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Abstract

We investigate two types of semicontinuity for set-valued maps, Painlevé–Kuratowski
semicontinuity and Cesari’s property (Q). It is shown that, in the context of convex-
valued maps, the concepts related to Cesari’s property (Q) have better properties than
the concepts in the sense of Painlevé–Kuratowski. In particular, we give a characterization
of Cesari’s property (Q) by means of upper semicontinuity of the scalarizations by the
support function σf( · )(y∗) : X → R. We compare both types of semicontinuity and show
their coincidence in special cases.

1 Introduction

Working in the framework of convex-valued multifunctions we expect that an appropriate
notion of an upper semicontinuous hull produces a convex-valued multifunction being upper
semicontinuous. This cannot be ensured by upper semicontinuity in the sense of Painlevé and
Kuratowski (in [10] called outer semicontinuity), as the following examples show. We denote
by LIM SUPx′→x f(x′) the Painlevé–Kuratowski upper limit (outer limit) of f at x and by
(USC f)(x) = LIM SUPx′→x f(x′) the corresponding upper (outer) semicontinuous hull, see
Section 2 for the exact definitions.

Example 1.1 Let f : R ⇒ R, f(x) := {x / |x|} if x 6= 0 and f(0) := {0}. Then the
upper semicontinuous hull of f , namely (USC f) : R ⇒ R, (USC f)(x) = f(x) if x 6= 0 and
(USC f)(0) = {−1, 0, 1}, is not convex-valued.

This might suggest to redefine the Painlevé–Kuratowski upper semicontinuous hull in the
framework of convex-valued multifunctions as follows:

(ŨSC f)(x) := cl conv LIMSUP
x′→x

f(x′).

However, (ŨSC f) is not necessarily upper semicontinuous as the following example shows.

Example 1.2 Let f : R⇒ R,

f(x) :=





{
1
x

}
if ∃n ∈ N : x ∈ [

2−2n, 2−2n+1
)

{− 1
x

}
if ∃n ∈ N : x ∈ [

2−2n+1, 2−2n+2
)

∅ else.

1



The modified upper semicontinuous hull (ŨSC f) of f is obtained as

(ŨSC f)(x) =





{
1
x

}
if ∃n ∈ N : x ∈ (

2−2n, 2−2n+1
)

{− 1
x

}
if ∃n ∈ N : x ∈ (

2−2n+1, 2−2n+2
)

[− 1
x , 1

x

]
if ∃n ∈ N : x = 2−n

∅ else.

It is easily seen the graph of (ŨSC f) is not closed. Indeed, the sequence (2−n, 0)n∈N belongs to
the graph of (ŨSC f), but its limit (0, 0) does not. Hence (ŨSC f) is not Painlevé–Kuratowski
upper semicontinuous.

Let us illuminate another aspect. An important idea of Convex Analysis is the relationship
between a convex set A ⊂ Rp and its support function σA : Rp → R. In particular, for closed
convex sets A, B ⊂ Rp and α ∈ R+ we have the following relationships (in particular, we set
−∞+∞ = −∞, 0 · ∅ = {0}):

(
A ⊂ B ⇔ σA ≤ σB

)
, σA + σB = σA+B, ασA = σαA.

This implies that a set-valued map f : Rn ⇒ Rp is concave (i.e. graph-convex) if and only
if the functions σf( · )(y∗) : Rn → R have the same property for all y∗ ∈ Rp. But, what can
we say about a corresponding relationship for continuity properties? The usual Painlevé–
Kuratowski upper and lower semicontinuity doesn’t yield a positive result, as the following
example shows.

Example 1.3 Let f : R ⇒ R, f(x) :=
{

1
x

}
if x 6= 0 and f(0) := {0}. Then f is Painlevé–

Kuratowski upper semicontinuous (in particular at x = 0), but σf( · )(y∗) is not upper semi-
continuous at x = 0 whenever y∗ 6= 0.

Motivated by these examples we look for an alternative semicontinuity concept for multi-
functions having better properties in this framework. In this article, we show that ”Cesari’s
property (Q)” (for instance, see Cesari [1, 2], Cesari and Suryanarayana [3], Goodman [5],
Denkowski [4], Suryanarayana [11], Papageorgiou [8]), which plays an important role in Op-
timal Control and is well-known in this field, fits all our requirements. This leads to a
characterization of Cerari’s property (Q) by support functions. Our investigations are based
on some results on C-convergence (in connection to Cesari’s property (Q) usually called Q-
convergence), which were recently obtained by C. Zălinescu and the author [7], [6]1.

This article is organized as follows. In the next section we shortly recall some facts on the
two types of semicontinuity, Painlevé–Kuratowski semicontinuity and Cerari’s property (Q),
and we propose our main tools. In Section 3 we present our main result, a characterization of
Cesari’s property (Q) and we draw some conclusions. Section 4 is devoted to a comparison of
Cerari’s property (Q) and the Painlevé–Kuratowski semicontinuity. We show their coincidence
under certain local boundedness assumptions. Finally, in Section 5, we discuss the special
case of concave (i.e. graph-convex) maps.

1For the very impotant hint that the results of [7], [6] and this paper are connected to Cesari’s property

(Q) and Q-convergence we are greatly indebted to Jean-Paul Penot.
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2 Preliminaries

Throughout the paper let Y be a finite dimensional normed vector space Y with dimension p ≥
1. For the standard concepts of Convex Analysis we mainly use the notation of Rockafellar’s
”Convex Analysis” [9].

