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Abstract

We present two existence principles for minimal points of subsets of the product space
X × 2Y , where X stands for a separated uniform space and Y a topological vector space.
The two principles are distinct with respect to the involved ordering structure in 2Y .

We derive from them new variants of Ekeland’s principle for set-valued maps as well
as a minimal point theorem in X×Y and Ekeland’s principle for vector-valued functions.

Keywords and phrases: minimal set theorem, set-valued variational principle, minimal
point theorem, set-valued optimization, natural criteria

Mathematical Subject Classification. 58E30, 46N10.

∗Department of Mathematics and Computer Science Martin-Luther-University Halle-Wittenberg 06099

Halle (Saale), Germany, e-mail: hamel@mathematik.uni-halle.de
∗∗Department of Mathematics and Computer Science Martin-Luther-University Halle-Wittenberg 06099

Halle (Saale), Germany, e-mail: loehne@mathematik.uni-halle.de



1 Introduction

Ekeland’s variational principle and its equivalent formulations belong to the corner-

stones of Nonlinear Functional Analysis with applications in many fields of analysis,

optimization and operations research. During the last years, an increasing interest

could be observed for versions involving a set-valued function, compare e.g. [2], [11],

[12], [25].

A set-valued mapping from a set X to a set Y is usually understood to be a relation

F ⊂ X × Y not necessarily satisfying the uniqueness property, i.e. we have not that

(x, y1), (x, y2) ∈ F implies y1 = y2.

In contrast to this, we understand a set-valued mapping to be a function from X to

2Y , i.e. a relation F on X×2Y satisfying the uniqueness property (i.e. (x, V1), (x, V2) ∈
F implies V1 = V2). This leads in a natural way to new definitions of concepts like

graph, domain and minimal points of set-valued maps as well as new results in set-

valued optimization theory.

Investigating an optimization problem with set-valued cost function it is necessary

to compare its values. In this paper, we use reflexive and transitive relations on 2Y to

compare two values F (x1) and F (x2) of a map F : X → 2Y . This is not the common

approach to set-valued optimization up to now. Usually, a set-valued optimization

problem is reduced to a vector-valued problem by looking for minimal (efficient) points

of the set
⋃

x∈X F (x).

We start considering subsets of X × 2Y and looking for minimal elements of them

with respect to appropriate ordering relations on 2Y . We present existence results called

Minimal Set Theorems (Generalized Minimal Point Theorems), for such elements.

We shall draw several conclusions of the minimal set theorems.

First, we derive new variants of Ekeland’s variational principle for vector-valued

set-valued maps. Our Ekeland-type theorems are much more general than and cover

most of the known results of the field as special cases.

Secondly, we conclude a minimal point theorem in X × Y . Such theorems are well-

established and useful tools in vector optimization and related fields, cf. [22], [10], [9],

[11] for example.

Finally, the well-known Ekeland-type principle for vector-valued functions f : X →
Y (e.g. [23], [13], [10]) turns out to be a consequence of our new Ekeland-type principles

for set-valued maps as well as of the minimal point theorem.

The paper is organized as follows. In the next section we introduce two ordering

relations for elements of 2Y where Y is a linear topological space as well as related

boundedness concepts in the space 2Y . In Section 3 we present scalarization methods

for subsets of 2Y . These methods are essentially used for the proofs of the minimal

set theorems and may be of independent interest. In Section 5 our main results, the

minimal set theorems, are presented. Section 6 contains the new set-valued variational

principles and several conclusions.
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2 Ordering Relations and Boundedness in 2Y

Let Y be a topological vector space. We denote by 2Y the set of all subsets of Y

including the empty set ∅. As usual, the sum of two sets V1, V2 ∈ 2Y is defined by

V1 +V2 := {v1 + v2 : v1 ∈ V1, v2 ∈ V2}. We use the convention ∅+V1 = ∅. The product

of α ∈ R and V ∈ 2Y \∅ is defined by αV := {αv : v ∈ V }. Moreover, we define

α · ∅ = ∅ for α 6= 0 and 0 · ∅ = {0}.
This section is concerned with ordering relations for sets as well as with order

boundedness concepts in 2Y . Such relations has been introduced for the case Y = R in

a paper [27] by R. C. Young from 1931. Kuroiwa gave in [15], [16] from 1998 a more

general definition and started developing a new approach to set-valued optimization.

We define two relations 4, 2 on 2Y as follows. These relations are two out of six

being natural generalizations of partial orderings on a linear space Y to relations on

2Y , compare [17] for details.

Definition 2.1 Let K ⊂ Y be a convex cone and V1, V2 ∈ 2Y . We define:

V1 4K V2 ⇐⇒ V2 ⊂ V1 + K;

V1 2K V2 ⇐⇒ V1 ⊂ V2 −K.

If there is no risk of confusion the relations are simply denoted by 4 and 2.

Note that Luc [20], Chapters 2.5 and 5.1 implicitly used these relations describing

the constraints for a set-valued optimization problem. This can be seen observing that

V 4K {0} iff V ∩ (−K) 6= ∅ and V 2K {0} iff V ⊂ −K.

Both relations can also be expressed by the ordering ≤K in Y which is defined by

y1 ≤K y2 iff y2 − y1 ∈ K:

V1 4 V2 ⇐⇒ ∀v2 ∈ V2 ∃v1 ∈ V1 : v1 ≤K v2; (1)

V1 2 V2 ⇐⇒ ∀v1 ∈ V1 ∃v2 ∈ V2 : v1 ≤K v2. (2)

Furthermore, the following relationships are easy to show:

V1 2 V2 ⇐⇒ −V2 4 −V1 ⇐⇒ V2 4−K V1. (3)

In the following, we study the properties of 4 having in mind that by (3) we are able

to obtain the same properties for 2 with K replaced by −K if necessary.

The relations 4 and 2 are reflexive and transitive. We have no antisymmetry but

(V1 4 V2, V2 4 V1) ⇐⇒ V1 + K = V2 + K. (4)

Introducing the equivalence relation V1 ∼ V2 iff V1 4 V2 and V2 4 V1 we may generate

an partial ordering on the set of equivalence classes. Furthermore, it can be shown that

for α1, α2 ≥ 0 we have

(V1 4 V2, V3 4 V4) =⇒ α1V1 + α2V3 4 α1V2 + α2V4. (5)
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Note that K has not to be pointed (K is pointed iff K∩−K = {0}) for proving (1)-(5).

Let V ∈ 2Y be a subset of Y . We say that v̄ ∈ V is a ≤K–minimal element of V if

v ∈ V , v ≤K v̄ implies v̄ ≤K v. The set of all ≤K–minimal elements of V is denoted

by Min V . If K is a convex pointed cone then we have v̄ ∈ Min V iff v ∈ V , v ≤K v̄

implies v̄ = v. In this case,

(V1 4 V2, V2 4 V1) =⇒ Min (V1) = Min (V2). (6)

A subset V ⊂ Y is said to be lower externally stable iff V ⊂ Min V + K. This property

is called domination property by several authors. Compare Luc [20] and the references

therein. By direct calculation, one may find for V1, V2 ∈ 2Y being lower externally

stable sets that

V1 4 V2 ⇐⇒ Min V1 4 Min V2. (7)

A similar assertion follows for 2 replacing ≤K–minimal by ≤K–maximal elements and

lower by upper external stability.

