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Abstract

In this article we develop a new approach to duality theory for convex vector optimization
problems. We modify a given (set-valued) vector optimization problem such that the
image space becomes a complete lattice (a sublattice of the power set of the original
image space), where the corresponding infimum and supremum are sets that are related
to the set of (minimal and maximal) weakly efficient points. In doing so we can carry over
the structures of the duality theory in scalar convex programming. Exemplarily this is
demonstrated for the case of Fenchel duality. We also show the relationship to set-valued
optimization based on the ordering ”set inclusion”. Finally some consequences for duality
in linear vector optimization are discussed.

1 Introduction

It is an old idea to study additionally to a given optimization problem (p(x) → inf with
infimal value I) a corresponding dual problem (d(u) → sup with supremal value S, S ≤ I),
remember the dual variational principles of Dirichlet and Thompson or simply the pair of dual
programs in linear optimization. The reasons for the introduction of a useful dual problem
are the following:

• The dual problem has (under additional conditions) the same optimal value as the given
”primal” optimization problem, but solving the dual problem could be done with other
methods of analysis or numerical mathematics.

• An approximate solution of the given minimization problem gives an estimation of the
infimal value I from above, whereas an approximate solution of the dual problem is an
estimation of I from below, so that one gets intervals containing I.

• Recalling Lagrange method, saddle points, equilibrium points of two person games,
shadow prices in economics, perturbation methods or dual variational principles, it
becomes clear, that optimal dual variables often have a special meaning for the given
problem.

Of course, the just listed advantages require a skilfully chosen dual program. Nevertheless,
the mentioned points are motivation enough, to look for dual problems in vector optimization
with corresponding properties too. There are a lot of papers, which are dedicated to that
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aim, also a lot of survey papers (see the references in Jahn [10], [11]). In the literature there
are several approaches to construct a dual problem for a given vector optimization problem.
For instance, Luc [15] distinguishes between Conjugation, Lagrangian and Axiomatic Duality.
However, there seems to be no unified approach to dualization in vector optimization. One of
the difficulties is in the fact that the efficient solution in multi-objective optimization is not
necessarily a single element, but in general becomes a subset of the image space. The definition
of infimum (or supremum) of a set with partial order plays a key role in development of duality
theory in multi-objective optimization. An interesting discussion of these aspects is given in
the book by Pallaschke, Rolewicz [18] and in the paper by Nakayama [16]. There are at least
three main ideas which are used for overcoming the difficulties that arise when generalizing
well-known duality assertions from the scalar optimization theory to the vector-valued case.

The first one is the usage of scalarization in the formulation of the dual problem (see
Schönfeld [23], Breckner [3], Jahn [9, 10]). In this approach, scalarization concepts and
corresponding duality assertions from real-valued optimization are often used in order to
derive useful dual problems, to prove duality assertions or in order to solve the dual problem.
In a lot of papers this procedure is used in the proofs too (see e.g. [2]). However, as shown
in [7], this approach has the disadvantage that even in the case of linear vector optimization
a duality gap may occur, although the usual assumptions are fulfilled.

A second category of dual problems is based on the observation that a dual vector opti-
mization problem is naturally set-valued (see Tanino, Sawaragi [28], Corley [4], Tanino [26, 27],
Luc [15], Nakayama [16], Tammer [25], Dolecki, Malivert [5], Pallaschke, Rolewicz [18], Song
[24], Hamel, Heyde, Löhne, Tammer, Winkler [7]). Duality assertions for vector optimization
problems are shown without a scalarization ”from the beginning”. Instead, the dual problem
becomes set-valued. For instance, in the paper by Tanino [27] the set-valued structure of the
primal and dual vector optimization problem is taken into account: Embedding the primal
problem into a family (depending from perturbation parameters) of set-valued optimization
problems and applying an extension of Fenchel’s inequality, Tanino derives a weak duality
assertion and using the relationship between a map and its biconjugate he shows a strong
duality statement. Furthermore, in the paper by Dolecki, Malivert [5] a set-valued approach
in combination with Lagrangian techniques and perturbations of marginal relations is used in
order to show duality assertions for general vector optimization problems where the solution
concept is described by a transitive, translation-invariant relation.

A third type of dual problems is based on solution concepts with respect to the supremum
and infimum in the sense of a vector lattice. In the book by Pallaschke and Rolewicz [18],
special conditions concerning the order in the image space are supposed in order to prove
duality assertions. A duality theory for objective functions with values in vector lattices
is developed in [18] using corresponding notions of infimum and supremum in the sense of
utopia minimum (maximum). However, these infima and suprema may not be solutions in the
sense of vector optimization (Pareto) because they may not belong to the set of the objective
function’s values. In [18] notions of vector-convexity, vector-subgradients and vector duality
are introduced. These notions are analogous to the scalar case taking into account the order
in the vector lattice.
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In the paper by Nieuwenhuis [17] solution concepts on the basis of infimal (supremal) sets
are introduced because the assumption that the objective function has its values in a vector
lattice is too restrictive for vector optimization. Nieuwenhuis [17] and Taninio [26, 27] derived
duality assertions to these solution concepts. These infimal sets are closely related to weakly
(Pareto) efficient elements. Dolecki and Malivert [5] extended these concepts to infimal sets
being closely related to other kinds of efficiency, too.

In contrast to the these investigations our approach is characterized by an embedding
of the the image space of the vector-valued problem into a complete lattice without linear
structure, namely a sublattice of the power set of the image space. On the one hand, our
primal and dual problems are set-valued and therefore related to the problems of the second
type. The infimal (supremal) sets of Nieuwenhuis [17] are involved into the definition of the
infimum (supremum) in the lattice which yields a relationship to the papers by Nieuwenhuis
[17] and Taninio [26, 27]. On the other hand, a consequent usage of the lattice structure
yields that we can carry over the formulations, statements and proof techniques from the
scalar optimization theory, even though our assertions are for solution concepts in the sense
of vector optimization (weakly (Pareto) efficient elements). In [17, 26, 27] the construction of
the dual problem is not completely analogous to the scalar case because the lattice structure
is not taken into account.

Furthermore, we point out the relationship between duality in vector optimization and
duality for set-valued problems based on the ordering relation ”set inclusion”, in the sequel
called set inclusion problems (this approach is also based on the lattice structure of the image
space), which were investigated in [12, 13, 14].