We denote by F := F(Y ) the family of closed subsets of Y and by C := C(Y ) the family of
closed convex subsets of Y . It is well-known that (F ,⊂) and (C,⊂) provide complete lattices,
i.e. every nonempty subset of F (resp. of C) has a supremum and an infimum, denoted
by SUPA (supA) and INFA (inf A). Of course, for nonempty sets A ⊂ F and B ⊂ C we
have SUPA = cl

⋃ {A| A ∈ A}, INFA =
⋂ {A| A ∈ A}, supB = cl conv

⋃ {B| B ∈ B} and
inf B =

⋂ {B| B ∈ B}. Further, we set INF ∅ = SUPF , SUP ∅ = INFF , inf ∅ = sup C and
sup ∅ = inf C.

We frequently use the following notation of [10] (but omitting the index ∞):

N := {N ⊂ N| N \N finite} and N# := {N ⊂ N| N infinite} .

For a sequence (An)n∈N ⊂ F the upper and lower F-limits, respectively, are defined by

LIMSUP
n→∞ An = INF

N∈N
SUP
n∈N

An, LIM INF
n→∞ An = INF

N∈N#
SUP
n∈N

An.

Of course (see [10], in particular Exercise 4.2.(b), for the relationship to alternative defini-
tions), the upper and lower F-limits coincide with the upper and lower limits in the sense
of Painlevé–Kuratowski (in [10] called outer and inner limits). In the following, all concepts
related to upper and lower F-limits are indicated by the prefix F , because F is the underlying
lattice. In formulas we don’t use this prefix, instead we consequently use capital letters.

A sequence (An)n∈N ⊂ F is F-convergent to some A ∈ F if A = LIM SUPn→∞An =
LIM INFn→∞An. Then we write A = LIMn→∞An or An

F−→ A.
We proceed analogously in the complete lattice C. The upper and lower C-limits of a

sequence (An)n∈N ⊂ C are defined, respectively, by

lim sup
n→∞

An := inf
N∈N

sup
n∈N

An and lim inf
n→∞ An := inf

N∈N#
sup
n∈N

An.

Upper and lower C-limits and related concepts were used in the field of Optimal Control, see
e.g. [1, 2], [3], [5], [4], [11], [8]. In this area, one speaks about (upper and lower) Q-limits,
Q-convergence and so on, because these concepts are related to Cesari’s property (Q). In this
article, however, we use the prefix C instead, because C is the underlying lattice. In formulas
we consequently use small letters.

We say a sequence (An)n∈N ⊂ C is C-convergent to some A ∈ C if A = lim supn→∞An =
lim infn→∞An and we write A = limn→∞An or An

C−→ A.
We next summarize some results related to C-limits. The following initial result is an

immediate consequence of [9, Cor. 16.5.1]. By σA : Y → R, we denote the support function
of a set A ⊂ Y .

Proposition 2.1 Let A ⊂ C. Then σinf A ≤ infA∈A σA and σsupA = supA∈A σA.
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The following characterization of the upper C-limit is useful to show further properties of
the upper and lower limits. For simplicity of notation we denote the set {m,m+1, . . . , k} ⊂ N
(m, k ∈ N, m ≤ k) by m, k. Further we set ∆p :=

{
λ ∈ [0, 1]p | ∑

i∈0,p−1 λi
n = 1

}
.

Proposition 2.2 ([7]) Let (An)n∈N ⊂ C be a sequence. Then,

y ∈ lim sup
n∈N

An ⇐⇒
{
∃ (λn)n∈N ⊂ ∆p+1, ∃ (kn)n∈N ⊂ Np+1, ∃ (zn)n∈N ⊂ Y p+1,

y = limn∈N
∑

i∈0,p λi
nzi

n, ∀n ∈ N, ∀j ∈ 0, p, kj
n ≥ n, zj

n ∈ A
kj

n
.

The next two theorems give us sufficient conditions for the coincidence of F- and C-
convergence. Our condition here is weaker than the one in [8], but the underlying space is a
Banach space there. Let K ⊂ Y be a nonempty closed convex cone. By CK we denote the
family of all members A of C \ {∅} satisfying 0+A = K.

Theorem 2.3 ([7]) Let (An)n∈N ⊂ CK be a sequence such that supn∈NAn ∈ CK . Then,
lim supn→∞An = cl conv LIM SUPn→∞An.

Theorem 2.4 ([7]) Let (An)n∈N ⊂ C be a sequence such that for all N̄ ∈ N# there exists
some Ñ ∈ N# with Ñ ⊂ N̄ and some nonempty closed convex cone K ⊂ Y such that An ∈ CK

for all n ∈ Ñ and sup
n∈ eN An ∈ CK . Then it holds lim infn→∞An = LIM INFn→∞An.

The following lemmas provide the main tools in our investigations.

Lemma 2.5 ([7]) Let A,B ⊂ Y be nonempty closed and convex. Then,

A ⊂ B ⇔ ∀y∗ ∈ ri (0+B)◦, σA(y∗) ≤ σB(y∗).

Lemma 2.6 ([7]) Let (An)n∈N ⊂ C such that A := lim supn→∞An 6= ∅. Then,

∀y∗ ∈ ri (0+A)◦, lim sup
n→∞

σAn(y∗) = σA(y∗).

We next turn to upper and lower F-limits for set-valued maps. Since F-limits are limits
in the sense of Painlevé–Kuratowski, this is a collection of well-known results. Analogous
concepts and results for the lattice C are discussed in the next section. Throughout this
article let X = Rn, although many assertions are also valid in a more general context.