The following relationships can easily be verified:

∀V ∈ 2Y : V 4 ∅, Y 4 V, ∅ 2 V, V 2 Y ;

∅ 4 V ⇒ V = ∅, V 4 Y ⇒ Y = V + K,

V 2 ∅ ⇒ V = ∅, Y 2 V ⇒ Y = V −K.

These relationships motivate the following boundedness concepts for subsets of 2Y .

Definition 2.2 A subset V ⊂ 2Y is said to be 4–bounded below if there exists some

topologically bounded subset Ṽ ⊂ Y such that Ṽ 4 V holds for all V ∈ V. The set Ṽ

is called a lower 4–bound of V. A subset V ⊂ 2Y is said to be 2–bounded above and

Ṽ is called an upper 2–bound of V if −V := {−V : V ∈ V} is 4–bounded below with

the lower 4–bound −Ṽ .

Definition 2.3 A subset V ⊂ 2Y is said to be 2–bounded below if there exists some

nonempty subset Ṽ ⊂ Y such that Ṽ 2 V holds for all V ∈ V. The set Ṽ is called a

lower 2–bound of V. A subset V ⊂ 2Y is said to be 4–bounded above and Ṽ is called

an upper 4–bound of V if −V is 2–bounded below with the lower 2–bound −Ṽ .

Using the complementary relations of 4 and 2, denoted by 64 and 62 we introduce

further boundedness concepts.

Definition 2.4 A subset V ⊂ 2Y is said to be weakly 4–bounded below if there exists

some topologically bounded subset Ṽ ⊂ Y such that V 64 Ṽ holds for all V ∈ V. The

set Ṽ is called a weak lower 4–bound of V. A subset V ⊂ 2Y is said to be weakly 2–

bounded above and Ṽ is called a weak upper 2–bound of V if −V is weakly 4–bounded

below with the weak lower 4–bound −Ṽ .
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Definition 2.5 A subset V ⊂ 2Y is said to be weakly 2–bounded below if there exists

some nonempty subset Ṽ ⊂ Y such that V 62 Ṽ holds for all V ∈ V. The set Ṽ is

called a weak lower 2–bound of V. A subset V ⊂ 2Y is said to be weakly 4–bounded

above and Ṽ is called a weak upper 4–bound of V if −V is weakly 2–bounded below

with the weak lower 2–bound −Ṽ .

Note that we have a kind of duality between nonempty sets and topologically bounded

sets in the definition of the above boundedness concepts. This duality can be observed

throughout the paper. Further, we have to take care using the symbol ∅: It denotes an

element of 2Y but of course a subset V ⊂ 2Y can also be the empty set.

Remark 2.6 Let cl K 6= Y . If V ⊂ 2Y is 4–bounded below then V is weakly 4–

bounded below. Indeed, let V be 4–bounded below, i.e. there exists some topologically

bounded set Ṽ ⊂ Y such that Ṽ 4 V for all V ∈ V . We show that Ṽ +y is a weak lower

4–bound of V , where y 6∈ cl K. Assuming the contrary, i.e. V 4 Ṽ + y for some V ∈ V
it follows Ṽ + y ⊂ V + K ⊂ Ṽ + K. An induction argument yields Ṽ + ny ⊂ Ṽ + K

for all n ∈ N. Dividing by n and letting n →∞ implies y ∈ cl K, a contradiction.

Example 2.7 Let K = R2
+ and V = {Y \ −K}. Then V is weakly 4–bounded below

but V is not 4–bounded below.

Remark 2.8 Let cl K 6= Y . If V ⊂ 2Y is 2–bounded below then V is weakly 2–

bounded below. Indeed, let V be 2–bounded below, i.e. there exists some nonempty

set Ṽ ⊂ Y such that Ṽ 2 V for all V ∈ V . We show that ṽ−y is a weak lower 2–bound

of V , where ṽ ∈ Ṽ and y 6∈ cl K. Assuming the contrary, i.e. V 2 ṽ−y for some V ∈ V
it follows ṽ ∈ Ṽ ⊂ V + K ⊂ ṽ − y + K. An induction argument yields ṽ ∈ ṽ − ny + K

for all n ∈ N. Dividing by n and letting n →∞ implies y ∈ cl K, a contradiction.

Example 2.9 Let K = R2
+ and V = {{y} : y ∈ Y \ −K}. Then V is weakly 2–

bounded below but V is not 2–bounded below.

3 Scalarization Methods on 2Y

We present several nonlinear scalarization functionals defined on 2Y . They are gener-

alizations of the functionals introduced in [6] and extensively studied in [26], [7], [10]

and [9]. The most important property of our functionals turns out to be the mono-

tonicity with respect to the relations 4, 2. Let V1, V2 ∈ 2Y . We call a functional

z : 2Y → R ∪ {±∞} 4–monotone iff V1 4 V2 implies z(V1) ≤ z(V2). It is called

2–monotone iff V1 2 V2 implies z(V1) ≤ z(V2).

Theorem 3.1 Let Y be a topological vector space, K ⊂ Y a convex cone and k0 ∈
K \−cl K. Let V ⊂ 2Y be nonempty and 4–bounded, i.e. there is a topological bounded

set V ′ ⊂ Y and a nonempty set V ′′ ⊂ Y such that

∀V ∈ V : V ′ 4 V 4 V ′′.
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Then, the functional zl : 2Y → R ∪ {±∞} defined by

zl(V ) := inf{t ∈ R : tk0 + V ′′ ⊂ V + cl K}

has the following properties:

(i) zl is bounded on V;

(ii) V ∈ V , α ∈ R ⇒ zl(V + αk0) = zl(V ) + α;

(iii) zl is 4–monotone.

Proof. Since V ′′ is an upper 4–bound, we have V ′′ 6= ∅ and V ′′ ⊂ V + K. Hence

V 6= ∅ and zl(V ) ≤ 0 for all V ∈ V .

Assume that zl is not bounded below. Then for each n ∈ N, we can find some

tn < −n and some Vn ∈ V such that −nk0 + V ′′ = (−n − tn)k0 + tnk
0 + V ′′ ⊂

K \ −cl K + Vn + cl K ⊂ Vn + cl K. Since V is 4–bounded below by V ′ ⊂ Y we have

−nk0 + V ′′ ⊂ Vn + cl K ⊂ V ′ + cl K for all n ∈ N. Hence −nk0 + v0 ∈ V ′ + cl K for

arbitrary v0 ∈ V ′′. Dividing by n and letting n → ∞ we get k0 ∈ −cl K since V ′ is

bounded. This contradicts the assumption k0 ∈ K \ −cl K.

Assertion (ii) is obvious. To show (iii) let V1 4 V2. Then V2+cl K ⊂ V1+K+cl K ⊂
V1 + cl K. This implies zl(V1) ≤ zl(V2) by definition of zl. �

An analogous result for the relation 2 is an immediate conclusion.