Our paper is organized as follows: In Section 2 we introduce some notions. Several
properties of infimal sets by Nieuwenhuis [17] and Tanino [26] are recalled. In the third section
we introduce the hyperspaces F of upper closed sets and I of self-infimal sets and discuss
the relationships between them. We point out the lattice structure of both spaces and show
that the infimum and supremum in I can be expressed with the aid of infimal and supremal
sets, respectively. In Section 4 we give a reformulation of a given vector optimization problem
as an I-valued problem and consider the corresponding dual problem. The relationship to
a set inclusion problem, in our setting an F-valued problem, is also discussed. In Section
5 we prove weak and strong duality assertions for our F-valued problem, which is a special
type of the set inclusion problems, investigated in [12, 13, 14]. Using the description of the
vector optimization problem in complete lattices and the results from Section 5, in Section
6, we derive new duality results for vector optimization problems taking into account the
natural set-valued structure of these problems. We show weak and strong duality assertions
for weakly efficient elements of upper closed sets. Finally, we study in Section 7 the special
case of linear vector optimization problems and apply our duality statements in order to show
corresponding results for the linear case. So it is possible to understand better the structure
of the dual linear vector optimization problem in comparison with results in the paper by
Isermann [8].

In this paper we restrict ourselves to finite dimensional spaces, although there is no basic
reason for that. We prefer to draw our attention to the structures rather than generality. An
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extension to the infinite dimensional case should be possible with some slight modifications.

2 Preliminaries

First we recall the definition of a partially ordered conlinear space, which plays an important
role in the following. For more details and the links to similar concepts see Hamel [6].

Definition 2.1 ([6]) A set Y equipped with an addition + : Y × Y → Y , a multiplication
· : R+ × Y → Y , and a partial ordering ≤ is said to be a partially ordered conlinear space
with the neutral element θ ∈ Y if for all y, y1, y2 ∈ Y and all α, β ≥ 0 the following axioms
are satisfied:

(C1) y1 + (y2 + y) = (y1 + y2) + y, (C6) 0 · y = θ,
(C2) y + θ = y, (C7) α · (y1 + y2) = (α · y1) + (α · y2),
(C3) y1 + y2 = y2 + y1, (O1) y1 ≤ y2 ⇒ y1 + y ≤ y2 + y,
(C4) α · (β · y) = (αβ) · y, (O2) y1 ≤ y2 ⇒ αy1 ≤ αy2.
(C5) 1 · y = y,

The axioms of a partially ordered conlinear space (Y, +, · ,≤) are appropriate to deal with
convexity (even though a conlinear space is not a linear space, in general). For our reasons we
only need the definition of a convex function with values in Y . Letting X be a linear space,
we say that a function f : X → Y is convex if

∀λ ∈ [0, 1], ∀x1, x2 ∈ X : f
(
λx1 + (1− λ)x2

) ≤ λ · f(x1) + (1− λ) · f(x2).

If (Y,≤) is additionally a complete lattice with largest element +∞ we say that the domain
of a function f : X → Y is the set dom f := {x ∈ X| f(x) 6= +∞}.

Next we collect some assertions on infimal sets, which are due to Nieuwenhuis [17] and
were extended by Tanino [26]. We performed some slight modifications concerning the calculus
with infinity, because this turned out to be useful for the following considerations.

Throughout the paper let C ( Rq be a closed convex cone with nonempty interior. By
C◦ we denote its polar cone, i.e., C◦ := {y∗ ∈ Rq| ∀y ∈ C : 〈y∗, y〉 ≤ 0}.

The set of minimal or weakly efficient points of a subset A ⊆ Rq (with respect to C) is
defined by

MinA := {y ∈ A| ({y} − intC) ∩A = ∅} .

The upper closure (with respect to C) of A ⊆ Rq is defined [5] to be the set

Cl +A := {y ∈ Rq| {y}+ intC ⊆ A + intC} .

It is an easy task to show that Cl +A = cl (A + intC).
If A 6= ∅ we have [17, Th. I-18]

MinCl +A = ∅ ⇐⇒ A + intC = Rq ⇐⇒ Cl +A = Rq.

Before we recall the definition of infimal sets, we want to extend the upper closure for
subsets of the space Rq := Rq∪{−∞,∞}. We use the usual calculus rules in Rq, in particular,
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we set 0 · (+∞) = 0 = 0 · (−∞). Because we mainly consider minimization problems, we will
use the inf-addition (see [21]), i.e., +∞−∞ = −∞+∞ = ∞. Transforming a minimization
problem into a maximization problem, we have to take into account the replacement of this
rule by the sup-addition, i.e. +∞−∞ = −∞+∞ = −∞. For a subset A ⊆ Rq we set

Cl +A :=





Rq if −∞ ∈ A

∅ if A = {+∞}
{y ∈ Rq| {y}+ intC ⊆ A + intC} else.

Note that the upper closure of a subset of Rq is always a subset in Rq. The infimal set of
A ⊆ Rq (with respect to C) is defined by

Inf A :=





MinCl +A if ∅ 6= Cl +A 6= Rq

{−∞} if Cl +A = Rq

{+∞} if Cl +A = ∅.

This means that the infimal set of A with respect to C coincides essentially with the set of
weakly efficient elements of the set cl (A + C) with respect to C.

By our conventions, Inf A is always a nonempty set. Clearly, if −∞ belongs to A, we have
Inf A = {−∞}, in particular, Inf {−∞} = {−∞}. Moreover, we have Inf ∅ = Inf {+∞} =
{+∞}. Furthermore, it holds Cl +A = Cl +(A ∪ {+∞}) and hence Inf A = Inf(A ∪ {+∞})
for all A ⊆ Rq.

Remark 2.2 The definition of infimal points in the paper by Dolecki, Malivert [5] (compare
also Postolica [19]) as minimal points of the upper closure of a set is given in a more general
way for vector optimization problems with a real linear image space where the solution concept
is considered with respect to a transitive relation supposed to be translation invariant.

The following assertions were proved by Nieuwenhuis [17] and, in an extended form, by
Tanino [26].

Proposition 2.3 For A ⊆ Rq with ∅ 6= Cl +A 6= Rq it holds

(i) Inf A = {y ∈ Rq| y 6∈ A + intC, {y}+ intC ⊆ A + intC},

(ii) A + intC = B + intC ⇐⇒ Inf A = Inf B,

(iii) A + intC = Inf A + intC,

(iv) Cl +A = Inf A ∪ (Inf A + intC),

(v) Inf A, (Inf A− intC) and (Inf A + intC) are disjoint,

(vi) Inf A ∪ (Inf A− intC) ∪ (Inf A + intC) = Rq.