The upper and lower F-limits of f : X → F at x̄ ∈ X are defined, respectively, by

LIMSUP
x→x̄

f(x) := SUP
xn→x̄

LIMSUP
n→∞ f(xn) and LIM INF

x→x̄
f(x) := INF

xn→x̄
LIM INF

n→∞ f(xn).

where the index ”xn → x̄” stands for the supremum and infimum over all sequences converging
to x̄, respectively. The limit of f : X → F at x̄ exists if the upper and lower F-limits coincide.
Then we write

LIM
x→x̄

f(x) = LIM SUP
x→x̄

f(x) = LIM INF
x→x̄

f(x).

The upper and lower F-limits can be expressed as

LIMSUP
x→x̄

f(x) =
⋃

xn→x̄

LIMSUP
n→∞ f(xn) and LIM INF

x→x̄
f(x) =

⋂
xn→x̄

LIM INF
n→∞ f(xn).
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In particular, the union in the first formula is closed, see [10, Proposition 4.4].
The function f is said to be upper F-semicontinuous (F-usc), lower F-semicontinuous

(F-lsc), F-continuous at x̄ ∈ X if f(x̄) ⊃ LIM SUPx→x̄ f(x), f(x̄) ⊂ LIM INFx→x̄ f(x),
f(x̄) = LIMx→x̄ f(x), respectively. If f is F-usc, F-lsc, F-continuous at every x̄ ∈ X we
just say f is F-usc, F-lsc, F-continuous, respectively. The epigraph and the hypograph of
f : X → F are defined, respectively, by

EPI f := {(x,A) ∈ X ×F| A ⊃ f(x)} , HYP f := {(x,A) ∈ X ×F| A ⊂ f(x)} .

Note that, for all x ∈ X, we have (x, ∅) ∈ HYP f and (x, Y ) ∈ EPI f . For a characterization of
F-semicontinuity we need to know what is meant by closedness of the epigraph and hypograph.
A subset A ⊂ X × F is said to be F-closed if for every sequence (xn, An)n∈N ⊂ A with
xn → x̄ ∈ X and An

F−→ Ā ∈ F it is true that (x̄, Ā) ∈ A. The F-closure of a set A ⊂ X×F ,
denoted by CLA, is the set of all such limits (x̄, Ā) ∈ X ×F of sequences (xn, An)n∈N ⊂ A.

From [10, Exercise 5.6 (c)] and [10, Theorem 5.7 (a)] we obtain the following characteri-
zation of F-upper semicontinuity

HYP f is F-closed ⇔ f is F-usc ⇔ gr f ⊂ X × Y is closed.

Likewise, by [10, Exercise 5.6 (d)], lower F-semicontinuity of f is equivalent to the F-
closedness of the epigraph. Note that the description by the graph fails in this case, i.e.
a function f : X → F that is F-lsc has not necessarily a closed graph, see [10, Fig. 5–3. (b)].

Let us collect some basic properties of the upper F-semicontinuous hull of f , defined by
(USC f) : X → F , (USC f)(x) := LIM SUPx′→x f(x′).

Proposition 2.7 Let f : X → F . Then it holds

(i) gr (USC f) = cl (gr f), (iv) ∀x ∈ X : (USC f)(x) ⊃ f(x),

(ii) HYP (USC f) ⊃ CL (HYP f), (v) f is F-usc at x̄ ∈ X ⇔ (USC f)(x̄) = f(x̄),

(iii) (USC f) is F-usc, (vi) gr f convex ⇒ gr (USC f) convex.

Proof. (i) See [10, page 154, 5(2) and 5(3)]. (ii) Let (x̄, Ā) ∈ CL (HYP f). Then, there
exist (xn)n∈N ⊂ X and (An)n∈N ⊂ F such that x̄ = limn→∞ xn, Ā = LIMn→∞An and
An ⊂ f(xn) for all n ∈ N. Hence, (USC f)(x̄) = LIM SUPx→x̄ f(x) ⊃ LIM SUPn→∞ f(xn) ⊃
LIMSUPn→∞An = LIMn→∞An = Ā, i.e. (x̄, Ā) ∈ HYP (USC f). (iii) By (i), gr (USC f)
is closed. Hence, (USC f) is F-USC. (iv) Choosing the special sequence xn ≡ x, we obtain
(USC f)(x) = LIM SUPx′→x f(x′) ⊃ LIMSUPn→∞ f(xn) = LIM SUPn→∞ f(x) = f(x). (v)
By definition, f is F-usc at x̄ if and only if f(x̄) ⊃ (USC f)(x̄). By (iv), this equivalent to
f(x̄) = (USC f)(x̄). (vi) Since gr f is convex, cl (gr f) is convex, too. Hence, the convexity of
gr (USC f) follows from (i). ¤

The next example shows that the opposite inclusion in assertion (ii) of the previous propo-
sition does not hold true, in general.

Example 2.8 Let f : R → F(R), f(x) := {x / |x|} if x 6= 0, f(0) := ∅. Then, (0, {−1, 1})
belongs to HYP (USC f) but it does not belong to CL (HYP f).
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Remark 2.9 As noticed in [10], an analogous definition of the F-lower semicontinuous hull,
namely by (LSC f)(x) := LIM INFx′→x f(x′), is not constructive in the sense that (LSC f) is
not necessarily F-lsc. In the framework of C-valued functions we will have similar problems.
An example is given there.