Corollary 3.2 Let Y , K, k0 be as in Theorem 3.1. Let V ⊂ 2Y be nonempty and 2–

bounded, i.e. there is a nonempty set W ′ ⊂ Y and a topologically bounded set W ′′ ⊂ Y

such that

∀V ∈ V : W ′ 2 V 2 W ′′.

Then, the functional zu : 2Y → R ∪ {±∞} defined by

zu(V ) := − inf{t ∈ R : t
(
−k0

)
+ W ′ ⊂ V − cl K}

is bounded on V, satisfies zu(V + αk0) = zu(V ) + α for all V ∈ V and is 2–monotone.

Proof. Note that V is 2–bounded iff it is 4−K–bounded with upper bound W ′. Taking

into account that −zu(V ) coincides with zl(V ) replacing V ′′ by W ′, K by −K and k0

by −k0 we may apply Theorem 3.1 to obtain the assertions of the corollary. �

Let Y be a topological vector space and K ⊂ Y a convex cone. We use the following

assumption for weakening the boundedness condition.

(C)
There exists a proper closed convex cone C ⊂ Y

with nonempty interior satisfying K ⊂ C.
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Remark 3.3 If Y is a locally convex space and K ⊂ Y a convex cone such that

K \ −cl K 6= ∅ then assumption (C) is satisfied and there exists an element k0 ∈
K ∩ int C. Indeed, if k0 ∈ K \ −cl K then we have {−k0} ∩ cl K = ∅ and we can

apply a classical separation theorem on the convex compact set {−k0} and the closed

convex set cl K. We obtain the existence of a linear continuous functional y∗ ∈ Y ∗

such that y∗(−k0) < 0 ≤ y∗(k) for all k ∈ cl K. The desired cone C can be defined by

C := {y ∈ Y : y∗(y) ≥ 0}.

Theorem 3.4 Let Y be a topological vector space, K ⊂ Y a convex cone satisfying

assumption (C). Let k0 ∈ K ∩ int C and let V ⊂ 2Y be nonempty, 4C–bounded above

and weakly 4C–bounded below. Then, the functional cl : 2Y → R ∪ {±∞} defined by

cl(V ) := inf
{
t ∈ R : V 4C

{
tk0

}}
has the following properties:

(i) cl is bounded on V;

(ii) ∀V ∈ V ∀α ∈ R : cl(V + αk0) = cl(V ) + α;

(iii) V1 4 V2 ⇒ cl(V1) ≤ cl(V2);

(iv) If V consists of compact sets V ⊂ Y and K \ {0} ⊂ int C then(
V1 4 V2 , V1 ∩ V2 = ∅

)
⇒ cl(V1) < cl(V2).

Proof. Let V ′′ be an upper 4C–bound of V , i.e. V ′′ 6= ∅ and V ′′ ⊂ V + C for all

V ∈ V . Let v′′ ∈ V ′′ be given. Because of k0 ∈ int C there exists a neighborhood U of

zero such that U ⊂ −k0 + int C. Choosing some σ > 0 such that −v′′ ∈ σU we obtain

v′′ ∈ −σU ⊂ σ(k0 − int C) ⊂ σk0 − C. Hence σk0 ∈ V ′′ + C ⊂ V + C for all V ∈ V .

This means cl(V ) ≤ σ for all V ∈ V , i.e. cl is bounded above.

Assume that cl is not bounded below. Then, for all n ∈ N, we can find tn < −n and

Vn ∈ V such that Vn 4C {tnk0}. Hence−nk0 = (−n−tn)k0+tnk
0 ∈ C+Vn+C ⊂ Vn+C.

Thus

∀n ∈ N ∃vn ∈ Vn : −nk0 ∈ vn + C. (8)

Since V is supposed to be weakly 4–bounded below there exists some topologically

bounded set V ′ ⊂ Y such that V ′ 6⊂ V + C for all V ∈ V . Hence for each n ∈ N there

exists v′n ∈ V ′ such that v′n 6∈ vn + C. It follows

−k0 − v′n/n
(8)
∈ (vn − v′n)/n + C ⊂ (Y \ −int C) + C ⊂ Y \ −int C.

Letting n → ∞ we get k0 6∈ int C which contradicts the assumption k0 ∈ K ∩ int C.

Hence cl is bounded on V .
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Assertions (ii) and (iii) are obvious. Let us prove (iv). By definition of the infimum,

for each n ∈ N there exists vn ∈ V2 such that
(
cl(V2) + 1/n

)
k0 ∈ vn + C. Since V2

is compact, we can find a subnet of the sequence {vn}n∈N converging to some v̄ ∈ V2.

Hence cl(V2)k
0 ∈ v̄+C. Let V1 4 V2 and V1∩V2 = ∅. We have v̄ ∈ V2 ⊂ V1 +K \{0} ⊂

V1 + int C. Hence there is some δ > 0 such that v̄ − δk0 ∈ V1 + int C. It follows

cl(V2)k
0 ∈ v̄ + C ⊂ δk0 + V1 + C. Applying assertion (ii) we obtain cl(V1) + δ =

cl(V1 + δk0) ≤ cl(V2). �

The analogous result using the relation 2 can not be deduced from Theorem 3.4 by

a construction similar to that of Corollary 3.2. Instead, we define a new scalarization

functional. Compare the remark following the proof of Theorem 3.5.

Theorem 3.5 Let Y be a topological vector space, K ⊂ Y a convex cone satisfying

assumption (C). Let k0 ∈ K ∩ int C and let V ⊂ 2Y be nonempty, 2C–bounded above

and weakly 2C–bounded below. Then, the functional cu : 2Y → R ∪ {±∞}

cu(V ) := inf
{
t ∈ R : V 2C

{
tk0

}}
has the following properties:

(i) cu is bounded on V;

(ii) ∀V ∈ V ∀α ∈ R : cu(V + αk0) = cu(V ) + α;

(iii) V1 2 V2 ⇒ cu(V1) ≤ cu(V2);

(iv) If V consists of compact sets V ⊂ Y and K \ {0} ⊂ int C then(
V1 2 V2 , V1 ∩ V2 = ∅

)
⇒ cu(V1) < cu(V2).

Proof. Let V0 be an upper 2–bound of V , i.e. W ′′ ⊂ Y is topologically bounded and

V ⊂ W ′′−C for all V ∈ V . Let U be a neighborhood of zero such that U ⊂ −k0+int C.

Choosing σ > 0 such that −W ′′ ⊂ σU we obtain V ⊂ W ′′ − C ⊂ −σU − C ⊂
σ(k0 − int C)− C ⊂ σk0 − C. Hence cu(V ) ≤ σ for all V ∈ V i.e. cu is bounded above

on V .

Assuming that cu is not bounded below, for all n ∈ N we can find some Vn ∈ V
such that Vn ⊂ −nk0 − C. Since V is weakly 2–bounded below there exists some

nonempty set W ′ ⊂ Y such that V 6⊂ W ′ − C, hence V 6⊂ w′ − C where w′ ∈ W ′ is

arbitrarily chosen. Hence for all n ∈ N there exists vn ∈ Vn such that vn − w′ 6∈ −C

and −vn − nk0 ∈ C. We obtain

−k0 − w′/n = −k0 − vn/n + (vn − w′)/n ⊂ C + (Y \ −int C) ⊂ Y \ −int C.