Proposition 2.4 For A ⊆ Rqit holds

(i) Inf Inf A = Inf A, Cl +Cl +A = Cl +A, Inf Cl +A = Inf A, Cl + Inf A = Cl +A,
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(ii) Inf(Inf A + Inf B) = Inf(A + B),

(iii) α Inf A = Inf(αA) for α > 0.

Analogously, we define the set MaxA of maximal elements of A ⊆ Rq, as well as the lower
closure Cl−A and the set SupA of supremal elements of A ⊆ Rq (underlying the sup-addition)
and we have analogous statements.

3 Hyperspaces of upper closed sets and self-infimal sets

Let F := FC(Rq) be the family of all subsets of Rq with Cl +A = A. In F we introduce an
addition ⊕F : F × F → F , a multiplication by nonnegative real numbers ¯F : R+ × F → F
and an order relation 4F as follows:

A⊕F B := A⊕B := cl (A + B),

α¯F A :=

{
α ·A if α > 0
C if α = 0,

A 4F B : ⇐⇒ A ⊇ B.

Proposition 3.1 The space (F ,⊕,¯F ,⊇) is a partially ordered conlinear space.

Proof. This is obvious. ¤

Let I := IC(Rq) be the family of all self-infimal subsets of Rq, i.e., all sets A ⊆ Rq

satisfying Inf A = A. In I we introduce an addition ⊕I : I × I → I, a multiplication by
nonnegative real numbers ¯I : R+ × I → I and an order relation 4I as follows:

A⊕I B := Inf(A + B),

α¯I A :=

{
α ·A if α > 0
bd C if α = 0,

A 4I B : ⇐⇒ A 4 B : ⇐⇒ Cl +A ⊇ Cl +B.

Note that the definition of ⊕I is based on the inf-addition in Rq. As a consequence we obtain
{−∞} ⊕I {∞} = {∞}. In the space of self-supremal sets we would have to underlie the
sup-addition in Rq.

Proposition 3.2 The space (I,⊕I ,¯I , 4) is a partially ordered conlinear space.

Proof. Exemplarily we show (C1). Let A1, A2, A3 ∈ I.
(i) If Cl +Ai = ∅ for some i we have (A1 ⊕I A2)⊕I A3 = {+∞} = A1 ⊕I (A2 ⊕I A3).
(ii) If Cl +Ai 6= ∅ (i = 1, 2, 3) and Cl +Ai = Rq for some i we have (A1 ⊕I A2) ⊕I A3 =

{−∞} = A1 ⊕I (A2 ⊕I A3).
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(iii) It remains the case where ∅ 6= Cl +Ai 6= Rq (i = 1, 2, 3). By Proposition 2.3 (iii), we
have (A1 ⊕I A2) ⊕I A3 + intC = A1 + A2 + A3 + intC = A1 ⊕I (A2 ⊕I A3) + intC. By
Proposition 2.3 (ii) and 2.4 (i) we obtain (A1 ⊕I A2)⊕I A3 = A1 ⊕I (A2 ⊕I A3). ¤

A⊕I B

A B

A

B

C

A 4 C

A 4 B

B 64 C

Figure 3.1. The addition and the ordering in I for C = R2
+.

Proposition 3.3 The spaces (F ,⊕,¯F ,⊇) and (I,⊕I ,¯I , 4) are isomorphic and isotone.
The corresponding bijection is given by

j : F → I, j( · ) = Inf( · ), j−1( · ) = Cl +( · ).

Proof. By Proposition 2.4 (i), j is a bijection between F and I.
For A1, A2 ∈ F , we have j(A1)⊕I j(A2) = j(A1⊕A2). In the case where ∅ 6= Cl +Ai 6= Rq

(i = 1, 2) this follows from Proposition 2.4 (ii), otherwise it can be obtained directly.
Similarly, we can easily verify that for α ≥ 0 and A, B ∈ F we have

α¯I j(A) = j(α¯F A) and A ⊇ B ⇐⇒ j(A) 4 j(B). ¤

Proposition 3.4 (F ,⊇) and (I,4) are complete lattices. For nonempty subsets A ⊆ F and
B ⊆ I the infimum and supremum can be expressed by

inf A = cl
⋃

A∈A
A, supA =

⋂

A∈A
A,

inf B = Inf
⋃

B∈B
Cl +B, supB = Inf

⋂

B∈B
Cl +B.

Proof. For the space (F ,⊇) the statements are obvious and for (I,4) they follow from
Proposition 3.3. ¤

As usual, if A ⊆ F and B ⊆ I are empty we define the infimum (supremum) to be the
largest (smallest) element in the corresponding complete lattice, i.e., infA = ∅, supA = Rq,
inf B = {+∞} and supB = {−∞}.

It follows the main result of this section, which shows that the infimum as well as the
supremum in I can be expressed in terms that frequently are used in vector optimization
(compare [17], [26], [27], [5]), but up to now not in the framework of complete lattices (see
Figure 3.2).
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Theorem 3.5 For nonempty sets B ⊆ I it holds

inf B = Inf
⋃

B∈B
B, supB = Sup

⋃

B∈B
B.

Proof. (i) It holds inf B = Inf
⋃

B∈B Cl +B = Inf Cl +
⋃

B∈B Cl +B = Inf Cl +
⋃

B∈B B =
Inf

⋃
B∈B B.

(ii) We have to show that Sup
⋃

B∈B B = Inf
⋂

B∈B Cl +B.
a) If {+∞} ∈ B we have +∞ ∈ ⋃

B∈B B and hence Sup
⋃

B∈B B = {+∞}. On the other
hand, since Cl + {+∞} = ∅, we have Inf

⋂
B∈B Cl +B = Inf ∅ = {+∞}.

b) Let {+∞} 6∈ B but {−∞} ∈ B. If {−∞} is the only element in B the assertion is
obvious, otherwise we can omit this element without changing the expressions.

c) Let {+∞} 6∈ B and {−∞} 6∈ B. Then, B ⊆ Rq and ∅ 6= Cl +B 6= Rq for all B ∈ B,
i.e., we can use the statements of Proposition 2.3. Define the sets V :=

⋃
B∈B(B − intC) =(⋃

B∈B B
)− intC and W :=

⋂
B∈B Cl +B.