3 Upper and lower C-Semicontinuity

In this section we deal with upper and lower limits for functions with values in C. The upper
and lower C-limits (compare [1, 2], [4], [5], [11]) of a function f : X → C at x̄ ∈ X are defined,
respectively by

lim sup
x→x̄

f(x) := sup
xn→x̄

lim sup
n→∞

f(xn) and lim inf
x→x̄

f(x) := inf
xn→x̄

lim inf
n→∞ f(xn).

The C-limit of f at x̄ exists if the upper and lower limits coincide. Then we write

lim
x→x̄

f(x) = lim sup
x→x̄

f(x) = lim inf
x→x̄

f(x).

In case of upper F-limits, the set
⋃

xn→x̄ LIMSUPn→∞ f(xn) is always closed, i.e. the
closure operation, which is implicitly contained in the supremum, is superfluous. An analogous
result is valid for upper C-limits.

Proposition 3.1 Let f : X → C and x̄ ∈ X. Then it holds

lim sup
x→x̄

f(x) =
⋃

xn→x̄

lim sup
n→∞

f(xn).

Proof. We have to show that A :=
⋃

xn→x̄ lim supn→∞ f(xn) is convex and closed.
(i) Convexity. Let y1, y2 ∈ A and let λ ∈ [0, 1] be given. Hence there exist sequences

(x(i)
n )n∈N ⊂ X, (i = 1, 2) with x

(i)
n → x̄ such that yi ∈ lim supn→∞ f(x(i)

n ). We define a se-
quence (x(3)

n )n∈N ⊂ X by (x(3)
n )n∈N := (x(1)

1 , x
(2)
1 , x

(1)
2 , x

(2)
2 , x

(1)
3 , x

(2)
3 , ...). Since (x(i)

n )n∈N, (i =
1, 2) are subsequences of (x(3)

n )n∈N, we deduce that lim supn→∞ f(x(i)
n ) ⊂ lim supn→∞ f(x(3)

n ),
(i = 1, 2). Hence we obtain λy1 + (1 − λ)y2 ∈ lim supn→∞ f(x(3)

n ). From x
(3)
n → x̄ it follows

that λy1 + (1− λ)y2 ∈ A.
(ii) Closedness. Let (ym)m∈N ⊂ A with yn → ȳ ∈ Y . For all m ∈ N there exists a

sequence (x(m)
n )n∈N ⊂ X such that x̄ = limn→∞ x

(m)
n and ym ∈ lim supn→∞ f(x(m)

n ). Thus we
can construct a strictly increasing function n0 : N→ N by

∀m ∈ N, ∃n0(m) ∈ N, ∀n ≥ n0(m), ∀k ∈ {1, ..., m} ,
∥∥∥x(k)

n − x̄
∥∥∥ <

1
m

.

Consider the (not necessarily strictly) increasing function m0 : N→ N∪ {−∞} being defined
by m0(n) := sup {m ∈ N| n ≥ n0(m)}. Of course, we have m0(n) →∞ for n →∞. Define a
sequence (x̄n)n∈N ⊂ X by

(x̄n)n∈N := (x(1)
1 , x

(2)
1 , ..., x

(m0(1))
1 , x

(1)
2 , x

(2)
2 , ..., x

(m0(2))
2 , . . . , x(1)

n , x(2)
n , ..., x(m0(n))

n , . . . ).
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where, without loss of generality, it can be assumed that m0(n) 6= −∞ for all n ∈ N. Clearly,
the sequence (x̄n)n∈N converges to x̄ and we have (x(m)

n )n≥n0(m) ⊂ (x̄n)n∈N for all m ∈ N.

It follows that lim supn→∞ f(x(m)
n ) ⊂ lim supn→∞ f(x̄n) for all m ∈ N, whence (ym)m∈N ⊂

lim supn→∞ f(x̄n). Since lim supn→∞ f(x̄n) is closed, we get ȳ ∈ lim supn→∞ f(x̄n) ⊂ A. ¤
As an easy consequence of the definition we have the following relationship between

upper and lower F- and C-limits: lim supx→x̄ f(x) ⊃ LIMSUPx→x̄ f(x), lim infx→x̄ f(x) ⊃
LIM INFx→x̄ f(x).

A function f : X→ C is said to be upper C-semicontinuous (C-usc), lower C-semicontinuous
(C-lsc), C-continuous at x̄ ∈ X if f(x̄) ⊃ lim supx→x̄ f(x), f(x̄) ⊂ lim infx→x̄ f(x), f(x̄) =
limx→x̄ f(x), respectively. If f is C-lsc, C-usc, C-continuous at every x̄ ∈ X we just say f is
C-lsc, C-usc, C-continuous, respectively. It is easy to see that C-usc implies F-usc and F-lsc
implies C-lsc.

Remark 3.2 Of course, C-semicontinuity can also be defined for arbitrary set–valued maps,
and the following results can be easily rewritten in this case. We prefer to suppose C-valued
functions, because this makes our notation easier.

With the aid of Lemma 2.5 and 2.6 we obtain our main result, a characterization of upper
C-semicontinuity or in other words a characterization of Cesari’s property (Q).

Theorem 3.3 Let f : X → C and x̄ ∈ dom f . Then the following statements are equivalent:

(i) f is C-usc at x̄,

(ii) For all y∗ ∈ ri
(
0+f(x̄)

)◦ the function σf( · )(y∗) : X → R is usc at x̄.

Proof. Let be given an arbitrary sequence (xn)n∈N with xn → x̄.
(i) ⇒ (ii). Let the sequence (x̃n)n∈N be defined by x̃2n := xn and x̃2n+1 := x̄. From (i)

we deduce that f(x̄) = lim supn→∞ f(x̃n). Lemma 2.6 implies that

∀y∗ ∈ ri
(
0+f(x̄)

)◦
, σf(x̄)(y

∗) = lim sup
n→∞

σf(x̃n)(y
∗) ≤ lim sup

n→∞
σf(xn)(y

∗).