Letting n →∞ we get k0 6∈ int C which contradicts the assumption k0 ∈ K ∩ int C.

Assertions (ii) and (iii) are obvious. It remains to prove (iv). By the definition of

the infimum there exists a sequence {vn}n∈N ⊂ V1 such that vn 6∈ (cu(V1)− 1/n)k0−C.
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Since V1 is compact, there is a subnet of {vn}n∈N ⊂ V1 converging to some v̄ ∈ V1.

Hence

v̄ 6∈ cu(V1)k
0 − int C. (9)

Let V1 2 V2 and V1 ∩ V2 = ∅. We have v̄ ∈ V2 −K \ {0} ⊂ V2 − int C. Choose v ∈ V2

such that v̄ ∈ v − int C. Then there exists some δ > 0 such that

v̄ ∈ v − δk0 − int C. (10)

Assuming that v ∈ (cu(V1) + δ)k0 − C we obtain

v̄
(10)
∈ v − δk0 − int C ⊂ cu(V1)k

0 − C − int C ⊂ cu(V1)k
0 − int C.

This contradicts (9). Hence we have v 6∈ (cu(V1) + δ)k0 − C. Since v ∈ V2 it follows

cu(V1) + δ ≤ cu(V2), i.e. cu(V1) < cu(V2). �

Let us discuss why the construction of Corollary 3.2 fails in the present setting. This

is due to the fact that the boundedness assumptions are not longer symmetric: In

Theorem 3.5 we supposed V to be 2C–bounded above and weakly 2C–bounded below.

This is true if and only if −V is 4C–bounded below and weakly 4C–bounded above.

However, the following example shows that the weak 4C–boundedness from above does

not imply the boundedness of the functional cl of Theorem 3.4.

Example 3.6 Let Y = R2, C = R2
+, k0 = (1, 1) and consider the set

V = {{(−1, 1)}, {(−1, 2)}, {(−1, 3)}, ...} ⊂ 2Y consisting of singletons. Then {(0, 0)} is

a weak upper 4C–bound and {(−1, 1)} is a lower 4C–bound of V . But cl({(−1, n)}) = n

for all n ∈ N, i.e. cl is not bounded above on V .

4 Basic Tools

For the convenience of the reader we present two basic tools for the proof of our minimal

set theorems.

4.1 The Brézis-Browder Principle

The first tool is a very general existence principle for minimal points in quasi-ordered

sets due to Brézis and Browder [1], 1976.

Theorem 4.1 Let (W,�) be a quasi-ordered set (i.e. � is a reflexive and transitive

relation on W ) and let φ : W → R be a function satisfying

(A1) φ is bounded below;

(A2) w1 � w2 ⇒ φ(w1) ≤ φ(w2);
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(A3) For every �–decreasing sequence {wn}n∈N ⊂ W there exists some w ∈ W such

that w � wn for all n ∈ N.

Then, for every w0 ∈ W there exists some w̄ ∈ W such that

(i) w̄ � w0;

(ii) ŵ � w̄ ⇒ φ(ŵ) = φ(w̄).

Proof. See [1, Corollary 1]. �

4.2 Uniform Spaces

Our results involve a uniform space X (cf. [14]). Examples for uniform spaces not

being necessarily metrizable are topological vector spaces and K–metric spaces (see

[21] or [19]). If the reader is only interested in results for metric spaces the following

considerations can be skipped. Then, one has to replace the “families of quasi-metrics”,

in the following denoted by {qλ}λ∈Λ or by qΛ, by the metric.

In [11] we presented a characterization of uniform spaces via families of quasi-metrics

introduced by Fang [4]. We shall give a short summary of these results.

Definition 4.2 Let X be a nonempty set and let (Λ,≺) be a directed set. A system

{qλ}λ∈Λ of functions qλ : X ×X → [0,∞) satisfying

(Q1) ∀λ ∈ Λ ∀x ∈ X : qλ(x, x) = 0;

(Q2) ∀λ ∈ Λ ∀x, y ∈ X : qλ(x, y) = qλ(y, x);

(Q3) ∀λ ∈ Λ ∃µ ∈ Λ with λ ≺ µ : ∀x, y, z ∈ X : qλ(x, y) ≤ qµ(x, z) + qµ(z, y);

(Q4) λ ≺ µ ⇒
(
∀x, y ∈ X : qλ(x, y) ≤ qµ(x, y)

)
is called a family of quasi-metrics. If, in addition, the condition

(Q5)
(
∀λ ∈ Λ : qλ(x, y) = 0

)
⇒ x = y

is satisfied, the family of quasi-metrics is said to be separating.

Theorem 4.3 A topological space (X, τ) is a (separated) uniform space iff its topology

τ can be generated by a (separating) family of quasi-metrics.

Proof. See [11]. �

Convention 4.4 For an easy dealing with uniform spaces we introduce the following

notation. Let {qλ}λ∈Λ the family of quasi-metrics which generates the topology of the

uniform space X. We write qΛ iff an assertion holds for all λ ∈ Λ. If X is a metric

space, then qΛ is its metric.
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5 Minimal Set Theorems

This section contains the main results of the paper. We present two minimal set

theorems with respect to the set ordering relations introduced in Section 2. Let us

consider a subset A of X × 2Y , where X is a separated uniform space and Y is a

topological vector space. We introduce the following notation:

V(A) := {V ∈ 2Y : ∃x ∈ X : (x, V ) ∈ A}.

5.1 Minimal Set Theorem I

Using the relation 4 we introduce the following ordering relation on X × 2Y :

(x1, V1) 4k0 (x2, V2) ⇐⇒ V1 + k0qΛ(x1, x2) 4 V2.

According to Convention 4.4, the last inequality has to be read as

∀λ ∈ Λ : V1 + k0qλ(x1, x2) 4 V2.

The relation 4k0 is a reflexive and transitive relation on X × 2Y . We present our

Minimal Set Theorem involving 4k0 .

Theorem 5.1 Let X be a separated uniform space, Y a topological vector space, K ⊂ Y

a convex cone and k0 ∈ K \ −cl K. Let A be a nonempty subset of X × 2Y such that

for some (x0, V0) ∈ A and for A0 := {(x, V ) ∈ A : (x, V ) 4k0 (x0, V0)} the following

conditions are satisfied:

(M1) V(A0) is 4–bounded above, i.e. V0 is nonempty;

(M2) V(A0) is 4–bounded below;

(M3) For every 4k0–decreasing sequence {(xn, Vn)}n∈N ⊂ A0 there exists some (x, V ) ∈
A0 such that (x, V ) 4k0 (xn, Vn) for all n ∈ N.

Then, there exists (x̄, V̄ ) ∈ A such that

(i) (x̄, V̄ ) 4k0 (x0, V0);

(ii)
(
(x̂, V̂ ) ∈ A, (x̂, V̂ ) 4k0 (x̄, V̄ )

)
⇒ x̂ = x̄.