We show that V ∩W = ∅ and V ∪W = Rq. Assume there exists some y ∈ V ∩W . Hence
there is some B̄ ∈ B such that y ∈ (

B̄ − intC
) ∩Cl +B̄ = ∅, a contradiction. Let y ∈ Rq \W

(we have W 6= Rq, because otherwise it holds Cl +B = Rq all B ∈ B and hence {−∞} ∈ B).
Then there exists some B̄ ∈ B such that y 6∈ Cl +B̄. By Proposition 2.3 (iv), (vi) we obtain
y ∈ B̄ − intC ⊆ V .

If V = Rq we have W = ∅, hence Sup
⋃

B∈B B = SupV = {+∞} = Inf ∅ = Inf W .
Otherwise, we have ∅ 6= V 6= Rq and ∅ 6= W 6= Rq. By Proposition 2.3, we obtain

Sup
⋃

B∈B
B = {y ∈ Rq| y 6∈ V, {y} − intC ⊆ V }

= {y ∈ Rq| y ∈ W, ({y} − intC) ∩W = ∅}
= MinW = MinCl +W = Inf W. ¤

B ⊆ I inf B =

Inf
⋃

B∈B
B

supB = Sup
⋃

B∈B
B

Figure 3.2. The infimum and supremum in I for C = R2
+.

In the same manner like F and I we define the space F¦ of lower closed subsets of Rq and
the space S of self-supremal subsets of Rq, where we underlie the sup-addition in Rq in the
latter case.
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4 Duality for F-valued and I-valued functions and application

to vector optimization

In this section we discuss the relationship between a vector optimization problem and opti-
mization problems for F-valued and I-valued functions. Since F and I are complete lattices
we can assign to a given problem a dual problem following the lines of scalar duality theory.
In the next sections we show, for the example of Fenchel duality, that under the usual as-
sumptions weak as well as strong duality assertions can be obtained. By the fact F and I
being isomorphic and isotone it is clear that it is sufficient to prove the duality assertions just
for one case, either for the F-valued case or for the I-valued case.

The advantage of the F-valued case is that the operations, the ordering and the infimum
and supremum have an easier structure, which is beneficial for proofs. In this case we speak
about set inclusion problems.

The advantage of the I-valued case is that it is closely related to vector optimization prob-
lems, therefore let us speak about vector optimization problems in this case. This relationship
can be seen as follows. For an arbitrary set X, consider the following vector optimization
problem with set-valued objective map P : X ⇒ Rq.

(VOP) P̄ := Inf
⋃

x∈X

P (x).

Since Inf
⋃

x∈X P (x) = Inf
⋃

x∈X Inf P (x), (VOP) can be expressed as an I-valued problem;
without loss of generality we can assume that the sets P (x) are self-infimal, i.e., P : X → I.
Thus we consider the following problem.

(P) P̄ = Inf
⋃

x∈X

P (x) = inf
x∈X

P (x).

We assign to (P) a dual problem (D): Let V be a set and D : V → I,

(D) D̄ := Sup
⋃

v∈V

D(v) = sup
v∈V

D(v).

As usual, we speak about weak duality between (P) and (D) when D̄ 4 P̄ and we speak
about strong duality when D̄ = P̄ . In contrast to the primal problem the self-infimality of
the values of the dual objective function D(·) plays an important role. If we replace a value
D(v) by D̂(v) with Inf D(v) = Inf D̂(v) but D̂(v) being not self-infimal, D̄ might be changed.
Therefore we shall understand (D) itself as the dual problem to (VOP).

Remark 4.1 The vector optimization problem (VOP) means that we compute weakly effi-
cient elements of the upper closure (elements belonging to the infimal set) of the image set
with respect to the closed convex cone C with nonempty interior. We express the vector op-
timization problem by the I-valued problem (P) in order to use a complete lattice structure
and to derive assertions analogously to the scalar optimization theory.

In the dual problem (D) we study the problem to determine weakly efficient elements of
the lower closure (elements belonging to the supremal set) of the dual image set with respect
to the cone C.

9



Also in the case that the primal problem (VOP) is point-valued, the dual problem (D)
is always a set-valued problem. Indeed, by many authors (see Corley [4], Tanino [26, 27],
Luc [15], Dolecki, Malivert [5], Pallaschke, Rolewicz [18]) it was observed that the dual of a
vector optimization problem is ”naturally” set-valued. Taking into account the space I and
its lattice structure we give an explanation for this by our approach.

Remark 4.2 In case of D̄, P̄ ⊆ Rq, the weak duality inequality D̄ 4 P̄ can be equivalently
expressed by (D̄−intC)∩P̄ = ∅, what is a well-known relation in vector optimization. Indeed,
D̄ 4 P̄ is equivalent to P̄ ⊆ Cl +D̄ and by Proposition 2.3 (iv), (v), (vi) this is equivalent to
(D̄ − intC) ∩ P̄ = ∅.

As mentioned above it is useful to consider a dual pair of F-valued problems simultane-
ously. For p : X → F , p(x) := Cl +P (x) and d : V → F , d(u) := Cl +D(u) consider the
problems

(p) p̄ := cl
⋃

x∈X

p(x) = inf
x∈X

p(x),

(d) d̄ :=
⋂

u∈V

d(u) = sup
u∈V

d(u).

We define weak and strong duality in the usual way, i.e., by d̄ ⊇ p̄ (that is d̄ 4F p̄) and d̄ = p̄,
respectively.

Of course, by Proposition 3.3 we have P̄ = Inf p̄, D̄ = Inf d̄, Cl +P̄ = p̄ and Cl +D̄ = d̄

and we have weak duality between (P) and (D) if and only if we have weak duality between
(p) and (d), and we have strong duality between (P) and (D) if and only if we have strong
duality between (p) and (d), i.e., we have

D̄ 4 P̄ ⇐⇒ d̄ ⊇ p̄,

D̄ = P̄ ⇐⇒ d̄ = p̄.

In the next section we prove weak and strong duality assertions for the set inclusion problems
(p) and (d) in order to derive corresponding duality assertions for the vector optimization
problems (P) and (D).

5 Fenchel duality for set inclusion problems

In this section we prove a duality theorem for optimization problems with F-valued objective
function and being based on the order relation ”set inclusion”. A more general result for
closed (but not necessarily upper closed) sets was recently obtained in [14], [13].

