
[13], for instance.

Theorem 6 Let Y be a topological vector space, K ⊂ Y a convex cone and k0 ∈
K \ −cl K. The functional z : Y → R ∪ {∞}, defined as z(y) := inf{t ∈ R : y ∈
tk0 − cl K} has the following properties

(i) z is sublinear;

(ii) y1 ≤K y2 ⇒ z(y1) ≤ z(y2);

(iii) ∀y ∈ Y ∀α ∈ R : z(y + αk0) = z(y) + α;

(iv) If Y0 ⊂ Y is ≤K-bounded below then z is bounded below on Y0.

Proof. See [14, Lemma 7] taking into account that Y has not to be separated
for the proof. Moreover, in the definition of the functional the closed cone can be
replaced by the closure of a not necessarily closed cone (since y1 ≤K y2 implies
y1 ≤cl K y2). Then, if Y is not separated, we have to choose k0 ∈ K \−cl K to avoid
k0 ∈ cl {0}. If Y is separated it suffices to suppose k0 ∈ K \ −K. Besides, (iv) is
an easy consequence of (ii). �

Let Y be a topological vector space and K ⊂ Y a convex cone. We use the following
assumption to derive strong (in [14] called ”authentic”) variants of the minimal point
theorem.

(C) There exists a proper convex cone C ⊂ Y satisfying K \ {0} ⊂ int C;
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Remark 1 If a cone K satisfies (C) it is pointed, i.e. K ∩ −K = {0}. To see
this let y ∈ K ∩ (−K). Assuming that y 6= 0 we have y,−y ∈ int C. Since C is
convex, int C is convex, hence 0 ∈ int C. Consequently, there exists an absorbing
neighborhood U of 0 ∈ Y such that U ⊂ int C. Hence, C must be the whole space.
This contradicts the assumption that C is proper.

Theorem 7 Let Y be a topological vector space, K ⊂ Y a convex cone satisfying
assumption (C). Let k0 ∈ K \ {0}. The functional zC : Y → R, defined by zC(y) :=
inf{t ∈ R : y ∈ tk0 − cl C} has the following properties

(i) zC is sublinear;

(ii)
(
y1 ≤K y2 , y1 6= y2

)
⇒ zC(y1) < zC(y2);

(iii) ∀y ∈ Y ∀α ∈ R : zC(y + αk0) = zC(y) + α;

(iv) For Y0 ⊂ Y , ỹ ∈ Y the condition Y0 ∩ (ỹ − int C) = ∅ implies that zC is
bounded below on Y0.

Proof. See [14, Lemma 7] and [13, proof of Theorem 1]) taking into account
that zC(y) = ∞ is not possible under our assumptions. Note that we have k0 ∈
int C \ −cl C. Therefore, as above, Y has not to be separated. �

Remark 2 The assumption (C) introduced above is strong enough to play two roles
simultaneously. On the one hand, it allows to weaken the boundedness assumption,
compare (iv) in Theorem 6 and 7, respectively. On the other hand it ensures
the strong monotonicity of the functional zC , compare (ii) in Theorem 6 and 7,
respectively. It is possible to pursue this two goals by different assumptions. This
leads to slightly different variants of the minimal point theorem. Compare the
forthcoming paper [17].

4 Minimal Point Theorem

Minimal point theorems in product spaces X × Y were presented by Göpfert and
Tammer [12] and by Göpfert, Tammer and Zălinescu [14], [13] being a useful gen-
eralization of Ekeland’s variational principle. We wish to generalize some of these
theorems with respect to the spaces, i.e. we consider separated uniform spaces X
instead of complete metric spaces and also topological vector spaces Y instead of
separated locally convex spaces.

According to [13] we avoid using Zorn’s Lemma with the advantage that all
assumptions involve sequences instead of nets. Furthermore, the Brézis-Browder
principle together with the scalarization method due to Chr. Tammer and her
collaborators [10], [31] turn out to be powerful enough to prove one of the the most
general minimal point theorems up to now.