Under the additional assumption (C) and if k0 ∈ K ∩ int C, (M2) can be relaxed to

(M2’) V(A0) is weakly 4C–bounded below.

If, in addition, k0 ∈ K \ {0} ⊂ int C and if for each (x, V ) ∈ A0, V is compact, then

(ii) can be strengthened to

(ii’)
(
(x̂, V̂ ) ∈ A, (x̂, V̂ ) 4k0 (x̄, V̄ )

)
⇒

(
x̂ = x̄ and V̂ ∩ V̄ 6= ∅

)
.
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Proof. We shall apply the Brézis-Browder principle to the quasi-ordered set (A0, 4k0)

and the functional

φ : A0 → R, φ(x, V ) := zl(V ),

where zl : V(A0) → R is the scalarization functional of Theorem 3.1. In the definition

of zl the upper 4–bound V ′′ has to be replaced by V0.

We have to check the assumptions of Theorem 4.1. By (M1), (M2) and Theorem

3.1 (i), φ is well-defined and bounded. Theorem 3.1 (ii) and (iii) yield

(x1, V1) 4k0 (x2, V2) ⇒ φ(x1, V1) + qΛ(x1, x2) ≤ φ(x2, V2). (11)

Hence, φ is 4k0–monotone on A0, i.e. assumption (A2) of Theorem 4.1 is satisfied. Of

course, (M3) implies assumption (A3).

Theorem 4.1 yields the existence of an element (x̄, V̄ ) ∈ A0 (i.e. (i) holds) such that(
(x̂, V̂ ) ∈ A0, (x̂, V̂ ) 4k0 (x̄, V̄ )

)
⇒ φ(x̂, V̂ ) = φ(x̄, V̄ ). (12)

Let (x̂, V̂ ) ∈ A such that (x̂, V̂ ) 4k0 (x̄, V̄ ). The transitivity of 4k0 yields (x̂, V̂ ) ∈ A0.

Applying (12) and (11) we obtain qΛ(x̂, x̄) = 0. Since X is separated, we have x̂ = x̄,

i.e. (ii) holds.

To see that (M2) can be replaced by (M2’) we proceed as above but using the

functional cl of Theorem 3.4 instead of zl in the Definition of φ. To prove (ii’) assume

that V̂ ∩ V̄ = ∅. Then, (iv) of Theorem 3.4 yields φ(x̂, V̂ ) < φ(x̄, V̄ ). This contradicts

(12). �

5.2 Minimal Set Theorem II

Using the 2–relation we present a second minimal set theorem. We introduce the

following ordering relation on X × 2Y :

(x1, V1) 2k0 (x2, V2) ⇔ V1 + k0qΛ(x1, x2) 2 V2

which is also a reflexive and transitive relation.

Theorem 5.2 Let X be a separated uniform space, Y a topological vector space, K ⊂ Y

a convex cone and k0 ∈ K \ −cl K. Let A be a nonempty subset of X × 2Y such that

for some (x0, V0) ∈ A and for A0 := {(x, V ) ∈ A : (x, V ) 2k0 (x0, V0)} the following

conditions are satisfied:

(M1) V(A0) is 2–bounded above;

(M2) V(A0) is 2–bounded below;

(M3) For every 2k0–decreasing sequence {(xn, Vn)}n∈N ⊂ A0 there exists some (x, V ) ∈
A0 such that (x, V ) 2k0 (xn, Vn) for all n ∈ N.
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Then, there exists (x̄, V̄ ) ∈ A such that

(i) (x̄, V̄ ) 2k0 (x0, V0);

(ii)
(
(x̂, V̂ ) ∈ A, (x̂, V̂ ) 2k0 (x̄, V̄ )

)
⇒ x̂ = x̄.

Under the additional assumption (C) and if k0 ∈ K ∩ int C, (M1), (M2) can be relaxed

to

(M1’) {V0} is 2C–bounded above;

(M2’) V(A0) is weakly 2C–bounded below.

If, in addition, k0 ∈ K \ {0} ⊂ int C and if for each (x, V ) ∈ A0, V is compact, then

(ii) can be strengthened to

(ii’)
(
(x̂, V̂ ) ∈ A, (x̂, V̂ ) 2k0 (x̄, V̄ )

)
⇒ (x̂ = x̄ and V̂ ∩ V̄ 6= ∅).

Proof. We shall apply the Brézis-Browder principle to the quasi-ordered set (A0, 2k0)

and the functional

φ : A0 → R, φ(x, V ) := zu(V )

where zu : V(A0) → R is the scalarization functional of Corollary 3.2. In the definition

of zu, the set W ′ has to be a lower 4–bound of V(A0) which exists according to (M2).

We have to check the assumptions of Theorem 4.1. By (M1), (M2) and Corollary

3.2, φ is well-defined and bounded on A0. Corollary 3.2 yields

(x1, V1) 2k0 (x2, V2) ⇒ φ(x1, V1) + qΛ(x1, x2) ≤ φ(x2, V2). (13)

It follows that φ is 2k0–monotone on A0, i.e. assumption (A2) of Theorem 4.1 is

satisfied. Of course, (M3) implies assumption (A3). Theorem 4.1 yields the existence

of an element (x̄, V̄ ) ∈ A0 (i.e. (i) holds) such that(
(x̂, V̂ ) ∈ A0, (x̂, V̂ ) 2k0 (x̄, V̄ )

)
⇒ φ(x̂, V̂ ) = φ(x̄, V̄ ). (14)

Let (x̂, V̂ ) ∈ A such that (x̂, V̂ ) 2k0 (x̄, V̄ ). The transitivity of 2k0 yields (x̂, V̂ ) ∈ A0.

Applying (14) and (13) we obtain qΛ(x̂, x̄) = 0. Since X is separated, we have x̂ = x̄,

i.e. (ii) holds.

To see that (M1) and (M2) can be replaced by (M1’) and (M2’) proceed as above

but using the functional cu of Theorem 3.5 instead of zu in the definition of φ.

To prove (ii’) assume that V̂ ∩ V̄ = ∅. Theorem 3.5 (iv) yields φ(x̂, V̂ ) < φ(x̄, V̄ ).

This contradicts (14). �

Note that Theorem 5.2 can be transformed into a Maximal Set Theorem with respect

to the reflexive and transitive relation 4−k0 on X × 2Y defined by

(x1, V1) 4−k0 (x2, V2) ⇐⇒ V1 − k0qΛ(x1, x2) 4−K V2
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observing that a sequence {(xn, Vn)}n∈N ⊂ A0 is 2k0–decreasing if and only if it is 4−k0–

increasing. One can see that it is not possible to obtain Theorem 5.2 from Theorem 5.1

by replacing 2k0 by 4−k0 . We face the alternative either to state minimal set theorems

for both the relations 4k0 , 2k0 or to state a minimal as well as a maximal set theorem

involving one of the relations.

6 Set-Valued Ekeland’s Principles

In this section, we present several conclusions of Theorem 5.1 and 5.2. Recently, Truong

[24] proved a variant of Ekeland’s variational principle involving only the 4–relation. A

similar, but more general variant can be obtained from Theorem 5.1. A new variational

principle will be derived from Theorem 5.2. Another variant of Ekeland’s principle for

set-valued maps (cf. [2], [11]) as well as a minimal point theorem in X ×Y turn out to

be consequences of Theorem 5.1 as well as of Theorem 5.2.