(ii) ⇒ (i). Without loss of generality we can assume that A := lim supn→∞ f(xn) 6= ∅. By
Lemma 2.6 we obtain

∀y∗ ∈ ri
(
0+f(x̄)

)◦
, σf(x̄)(y

∗) ≥ lim sup
n→∞

σf(xn)(y
∗) = σA(y∗).

From Lemma 2.5 we deduce that f(x̄) ⊃ A. ¤

Remark 3.4 By standard arguments one can show: If σf(·)(y∗) : X → R upper semicontin-
uous at x̄ for all y∗ ∈ Y ∗, then f is upper C-semicontinuous at x̄. A result of this type in
Banach spaces can be found in [8, Proposition 2.1]. The proof of the above result, however,
is based on some further arguments, see the proof of Lemma 2.5 and Lemma 2.6, which can
be found in [7]. Therefore we reduce ourselves to a finite dimensional setting.
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The next assertion about nested upper C-limits is essential for an expedient definition of
the upper C-semicontinuous hull. An analogous assertion for the lower C-limit is not true, see
Example 3.8 below.

Proposition 3.5 Let f : X → C and x̄ ∈ X. Then it holds

lim sup
x→x̄

f(x) = lim sup
x→x̄

lim sup
w→x

f(w).

Proof. Clearly, we have f(x) ⊂ lim supw→x f(w) for all x ∈ X, which implies the inclusion
”⊂”. It remains to show that A := lim supn→∞ lim supw→xn

f(w) ⊂ lim supn→∞ f(xn) =: B

for an arbitrarily given sequence (xn)n∈N with xn → x̄. For all y∗ ∈ ri
(
0+B

)◦ it holds

σA(y∗)
Pr. 2.1≤ lim sup

n→∞
lim sup
w→xn

σf(w)(y
∗) = lim sup

n→∞
σf(xn)(y

∗) Lem. 2.6= σB(y∗).

Lemma 2.5 yields that A ⊂ B. ¤
The upper C-semicontinuous hull of a function f : X → C is defined by

(usc f) : X → C, (usc f)(x) := lim sup
x′→x

f(x′).

The hypograph of a function f : X → C is the set hyp f := {(x,A) ∈ X × C| A ⊂ f(x)}. A
subset A ⊂ X×C is said to be closed if for every sequence (xn, An)n∈N ⊂ A with xn → x̄ ∈ X

and An
C−→ Ā ∈ C it is true that (x̄, Ā) ∈ A. The C-closure of a set A ⊂ X × C, denoted by

clA, is the set of all such limits (x̄, Ā) ∈ X × C of sequences (xn, An)n∈N ⊂ A.
Let us collect some properties of the upper C-semicontinuous hull.

Proposition 3.6 For f : X → C the following statements hold true:

(i) gr (usc f) ⊃ cl (gr f), (v) f is C-usc at x̄ ∈ X ⇔ (usc f)(x̄) = f(x̄),

(ii) hyp (usc f) ⊃ cl (hyp f), (vi) gr (usc f) is C-closed,
(iii) (usc f) is C-usc, (vii) hyp (usc f) is C-closed.
(iv) ∀x ∈ X, (usc f)(x) ⊃ f(x),

Proof. (i) Let (x̄, ȳ) ∈ cl (gr f). Then there exists a sequence (xn, yn)n∈N ⊂ gr f converging
to (x̄, ȳ). For all n ∈ N, we have {yn} ⊂ f(xn). Hence

{ȳ} = lim
n→∞ {yn} = lim sup

n→∞
{yn} ⊂ lim sup

n→∞
f(xn) ⊂ lim sup

x→x̄
f(x) = (usc f)(x̄),

i.e. (x̄, ȳ) ∈ gr (usc f). The proof of (ii) is similar. Statement (iii) follows from Proposition
3.5. The proofs of (iv) and (v) are analogous to those of Proposition 2.7 (iv) and (v). (vi)
Let (xn, yn)n∈N ⊂ gr (usc f) with (xn, yn) → (x̄, ȳ) ∈ X × Y be given. Proceeding as in (i),
but replacing f by (usc f), we obtain {ȳ} ⊂ (usc (usc f))(x̄). From (iii) we conclude that
(usc (usc f))(x̄) = (usc f)(x̄). Hence (x̄, ȳ) ∈ gr (usc f). The proof of (vii) is similar to that of
(iv). ¤
The next example shows that neither the C-closedness of hyp f nor the closedness of gr f

implies that f is C-usc.
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Example 3.7 Let f : R→ C(R) be defined by f(x) := {1/x} if x 6= 0 and f(0) := ∅. Then,
it easily follows that gr f ⊂ R×R closed and hyp f ⊂ R×C(R) is C-closed, but f is not C-usc.

In Remark 2.9 (due to [10]) we noticed that the lower F-semicontinuous hull that is defined
analogously to the upper F-semicontinuous hull is not necessarily lower F-semicontinuous.
There are analogous problems with the lower C-semicontinuous hull. This is due to the fact
that there is no analogous assertion to Proposition 3.5 for lower C-limits, as the following
example shows.

Example 3.8 For functions f : X → C, in general, we have

lim inf
x→x̄

f(x) 6= lim inf
x→x̄

lim inf
w→x

f(w).

