On totally Fenchel unstable functions in finite dimensional spaces

Radu Ioan Boț * Andreas Löhne [†]

January 21, 2008

Abstract

We give an answer to the Problem 11.6 posed by Stephen Simons in his book "From Hahn-Banach to Monotonicity": Do there exist a nonzero finite dimensional Banach space and a pair of extended real-valued, proper and convex functions which is totally Fenchel unstable? The answer is negative.

Key Words. conjugate function, Fenchel duality, recession cone AMS subject classification. 90C25, 90C46, 42A50

Consider E a nontrivial real Banach space and E^* its topological dual space. By $\langle x^*, x \rangle$ we denote the value of the linear continuous functional $x^* \in E^*$ at $x \in E$. The *Fenchel-Moreau conjugate* of a function $f: E \to \overline{\mathbb{R}}$ is the function $f^*: E^* \to \overline{\mathbb{R}}$ defined by $f^*(x^*) = \sup_{x \in E} \{\langle x^*, x \rangle - f(x) \}$ for all $x^* \in E^*$. We denote by dom $(f) = \{x \in E : f(x) < +\infty\}$ its *domain*. We call f proper if dom $(f) \neq \emptyset$ and $f(x) > -\infty$ for all $x \in E$.

Having $f, g: E \to \mathbb{R}$ two arbitrary proper and convex functions, we say that f and g satisfy *stable Fenchel duality* if for all $x^* \in E^*$, there exists $z^* \in E^*$ such that

$$(f+g)^*(x^*) = f^*(x^*-z^*) + g^*(z^*).$$

If this property holds just for $x^* = 0$, then we obtain the classical Fenchel duality. In this case we say thay f and g satisfy Fenchel duality. The pair f, g is called totally Fenchel unstable (see [3]) if f and g satisfy Fenchel duality but

$$y^*, z^* \in E^*$$
 and $(f+g)^*(y^*+z^*) = f^*(y^*) + g^*(z^*) \Longrightarrow y^* + z^* = 0.$

^{*}Faculty of Mathematics, Chemnitz University of Technology, D-09107 Chemnitz, Germany, e-mail: radu.bot@mathematik.tu-chemnitz.de

[†]Institute of Mathematics, Martin Luther University Halle-Wittenberg, D-06099 Halle, Germany, e-mail: andreas.loehne@mathematik.uni-halle.de

Obviously, stable Fenchel duality implies Fenchel duality, but the converse is not true (see the example in [1], pp. 2798-2799 and Example 11.1 in [3]). Nevertheless, each of these examples, both given in a finite dimensional setting, fails when one tries to verify total Fenchel unstability.

In the infinite dimensional setting the following example of a pair of proper and convex functions f, g, which is totally Fenchel unstable, has been proposed in Example 11.3 in [3]. Let C be a nonempty, bounded, closed and convex subset of E such that there exists an extreme point x_0 of C which is not a support point of C. Recall that if C is a convex subset of E, then $x \in C$ is a support point of C if there exists $x^* \in E^* \setminus \{0\}$ such that $\langle x^*, x \rangle = \sup \langle x^*, C \rangle$. We denote by $\delta_D : E \to \mathbb{R}$ the indicator function of a set $D \subseteq E$ defined as

$$\delta_D(x) = \begin{cases} 0, & \text{if } x \in D, \\ +\infty, & \text{otherwise.} \end{cases}$$

Taking $A := x_0 - C$, $B := C - x_0$, $f := \delta_A$ and $g := \delta_B$, Simons proved in [3] that the pair f, g is totally Fenchel unstable. Let us also mention that an example of a set C and a point x_0 with the above mentioned properties was given in the space ℓ_2 , following an idea due to Jonathan Borwein (see [3]).

In finite dimensional spaces a similar example cannot be given, as every extreme point of a convex set is a support point. This fact determines Stephen Simons to formulate the following open problem (Problem 11.6 in [3]).

Problem. Do there exist a nonzero finite dimensional Banach space E and $f,g: E \to \overline{\mathbb{R}}$ proper and convex functions such that the pair f,g is totally Fenchel unstable?

We show that the answer to this question is negative. This result can be interpreted as follows:

If two proper and convex functions $f, g : \mathbb{R}^n \to \overline{\mathbb{R}}$ satisfy Fenchel duality, then there exists at least one element $x^* \in \mathbb{R}^n \setminus \{0\}$, such that $f - \langle x^*, \cdot \rangle$ and g (or fand $g - \langle x^*, \cdot \rangle$) satisfy Fenchel duality, too.