Let X be a set, Y a linear topological space, F : X → 2Y a set-valued map and K

a convex cone in Y . In contrast to known definitions we call the set

graph F :=
{
(x, V ) ∈ X × 2Y : V = F (x)

}
the graph of F and the image of a subset M ⊂ X (see also [24]) is defined by

F (M) := {F (x) : x ∈ M}.

Note that graph F is a subset of X×2Y , not of X×Y and the image F (M) is a subset

of 2Y , not of Y !

Moreover, we shall introduce the concept of the domain of a set-valued map F in a

suitable way for each of the relations 4, 2. We define

4-dom F := {x ∈ X : F (x) 4 V for some nonempty V ⊂ Y }
2-dom F := {x ∈ X : F (x) 2 V for some topologically bounded V ⊂ Y } .

Clearly, x ∈ 4-dom F means that the set {F (x)} ⊂ 2Y consisting of just one element

is 4–bounded above which is equivalent to F (x) 6= ∅. Similarly, x ∈ 2-dom F means

that the set {F (x)} ⊂ 2Y consisting of just one element is 2–bounded above.

6.1 Ekeland’s Principle for Set-Valued Maps I

First, we state a variational principle involving the ordering relation 4.

Theorem 6.1 Let X be a separated uniform space, Y a topological vector space, K ⊂
Y a convex cone and k0 ∈ K \ −cl K. Let F : X → 2Y be a set-valued mapping,

x0 ∈ 4-dom F , S(x0) := {x ∈ X : F (x) + k0qΛ(x, x0) 4 F (x0)} and A0 := {(x, V ) ∈
graph F : x ∈ S(x0)} such that the following conditions are satisfied:

(E1) F (S(x0)) is 4–bounded below;
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(E2) For every 4k0–decreasing sequence {(xn, Vn)}n∈N ⊂ A0 there exists some (x, V ) ∈
A0 such that (x, V ) 4k0 (xn, Vn) for all n ∈ N.

Then, there exists x̄ ∈ 4-dom F such that

(i) F (x̄) + k0qΛ(x̄, x0) 4 F (x0);

(ii) ∀x 6= x̄ : ∃λ ∈ Λ : F (x) + k0qλ(x, x̄) 64 F (x̄).

Under the additional assumption (C) and if k0 ∈ K ∩ int C, (E1) can be relaxed to

(E1’) F (S(x0)) is weakly 4C–bounded below;

Proof. Set A := graph F and apply Theorem 5.1. It only remains to note that

x0 ∈ 4-dom F implies condition (M1) of Theorem 5.1. �

Condition (ii) tells us that there does not exist an x ∈ X\ {x̄} such that Fλ (x) 4
Fλ (x̄) = F (x̄) where

Fλ : X → 2Y , Fλ (x) := F (x) + k0qλ(x, x̄).

This means, x̄ is an s-minimizer in the sense of [25] of Fλ. Of course, Fλ (x̄) is also a

minimal element of {Fλ (x) : x ∈ X} with respect to 4.

The assumptions of Theorem 6.1 may look somewhat artificial. We give a sufficient

condition for (E2).

Theorem 6.2 Let X, Y , K, k0, F , x0, S(x0), A0 be as in Theorem 6.1 and let (E1)

be satisfied. Then (E2) is in force if the following condition is satisfied:

(E2’) For every x ∈ X the set S(x) := {x′ ∈ X : F (x′) + k0qΛ(x′, x) 4 F (x)} is se-

quentially complete in X.

Proof. Let {(xn, Vn)}n∈N ⊂ A0 be a 4k0–decreasing sequence, i.e. Vn = F (xn) and

F (xn+1) + k0qΛ(xn+1, xn) 4 F (xn) (15)

for all n ∈ N. By the transitivity of 4k0 we get

F (xm) + k0qΛ(xm, xn) 4 F (xn) (16)

for all m ≥ n,m ∈ N. Applying the functional φ : A0 → R from the proof of Theorem

5.1 to relation (15) we obtain

φ(xn+1, F (xn+1)) + qΛ(xn+1, xn) ≤ φ(xn, F (xn)).

The sequence {φ(xn, F (xn))}n∈N is nonincreasing and bounded below by (E1) and the

corresponding properties of φ, hence convergent and a fortiori a Cauchy sequence.

Applying φ to (16) we may conclude that {xn}n∈N is Cauchy as well. Since S(x0) is

sequentially complete, {xn}n∈N converges to some x ∈ S(x0). Moreover, (16) implies

that xm ∈ S(xn) for all m ≥ n,m ∈ N. Since by (E2’) S(xn) is sequentially complete

we have x ∈ S(xn) for all n ∈ N. This means (x, F (x)) 4k0 (xn, F (xn)) as desired. �
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Remark 6.3 We indicate a special situation where (E2’) is satisfied. Let X be a se-

quentially complete separated uniform space. Ferro [5] introduced the concept of lower

4–semicontinuity (D-lower semicontinuity in [5]) and Truong [24] proved an Ekeland-

type theorem using this continuity property. A set-valued map F : X → 2Y is said to be

sequentially lower 4–semicontinuous iff for every V ∈ 2Y the set {x′ ∈ X : F (x′) 4 V }
is a sequentially closed subset of X. We claim that (E2’) is satisfied if F is sequentially

lower 4–semicontinuous with 4–closed values (for each x ∈ X, F (x) + K is a closed

set). Indeed, let {xn}n∈N ⊂ S(x) be a sequence such that xn → x′. Fix λ ∈ Λ. Then

there exists µ ∈ Λ such that qλ(x
′, x) ≤ qµ(x′, xn) + qµ(xn, x). Since xn → x′ we can

find for each ε > 0 a number nε ∈ N such that qµ(x′, xn) ≤ ε for all n ∈ N, n > nε.

Hence qµ(xn, x) ≥ qλ(x
′, x) − ε. Since F (xn) + k0qµ(xn, x) 4 F (x), for n > nε holds

F (xn) + k0 (qλ(x
′, x)− ε) 4 F (x). This implies F (xn) 4 F (x) − k0 (qλ(x

′, x)− ε) for

n > nε. Since F is lower 4–semicontinuous we have F (x′) 4 F (x)− k0 (qλ(x
′, x)− ε),

hence

F (x) ⊂ F (x′) + k0 (qλ(x
′, x)− ε) + K. (17)

Take y ∈ F (x). Then, from (17) it follows that y + εk0 ∈ F (x′) + k0qλ(x
′, x) + K.

Letting ε → 0 we obtain y ∈ F (x′) + k0qλ(x
′, x) + K since the latter set is closed.

Hence x′ ∈ S(x).

Remark 6.4 In [24] the concept of K–boundedness (cf. [20]) is defined as follows:

A subset A of a linear topological space Y is said to be K–bounded if there is a

topologically bounded set M ⊂ Y such that A ⊂ M + K. It can easily be seen that

the boundedness condition in [24] coincides with condition (E1) of Theorem 6.1.

