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Abstract

We give an answer to the Problem 11.6 posed by Stephen Simons in his
book ”From Hahn-Banach to Monotonicity”: Do there exist a nonzero fi-
nite dimensional Banach space and a pair of extended real-valued, proper
and convex functions which is totally Fenchel unstable? The answer is
negative.
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Consider F a nontrivial real Banach space and E* its topological dual space.
By (z*,x) we denote the value of the linear continuous functional z* € E* at
r € E. The Fenchel-Moreau conjugate of a function f : £ — R is the function
f*: E* — R defined by f*(z*) = sup,cpi{z*,z) — f(z)} for all 2* € E*. We
denote by dom(f) = {x € E : f(z) < 400} its domain. We call f proper if
dom(f) # 0 and f(x) > —oo for all z € E.

Having f,¢ : E — R two arbitrary proper and convex functions, we say that
f and g satisty stable Fenchel duality if for all * € E*, there exists z* € E* such
that

(f+9) (@) =@ —27) +g°(2").
If this property holds just for * = 0, then we obtain the classical Fenchel duality.

In this case we say thay f and g satisfy Fenchel duality. The pair f,g is called
totally Fenchel unstable (see [3]) if f and g satisfy Fenchel duality but

y 2" e B and (f+9)"(y" +2") = f"(y)+ 9 (") =y + 2" =0.
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Obviously, stable Fenchel duality implies Fenchel duality, but the converse
is not true (see the example in [1], pp. 2798-2799 and Example 11.1 in [3]).
Nevertheless, each of these examples, both given in a finite dimensional setting,
fails when one tries to verify total Fenchel unstability.

In the infinite dimensional setting the following example of a pair of proper
and convex functions f, g, which is totally Fenchel unstable, has been proposed
in Example 11.3 in [3]. Let C' be a nonempty, bounded, closed and convex subset
of F such that there exists an extreme point zy of C' which is not a support point
of C. Recall that if C' is a convex subset of F/, then x € C is a support point
of C' if there exists x* € E* \ {0} such that (z*, x) = sup(z*, C). We denote by
dp : E — R the indicator function of a set D C E defined as

5D(x):{ 0, if r €D,
400, otherwise.
Taking A := 29— C, B := C—ux, f := 4 and g := dp, Simons proved in [3] that
the pair f, g is totally Fenchel unstable. Let us also mention that an example
of a set C' and a point xy with the above mentioned properties was given in the
space {5, following an idea due to Jonathan Borwein (see [3]).

In finite dimensional spaces a similar example cannot be given, as every ex-
treme point of a convex set is a support point. This fact determines Stephen
Simons to formulate the following open problem (Problem 11.6 in [3]).

Problem. Do there exist a nonzero finite dimensional Banach space E and
f,g : E — R proper and convex functions such that the pair f,g is totally
Fenchel unstable?

We show that the answer to this question is negative. This result can be inter-
preted as follows:

If two proper and convex functions f,g : R — R satisfy Fenchel duality, then
there ezists at least one element x* € R™\ {0}, such that f — (z*,-) and g (or f
and g — (x*,-)) satisfy Fenchel duality, too.

We start with some preliminary results. For a function f : F — R we
denote by epi(f) = {(z,r) € E xR : f(x) < r} its epigraph and by f its
lower semicontinuous hull of f, namely the function of which epigraph is the

closure of epi(f) in F x R, that is epi(f) = cl(epi(f)). We write w(E*, F) for the
weak™ topology on E*. Further, when D C R" is a nonempty and convex set by
07D we denote its recession cone.

The following result (see [1, Theorem 2.1]) is direct a consequence of the clas-
sical Moreau-Rockafellar theorem.



Theorem 1. If f,g : E — R are proper, convex and lower semicontinuous
functions such that dom(f) N dom(g) # @. Then

epi((f + g)*) = cl(epi(f*) + epi(g”)),
where the closure is taken in the product topology of (E*,w(E*, E)) x R.

Under the hypotheses of Theorem 1 follows that epi(f*) + epi(g*) is closed
in the product topology of (E*,w(E*, E)) x R if and only if epi((f + ¢g)*) =
epi(f*) +epi(g*). By [1, Proposition 2.2]), this is equivalent to saying that f and
g satisfy stable Fenchel duality.