We start with some preliminary results. For a function $f : E \to \overline{\mathbb{R}}$ we denote by $\operatorname{epi}(f) = \{(x,r) \in E \times \mathbb{R} : f(x) \leq r\}$ its *epigraph* and by \overline{f} its *lower semicontinuous hull* of f, namely the function of which epigraph is the closure of $\operatorname{epi}(f)$ in $E \times \mathbb{R}$, that is $\operatorname{epi}(\overline{f}) = \operatorname{cl}(\operatorname{epi}(f))$. We write $\omega(E^*, E)$ for the weak* topology on E^* . Further, when $D \subseteq \mathbb{R}^n$ is a nonempty and convex set by 0^+D we denote its *recession cone*.

The following result (see [1, Theorem 2.1]) is direct a consequence of the classical Moreau-Rockafellar theorem.

Theorem 1. If $f, g : E \to \overline{\mathbb{R}}$ are proper, convex and lower semicontinuous functions such that $\operatorname{dom}(f) \cap \operatorname{dom}(g) \neq \emptyset$. Then

$$\operatorname{epi}((f+g)^*) = \operatorname{cl}(\operatorname{epi}(f^*) + \operatorname{epi}(g^*)),$$

where the closure is taken in the product topology of $(E^*, \omega(E^*, E)) \times \mathbb{R}$.

Under the hypotheses of Theorem 1 follows that $epi(f^*) + epi(g^*)$ is closed in the product topology of $(E^*, \omega(E^*, E)) \times \mathbb{R}$ if and only if $epi((f + g)^*) = epi(f^*) + epi(g^*)$. By [1, Proposition 2.2]), this is equivalent to saying that f and g satisfy stable Fenchel duality.

Of course, for all $x^*, y^* \in E^*$ it holds

$$(f+g)^*(x^*) \le f^*(x^*-y^*) + g^*(y^*). \tag{1}$$

Therefore, a pair f, g of proper and convex functions is *totally Fenchel unstable* if and only if

$$\exists y^* \in E^*: \ (f+g)^*(0) = f^*(-y^*) + g^*(y^*).$$
(2)

$$\forall x^* \in E^* \setminus \{0\}, \forall y^* \in E^*: \quad (f+g)^*(x^*) < f^*(x^*-y^*) + g^*(y^*). \tag{3}$$

Moreover, if the pair f, g is totally Fenchel unstable one must have that dom $(f) \cap$ dom $(g) \neq \emptyset$. Indeed, if this is not the case, then f + g is identical $+\infty$ and thus $(f+g)^*$ is identical $-\infty$. By (2) there exists $y^* \in E^*$ such that $f^*(-y^*) + g^*(y^*) = -\infty$. But, f and g being proper we get $f^*(-y^*) > -\infty$ and $g^*(y^*) > -\infty$, a contradiction.

We give now a geometric characterization of the property that the pair f, g is totally Fenchel unstable.

Proposition 2. Let $f, g : E \to \overline{\mathbb{R}}$ be proper functions such that $\operatorname{dom}(f) \cap \operatorname{dom}(g) \neq \emptyset$. Then the pair f, g is totally Fenchel unstable if and only if

$$\operatorname{epi}((f+g)^*) \cap (\{0\} \times \mathbb{R}) = (\operatorname{epi}(f^*) + \operatorname{epi}(g^*)) \cap (\{0\} \times \mathbb{R})$$
 (4)

and there is no $x^* \in E^* \setminus \{0\}$ such that

$$epi((f+g)^*) \cap (\{x^*\} \times \mathbb{R}) = (epi(f^*) + epi(g^*)) \cap (\{x^*\} \times \mathbb{R}).$$
(5)

Proof. We want to notice first that we always have $epi((f + g)^*) \supseteq epi(f^*) + epi(g^*)$. As $dom(f) \cap dom(g) \neq \emptyset$, $(f + g)^*$ never attains $-\infty$.

"⇒" In case $(f + g)^*(0) = +\infty$, the set $epi((f + g)^*) \cap (\{0\} \times \mathbb{R})$ is empty and (4) follows automatically. In case $(f + g)^*(0) \in \mathbb{R}$, we consider an arbitrary element $r \in \mathbb{R}$ fulfilling $(f + g)^*(0) \leq r$. By (2) there exists $y^* \in E^*$ such that $f^*(-y^*) + g^*(y^*) \leq r$ and so

$$(0,r) = (-y^*, f^*(-y^*)) + (y^*, r - f^*(-y^*)) \in (\operatorname{epi}(f^*) + \operatorname{epi}(g^*)) \cap (\{0\} \times \mathbb{R}).$$

Also in this case (4) follows.