In [24], Y is supposed to be a locally convex space, K is a closed pointed convex

cone and k0 ∈ K \ {0}. Therefore we have k0 ∈ K \ −cl K. Remark 3.3 yields that

assumption (C) is satisfied and k0 ∈ K ∩ int C. Therefore, these assumptions have not

to be proposed additionally. Hence, our boundedness condition (E1’) is in fact weaker

than the boundedness condition in [24] (cf. Remark 2.6 and Example 2.7). This extends

the area of applicability of Ekeland’s principle as the following example shows.

Example 6.5 Let X = [0,∞), Y = R2 with Euclidean norm, Br (y) be the closed ball

of radius r ≥ 0 centered at y ∈ Y , K = C = R2
+ and

F : X → 2Y , F (x) := Bx(0) \ −int K.

One may check that F is not 4–bounded, but (−1,−1)T is a weak lower 4–bound.

Hence the results of [24] are not applicable. Moreover, there does not exist a 4–

minimal value of F , but it is 4–lower semicontinuous. Thus, we can apply Theorem

6.2 in combination with Remark 6.3.

Theorem 6.2 and Remark 6.3–6.6 show that Theorem 5.1 of [24] is a very special

case of Theorem 6.1 concerning the properties of F : We use (E2) instead of K-lower
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semicontinuity and also weaker boundedness assumptions, cf. Remark 6.4. Of course,

we deal with larger classes of spaces X (uniform instead of metric spaces) and Y (linear

topological instead of locally convex spaces) as well as of cones in Y (not necessarily

closed and pointed).

Remark 6.6 If x0 ∈ X is an εk0–minimal point of F in the sense of [24], i.e. F (x) 64
F (x0)− εk0 then relation (i) of Theorem of 6.1 can be split into the two relations (i1)

F (x̄) 4 F (x0); (i2) qΛ(x̄, x0) ≤ ε. Indeed, while (i1) is immediate, (i) is equivalent to

F (x0) ⊂ F (x̄) + k0qΛ(x̄, x0) + K. If qµ(x̄, x0) > ε for some µ ∈ Λ, we have

F (x0) ⊂ F (x̄) + k0 (qµ(x̄, x0)− ε) + εk0 + K ⊂ F (x̄) + εk0 + K

which contradicts the εk0–minimality of x0.

The following lemma tells us that there are always 4–k0–minimal solution if F is 4–

bounded below.

Lemma 6.7 Let X, Y , K and k0 as in Theorem 6.1, F : X → 2Y . If F is 4–bounded

below, then there exists x0 ∈ X such that

∀x ∈ X : F (x) 64 F (x0)− k0.

Proof. Assume the contrary, namely, for all x0 ∈ X there exists some x ∈ X such

that F (x) 4 F (x0)− k0. By induction we can construct a sequence {xn}n∈N such that

F (xn) 4 F (x0) − nk0 for all n ∈ N. Since F (x0) − nk0 4 F (x0) and by assumption

we conclude that V := {F (xn) : n ∈ N} is 4–bounded. Applying the functional zl of

Theorem 3.1 to the above inequality we get zl(F (xn)) ≤ zl(F (x0)) − n for all n ∈ N,

i.e. zl is not bounded below on V . This contradicts (i) of Theorem 3.1 saying that zl

is bounded on V . �

Note that, involving assumption (C), it is enough to suppose that F is weakly 4–

bounded below (compare Theorem 6.1). The same applies for the following theorem,

the classical form of Ekeland’s principle, see Theorem 1bis in [3].

Theorem 6.8 Let the assumptions of Theorem 6.1 be satisfied. Then there exists x̄ ∈
X such that

∀x ∈ X : F (x) 64 F (x̄)− k0 (18)

∀x ∈ X, x 6= x̄, ∃λ ∈ Λ : : F (x) + k0qλ (x, x̄) 64 F (x̄). (19)

Proof. According to Lemma 6.7, (1) there exists x0 ∈ X such that

∀x ∈ X : F (x) 64 F (x0)− k0. (20)

Applying Theorem 6.1 and taking into account Remark 6.6 we obtain x̄ ∈ X satisfying

(19) as well as F (x̄) 4 F (x0). If x′ ∈ X, F (x′) 4 F (x̄)− k0 we obtain by transitivity

F (x′) 4 F (x0)− k0 contradicting (20). Hence (18) is true. �
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6.2 Ekeland’s Principle for Set-Valued Maps II

In this section, we shall prove an analogous variational principle for the relation 2.

Theorem 6.9 Let X be a separated uniform space, Y a topological vector space, K ⊂
Y a convex cone and k0 ∈ K \ −cl K. Let F : X → 2Y be a set-valued mapping,

x0 ∈ 2-dom F , S(x0) := {x ∈ X : F (x) + k0qΛ(x, x0) 2 F (x0)} and A0 := {(x, V ) ∈
graph F : x ∈ S(x0)}, such that the following conditions are satisfied:

(E1) F (S(x0)) is 2–bounded below;

(E2) For every 2k0–decreasing sequence {(xn, Vn)}n∈N ⊂ A0 there exists some (x, V ) ∈
A0 such that (x, V ) 2k0 (xn, Vn) for all n ∈ N.

Then, there exists x̄ ∈ 2-dom F such that

(i) F (x̄) + k0qΛ(x̄, x0) 2 F (x0);

(ii) ∀x 6= x̄ : ∃λ ∈ Λ : F (x) + k0qλ(x, x̄) 62 F (x̄).

Under the additional assumption (C) and if k0 ∈ K ∩ int C, then we can even allow

x0 ∈ 2C-dom F and (E1) can be replaced by

(E1’) F (S(x0)) is weakly 2C–bounded below.

Proof. Set A := graph F and apply Theorem 5.2 noting that x0 ∈ 2-dom F and

x0 ∈ 2C-dom F imply (M1) and (M1’) of Theorem 5.2, respectively. �

Theorem 6.10 Let X, Y , K, k0, F , S(x0), A0 be as in Theorem 6.9 and let (E1) be

satisfied. Then (E2) is in force if the following condition is satisfied:

(E2’) For every x ∈ X the set S(x) := {x′ ∈ X : F (x′) + k0qΛ(x′, x) 2 F (x)} is se-

quentially complete in X.

Proof. Follow the lines of the proof of Theorem 6.2. �

Remark 6.11 A map F : X → 2Y is called sequentially lower 2–semicontinuous iff

for every V ∈ 2Y the set {x′ ∈ X : F (x′) 2 V } is a sequentially closed subset of X.

Following arguments similar to those in Remark 6.3, we can prove that (E2’) of Remark

6.10 is satisfied if F is sequentially lower 2–semicontinuous with 2–closed values (for

each x ∈ X, F (x)−K is a closed set).