In the following let (X, {qλ}λ∈Λ) be a separated uniform space and let Y be
a topological vector space. We write w = (wX , wY ) ∈ W to deal with the two
components of an element w of the product space W := X × Y .

6



It is well-known that a convex cone K ⊂ Y generates a quasi-ordering on Y (i.e.
a reflexive and transitive relation) by

y1 ≤K y2 ⇔ y2 − y1 ∈ K.

If K is pointed the relation is also antisymmetric, therefore a partial ordering. Using
an element k0 ∈ K \ −cl K we introduce a relation �k0 on W :

(x1, y1) �k0 (x2, y2) ⇔ ∀λ ∈ Λ : y1 + k0qλ (x1, x2) ≤K y2. (1)

Lemma 8 If K ⊂ Y is a convex cone, a reflexive and transitive relation on W is
defined by (1). If additionally K is pointed, the relation �k0 is a partial ordering
on W .

Proof. Exemplary, we prove the transitivity. Let wi = (xi, yi) ∈ W (i = 1, 2, 3)
satisfying w1 �k0 w2 and w2 �k0 w3. The transitivity of the relation ≤K yields

∀α ∈ Λ : y1 + k0
(
qα (x1, x2) + qα (x2, x3)

)
≤K y3. (2)

By (Q3) for each λ ∈ Λ there exists some µ ∈ Λ with λ ≺ µ such that qλ(x1, x3) ≤
qµ(x1, x2)+qµ(x2, x3). Since (2) holds for all α ∈ Λ, we obtain y1+k0qλ(x1, x3) ≤K y3

for all λ ∈ Λ, i.e. w1 �k0 w3. �

We continue with our main result, the minimal point theorem in uniform spaces.
Just as the Brézis-Browder principle (Theorem 5), the following theorem (as well as
its equivalent formulations, Theorems 10, 12/13 below) consists of two parts. The
”weak” assertion (ii) yields the existence of an element w̄ of a certain set A such that
some ŵ ∈ A which is dominated by w̄ with respect to a quasi-ordering necessarily
has the same X-component. However, the Y -components may be distinct. The
”strong” (”authentic”) assertion (ii’) yields the minimality of some w̄ ∈ A in A
with respect to a partial ordering, i.e. ŵ ∈ A, ŵ �k0 w̄ implies ŵ = w̄. Note that
assumption (C) of Section 3 ensures that we deal in fact with a partial ordering. It
plays the key role in establishing the strong assertion and can traced back to the
early work of Bishop and Phelps.

Theorem 9 (Minimal Point Theorem) Let (X, {qλ}λ∈Λ) be a separated uni-
form space, Y a topological vector space, K ⊂ Y a convex cone and k0 ∈ K \−cl K.
Let A ⊂ W be a nonempty subset of the product space W = X × Y and let w0 ∈ A
be given such that for the set W0 := {w ∈ A : w �k0 w0} the following assumptions
are satisfied:

(M1) The set (W0)Y := {y ∈ Y : w = (x, y) ∈ W0} is ≤K-bounded below;

(M2) For any �k0-decreasing sequence {wn}n∈N ⊂ W0 there exists some w ∈ W0,
such that w �k0 wn for all n ∈ N.

Then there exists some w̄ ∈ A such that

(i) w̄ �k0 w0;

(ii)
(
ŵ ∈ A, ŵ �k0 w̄

)
⇒ ŵX = w̄X .

7



Under the additional assumption (C) we can relax assumption (M1) to

(M1’) There exists some ỹ ∈ Y such that (W0)Y ∩ (ỹ − int C) = ∅

such that even

(ii’) w̄ is �k0-minimal in A

holds.