Indeed, consider the function f : R2 → C(R), defined by

f(x) :=

{
{‖x‖} if x1 ≥ 0

{−‖x‖} if x1 < 0.

Then it holds

lim inf
w→x

f(w) :=





{‖x‖} if x1 > 0 or x2 = 0
{−‖x‖} if x1 < 0

∅ if x1 = 0 and x2 6= 0.

Hence we obtain {0} = lim infx→0 f(x) 6= lim infx→0 lim infw→x f(w) = ∅.

4 Locally bounded functions

The concept of local boundedness of a set-valued map plays an important role in Variational
Analysis, see [10]. As an easy consequence of the definition ([10, Definition 5.14]), local
boundedness of a map f : X ⇒ Y at x̄ implies that f(x̄) is a bounded subset of Y . This
means, local boundedness is (at least locally) adapted to set-valued maps with bounded values.
Therefore we introduce a slightly generalized concept, adapted to the framework of C-valued
functions. It turns out that this concept provides a sufficient condition for the coincidence of
F-limits and C-limits.

A function f : X → C is said to be locally bounded at x̄ ∈ dom f if there exists a
neighborhood V ∈ N (x̄) such that the following conditions are satisfied:

(i) 0+ supx∈V f(x) ⊂ 0+f(x̄),

(ii) ∀x ∈ V ∩ dom f, 0+f(x) ⊃ 0+f(x̄).

Note that, if f : X → C is locally bounded at x̄ ∈ dom f , (i) and (ii) of the previous
definition are always satisfied with equality. Moreover, if f(x̄) ⊂ Y is bounded, our concept
coincides with the classical one.

Theorem 4.1 Let f : X → C be locally bounded at x̄ ∈ dom f . Then,

lim sup
x→x̄

f(x) = cl conv LIM SUP
x→x̄

f(x).

9



Proof. Clearly, we have lim supx→x̄ f(x) ⊃ cl conv LIM SUPx→x̄ f(x). To show the opposite
inclusion let y ∈ lim supx→x̄ f(x) be given. Then there exists a sequence (xn)n∈N with xn → x̄

such that y ∈ lim supn→∞ f(xn). Assuming that there exists some n0 ∈ N such that f(xn) = ∅
for all n ≥ n0, we obtain lim supn→∞ f(xn) = ∅, which contradicts y ∈ lim supx→x̄ f(x).
Hence, by (xnk

)k∈N := (xn)n∈N ∩ dom f , we obtain a subsequence of (xn)n∈N. Of course, we
have lim supn→∞ f(xn) = lim supk→∞ f(xnk

). By the local boundedness, we find k0 ∈ N such
that, f(xnk

) ∈ CK for all k ≥ k0 and supk≥k0
f(xnk

) ∈ CK , where K := 0+f(x̄). Theorem 2.3
yields y ∈ cl conv LIM SUPk→∞ f(xnk

) ⊂ LIMSUPx→x̄ f(x). ¤
In the next example we show that the assertion of the preceding theorem can fail if one

of the conditions in the definition of the local boundedness concept is not satisfied.

Example 4.2 Let f : R→ C(R) be defined by f(x) :=
{

1
x

}
if x 6= 0 and f(0) := {0}, i.e. (ii)

is satisfied, but (i) is not. Then, R = lim supx→0 f(x) 6= cl conv LIM SUPx→0 f(x) = {0}.

Example 4.3 Let f : R → C(R2) be defined by f(x) =
{
y ∈ R2| y2 = 1, y1 = 1/x

}
if

x 6= 0 and f(0) :=
{
y ∈ R2| y2 = 0

}
, i.e. (i) is satisfied, but (ii) is not. An easy calcu-

lation shows that
{
y ∈ R2| 0 ≤ y2 ≤ 1

}
= lim supx→0 f(x) 6= cl conv LIM SUPx→0 f(x) ={

y ∈ R2| y2 = 0
}
.

Local boundedness of a function f : X → C at a point x̄ ∈ dom f also implies that
lim infx→x̄ f(x) = LIM INFx→x̄ f(x) (see Corollary 4.6 below). Moreover, as shown in the
next theorem, a weaker assumption is already sufficient.

Theorem 4.4 Let f : X → C and x̄ ∈ dom f such that for all sequences (xn)n∈N ⊂ X with
xn → x̄ there exists a subsequence (xnk

)k∈N and a nonempty closed convex cone K ⊂ Y

with f(xnk
) ∈ CK for all k ∈ N and supk∈N f(xnk

) ∈ CK . Then it holds lim infx→x̄ f(x) =
LIM INFx→x̄ f(x).

Proof. Of course, lim infx→x̄ f(x) ⊃ LIM INFx→x̄ f(x). In order to show the opposite
inclusion let y ∈ Y \ LIM INFx→x̄ f(x) be given (the case LIM INFx→x̄ f(x) = Y is obvious).
Hence there exists a sequence (xn)n∈N ⊂ X with xn → x̄ such that y 6∈ LIM INFn→∞ f(xn).
Every subsequence of (xn)n∈N is again a sequence converging to x̄, hence our assumption
ensures that Theorem 2.4 is applicable. It follows that y 6∈ lim infn→∞ f(xn). ¤

The next example shows that the assertion of the previous theorem can fail if the assump-
tion is not satisfied.

Example 4.5 Let f : R → C(R2) be defined by f(x) := conv
{(−1,− 1

x

)
,
(
1, 1

x

)}
if x > 0

and f(x) := R2 if x ≤ 0, i.e. the condition in the previous theorem is not satisfied. Then we
have

{
y ∈ R2| − 1 ≤ y2 ≤ 1

}
= lim infx→0 f(x) 6= LIM INFx→0 f(x) =

{
y ∈ R2| y2 = 0

}
.

