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Abstract

We give an answer to the Problem 11.6 posed by Stephen Simons in his
book ”From Hahn-Banach to Monotonicity”: Do there exist a nonzero fi-
nite dimensional Banach space and a pair of extended real-valued, proper
and convex functions which is totally Fenchel unstable? The answer is
negative.
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Consider E a nontrivial real Banach space and E∗ its topological dual space.
By 〈x∗, x〉 we denote the value of the linear continuous functional x∗ ∈ E∗ at
x ∈ E. The Fenchel-Moreau conjugate of a function f : E → R is the function
f ∗ : E∗ → R defined by f ∗(x∗) = supx∈E{〈x∗, x〉 − f(x)} for all x∗ ∈ E∗. We
denote by dom(f) = {x ∈ E : f(x) < +∞} its domain. We call f proper if
dom(f) 6= ∅ and f(x) > −∞ for all x ∈ E.

Having f, g : E → R two arbitrary proper and convex functions, we say that
f and g satisfy stable Fenchel duality if for all x∗ ∈ E∗, there exists z∗ ∈ E∗ such
that

(f + g)∗(x∗) = f ∗(x∗ − z∗) + g∗(z∗).

If this property holds just for x∗ = 0, then we obtain the classical Fenchel duality.
In this case we say thay f and g satisfy Fenchel duality. The pair f, g is called
totally Fenchel unstable (see [3]) if f and g satisfy Fenchel duality but

y∗, z∗ ∈ E∗ and (f + g)∗(y∗ + z∗) = f ∗(y∗) + g∗(z∗) =⇒ y∗ + z∗ = 0.
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Obviously, stable Fenchel duality implies Fenchel duality, but the converse
is not true (see the example in [1], pp. 2798-2799 and Example 11.1 in [3]).
Nevertheless, each of these examples, both given in a finite dimensional setting,
fails when one tries to verify total Fenchel unstability.

In the infinite dimensional setting the following example of a pair of proper
and convex functions f, g, which is totally Fenchel unstable, has been proposed
in Example 11.3 in [3]. Let C be a nonempty, bounded, closed and convex subset
of E such that there exists an extreme point x0 of C which is not a support point
of C. Recall that if C is a convex subset of E, then x ∈ C is a support point
of C if there exists x∗ ∈ E∗ \ {0} such that 〈x∗, x〉 = sup〈x∗, C〉. We denote by
δD : E → R the indicator function of a set D ⊆ E defined as

δD(x) =

{
0, if x ∈ D,
+∞, otherwise.

Taking A := x0−C, B := C−x0, f := δA and g := δB, Simons proved in [3] that
the pair f, g is totally Fenchel unstable. Let us also mention that an example
of a set C and a point x0 with the above mentioned properties was given in the
space `2, following an idea due to Jonathan Borwein (see [3]).

In finite dimensional spaces a similar example cannot be given, as every ex-
treme point of a convex set is a support point. This fact determines Stephen
Simons to formulate the following open problem (Problem 11.6 in [3]).

Problem. Do there exist a nonzero finite dimensional Banach space E and
f, g : E → R proper and convex functions such that the pair f, g is totally
Fenchel unstable?

We show that the answer to this question is negative. This result can be inter-
preted as follows:

If two proper and convex functions f, g : Rn → R satisfy Fenchel duality, then
there exists at least one element x∗ ∈ Rn \ {0}, such that f − 〈x∗, ·〉 and g (or f
and g − 〈x∗, ·〉) satisfy Fenchel duality, too.

We start with some preliminary results. For a function f : E → R we
denote by epi(f) = {(x, r) ∈ E × R : f(x) ≤ r} its epigraph and by f̄ its
lower semicontinuous hull of f , namely the function of which epigraph is the
closure of epi(f) in E ×R, that is epi(f̄) = cl(epi(f)). We write ω(E∗, E) for the
weak∗ topology on E∗. Further, when D ⊆ Rn is a nonempty and convex set by
0+D we denote its recession cone.