Proof. By Lemma 8, the relation �k0 is reflexive and transitive on W0. We apply
the Brézis-Browder principle (Theorem 5) on the quasi-ordered set (W0,�k0) using
the functional

φ : W0 → R, φ(w) = z(wY − (w0)Y )

where z : Y → R ∪ {∞} is the scalarization functional of Theorem 6. First,
we must have φ(w) 6= ∞. Indeed, for w ∈ W0 it holds wY ≤K (w0)Y . Hence
wY − (w0)Y ∈ −K ⊂ −cl K. By the definition of z we have φ(w) ≤ 0.

By (M1) and property (iv) of z (Theorem 6), φ is bounded below on W0. Let be
w1 �k0 w2, hence (w1)Y ≤K (w2)Y . Property (ii) of z implies assumption (A2) of
Theorem 5. Of course, (M2) implies assumption (A3) of Theorem 5.

Theorem 5 yields the existence of some w̄ ∈ W0 (i.e. w̄ �k0 w0) such that

ŵ �k0 w̄ ⇒ φ(ŵ) = φ(w̄). (3)

To show (ii) let ŵ ∈ A, ŵ �k0 w̄. The transitivity of �k0 yields ŵ ∈ W0. This
implies ŵY −(w0)Y +k0qλ(ŵX , w̄X) ≤K w̄Y −(w0)Y for all λ ∈ Λ. Applying property
(iii) of z we get

∀λ ∈ Λ : qλ(ŵX , w̄X) ≤ φ(w̄)− φ(ŵ)
(3)
= 0.

Since X is separated, it follows that ŵX = w̄X .
Now, let assumption (C) be satisfied. We can replace (M1) by (M1’) and proceed

analogously, but using the functional zC of Theorem 7 instead of z. In particular,
the corresponding functional φC : W0 → R, φC(w) = zC(wY ) (the functional can
be chosen slightly simpler than before, because zC(y) 6= ∞ for all y ∈ Y ) is even
strict �k0-monotone, i.e. w1 �k0 w2, w1 6= w2 implies φC(w1) < φC(w2). Indeed,
let w1 �k0 w2 and w1 6= w2. If (w1)X 6= (w2)X then, since X is separated, there
exists some µ ∈ Λ satisfying qµ((w1)X , (w2)X) > 0, hence,

(w2)Y − (w1)Y ∈
{
k0qµ((w1)X , (w2)X)

}
+ K ⊂ (K \ −cl K) + K ⊂ K \ {0} .

Otherwise, if (w1)X = (w2)X , we have (w1)Y 6= (w2)Y and it also holds (w2)Y −
(w1)Y ∈ K \ {0}. Property (ii) of zC yields φ(w1) < φ(w2). Therefore, assumption
(A2’) in Theorem 5 is satisfied, too. The �k0-minimality of w̄ in A follows from
Theorem 5 (ii’) taking into account the transitivity of the relation. �

Remark 3 Our assumption (M2) is not stronger than (H2) in [14]. Assuming
X to be sequentially complete, this is because for every �k0-decreasing sequence
{wn}n∈N ⊂ A we have (wn)X → x ∈ X for some x ∈ X. Indeed, let ε > 0 and
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λ ∈ Λ be arbitrarily given. Since {wn}n∈N is �k0-decreasing, for any m, n ∈ N with
m ≥ n the inequality

(wm)Y + k0qλ((wm)X , (wn)X) ≤K (wn)Y

is satisfied. This implies

(wm)Y − (w0)Y + k0qλ((wm)X , (wn)X) ≤K (wn)Y − (w0)Y .

The properties of z (Theorem 6) yield

φ(wm) + qλ((wm)X , (wn)X)
(iii)
= z

(
(wm)Y − (w0)Y + k0qλ((wm)X , (wn)X)

) (ii)

≤ φ(wn).

The sequence {φ(wn)}n∈N ⊂ R is nonincreasing and bounded, hence convergent, i.e.
there exists some N0(ε, λ) ∈ N such that for all m,n ≥ N0(ε, λ) it holds

qλ((wm)X , (wn)X) ≤ φ(wn)− φ(wm) < ε.