Assume now that for $x^* \in E^* \setminus \{0\}$ relation (5) is fulfilled. As (3) implies $(f+g)^*(x^*) < +\infty$, we have $(f+g)^*(x^*) \in \mathbb{R}$. In this case $(x^*, (f+g)^*(x^*)) \in epi((f+g)^*) \cap (\{x^*\} \times \mathbb{R})$ and so $(x^*, (f+g)^*(x^*)) \in epi(f^*) + epi(g^*)$. Thus there exist $(y^*, s) \in epi(f^*)$ and $(z^*, t) \in epi(g^*)$ such that $y^* + z^* = x^*$ and $s + t = (f+g)^*(x^*)$. This means that $f^*(y^*) + g^*(z^*) \leq (f+g)^*(y^* + z^*)$ which contradicts (3).

" \Leftarrow " We prove first that Fenchel duality holds. If $(f+g)^*(0) = +\infty$ this follows automatically from (1). If $(f+g)^*(0) \in \mathbb{R}$, then $(0, (f+g)^*(0)) \in \operatorname{epi}(f^*) + \operatorname{epi}(g^*)$ and so there exist $(-z^*, s) \in \operatorname{epi}(f^*)$ and $(z^*, t) \in \operatorname{epi}(g^*)$ such that $s+t = (f+g)^*(0)$. Thus $f^*(-z^*) + g^*(z^*) \leq (f+g)^*(0)$ and the conclusion follows.

Further assume that there exist $y^*, z^* \in E^*$ such that $y^* + z^* \neq 0$ and $(f+g)^*(y^*+z^*) = f^*(y^*) + g^*(z^*)$. As (5) does not hold with equality, we get $(f+g)^*(y^*+z^*) \in \mathbb{R}$. For all $r \in \mathbb{R}$ such that $(f+g)^*(y^*+z^*) \leq r$ it holds $(y^*+z^*, r) \in (\operatorname{epi}(f^*) + \operatorname{epi}(g^*)) \cap (\{y^*+z^*\} \times \mathbb{R})$. This implies that (5) is satisfied for $x^* = y^* + z^* \neq 0$, a contradiction.

Proposition 3. Let $f, g : \mathbb{R}^n \to \overline{\mathbb{R}}$ be proper convex functions such that $\operatorname{int}(\operatorname{dom}(\overline{f}) \cap \operatorname{dom}(\overline{g})) \neq \emptyset$. Then the pair f, g satisfies stable Fenchel duality.

Proof. Let $x' \in \operatorname{int}(\operatorname{dom}(\bar{f}) \cap \operatorname{dom}(\bar{g})) \subseteq \operatorname{int}(\operatorname{dom}(\bar{f})) \cap \operatorname{int}(\operatorname{dom}(\bar{g}))$. It holds $\operatorname{int}(\operatorname{dom}(\bar{f})) = \operatorname{ri}(\operatorname{dom}(\bar{f})) = \operatorname{ri}(\operatorname{cl}(\operatorname{dom}(\bar{f}))) = \operatorname{ri}(\operatorname{cl}(\operatorname{dom}(f))) = \operatorname{ri}(\operatorname{dom}(f))$ and the same applies for g. This means that $x' \in \operatorname{ri}(\operatorname{dom}(f)) \cap \operatorname{ri}(\operatorname{dom}(g))$. For all $x^* \in \mathbb{R}^n$ we have $\operatorname{dom}(f) = \operatorname{dom}(f - \langle x^*, \cdot \rangle)$. By the Fenchel duality theorem [2, Theorem 31.1], there exists some $y^* \in \mathbb{R}^n$ such that

$$-(f+g)^*(x^*) = \inf_{x \in \mathbb{R}^n} \{ f(x) - \langle x^*, x \rangle + g(x) \}$$

= $-(f - \langle x^*, \cdot \rangle)^*(-y^*) - g^*(y^*)$
= $-f^*(x^* - y^*) - g^*(y^*).$

It follows the result.

Theorem 4. There are no proper convex functions $f, g : \mathbb{R}^n \to \overline{\mathbb{R}}$ such that the pair f, g is totally Fenchel unstable.

Proof. We assume the contrary, namely that there exist $f, g : \mathbb{R}^n \to \overline{\mathbb{R}}$ proper convex functions such that the pair f, g is totally Fenchel unstable. By (3) it follows that $(f+g)^*(x^*) < +\infty$ for all $x^* \in \mathbb{R}^n \setminus \{0\}$. As $(f+g)^*$ is convex, we get $(f+g)^*(0) < +\infty$. As noticed above we have $\operatorname{dom}(f) \cap \operatorname{dom}(g) \neq \emptyset$, hence $(f+g)^*(0) > -\infty$.