In the sequel we set X = X∗ = Rn and U = U∗ = Rm (see Remark 5.5 below). Let
f : X → F and c ∈ Rq. The function f∗c : X∗ → F¦ (where F¦ is the space of lower closed
subsets of Rq), defined by

f∗c (x∗) := − inf
x∈X

{f(x)− 〈x∗, x〉 · {c}} ,

is said to be the conjugate of f with respect to c.
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Remark 5.1 In order to avoid calculations in the space F¦ of lower closed subsets of Rq

we will prefer to use the term −f∗c (x∗) ∈ F rather than f∗c (x∗) ∈ F¦ in the following.
Nevertheless a calculus in F¦ is possible in the same way as in F , if we replace the inf-
addition in Rq by the sup-addition in Rq, C by −C, and ⊆ by ⊇ in the definition of the
order relation. By a consequent usage of the notions in F¦ we could express the conjugate
as f∗c (x∗) = supx∈X {〈x∗, x〉 · {c} − f(x)} , where ”sup” now means the supremum in F¦. For
more details on this kind of duality, using the concept of oriented sets by Rockafellar [20], see
[14], [13].

For given functions f : X → F and g : U → F , a linear map A : X → U and a vector
c ∈ Rq, let

p : X → F and dc : U∗ → F
be defined, respectively, by

p(x) = f(x)⊕ g(Ax) and dc(u∗) = −(
f∗c (AT u∗)⊕ g∗c (−u∗)

)
.

We consider the following optimization problems, the primal problem

(p) p̄ := inf
x∈X

p (x) = cl
⋃

x∈X

p (x),

and the dual problem associated to (p)

(dc) d̄c := sup
u∗∈U∗

dc(u∗) =
⋂

u∗∈U∗
dc(u∗).

Note that the convexity of a function f : X → F (defined in Section 2) is equivalent to the
convexity of the graph of the corresponding set-valued map. In particular, if f and g are
convex in problem (p), the values p̄ and d̄c are convex sets. The following result is a special
case of [14, Theorem 4.3].

Theorem 5.2 The problems (p) and (dc) (with arbitrary c ∈ Rq) satisfy the weak duality
inequality, i.e., d̄c ⊇ p̄. Furthermore, let f and g be convex, let 0 ∈ ri (dom g−A dom f) and
c ∈ intC, then we have strong duality, i.e., d̄c = p̄.

Proof. The weak duality is obvious from the definition. In order to prove the strong duality
assertion we use a scalarization method by the support function σA : Rq → R with respect to
A ⊆ Rq,

σA(y∗) := σ(y∗|A) := sup
y∈A

〈y∗, y〉 ,

where R is equipped with the sup-addition (i.e., ∞−∞ = −∞). Note that for (not necessarily
nonempty) subsets A,B ⊆ F we have σA + σB = σA⊕B and ασA = σαA for α > 0. Moreover,
for all (not necessarily nonempty) sets A ⊆ F we have −σinf A = infA∈A−σA (see e.g. [20,
Corollary 16.5.1]).
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It holds −σp̄ = infx∈X −σp(x). By the extended real–valued functions f̄y∗ : X → R and
ḡy∗ : U → R being defined, respectively, by f̄y∗(x) := −σ

(
y∗| f(x)

)
and ḡy∗(u) := −σ

(
y∗| g(u)

)

this can be rewritten as a collection of scalar optimization problems

∀y∗ ∈ Rp : −σ(y∗| p̄) = inf
x∈X

{
f̄y∗(x) + ḡy∗(Ax)

}
. (1)

The convexity of f and g implies the convexity of f̄y∗ and ḡy∗ , respectively. Clearly, we have
dom f = dom f̄y∗ and dom g = dom ḡy∗ , whence 0 ∈ ri (dom ḡy∗−A dom f̄y∗). A scalar duality
theorem, for instance [1, Theorem 3.3.5], yields that

∀y∗ ∈ Rp : −σ(y∗| p̄) = sup
u∗∈U∗

{−f̄∗y∗(A
T u∗)− ḡ∗y∗(−u∗)

}
,

where the supremum is attained whenever −σ(y∗| p̄) is finite, i.e.,

∀y∗ ∈ domσ( · | p̄), ∃ū∗ ∈ U∗ : −σ(y∗| p̄) = −f̄∗y∗(A
T ū∗)− ḡ∗y∗(−ū∗). (2)

Let y∗ ∈ domσ( · | p̄) be arbitrarily given (hence p̄ 6= Rq). Since ∅ 6= p̄ 6= Rq and p̄ = Cl +p̄,
we have domσ( · | p̄) ⊆ C◦. By the choice c ∈ intC, it follows that 〈y∗, c〉 < 0. Hence, there
exists αy∗ > 0 such that 〈αy∗y

∗, c〉 = −1. This can be rewritten as

∀t ∈ R : −σ
(
αy∗y

∗| {t · c}) = −〈αy∗y
∗, t · c〉 = t. (3)

For α := αy∗ > 0 we have

α · (−σ (y∗| p̄)
)

= −σ (αy∗| p̄)
(2)
= −f̄∗αy∗(A

T ū∗)− ḡ∗αy∗(−ū∗)

= inf
x∈X

{− 〈
AT ū∗, x

〉
+ f̄αy∗(x)

}
+ inf

u∈U

{〈ū∗, u〉+ ḡαy∗(u)
}

(3)
= inf

x∈X

{−σ
(
αy∗

∣∣− 〈
AT ū∗, x

〉 · {c})− σ
(
αy∗

∣∣f(x)
)}

+ inf
u∈U

{−σ
(
αy∗

∣∣〈ū∗, u〉 · {c})− σ
(
αy∗

∣∣g(u)
)}

= −σ

(
αy∗

∣∣∣∣ inf
x∈X

{− 〈
AT ū∗, x

〉{c}+ f(x)
}⊕ inf

u∈U

{〈ū∗, u〉{c}+g(u)
})

= −σ
(
αy∗

∣∣− f∗c (AT ū∗)⊕−g∗c (−ū∗)
)

= −σ (αy∗|dc(ū∗)) = α · (−σ (y∗|dc(ū∗))
)
.