This means, the sequence {(wn)X}n∈N is Cauchy and by the sequentially complete-
ness of X convergent to some x ∈ X. The same considerations can be done using
zC and Theorem 7 instead of z.

We shall discuss a set of conditions which can be supposed instead of assumption
(M2) of Theorem 9 if X is sequentially complete.

(M3) For any sequence {(xn, yn)}n∈N ⊂ A where {xn}n∈N tends to x ∈ X and
{yn}n∈N is ≤K-decreasing, there exists some y ∈ Y such that (x, y) ∈ A and
y ≤K yn for all n ∈ N;

(M4) For any y ∈ K the sets K ∩ (y − R+ k0) are sequentially closed;

(M5) For the family {qλ}λ∈Λ of quasi-metrics generating the topology of X and
defining the relation �k0 , the elements qλ are sequentially lower semi-con-
tinuous with respect to the second variable in the following sense. From
xn → x ∈ X for n →∞ it follows

∀u ∈ X ∀λ ∈ Λ : qλ(u, x) ≤ lim inf
n→∞

qλ(u, xn).

In [13], where X is a complete metric space, supposing (M3) and (M4) is already
sufficient for (M2). Generating the topology of a uniform space by a family of quasi-
metrics, we need an additional assumption (M5) because the quasi-metrics are not
necessarily continuous. Of course, the topology of a uniform space always can be
generated by a family of uniformly continuous pseudo-metrics (compare [21, p. 188,
Theorem 15]). This means that (M5) does not restrict the choice of the space X.
However, it could be that (M5) restricts the choice of the ordering relation.

Remark 4 If X is sequentially complete, then (M2) in Theorem 9 can be replaced
by (M3), (M4) and (M5). Indeed, let {wn}n∈N0 ⊂ A be a �k0-decreasing sequence in
A. By Remark 3 it can be assumed that (wn)X → x ∈ X. We denote xn := (wn)X

and yn := (wn)Y . Then the sequence {yn}n∈N is ≤K-decreasing. By assumption
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(M3) there exists some y ∈ Y such that (x, y) ∈ A and y ≤K yn for all n ∈ N.
Hence

∀λ ∈ Λ ∀n, p ∈ N : y + k0 qλ(xn, xn+p) ≤K yn+p + k0 qλ(xn, xn+p) ≤K yn.

Denoting w := (x, y) and letting p →∞, by (M5) and (M4) it follows that w �k0 wn

for all n ∈ N, i.e. (M2) is satisfied.

Note that if (M1) holds, (M3) is satisfied if A is sequentially closed and K is a
sequential Daniell cone, i.e. every ≤K-decreasing sequence which has a lower bound
converges to its infimum. Further sufficient conditions can be found in [14] or in
[24].

5 Ekeland’s principle for set-valued maps

In this section we present a variant of Ekeland’s variational principle for set-valued
maps being equivalent to the minimal point theorem as well as some conclusions of
it. A similar result was proven by Chen, Huang and Hou [7]. However, our assump-
tions differ from those in [7]. Moreover, while the proof in [7] is quite complicated
our variant is an easy consequence of Theorem 9.

We consider a set-valued mapping F : X → 2Y . The set dom F := {x ∈ X :
F (x) 6= ∅} is called domain of F and gr F := {(x, y) ∈ X × Y : y ∈ F (x)} is the
graph of F . For M ⊂ X the set F (M) := {y ∈ Y : ∃x ∈ M : y ∈ F (x)} is said to
be the image of M with respect to F .

Theorem 10 (Variational Principle) Let (X, {qλ}λ∈Λ) be a separated uniform
space, Y a topological vector space, K ⊂ Y a convex cone and k0 ∈ K \ −cl K. For
the set-valued mapping F : X → 2Y , let w0 = (x0, y0) ∈ gr F be given such that for
the set W0 := {w ∈ gr F : w �k0 w0} the following assumptions are satisfied:

(E1) The set {y ∈ Y : w = (x, y) ∈ W0} is ≤K-bounded below;

(E2) For every �k0-decreasing sequence {(xn, yn)}n∈N ⊂ W0 there exists some point
(x, y) ∈ W0 such that (x, y) �k0 (xn, yn) for all n ∈ N.