Of course, for all z*, y* € E* it holds

(f+9) @) < (@ —y)+g" () (1)

Therefore, a pair f, g of proper and convex functions is totally Fenchel unstable

if and only if
e b (f+9)(0)=1(=y)+g ) (2)
Vet e EE\N{O} vyt € BT 2 (f+9)" (") < 1@ =) +97(W).  (3)
Moreover, if the pair f, g is totally Fenchel unstable one must have that dom(f)N
dom(g) # (). Indeed, if this is not the case, then f + ¢ is identical +o0o and thus
(f+g)* is identical —oo. By (2) there exists y* € E* such that f*(—y*)+g*(y*) =
—o0. But, f and g being proper we get f*(—y*) > —oo and g*(y*) > —o0, a

contradiction.
We give now a geometric characterization of the property that the pair f, g is

totally Fenchel unstable.

Proposition 2. Let f,g : E — R be proper functions such that dom(f) N
dom(g) # (). Then the pair f,g is totally Fenchel unstable if and only if

epi((f +9)") N ({0} x R) = (epi(f*) + epi(g”)) N ({0} x R) (4)
and there is no z* € E*\ {0} such that

epi((f +9)°) N ({z"} x R) = (epi(f*) + epi(g”)) N ({27} x R). (5)

Proof. We want to notice first that we always have epi((f + g)*) 2 epi(f*) +
epi(g*). As dom(f)Ndom(g) # 0, (f + ¢g)* never attains —oo.

7=" In case (f + ¢)*(0) = +oo, the set epi((f + ¢)*) N ({0} x R) is empty
and (4) follows automatically. In case (f + ¢)*(0) € R, we consider an arbitrary
element r € R fulfilling (f + ¢)*(0) < r. By (2) there exists y* € E* such that

f*(=y*) + g*(y*) < r and so
(0,7) = (=y", f"(=y") + (", 7 = f*(=y")) € (epi(f*) + epi(g")) N ({0} x R).
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Also in this case (4) follows.

Assume now that for 2* € E*\ {0} relation (5) is fulfilled. As (3) implies
(f + g)*(z*) < +o0, we have (f + ¢g)*(z*) € R. In this case (z*, (f + g)*(z*)) €
epi((f 4+ ¢)") N ({z"} x R) and so (2%, (f + ¢)*(z*)) € epi(f*) + epi(g*). Thus
there exist (y*,s) € epi(f*) and (2*,t) € epi(g*) such that y* + 2* = z* and
s+t=(f+g)"(«z*). This means that f*(y*) + ¢*(z*) < (f + ¢)*(v* + 2*) which
contradicts (3).

7<” We prove first that Fenchel duality holds. If (f + ¢)*(0) = +oo this
follows automatically from (1). If (f4+¢)*(0) € R, then (0, (f+9)*(0)) € epi(f*)+
epi(g*) and so there exist (—z*,s) € epi(f*) and (2*,t) € epi(g*) such that
s+t=(f+g)*0). Thus f*(—z*) + g*(2*) < (f + ¢)*(0) and the conclusion
follows.

Further assume that there exist y*, 2* € FE* such that y* + 2* # 0 and
(f +9) (v +2") = f*(y*) + g"(z*). As (5) does not hold with equality, we
get (f+g)*(y* + 2*) € R. For all r € R such that (f + ¢)*(y* + z*) < r it holds
(y*+2z*,7) € (epi(f*)+epi(g*))N({y*+2*} xR). This implies that (5) is satisfied
for x* = y* + 2* # 0, a contradiction. O

Proposition 3. Let f,g : R* — R be proper convex functions such that
int(dom(f) Ndom(g)) # 0. Then the pair f, g satisfies stable Fenchel duality.

Proof. Let 2/ € int(dom(f) N dom(g)) C int(dom(f)) N int(dom(g)). It holds
int(dom(f)) = ri(dom(f)) = ri(cl(dom(f))) = ri(cl(dom(f))) = ri(dom(f)) and
the same applies for ¢g. This means that ' € ri(dom(f)) Nri(dom(g)). For all
x* € R™ we have dom(f) = dom(f — (z*,-))). By the Fenchel duality theorem [2,
Theorem 31.1], there exists some y* € R™ such that

—(f+9)"(@") = mf {f(2) — (2", 2) +g(2)}
=—(f— (@) (=y") —g"(y")
—f @ —y) - g"(v). -

It follows the result.