We deduce that

∀y∗ ∈ domσ( · | p̄ ), ∃ū∗ ∈ U∗ : σ(y∗|dc(ū∗)) = σ(y∗| p̄ ). (4)

It follows that σ(y∗| d̄c ) ≤ σ(y∗| p̄ ) for all y∗ ∈ Rq, hence (d̄c and p̄ being closed and convex)
d̄c ⊆ p̄ . By the weak duality inequality we obtain d̄c = p̄. ¤

Remark 5.3 Note that we have not the usual dual attainment assertion, i.e., the dual value
d̄c is not attained by a single element ū∗ ∈ U∗. Instead we have condition (4), which describes
the present situation. In the next section we will use this condition in order to obtain a kind
of ”dual attainment” in the vector optimization setting.
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Remark 5.4 In Theorem 5.2 (and its conclusion Theorem 6.2) we suppose the constraint
qualification 0 ∈ ri (dom g − A dom f). In the proof we use this condition in order to obtain
the corresponding condition for the family of scalarized problems in (1). If all these problems
are polyhedral, the constraint qualification can be replaced by dom g∩A dom f 6= ∅, compare
e.g. [1, Corollary 5.1.9].

Remark 5.5 The previous theorem can be extended to more general origin spaces than
X = Rn and U = Rm as long as the corresponding scalar result, which is used in the proof,
is valid in these spaces. Then, one usually has to modify the constraint qualification.

6 Fenchel duality for vector optimization problems

Let F : X ⇒ Rq and G : U ⇒ Rq be two set–valued maps, where X and U are as in the
previous section. We consider the following vector optimization problem

(VOP) P̄ := Inf
⋃

x∈X

(
F (x)+G(Ax)

)
.

In the same manner as in Section 4, we do not loose generality if F and G are considered
to be functions F : X → I, G : U → I and the vector optimization problem (VOP) can be
equivalently expressed as an I-valued problem

(P) P̄ = Inf
⋃

x∈X

(
F (x)⊕IG(Ax)

)
.

We define the conjugate (compare [27]) of a function F : X → I (with respect to c ∈ Rq) by

F ∗
c : X∗ → S, F ∗

c (x) := Sup
⋃

x∈X

(〈x∗, x〉 {c} − F (x)
)
,

where S is the space of self-supremal sets with respect to C, which is defined analogously to
I. Following the lines of scalar optimization we consider the following dual problem:

(Dc) D̄c := Sup
⋃

u∗∈U∗

(−F ∗
c (AT u∗)⊕I−G∗

c(−u∗)
)
.

In view of Proposition 3.3 this is just a transformation of the dual pair of problems considered
in the previous section into the framework of functions with self-infimal values. Therefore we
immediately obtain the same duality assertions.

Remark 6.1 Note that convexity of a function F : X → I (see Section 2) is equivalent to
the so-called C-convexity (see e.g. Jahn [10, 11] and Luc [15]) of the corresponding set-valued
map F̄ : X ⇒ Rq, F̄ (x) := F (x) if F (x) ⊆ Rq, F̄ (x) := ∅ if F (x) = {+∞}, F̄ (x) := Rq if
F (x) = {−∞}, where C-convexity means that gr

(
cl

(
F̄ (·) + C

))
is convex.

Theorem 6.2 For all c ∈ Rq it holds weak duality between (P) and (Dc), i.e., D̄c 4 P̄ . If
F and G are convex, 0 ∈ ri (domG − A domF ) and c ∈ intC, then we have strong duality
between (P) and (Dc), i.e., D̄c = P̄ ; if additionally P̄ 6= {−∞}, we have

D̄c = Max
⋃

u∗∈U∗

(−F ∗
c (AT u∗)⊕I −G∗

c(−u∗)
)
.
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Proof. The first part (weak and strong duality) follows from Theorem 5.2 and the con-
siderations in Section 3, in particular Proposition 3.3. For the second part let P̄ 6= {−∞},
hence ∅ 6= Cl +P̄ 6= Rq. Let ȳ ∈ Sup

⋃
u∗∈U∗ Dc(u∗) = D̄c = P̄ = Inf p̄, where we use the

notations of Section 4. Then ȳ 6∈ p̄ + intC. By a separation theorem, there exists some
ȳ∗ ∈ C◦ \ {0} such that 〈ȳ∗, ȳ〉 ≥ σp̄+int C(ȳ∗) = σp̄(ȳ∗) + σint C(ȳ∗) = σp̄(ȳ∗). By (4) there
exists some ū∗ ∈ U∗ such that 〈ȳ∗, ȳ〉 ≥ σdc(ū∗)(ȳ

∗). Assuming that ȳ ∈ dc(ū∗) + intC we
obtain 〈y∗, ȳ〉 < σdc(ū∗)(ȳ

∗) for all y∗ ∈ C◦ \ {0}, a contradiction. Hence ȳ 6∈ dc(ū∗) + intC.
On the other hand, ȳ + intC ∈ Inf p̄ + intC = p̄ + intC ⊆ dc(ū∗) + intC. This yields that
ȳ ∈ Inf dc(ū∗) = Dc(ū∗) ⊆

⋃
u∗∈U∗ Dc(u∗). Together we have ȳ ∈ Max

⋃
u∗∈U∗ Dc(u∗). ¤

Remark 6.3 Our dual problem (Dc) differs from the dual problem given by Tanino [27]
because of the formulation taking into account the conlinear and the complete lattice structure
of the space I of self-infimal sets. So our formulation is completely analogous to that of scalar
Fenchel duality theorems, that means our dual objective function is expressed in terms of the
conjugates. Note further that the origin space of the dual problem is just the space U∗ instead
of the space of linear continuous operators L(U∗,Rq).

Remark 6.4 In scalar optimization the primal and dual attainment of the solution are of
interest in many cases. Even though we cannot expect that the infimum and supremum
are attained by a single x ∈ X and u∗ ∈ U∗, respectively, we speak about primal and
dual attainment if we can replace the infimal set by the set of minimal (weakly efficient)
elements in (P) and the supremal set by the set of maximal (weakly efficient) elements in
(Dc), respectively. Concerning the primal attainment let us mention that even in scalar
convex programming the infimum is not attained without additional assumptions. Therefore,
also in the case of vector optimization one needs additional assumptions. In the paper by
Dolecki, Malivert [5] and in the book by Pallaschke, Rolewicz [18] the submission (domination)
property is supposed. This property guarantees the existence of minimal points. Using the
infimal set in the primal problem, we do not need such a domination property.