The following result (see [1, Theorem 2.1]) is direct a consequence of the clas-
sical Moreau-Rockafellar theorem.
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Theorem 1. If f, g : E → R are proper, convex and lower semicontinuous
functions such that dom(f) ∩ dom(g) 6= ∅. Then

epi((f + g)∗) = cl(epi(f ∗) + epi(g∗)),

where the closure is taken in the product topology of (E∗, ω(E∗, E))× R.

Under the hypotheses of Theorem 1 follows that epi(f ∗) + epi(g∗) is closed
in the product topology of (E∗, ω(E∗, E)) × R if and only if epi((f + g)∗) =
epi(f ∗)+ epi(g∗). By [1, Proposition 2.2]), this is equivalent to saying that f and
g satisfy stable Fenchel duality.

Of course, for all x∗, y∗ ∈ E∗ it holds

(f + g)∗(x∗) ≤ f ∗(x∗ − y∗) + g∗(y∗). (1)

Therefore, a pair f, g of proper and convex functions is totally Fenchel unstable
if and only if

∃y∗ ∈ E∗ : (f + g)∗(0) = f ∗(−y∗) + g∗(y∗). (2)

∀x∗ ∈ E∗ \ {0},∀y∗ ∈ E∗ : (f + g)∗(x∗) < f ∗(x∗ − y∗) + g∗(y∗). (3)

Moreover, if the pair f, g is totally Fenchel unstable one must have that dom(f)∩
dom(g) 6= ∅. Indeed, if this is not the case, then f + g is identical +∞ and thus
(f +g)∗ is identical −∞. By (2) there exists y∗ ∈ E∗ such that f ∗(−y∗)+g∗(y∗) =
−∞. But, f and g being proper we get f ∗(−y∗) > −∞ and g∗(y∗) > −∞, a
contradiction.

We give now a geometric characterization of the property that the pair f, g is
totally Fenchel unstable.

Proposition 2. Let f, g : E → R be proper functions such that dom(f) ∩
dom(g) 6= ∅. Then the pair f, g is totally Fenchel unstable if and only if

epi((f + g)∗) ∩ ({0} × R) = (epi(f ∗) + epi(g∗)) ∩ ({0} × R) (4)

and there is no x∗ ∈ E∗ \ {0} such that

epi((f + g)∗) ∩ ({x∗} × R) = (epi(f ∗) + epi(g∗)) ∩ ({x∗} × R). (5)

Proof. We want to notice first that we always have epi((f + g)∗) ⊇ epi(f ∗) +
epi(g∗). As dom(f) ∩ dom(g) 6= ∅, (f + g)∗ never attains −∞.

”⇒” In case (f + g)∗(0) = +∞, the set epi((f + g)∗) ∩ ({0} × R) is empty
and (4) follows automatically. In case (f + g)∗(0) ∈ R, we consider an arbitrary
element r ∈ R fulfilling (f + g)∗(0) ≤ r. By (2) there exists y∗ ∈ E∗ such that
f ∗(−y∗) + g∗(y∗) ≤ r and so

(0, r) = (−y∗, f∗(−y∗)) + (y∗, r − f ∗(−y∗)) ∈ (epi(f ∗) + epi(g∗)) ∩ ({0} × R).
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Also in this case (4) follows.
Assume now that for x∗ ∈ E∗ \ {0} relation (5) is fulfilled. As (3) implies

(f + g)∗(x∗) < +∞, we have (f + g)∗(x∗) ∈ R. In this case (x∗, (f + g)∗(x∗)) ∈
epi((f + g)∗) ∩ ({x∗} × R) and so (x∗, (f + g)∗(x∗)) ∈ epi(f ∗) + epi(g∗). Thus
there exist (y∗, s) ∈ epi(f ∗) and (z∗, t) ∈ epi(g∗) such that y∗ + z∗ = x∗ and
s + t = (f + g)∗(x∗). This means that f ∗(y∗) + g∗(z∗) ≤ (f + g)∗(y∗ + z∗) which
contradicts (3).