Theorem 4. There are no proper convex functions f, g : R* — R such that the
pair f, g is totally Fenchel unstable.

Proof. We assume the contrary, namely that there exist f,g : R* — R
proper convex functions such that the pair f, g is totally Fenchel unstable. By
(3) it follows that (f +g)*(2*) < +oo for all z* € R™\ {0}. As (f+g)* is convex,
we get (f+9)*(0) < +o00. As noticed above we have dom(f)Ndom(g) # 0, hence
(f +9)7(0) > —oc.

As noticed above, dom(f) N dom(g) must be nonempty. Choose some Z €
dom(f)Ndom(g) C dom(f)Ndom(g) and consider L = aff(dom(f)Ndom(g)—z) =
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lin(dom(f) N dom(g) — z). As int(dom(f) N dom(g)) = @, by Proposition 3, the
dimension of L is strictly less than n and this means that the orthogonal space
to L, L* is nonzero. Of course, we have

dom(f) Ndom(g) € dom(f) Ndom(g) C L+ & (6)
Theorem 1 applies to f and § and we have f* = f* and ¢* = §*. Hence

epi((f 4 9)*) = cl(epi(f*) + epi(g")). (7)

It follows B
epi((f +9)7) 2 epi((f +9)*) 2 epi(f7) + epi(g”).
Since the pair f, g is totally Fenchel unstable, by Proposition 2, one has that

epi(f+9)"N({0} xR) = epi((f+7)") N ({0} xR) = (epi(f*) +epi(g")) N ({0} xR)
and so (f + ¢)*(0) = (f + g)*(0). Taking an element x* € L+ \ {0} we obtain

(f+9)" (") = sup{(z",2) — f(z) —g(z)}

z€R™

= sup {(z*,z) — f(z) —g(x)}

rEL+T (8)

— (@, 2) + (f +9)"(0)
— @D+ (F+90) 2 (T +9) ().

We distinguish two cases:
(a) If epi(f*)+epi(g*) is closed, we obtain from (7) and (8), (z*, (f+g)*(x*)) €
epi((f +g)*) = epi(f*) +epi(g*) and so there exist (y*,s) € epi(f*) and (2*,t) €
epl( *) such that y* + 2* = 2" # 0 and s +t = (f + ¢)*(¢*). This means that
() + g%(z%) < (f+9) (yv* + 2%). As y* + 2* = 2* # 0 this contradicts (3).
(b) Othervvlse if epi(f*) + epi(g*) is not closed, by [2, Corollary 9.1.2], there
exists a direction of recession of epi( f*) whose opposite direction is a direction of
recession of epi(g*). This can be expressed as

J(z*,r)#0:  (z57r) €0 epi(f*) A (—z%,—r) € 0" epi(gh),

where r can be chosen nonnegative. It follows x* # 0, because otherwise we
would have (0, —r) € 0% epi(g*) with » > 0. But ¢ is proper and so ¢g* never
attains —oo

Choose some y* according to (2). Since (f + ¢)*(0), f*(—y*), g*(y*) € R and
as epi(f*) and epi(g*) are nonempty convex sets, by [2, Theorem 8.1], it holds

YA>0: (=[5 (=y*) + X (2%, 7) € epi(f*)
Vi >0: (v, 9" (y")) —p- (2%, r) € epi(g”)



Adding both conditions and taking into account (2) we get

VyeR: (0,(f+9)(0) +v- (2% 1) € epi(f*) + epi(g"). (9)

Let v = 1 in (9). There exist (u*,s) € epi(f*) and (v*,t) € epi(g*) such that
u +ov* =gz and s+t = (f+¢)"(0) +r. It follows

(f+9)@") < ffu)+g" (W) <s+t=(f+9)(0)+r (10)

Setting v = —1 in (9), we obtain analogously

(f+9)7(=2") < (f+9)(0) = (11)

The conditions (10) and (11) must hold with equality. Indeed, adding both in-
equalities where one of them is strict, we get a contradiction to the fact that
(f +9)* is convex. Hence (f + g)*(u* + v*) = f*(u*) + g*(v*). This contradicts
(3), because of u* + v* = z* # 0. O
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