Remark 6.12 Considerations similar to Remark 6.6, Lemma 6.7 and Theorem 6.8 can

be done.
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6.3 Ekeland’s Principle with Point Relation and a Minimal Point Theorem

In [11] we proved a minimal point theorem and its equivalence to a variant of Ekeland’s

principle for set-valued maps as well as many conclusions of them (e.g. results of [2], [10],

[9], [13], [18]). In this subsection we show that these theorems are corollaries of Theorem

5.1 as well as of Theorem 5.2. We are concerned with elements w = (wX , wY ) = (x, y)

of the product space W = X×Y , X a separated uniform space, Y a topological vector

space. We introduce the ordering relation �k0 on W using an element k0 ∈ K \−cl K:

(x1, y1) �k0 (x2, y2) ⇔ y1 + k0qΛ (x1, x2) ≤K y2. (21)

If K is a convex cone, �k0 is a reflexive and transitive relation. If K additionally is

pointed, the relation is also antisymmetric. See e.g. [10], [11]. Identifying an element

(x, y) ∈ X × Y with (x, {y}) ∈ X × 2Y , it is easy to see that �k0 coincides with the

above defined ordering 4k0 as well as with 2k0 .

The following corollary is a variant of Ekeland’s variational principle for set-valued

maps involving the ordering relation �k0 applied to elements of the set

gr F := {(x, y) ∈ X × Y : y ∈ F (x)}

usually denoting the graph of F . Note the difference to the definition at the beginning

of this section.

Corollary 6.13 Let X be a separated uniform space, Y a topological vector space,

K ⊂ Y a convex cone and k0 ∈ K \ −cl K. For the set-valued mapping F : X → 2Y ,

let w0 = (x0, y0) ∈ gr F be given such that for the set A0 := {w ∈ gr F : w �k0 w0} the

following assumptions are satisfied:

(E1) The set (A0)Y := {y ∈ Y : ∃x ∈ X : w = (x, y) ∈ A0} is ≤K–bounded below;

(E2) For every �k0–decreasing sequence {(xn, yn)}n∈N ⊂ A0 there exists some point

(x, y) ∈ A0 such that (x, y) �k0 (xn, yn) for all n ∈ N.

Then, there exists some point (x̄, ȳ) ∈ gr F such that

(i) ȳ + k0qΛ(x̄, x0) ≤K y0;

(ii) ∀ (x, y) ∈ gr F with x 6= x̄ ∃λ ∈ Λ : y + k0qλ(x, x̄) 6≤K ȳ.

Under the additional assumption (C) and if k0 ∈ K ∩ int C, (E1) can be relaxed to

(E1’) There exists some ỹ ∈ Y such that (A0)Y ∩ (ỹ − int C) = ∅ ;

and if k0 ∈ K \ {0} ⊂ int C then ȳ is ≤K–minimal in F (x̄).

Proof. Choose A = {(x, {y}) : (x, y) ∈ gr F} and apply Theorem 5.1 or 5.2. �

The following corollary is a minimal point theorem in X × Y . Compare Theorem 9 of

[11].
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Corollary 6.14 Let X be a separated uniform space, Y a topological vector space,

K ⊂ Y a convex cone and k0 ∈ K \ −cl K. Let A ⊂ W = X × Y such that for some

w0 ∈ A and for A0 := {w ∈ A : w �k0 w0} the following conditions are satisfied:

(M2) The set (A0)Y := {y ∈ Y : ∃x ∈ X : (x, y) ∈ A0} is ≤K–bounded below;

(M3) For every �k0–decreasing sequence {wn}n∈N ⊂ A0 there exists some w ∈ A0 such

that w �k0 wn for all n ∈ N.

Then, there exists w̄ ∈ A such that

(i) w̄ �k0 w0;

(ii)
(
ŵ ∈ A, ŵ �k0 w̄

)
⇒ ŵX = w̄X .

Under the additional assumption (C) and if k0 ∈ K ∩ int C, (M2) can be replaced by

(M2’) There exists some ỹ ∈ Y such that (A0)Y ∩ (ỹ − int C) = ∅.

If, in addition, k0 ∈ K \ {0} ⊂ int C then (ii) can be strengthened to

(ii’)
(
ŵ ∈ A, ŵ �k0 w̄

)
⇒ ŵ = w̄, (i.e. w̄ is �k0–minimal in A).

Proof. Choose A = {(x, {y}) : (x, y) ∈ A} and apply Theorem 5.1 or 5.2. �

The equivalence of Corollary 6.13 and Corollary 6.14 as well as a fixed point theorem of

Kirk-Caristi type has been established in [11]. Because of this equivalence the minimal

point theorem in X × Y can be understood as Ekeland’s principle for set-valued maps

with respect to an ordering relation for elements of gr F ⊂ X × Y .

6.4 Ekeland’s Principle for Single-valued Maps

Finally, we present a conclusion for the case of a single-valued map f : X → Y . As

above, identifying an element y ∈ Y with {y} ∈ 2Y the ordering relations 4 and 2
coincide, hence the following corollary may be deduced from Theorem 6.1 as well as

from Theorem 6.9. It is also possible to derive it from Corollary 6.13. As proposed in

[10], [9], we extend the space Y by an element ∞ such that y ≤K ∞ for all y ∈ Y . As

usually, the domain of f is said to be the set domf := {x ∈ X : f(x) 6= ∞}.

Corollary 6.15 Let X be a separated uniform space, Y a topological vector space,

K ⊂ Y a convex cone and k0 ∈ K \−cl K. Let f : X → Y ∪ {∞} be a proper function

satisfying the conditions

(E1) f is ≤K–bounded below;

(E2) For every x ∈ dom f the set S(x) := {x′ ∈ X : f(x′) + k0qΛ(x′, x) ≤K f(x)} is

sequentially complete.
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Then, for each x0 ∈ dom f there exists x̄ ∈ X such that

(i) f(x̄) + k0qΛ(x̄, x0) ≤K f(x0);

(ii) ∀x ∈ X \ {x̄} : ∃λ ∈ Λ : f(x) + k0qλ(x, x̄) 6≤K f(x̄).

Under the additional assumption (C) and if k0 ∈ K ∩ int C, (E1) can be replaced by

(E1’) There exists some ỹ ∈ Y such that f(S(x0)) ∩ (ỹ − int C) = ∅.

Proof. To apply Corollary 6.13 or Theorem 6.1 (and Remark 6.2) we may define a

set-valued function F : X → 2Y by setting F (x) := {f(x)} if f(x) 6= ∞ and F (x) := ∅
else.

A third variant of a proof can be given by setting F (x) := {f(x)} if f(x) 6= ∞ and

F (x) := Y else and applying Theorem 6.9 (and Remark 6.10). �

Taking into account Remark 6.6 and 6.12, respectively, we see that Corollary 6.15 is a

generalization of Theorem 4 of [13] as well as Theorem 4 of [18]. It also covers Corollary

2 of [10] as well as Corollary 2 of [9]. This shows that our minimal set theorems are

powerful generalizations of the minimal point theorems of [22], [9], [10], [11].

Single-Valued Ekeland’s Principle

wwww� ww�
wwww�

Ekeland’s Principle
with Set Relation I

Minimal Point Theorem

Ekeland’s Principle
with Set Relation II

~�
Ekeland’s Principle
with Point Relation

ww� ww�wwww�
wwww�

Minimal Set Theorem I Minimal Set Theorem II

Figure 1: Relationships between the main results
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