”⇐” We prove first that Fenchel duality holds. If (f + g)∗(0) = +∞ this
follows automatically from (1). If (f+g)∗(0) ∈ R, then (0, (f+g)∗(0)) ∈ epi(f ∗)+
epi(g∗) and so there exist (−z∗, s) ∈ epi(f ∗) and (z∗, t) ∈ epi(g∗) such that
s + t = (f + g)∗(0). Thus f ∗(−z∗) + g∗(z∗) ≤ (f + g)∗(0) and the conclusion
follows.

Further assume that there exist y∗, z∗ ∈ E∗ such that y∗ + z∗ 6= 0 and
(f + g)∗(y∗ + z∗) = f ∗(y∗) + g∗(z∗). As (5) does not hold with equality, we
get (f + g)∗(y∗ + z∗) ∈ R. For all r ∈ R such that (f + g)∗(y∗ + z∗) ≤ r it holds
(y∗+z∗, r) ∈ (epi(f ∗)+epi(g∗))∩({y∗+z∗}×R). This implies that (5) is satisfied
for x∗ = y∗ + z∗ 6= 0, a contradiction. �

Proposition 3. Let f, g : Rn → R be proper convex functions such that
int(dom(f̄) ∩ dom(ḡ)) 6= ∅. Then the pair f, g satisfies stable Fenchel duality.

Proof. Let x′ ∈ int(dom(f̄) ∩ dom(ḡ)) ⊆ int(dom(f̄)) ∩ int(dom(ḡ)). It holds
int(dom(f̄)) = ri(dom(f̄)) = ri(cl(dom(f̄))) = ri(cl(dom(f))) = ri(dom(f)) and
the same applies for g. This means that x′ ∈ ri(dom(f)) ∩ ri(dom(g)). For all
x∗ ∈ Rn we have dom(f) = dom(f −〈x∗, ·〉)). By the Fenchel duality theorem [2,
Theorem 31.1], there exists some y∗ ∈ Rn such that

−(f + g)∗(x∗) = inf
x∈Rn

{f(x)− 〈x∗, x〉+ g(x)}

= −(f − 〈x∗, ·〉)∗(−y∗)− g∗(y∗)

= −f ∗(x∗ − y∗)− g∗(y∗). �

It follows the result.

Theorem 4. There are no proper convex functions f, g : Rn → R such that the
pair f, g is totally Fenchel unstable.

Proof. We assume the contrary, namely that there exist f, g : Rn → R
proper convex functions such that the pair f, g is totally Fenchel unstable. By
(3) it follows that (f + g)∗(x∗) < +∞ for all x∗ ∈ Rn \{0}. As (f + g)∗ is convex,
we get (f +g)∗(0) < +∞. As noticed above we have dom(f)∩dom(g) 6= ∅, hence
(f + g)∗(0) > −∞.

As noticed above, dom(f) ∩ dom(g) must be nonempty. Choose some x̄ ∈
dom(f)∩dom(g) ⊆ dom(f̄)∩dom(ḡ) and consider L = aff(dom(f̄)∩dom(ḡ)−x̄) =
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lin(dom(f̄) ∩ dom(ḡ) − x̄). As int(dom(f̄) ∩ dom(ḡ)) = ∅, by Proposition 3, the
dimension of L is strictly less than n and this means that the orthogonal space
to L, L⊥ is nonzero. Of course, we have

dom(f) ∩ dom(g) ⊆ dom(f̄) ∩ dom(ḡ) ⊆ L + x̄ (6)

Theorem 1 applies to f̄ and ḡ and we have f ∗ = f̄ ∗ and g∗ = ḡ∗. Hence

epi((f̄ + ḡ)∗) = cl(epi(f ∗) + epi(g∗)). (7)

It follows
epi((f + g)∗) ⊇ epi((f̄ + ḡ)∗) ⊇ epi(f ∗) + epi(g∗).