Then, there exists some point (x̄, ȳ) ∈ gr F such that

(i) ∀λ ∈ Λ : ȳ + k0qλ(x̄, x0) ≤K y0;

(ii) ∀ (x, y) ∈ gr F with x 6= x̄ ∃µ ∈ Λ : y + k0qµ(x, x̄) 6≤K ȳ.

If additionally assumption (C) is satisfied, (E1) can be relaxed to

(E1’) There exists some ỹ ∈ Y such that F (W0) ∩ (ỹ − int C) = ∅ ;

and, additionally, ȳ is ≤K-minimal in F (x̄).

Proof. Setting A := gr F all assumptions coincide with those of Theorem 9. There-
fore, by Theorem 9 for (x0, y0) ∈ gr F there exists some (x̄, ȳ) ∈ gr F such that
(x̄, ȳ) �k0 (x0, y0) (i.e. (i) holds), and such that (x̂, ŷ) ∈ A, (x̂, ŷ) �k0 (x̄, ȳ) implies
x̂ = x̄. This is equivalent to assertion (ii).
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To show that ȳ is ≤K-minimal in F (x̄), we can use assertion (ii’) of Theorem
9. Let ŷ ≤K ȳ for ŷ, ȳ ∈ F (x̄). Hence, (x̄, ŷ) �k0 (x̄, ȳ) and the �k0-minimality of
(x̄, ȳ) yields ŷ = ȳ. �

Now, we present a variant of Ekeland’s variational principle for vector-valued func-
tions. Note that only (ii) of Theorem 10 (the ”weak” part) is necessary for proving
the following corollary. As proposed in [14], [13], we extend the space Y by an
element ∞ such that y ≤K ∞ for all y ∈ Y .

Corollary 11 Let (X, {qλ}λ∈Λ) be a separated sequentially complete uniform space,
Y a topological vector space, K ⊂ Y a convex cone and k0 ∈ K \ −cl K. Let
f : X → Y ∪{∞} be a proper function which is ≤K-bounded below and let for every
x ∈ dom f the set

S(x) :=
{
u ∈ X : ∀λ ∈ Λ : f(u) + k0qλ(u, x) ≤K f(x)

}
be sequentially closed. Then, for each x0 ∈ dom f there exists x̄ ∈ X such that

(i) ∀λ ∈ Λ : f(x̄) + k0qλ(x̄, x0) ≤K f(x0);

(ii) ∀x ∈ X \ {x̄} : ∃µ ∈ Λ : f(x) + k0qµ(x, x̄) 6≤K f(x̄).

Proof. We consider the set-valued mapping

F : X → 2Y , F (x) :=

{
{f(x)} if f(x) 6= ∞
∅ if f(x) = ∞

and show that Theorem 10 is applicable. It remains to show that (E2) of Theorem
10 is satisfied. Let {(xn, yn)}n∈N ⊂ W0 be a �k0-decreasing sequence. By Remark
3 it can be assumed that xn → x ∈ X. We have xm ∈ S(xn) for all m ∈ N, m ≥ n.
Since S(xn) is sequentially closed, it follows that x ∈ S(xn) for all n ∈ N. Hence,
(x, f(x)) �k0 (xn, yn) for all n ∈ N. Theorem 10 implies all assertions. �

Corollary 11 covers several known results. First, it extends Corollary 2 of [14] in
which X is assumed to be a complete metric space, Y a separated locally convex
space. Secondly, Theorem 4 of [20] is a special case of Corollary 2 of [14], conse-
quently of our Corollary 11. In Isac’s theorem, the cone K is assumed to be normal.
Thirdly, Corollary 11 generalizes a recent result of Li et al. [23, Theorem 4]. In
the latter, X is assumed to be a complete metric space and Y an ordered separated
topological vector space having an ordering cone with nonempty interior.