Corollary 4.6 Let f : X → C be locally bounded at x̄ ∈ dom f . Then,

lim inf
x→x̄

f(x) = LIM INF
x→x̄

f(x).
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Proof. By the local boundedness of f at x̄, for every sequence (xn)n∈N with xn → x̄ there
exists some n0 ∈ N such that f(xn) ∈ CK for all n ≥ n0 and supn≥n0

f(xn) ∈ CK , where
K := 0+f(x̄). Hence, Theorem 4.4 yields the desired assertion. ¤

Corollary 4.7 Let f : X → C be locally bounded on dom f . Then the following statements
are equivalent:

(i) hyp f ⊂ X × C is C-closed,

(ii) f is C-usc,

(iii) gr f ⊂ X × Y is closed.

Proof. (i) ⇒ (iii). Elementary (see also [7]).
(iii) ⇒ (ii). [10, Theorem 5.7 (a)] yields that f is F-usc. By Theorem 4.1, f is C-usc.
(ii) ⇒ (i). Follows from Proposition 3.6 (v), (vii). ¤

5 Concave functions

This section is devoted to the special case of concave C-valued functions. We show that F-
semicontinuity and C-semicontinuity coincide in this case. A function f : X → C is said to be
concave if

∀λ ∈ [0, 1], ∀x1, x2 ∈ X, f(λ · x1 + (1− λ) · x2) ⊃ λ f(x1) + (1− λ) f(x2).

It is easy to see that a function f : X → C is concave if and only if hyp f ⊂ X × C is convex.
Of course, concavity (which is often called convexity) of a set-valued map is equivalent to the
convexity of its graph. The following proposition shows that the values of a concave C-valued
function essentially have the same recession cone.

Proposition 5.1 Let f : X → C be concave. If x̄ ∈ ri (dom f), then 0+f(x) ⊂ 0+f(x̄) for all
x ∈ dom f and 0+f(x) = 0+f(x̄) for all x ∈ ri (dom f).

Proof. Note that dom f is convex. Let x̄ ∈ ri (dom f) and x ∈ dom f . By [9, Theorem 6.4],
there exists µ > 1 such that x̂ := µx̄+(1−µ)x ∈ dom f . Set λ := 1/µ ∈ (0, 1). The concavity
of f yields f(x̄) ⊃ λf(x̂) ⊕ (1 − λ)f(x). Since x̂ ∈ dom f we can choose some ŷ ∈ f(x̂),
hence f(x̄) ⊃ λ {ŷ} + (1 − λ)f(x) := Cx. It follows that 0+Cx ⊂ 0+f(x̄). With the aid of
[9, Theorem 8.1] we conclude that 0+Cx = 0+f(x), hence 0+f(x) ⊂ 0+f(x̄). Assume there
is some x̃ ∈ ri (dom f) with 0+f(x̃) ( 0+f(x̄), then the first part yields 0+f(x) ⊂ 0+f(x̃) for
all x ∈ dom f , whence the contradiction 0+f(x̄) ( 0+f(x̄). ¤

Theorem 5.2 Let f : X → C be concave. Then, for all x̄ ∈ X it holds

lim sup
x→x̄

f(x) = LIMSUP
x→x̄

f(x).
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Proof. Of course, we always have lim supx→x̄ f(x) ⊃ LIMSUPx→x̄ f(x). To show the
opposite inclusion let y ∈ lim supx→x̄ f(x) be given. Hence there exists a sequence (xn)n∈N
with xn → x̄ such that y ∈ lim supn→∞ f(xn). By Proposition 2.2 this can be written as

∃ (λn)n∈N ⊂ ∆p+1, ∃ (kn)n∈N ⊂ Np+1, ∃ (zn)n∈N ⊂ Y p+1,

y = lim
n∈N

∑

i∈0,p

λi
nzi

n, ∀n ∈ N, ∀j ∈ 0, p, kj
n ≥ n, zj

n ∈ A
kj

n
.

We define two sequences (ym)m∈N ⊂ Y and (x̃m)m∈N ⊂ X by

ym :=
∑

j∈0,p

λ
(m)
j z

(m)
j , x̃m :=

∑

j∈0,p

λ
(m)
j x

k
(m)
j

.

Then we have ym → y, x̃m → x̄ and the concavity of f yields that

ym =
∑

j∈0,p

λ
(m)
j z

(m)
j ∈

∑

j∈0,p

λ
(m)
j f

(
x

k
(m)
j

)
⊂ f


 ∑

j∈0,p

λ
(m)
j x

k
(m)
j


 = f (x̃m)

for all m ∈ N. By [10, 5(1)], this means y ∈ LIM SUPx→x̄ f(x). ¤

Corollary 5.3 Let f : X → C be concave. Then the following statements hold true:

(i) (usc f) = (USC f),

(ii) (usc f) is concave,

(iii) (usc f) : X → CK ∪ {∅} for some nonempty closed convex cone K ⊂ Y .