As in the scalar theory the dual attainment in Theorem 6.2 follows without any additional
assumption.

Remark 6.5 In many papers on duality for vector optimization problems (compare Jahn
[10]) a strong direct and a strong inverse duality assertion is shown. In the formulation of the
strong direct duality assertion the existence of a weakly efficient solution of the primal vector
optimization problem is supposed and the existence of a weakly efficient solution of the dual
problem with the same objective function value is shown. Conversely, in the strong inverse
duality assertion a closedness condition concerning the primal problem and the existence of
a weakly efficient solution of the dual problem are supposed in order to show the existence
of a weakly efficient solution of the primal problem with the same objective function value.
Such formulations like strong direct and inverse duality assertions are discussed in Section 7
(Corollaries 7.6, 7.7) for the case of linear vector optimization problems, but could be also
obtained for the convex setting, as a conclusion of Theorem 6.2.
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7 Linear vector optimization

In this section we investigate the special case of linear vector optimization problems. We show
that we can maintain a large part of the structures of scalar linear programming. In particular,
we have no duality gap in the case that the right-hand side of the inequality constraints is
zero, compare the discussion in [7]. On the other hand, our dual objective maps take their
values in the space of self-infimal sets, in particular, we cannot expect a point-valued dual
objective map. Nevertheless the values of the dual objective map have a simple structure,
namely they are boundary points of translated cones, in some cases even hyperplanes. As
usual in vector optimization we use the abbreviation f [S] :=

⋃
x∈S f(x).

Consider the linear vector optimization problems

(LP1) Inf M [S], S := {x ∈ Rn| Ax ≥ b} ,

(LP2) Inf M [S], S := {x ∈ Rn| x ≥ 0, Ax ≥ b} ,

(LP3) Inf M [S], S := {x ∈ Rn| x ≥ 0, Ax = b} ,

where M ∈ Rn×q, A ∈ Rn×m, b ∈ Rm. We calculate the corresponding dual problems following
the lines of the previous sections. Exemplarily we show the calculations starting with (LP2).
Starting with (LP1) or (LP3) we obtain the result similarly and even easier. We set

F (x) :=

{
{Mx}+ bdC if x ≥ 0
{+∞} else

and G(u) :=

{
bdC if u ≥ b

{+∞} else.

For the choice c ∈ intC, an easy calculation shows that

−F ∗
c (x∗) = Inf(M − cx∗T )

[
Rn

+

]
,

−G∗
c(−u∗) =

{
〈u∗, b〉 {c}+ bdC if u∗ ≥ 0
{−∞} else.

In order to obtain dual side conditions of a simple structure, it is useful to characterize the
condition Inf(M − c x∗T )

[
Rn

+

]
= {−∞}. For this purpose consider the next two assertions.

Lemma 7.1 Let C1, C2 ⊆ Rq be nonempty closed convex cones with intC2 6= ∅. Then

C1 ∩ −intC2 = ∅ ⇐⇒ C◦
1 ∩ (C◦

2 \ {0}) 6= ∅.

Proof. Note that y ∈ −intC2, z ∈ (C◦
2 \ {0}) implies that 〈y, z〉 > 0. On the other hand,

y ∈ C1, z ∈ C◦
1 implies that 〈y, z〉 ≤ 0. This proves the implication ”⇐”.

If C1 ∩ −intC2 = ∅, by a separation theorem (e.g. [20, Th. 11.3]), we obtain that
there exists y∗ ∈ Rq \ {0} such that infy∈−C2 〈y∗, y〉 = supy∈C1

〈y∗, y〉 = 0. Hence we have
y∗ ∈ C◦

1 ∩ (C◦
2 \ {0}). ¤

Proposition 7.2 Let K ⊆ Rn be a nonempty closed convex cone and let H ∈ Rq×n. Then,
the following statements are equivalent:
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(i) Inf H[K] 6= {−∞};

(ii) ∃c∗ ∈ C◦ \ {0} : HT c∗ ∈ K◦.

Proof. Set L := H[K]. Since L ⊆ Rq is a nonempty cone, we have

Inf L 6= {−∞} ⇐⇒ ∃y ∈ Rq, ∀α > 0 : αy 6∈ L+intC ∧ αy+intC ⊆ L+intC ⇐⇒ 0 ∈ Inf L.

By Lemma 7.1 we have

0 ∈ Inf L ⇐⇒ 0 6∈ L + intC ⇐⇒ L ∩ −intC = ∅ ⇐⇒ L◦ ∩ (C◦ \ {0}) 6= ∅.

Using the bipolar theorem [20, Th. 14.1] we deduce

L◦ ∩ (C◦ \ {0}) 6= ∅ ⇐⇒ ∃c∗ ∈ C◦ \ {0} : ∀l ∈ L : 〈c∗, l〉 ≤ 0

⇐⇒ ∃c∗ ∈ C◦ \ {0} : ∀x ∈ K = K◦◦ : 〈c∗, Hx〉 =
〈
HT c∗, x

〉 ≤ 0

⇐⇒ ∃c∗ ∈ C◦ \ {0} : HT c∗ ∈ K◦.

Together we obtain the desired assertion. ¤

Applying the previous result we can write

−F ∗
c (x∗) =

{
Inf(M − cx∗T )

[
Rn

+

] ⊆ Rq if ∃c∗ ∈ C◦ \ {0} : x∗ ≤ MT c∗
cT c∗

{−∞} else.

In the following, the set Bc := {c∗ ∈ −C◦| 〈c, c∗〉 = 1} is used to express the dual side condi-
tions. In Figure 7.1 we illustrate this set by two examples (with ‖c‖ = 1):

C −C◦

c

Bc

Bc

c

C = −C◦ = Rq
+

Figure 7.1. Two examples for the set Bc.

Proposition 7.3 For c ∈ intC, the set Bc is a compact convex subset of Rq.