Note that if (C) is satisfied we can relax the boundedness condition in Corollary
11 in the same way as in Theorem 10. This variant covers Corollary 2 of [13].

6 Kirk-Caristi fixed point theorem for set-valued maps

An important consequence of Ekeland’s variational principle is the Kirk-Caristi fixed
point theorem. By several authors [5], [25], [15] the equivalence of both theorems
was shown. Our aim is to present a variant of the fixed point theorem which
corresponds to our variational principle. On the one hand, we consider a mapping
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F to formulate the contraction condition and on the other hand a mapping T is
involved for which the existence of a fixed point shall be shown. By Tammer [32]
a vector-valued variant, i.e. F is a vector-valued function and T is an operator,
was proven. Isac [20] presented a vector-valued equilibrium variant considering a
set-valued mapping T : X → 2X . In our variant both F and T are set-valued maps.

Let T : X → 2X be a set-valued mapping. A point x̄ satisfying x̄ ∈ T (x̄) is said
to be a fixed point of T (compare Isac [20]). In Hamel [15] a variant of the fixed
point theorem in F -type topological spaces (i.e. in separated uniform spaces) was
proven. In contrast to Isac [20], an assertion with respect to stationary points was
presented in [15]. A point x̄ ∈ X is said to be a stationary point of a set-valued
mapping T : X → 2X iff {x̄} = T (x̄). Of course, any stationary point is a fixed
point, too. The contrary is only true for functions in general.

We present assertions with respect to both stationary and fixed points. Moreover,
we consider two different variants of the fixed point theorem. At first we prove a
fixed point theorem for a mapping T : X → 2X . Under the additional assumption
(C) of Section 3 we obtain a fixed point assertion even for a mapping T : W → 2W ,
where W = X × Y . As above, the boundedness condition can be weakened in this
case. Moreover, we show that a fixed point assertion for T : X → 2X may be
regarded as a special case of the second variant (see Corollary 14).

Let F : X → 2Y be a set-valued mapping. As above we set W0 := {w ∈ gr F :
w �k0 w0}. We say that T : X → 2X satisfies the weak contraction condition iff

∀ (x, y) ∈ W0 : ∃ x̂ ∈ T (x) ∃ ŷ ∈ F (x̂) : (x̂, ŷ) �k0 (x, y) . (4)

Moreover, we say T : X → 2X satisfies the strong contraction condition iff

∀ (x, y) ∈ W0 :

{
T (x) 6= ∅ and

∀ x̂ ∈ T (x) ∃ ŷ ∈ F (x̂) : (x̂, ŷ) �k0 (x, y) .
(5)

If the strong contraction condition (5) is satisfied, the weak contraction condition
(4) is satisfied as well.

Theorem 12 (Fixed Point Theorem in X) Let (X, {qλ}λ∈Λ) be a separated
uniform space, Y a topological vector space, K ⊂ Y a convex cone and k0 ∈
K \ −cl K. For the set-valued mapping F : X → 2Y let the assumptions (E1)
and (E2) of Theorem 10 be satisfied for (x0, y0) ∈ gr F . Moreover, let T : X → 2X

be a set-valued mapping.
If T satisfies the weak contraction condition (4), T has a fixed point. Besides, if

T satisfies the strong contraction condition (5), T has a stationary point.

Proof. Let (x0, y0) ∈ gr F be given. By Theorem 10 there exists some (x̄, ȳ) ∈ gr F
such that the assertions (i) and (ii) hold. Since (i), we have (x̄, ȳ) ∈ W0. We
claim that x̄ is a fixed point of T . Assuming the contrary, by the weak contraction
condition (4) we get the existence of some (x, y) ∈ gr F such that x ∈ T (x̄), x 6= x̄
and (x, y) �k0 (x̄, ȳ). This contradicts (ii). Hence x̄ is a fixed point.