Since the pair f, g is totally Fenchel unstable, by Proposition 2, one has that

epi(f +g)∗∩({0}×R) = epi((f̄ + ḡ)∗)∩({0}×R) = (epi(f ∗)+epi(g∗))∩({0}×R)

and so (f + g)∗(0) = (f̄ + ḡ)∗(0). Taking an element x∗ ∈ L⊥ \ {0} we obtain

(f + g)∗(x∗) = sup
x∈Rn

{〈x∗, x〉 − f(x)− g(x)}
(6)
= sup

x∈L+x̄
{〈x∗, x〉 − f(x)− g(x)}

= 〈x∗, x̄〉+ (f + g)∗(0)

= 〈x∗, x̄〉+ (f̄ + ḡ)∗(0)
(6)
= (f̄ + ḡ)∗(x∗).

(8)

We distinguish two cases:
(a) If epi(f ∗)+epi(g∗) is closed, we obtain from (7) and (8), (x∗, (f+g)∗(x∗)) ∈

epi((f̄ + ḡ)∗) = epi(f ∗) + epi(g∗) and so there exist (y∗, s) ∈ epi(f ∗) and (z∗, t) ∈
epi(g∗) such that y∗ + z∗ = x∗ 6= 0 and s + t = (f + g)∗(x∗). This means that
f ∗(y∗) + g∗(z∗) ≤ (f + g)∗(y∗ + z∗). As y∗ + z∗ = x∗ 6= 0 this contradicts (3).

(b) Otherwise, if epi(f ∗) + epi(g∗) is not closed, by [2, Corollary 9.1.2], there
exists a direction of recession of epi(f ∗) whose opposite direction is a direction of
recession of epi(g∗). This can be expressed as

∃ (x∗, r) 6= 0 : (x∗, r) ∈ 0+ epi(f ∗) ∧ (−x∗,−r) ∈ 0+ epi(g∗),

where r can be chosen nonnegative. It follows x∗ 6= 0, because otherwise we
would have (0,−r) ∈ 0+ epi(g∗) with r > 0. But g is proper and so g∗ never
attains −∞.

Choose some y∗ according to (2). Since (f + g)∗(0), f∗(−y∗), g∗(y∗) ∈ R and
as epi(f ∗) and epi(g∗) are nonempty convex sets, by [2, Theorem 8.1], it holds

∀λ ≥ 0 : (−y∗, f∗(−y∗)) + λ · (x∗, r) ∈ epi(f ∗)
∀µ ≥ 0 : ( y∗, g∗( y∗)) − µ · (x∗, r) ∈ epi(g∗)
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Adding both conditions and taking into account (2) we get

∀γ ∈ R : (0, (f + g)∗(0)) + γ · (x∗, r) ∈ epi(f ∗) + epi(g∗). (9)

Let γ = 1 in (9). There exist (u∗, s) ∈ epi(f ∗) and (v∗, t) ∈ epi(g∗) such that
u∗ + v∗ = x∗ and s + t = (f + g)∗(0) + r. It follows

(f + g)∗(x∗) ≤ f ∗(u∗) + g∗(v∗) ≤ s + t = (f + g)∗(0) + r (10)

Setting γ = −1 in (9), we obtain analogously

(f + g)∗(−x∗) ≤ (f + g)∗(0)− r (11)

The conditions (10) and (11) must hold with equality. Indeed, adding both in-
equalities where one of them is strict, we get a contradiction to the fact that
(f + g)∗ is convex. Hence (f + g)∗(u∗ + v∗) = f ∗(u∗) + g∗(v∗). This contradicts
(3), because of u∗ + v∗ = x∗ 6= 0. �
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