Proof. Obviously, Bc is closed and convex. Thus, it remains to show that Bc is bounded.
Assuming the contrary, we obtain a sequence c∗n ∈ Bc with ‖c∗n‖ → ∞. Without loss of
generality we can assume that c∗n/ ‖c∗n‖ → c̄∗ ∈ −C◦ \ {0}. Since 〈c∗n/ ‖c∗n‖ , c〉 = 1/ ‖c∗n‖ → 0,
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it follows that 〈c̄∗, c〉 = 0. But c̄∗ ∈ −C◦ \ {0} and c ∈ intC implies that 〈c̄∗, c〉 > 0, a
contradiction. ¤

According to problem (Dc) in the previous section we obtain the dual problem to (LP2)
as

(LD2
c)

{
D̄c = Sup

⋃
u∗∈Tc

(
c u∗T b + Inf(M − c u∗TA)[Rn

+]
)

Tc :=
{
u∗ ∈ Rm| u∗ ≥ 0, ∃c∗ ∈ Bc : AT u∗ ≤ MT c∗

}
.

By a similar calculation we obtain the dual problems to (LP1) and (LP3) as

(LD1
c)

{
D̄c = Sup

⋃
u∗∈Tc

(
c u∗T b + Inf(M − c u∗TA)[Rn]

)

Tc :=
{
u∗ ∈ Rm| u∗ ≥ 0, ∃c∗ ∈ Bc : AT u∗ = MT c∗

}
,

(LD3
c)

{
D̄c = Sup

⋃
u∗∈Tc

(
c u∗T b + Inf(M − c u∗TA)[Rn

+]
)

Tc :=
{
u∗ ∈ Rm| ∃c∗ ∈ Bc : AT u∗ ≤ MT c∗

}
.

Let us collect some properties of the dual feasible set Tc.

Proposition 7.4 The set Tc in (LD1
c)-(LD3

c) (where c ∈ intC) is always a closed convex
subset of Rm. Moreover, if C is polyhedral, then Tc is polyhedral, too.

Proof. Exemplarily we give the proof for Tc in (LD3
c). The set Tc can be expressed as

Tc =
{
u∗ ∈ Rm| AT u∗ ∈ M [Bc]− Rn

+

}
. Of course, M [Bc] − Rn

+ is a convex set. By [20,
Theorem 3.4], it follows that Tc is convex. Since Bc is compact (Proposition 7.3), the set
M [Bc] − Rn

+ is closed. As the map AT : Rm → Rn is continuous, Tc is closed. If C is
polyhedral, we conclude that C◦, Bc, M [Bc] and M [Bc] − Rn

+ are polyhedral, too. By [20,
Theorem 19.3], it follows that Tc is polyhedral. ¤

From the Fenchel duality theorem in the previous section and some additional considera-
tions we obtain the following duality result.

Theorem 7.5 For c ∈ intC it holds weak and strong duality between (LPi) and (LDi
c) (i =

1, 2, 3). More precisely we have

(i) D̄c = P̄ ⊆ Rq if S 6= ∅ and Tc 6= ∅, where ”Sup” can be replaced by ”Max” in this case,

(ii) D̄c = P̄ = {−∞} if S 6= ∅ and Tc = ∅,

(iii) D̄c = P̄ = {+∞} if S = ∅ and Tc 6= ∅.

Proof. In the case where S 6= ∅ we obtain the strong duality by Theorem 6.2 taking into
account Remark 5.4. In case (i), we have P̄ ⊆ Rq ∪ {−∞} and D̄c ⊆ Rq ∪ {+∞}, hence
D̄c = P̄ ⊆ Rq. In case (ii) we have P̄ = D̄c = Sup ∅ = {−∞}. In case (iii) we need some
additional considerations. Let ū∗ ∈ Tc and S = ∅. Exemplarily we show the assertion for
(LP2) and (LD2

c). By the Farkas Lemma there exists some û∗ ∈ Rm such that û∗ ≥ 0,
AT û∗ ≤ 0 and bT û∗ > 0. Hence, for all α > 0 we have ū∗ + αû∗ ∈ Tc. For α → ∞ we have
(ū∗ + αû∗)T b →∞. Hence D̄c = {+∞} = P̄ . ¤
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Next we relate our result to classical formulations in vector optimization (see Remark
6.4). Denoting the dual objective functions in (LD1

c)-(LD3
c) by Dc : Rm → I, (i = 1, 2, 3), for

all three pairs of dual problems we easily obtain the following conclusions from Theorem 7.5.

Corollary 7.6 (direct strong duality) For every c ∈ intC it holds MinM [S] ⊆ MaxDc[Tc].

Corollary 7.7 (inverse strong duality) If M [S] is upper closed, then for all c ∈ intC it
holds MaxDc[Tc] ⊆ MinM [S].

Finally, we give an example.

Example 7.8 (see Figure 7.2) Let q = m = n = 2, C = R2
+ and consider the problem (LP2)

with the data

M =

(
1 0
0 1

)
, A =

(
1 2
2 1

)
, b =

(
2
2

)
.

Let us calculate the dual problem for c = (1, 1)T ∈ intR2
+. For this choice, we set Bc is given

by Bc = {c∗1, c∗2 ≥ 0 | c∗1 + c∗2 = 1}. The dual side condition are as follows

u∗1, u
∗
2 ≥ 0, ∃c∗1 ≥ 0 : u∗1 + 2u∗2 ≤ c∗1, 2u∗1 + u∗2 ≤ 1− c∗1.

This can be equivalently expressed by Tc = {u∗1, u∗2 ≥ 0| u∗1 + u∗2 ≤ 1/3}. The vertexes of Tc

are the points v1 = (0, 0)T , v2 = (1/3, 0)T and v3 = (0, 1/3)T . The matrices Hi := (M−c vi
TA)

can be easily computed as

H1 =

(
1 0
0 1

)
, H2 =

(
2
3 −2

3

−1
3

1
3

)
, H3 =

(
1
3 −1

3

−2
3

2
3

)
.

Hence we obtain Inf H1[R2
+] = bdR2

+, Inf H2[R2
+] =

{
y ∈ R2| y1 + 2y2 = 0

}
, Inf H3[R2

+] ={
y ∈ R2| 2y1 + y2 = 0

}
. Consequently, the values of the dual objective function at v1, v2, v3

are Dc(v1) = bdR2
+, Dc(v2) =

{
y ∈ R2| y1 + 2y2 = 2

}
and Dc(v3) =

{
y ∈ R2| 2y1 + y2 = 2

}
.

We see that the three dual feasible points v1, v2, v3 ∈ Tc are already sufficient for strong
duality.

M [S] =
⋃

x∈S

M · x

Inf M [S]

SupDc[Tc]

Dc(v3)
Dc(v2)

Dc(v1)

Figure 7.2. The primal and dual values in Example 7.8.
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