If T satisfies the strong contraction condition (5), x̄ is even a stationary point.
Indeed, assuming x ∈ T (x̄) with x 6= x̄ the same arguments as above lead to a
contradiction. �

12



We say that T : W → 2W satisfies the weak contraction condition iff

∀w ∈ W0 : ∃ ŵ ∈ T (w) : ŵ �k0 w. (6)

Moreover, we say T : W → 2W satisfies the strong contraction condition iff

∀w ∈ W0 :
(
T (w) 6= ∅ and ∀ ŵ ∈ T (w) : ŵ �k0 w

)
. (7)

As above, the weak contraction condition (6) is satisfied if the strong contraction
condition (7) is satisfied.

Theorem 13 (Fixed Point Theorem in W) Let (X, {qλ}λ∈Λ) be a separated
uniform space, Y a topological vector space, K ⊂ Y a convex cone and k0 ∈ K \
−cl K. For the set-valued mapping F : X → 2Y let the assumptions (C) as well as
(E1’) and (E2) of Theorem 10 be satisfied for w0 ∈ gr F . Moreover, let T : W → 2W

be a set-valued mapping.
If T satisfies the weak contraction condition (6), T has a fixed point. Besides, if

T satisfies the strong contraction condition (7), T has a stationary point.

Proof. Let w0 ∈ gr F be given. By Theorem 10 there exists some w̄ ∈ gr F such
that w̄Y is ≤K-minimal in F (w̄X) and the assertions (i) and (ii) hold. Since (i),
we have w̄ ∈ W0. We claim that w̄ is a fixed point of T . Assuming the contrary,
by the weak contraction condition (6) we get the existence of some w ∈ T (w̄) with
w �k0 w̄ and w 6= w̄. In case of wX = w̄X we have wY 6= w̄Y . Since wY ≤K w̄Y ,
this contradicts the ≤K-minimality of w̄Y . On the other hand wX 6= w̄X contradicts
(ii). Hence w̄ is a fixed point.

If T satisfies the strong contraction condition (7), w̄ is even a stationary point.
Indeed, assuming w ∈ T (w̄) with w 6= w̄ the same argument as above lead to a
contradiction. �

The following corollary is an easy consequence of Theorem 13. As in Theorem 12
we deal with fixed point assertions for a mappings T : X → 2X . However, we
use the assumptions of Theorem 13. The main advantage is that the boundedness
condition can be weakened, i.e. we assume (E1’) instead of (E1). The price is that
we have to suppose the additional assumption (C). However, taking into account
Remark 2 in Section 3 we note that in the following corollary assumption (C) could
be replaced by a weaker one.

Corollary 14 Let (X, {qλ}λ∈Λ) be a separated uniform space, Y a topological vector
space, K ⊂ Y a convex cone and k0 ∈ K \ −cl K. For the set-valued mapping
F : X → 2Y let the assumptions (C) as well as (E1’) and (E2) of Theorem 10 be
satisfied. Moreover, let T : X → 2X be a set-valued mapping and (x0, y0) ∈ gr F .

If T satisfies the weak contraction condition (4), T has a fixed point. Besides, if
T satisfies the strong contraction condition (5), T has a stationary point.

Proof. We define a mapping T̃ : W → 2W by

T̃ (w) := {ŵ ∈ gr F : ŵX ∈ T (wX), ŵY ∈ F (ŵX), ŵ �k0 w} .
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If T satisfies (4) then T̃ satisfies (6). Theorem 13 yields that T̃ has a fixed point.
Hence, T has a fixed point as well.