Proof. (i) Follows from Theorem 5.2.
(ii) f concave ⇔ gr f convex ⇒ cl (gr f) = gr (USC f) convex ⇔ USC f = usc f convex.
(iii) Since (usc f) is F-usc and concave, its graph is closed and convex. If dom (usc f) = ∅

there is nothing to prove, otherwise, there exists some x̄ ∈ ri dom (usc f). From Proposition
5.1 we deduce that 0+(usc f)(x) ⊂ 0+(usc f)(x̄) =: K for all x ∈ dom (usc f). It remains
to prove the opposite inclusion for all x ∈ dom (usc f). Indeed, let ŷ ∈ 0+(usc f)(x̄) and
ȳ ∈ (usc f)(x̄) be arbitrarily chosen. By [9, Theorem 8.3] we have ȳ + λŷ ∈ (usc f)(x̄) for
all λ ≥ 0 and equivalently (0, ŷ) ∈ 0+gr (usc f). Given some x ∈ dom (usc f) we can choose
y ∈ (usc f)(x). Since (0, ŷ) ∈ 0+gr (usc f), [9, Theorem 8.3] yields that y + λŷ ∈ (usc f)(x)
for all λ ≥ 0 and equivalently ŷ ∈ 0+(usc f)(x). ¤

Corollary 5.4 Let f : X → CK ∪ {∅}. Then the following statements are equivalent:

(i) f is concave and C-usc,

(ii) gr f ⊂ X × Y is convex and closed,

(iii) hyp f ⊂ X × C is convex and C-closed,

(iv) For all y∗ ∈ riK◦ the function σf( · )(y∗) : X → R is concave and usc.
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Proof. The equivalence of the convexity/concavity assertions is immediate.
(i) ⇔ (ii) ⇔ (iii). The equivalence of the upper C-semicontinuity and closedness assertions

follows similarly to the proof of Corollary 4.7 (using Corollary 5.3 (i) instead of Theorem 4.1).
(i) ⇔ (iv). From Theorem 3.3 taking into account Corollary 5.3 (iii). ¤

Theorem 5.5 Let f : X → C be concave. Then the following assertions hold true:

(i) f is C-usc at every x̄ ∈ ri (dom f),

(ii) f is C-continuous at every x̄ ∈ int (dom f).

Proof. (i) Let x̄ ∈ ri (dom f) be given and let K := 0+f(x̄). By Theorem 3.3, it remains
to show that, for all y∗ ∈ riK◦, σf( · )(y∗) is usc at x̄. From Proposition 5.1 we deduce
that 0+f(x) = K for all x ∈ ri (dom f). Hence, for all y∗ ∈ riK◦ it is true that x̄ ∈
ri

(
domσf( · )(y∗)

)
, whence, by [9, Theorem 7.4], σf( · )(y∗) is usc at x̄.

(ii) By [10, Theorem 5.9 (b)], f is F-lsc at x̄ ∈ int (dom f). Hence f is C-lsc at x̄. Now
the assertion follows from (i). ¤

We close this article with some assertions concerning the local boundedness of concave
functions.

Theorem 5.6 Let f : X → C be concave and C-usc. Then, f is locally bounded on dom f .

Proof. Let x̄ ∈ dom f , V := {x ∈ X| ‖x− x̄‖ ≤ 1} and K := 0+f(x̄). By Proposition 3.6
(v) and Corollary 5.3 (iii) we have 0+f(x) = K for all x ∈ dom f . Hence, condition (ii) in
the definition of the local boundedness is satisfied. It remains to show 0+ supx∈V f(x) ⊂ K.

Since V is convex and f is concave, the set
⋃

x∈V f(x) is convex. Since V is compact and
gr f is closed, we deduce that

⋃
x∈V f(x) is closed. Hence 0+ supx∈V f(x) = 0+

⋃
x∈V f(x).

Let k ∈ 0+
⋃

x∈V f(x) be given. By [9, Theorem 8.2], k is the limit of a sequence (λnyn)n∈N
where λn ↓ 0 and yn ∈ ⋃

x∈V f(x). Clearly, for all n ∈ N there exists xn ∈ V such that
yn ∈ f(xn). Since V is bounded, we have (λnxn, λnyn) → (0, k). Applying [9, Theorem 8.2]
to the closed convex set gr f ⊂ X×Y , we obtain (0, k) ∈ 0+gr f . With the aid of [9, Theorem
8.3] we deduce that ȳ + λk ∈ f(x̄ + λ · 0) = f(x̄) for all λ ≥ 0 and arbitrary ȳ ∈ f(x̄), which
is equivalent to k ∈ 0+f(x̄) = K. ¤

Corollary 5.7 If f : X → C is concave, then f is locally bounded at every x̄ ∈ ri (dom f).

Proof. Theorem 5.6 yields that (usc f) is locally bounded at every x ∈ dom (usc f). By
Theorem 5.5 (i), we know that f(x̄) = (usc f)(x̄) for all x̄ ∈ ri (dom f). ¤

Corollary 5.8 Let f : X → C be concave. Then, for all x̄ ∈ X it holds

lim inf
x→x̄

f(x) = LIM INF
x→x̄

f(x).

Proof. If x̄ ∈ int (dom f), this follows from Corollary 5.7 and Corollary 4.6. Otherwise, we
have lim infx→x̄ f(x) = LIM INFx→x̄ f(x) = ∅. ¤
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[7] Löhne, A.; Zălinescu, C.: On convergence of closed convex sets, to appear, J. Math.
Anal. Appl.

[8] Papageorgiou, N. S.: On Cesari’s Property (Q), J. Optimization Theory Appl. 53, No.
2, (1987), 259–268

[9] Rockafellar, R. T.: Convex Analysis, Princeton University Press, Princeton N. J., 1970

[10] Rockafellar, R. T.; Wets, R. J.-B.: Variational Analysis, Springer, Berlin, 1998

[11] Suryanarayana, M.B.: Upper semicontinuity of set-valued functions, J. Optimization
Theory Appl. 41, (1983), 185–211

14