If T satisfies (5) then T̃ satisfies (7). Theorem 13 yields that T̃ has a stationary
point w̄. We claim that w̄X is a stationary point of T . Of course, we have w̄X ∈
T (w̄X). We assume that x ∈ T (w̄X) with x 6= w̄X . By (5) there exists some
y ∈ F (x) such that (x, y) ∈ T̃ (w̄). This contradicts the fact that w̄ is a stationary
point of T̃ . �

Remark 5 We shall show that Theorem 12 implies the weak assertion (ii) of The-
orem 9 (minimal point theorem). Indeed, if we define the set-valued mapping
F : X → 2Y , F (x) := {y ∈ Y : (x, y) ∈ A}, then A = gr F and the assumptions
of both theorems coincide. Let w0 ∈ A be given. We assume that the assertions
(i) and (ii) of Theorem 9 do not hold, i.e. for every w ∈ W0 there exists some
ŵ �k0 w such that ŵX 6= wX . Therefore, the mapping T : X → 2X , T (x) := {x̂ ∈
X \ {x} : ∃ŷ ∈ F (x̂) : (x̂, ŷ) �k0 (x, y)} satisfies the weak contraction condition
(4). Obviously, T has no fixed point which contradicts Theorem 12.

Remark 6 In the same way, we can show that Theorem 13 implies the strong
assertion (ii’) of Theorem 9. Indeed, assuming that (ii’) of Theorem 9 does not
hold, i.e. for every w ∈ W0 there exists some ŵ �k0 w such that ŵ 6= w we obtain
that the mapping T : W → 2W , T (w) := {ŵ ∈ W \ {w} : ŵ �k0 w} satisfies the
weak contraction condition (6). Obviously, T has no fixed point which contradicts
Theorem 13.

Remark 7 The above considerations show that Theorem 9 (minimal point theo-
rem), Theorem 10 (variational principle) and Theorem 12/13 (Kirk-Caristi fixed
point theorems) are mutually equivalent.

7 Conclusions and open questions

We proved a minimal point theorem in a product space X×Y where X is a separated
uniform space and Y a topological vector space. The ordering structure in Y is
generated by a convex cone K ⊂ Y . For the weak assertion of the minimal point
theorem K does not have to be pointed. Moreover, we do not assume that X is
complete nor Y is separated. Hence our minimal point theorem covers most of the
known results of the field.

On the other hand, there are two main types of results which are not directly
comparable to ours. First, results involving cone-valued metrics are not covered by
Theorem 9, 10, see [26], [7], [6]. Using cone-valued metrics the class of possible
order relations is larger than that one defined by (1).

Secondly, it seems to be not possible to give an equilibrium variant of Ekeland’s
principle for set-valued maps which is equivalent to Theorem 10. This equivalence
has been established for the single-valued case and Y = R in [19], [15]. It seems to
be that a more general principle than the Brézis-Browder principle, for instance the
Altman principle [1], might be used to prove an vector-valued equilibrium variant
with our assumptions. Moreover, for a set-valued equilibrium variant the “difference
of sets” could be the critical point.
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8 Historical comments

To the knowledge of the authors, Brønstedt provided an Ekeland-type theorem in
uniform spaces first, see Theorem 2 of [4]. It did not involve families of quasi-metrics
but a single perturbation function. An additional assumption is necessary to link
the uniform structure to the properties of the perturbation function. This approach
has been generalized e.g. by Park, see [27] and the references therein. The term
”W-distance” is used by Park to denote such kind of perturbation function.

Mizoguchi [25] obtained an Ekeland-type principle on complete uniform spaces
using pseudo-metrics. Theorem 2 of [25] is a very special case of our Corollary
11; assume X to be complete uniform, Y = R, f lower semicontinuous, {qλ}λ∈Λ

a family of pseudo-metrics. Furthermore, the equivalence of Ekeland’s principle,
Caristi’s fixed point theorem (both in complete uniform spaces, Y = R) and the
drop theorem in locally convex spaces was proven in [25].

On the other hand, Fang [9] introduced the concept of F -type topological spaces
which we have shown to be an equivalent characterization of uniform spaces. He
obtained scalar variants of Ekeland’s principle and Caristi’s fixed point theorem, so
Corollary 11 and Corollary 14 also cover these results.
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