As noticed above, $\operatorname{dom}(f) \cap \operatorname{dom}(g)$ must be nonempty. Choose some $\bar{x} \in \operatorname{dom}(f) \cap \operatorname{dom}(g) \subseteq \operatorname{dom}(\bar{f}) \cap \operatorname{dom}(\bar{g})$ and consider $L = \operatorname{aff}(\operatorname{dom}(\bar{f}) \cap \operatorname{dom}(\bar{g}) - \bar{x}) =$

 $\ln(\operatorname{dom}(\bar{f}) \cap \operatorname{dom}(\bar{g}) - \bar{x})$. As $\operatorname{int}(\operatorname{dom}(\bar{f}) \cap \operatorname{dom}(\bar{g})) = \emptyset$, by Proposition 3, the dimension of L is strictly less than n and this means that the orthogonal space to L, L^{\perp} is nonzero. Of course, we have

$$\operatorname{dom}(f) \cap \operatorname{dom}(g) \subseteq \operatorname{dom}(\bar{f}) \cap \operatorname{dom}(\bar{g}) \subseteq L + \bar{x} \tag{6}$$

Theorem 1 applies to \bar{f} and \bar{g} and we have $f^* = \bar{f}^*$ and $g^* = \bar{g}^*$. Hence

$$\operatorname{epi}((\bar{f} + \bar{g})^*) = \operatorname{cl}(\operatorname{epi}(f^*) + \operatorname{epi}(g^*)).$$
(7)

It follows

$$\operatorname{epi}((f+g)^*) \supseteq \operatorname{epi}((\bar{f}+\bar{g})^*) \supseteq \operatorname{epi}(f^*) + \operatorname{epi}(g^*).$$

Since the pair f, g is totally Fenchel unstable, by Proposition 2, one has that

$$\operatorname{epi}(f+g)^* \cap (\{0\} \times \mathbb{R}) = \operatorname{epi}((\bar{f}+\bar{g})^*) \cap (\{0\} \times \mathbb{R}) = (\operatorname{epi}(f^*) + \operatorname{epi}(g^*)) \cap (\{0\} \times \mathbb{R})$$

and so $(f+g)^*(0) = (\bar{f}+\bar{g})^*(0)$. Taking an element $x^* \in L^{\perp} \setminus \{0\}$ we obtain

$$(f+g)^{*}(x^{*}) = \sup_{x \in \mathbb{R}^{n}} \{ \langle x^{*}, x \rangle - f(x) - g(x) \}$$

$$\stackrel{(6)}{=} \sup_{x \in L + \bar{x}} \{ \langle x^{*}, x \rangle - f(x) - g(x) \}$$

$$= \langle x^{*}, \bar{x} \rangle + (f+g)^{*}(0)$$

$$= \langle x^{*}, \bar{x} \rangle + (\bar{f} + \bar{g})^{*}(0) \stackrel{(6)}{=} (\bar{f} + \bar{g})^{*}(x^{*}).$$

$$(8)$$

We distinguish two cases:

(a) If $\operatorname{epi}(f^*) + \operatorname{epi}(g^*)$ is closed, we obtain from (7) and (8), $(x^*, (f+g)^*(x^*)) \in \operatorname{epi}((\overline{f} + \overline{g})^*) = \operatorname{epi}(f^*) + \operatorname{epi}(g^*)$ and so there exist $(y^*, s) \in \operatorname{epi}(f^*)$ and $(z^*, t) \in \operatorname{epi}(g^*)$ such that $y^* + z^* = x^* \neq 0$ and $s + t = (f + g)^*(x^*)$. This means that $f^*(y^*) + g^*(z^*) \leq (f + g)^*(y^* + z^*)$. As $y^* + z^* = x^* \neq 0$ this contradicts (3).

(b) Otherwise, if $epi(f^*) + epi(g^*)$ is not closed, by [2, Corollary 9.1.2], there exists a direction of recession of $epi(f^*)$ whose opposite direction is a direction of recession of $epi(g^*)$. This can be expressed as

$$\exists \, (x^*,r) \neq 0: \quad (x^*,r) \in 0^+ \operatorname{epi}(f^*) \quad \wedge \quad (-x^*,-r) \in 0^+ \operatorname{epi}(g^*),$$

where r can be chosen nonnegative. It follows $x^* \neq 0$, because otherwise we would have $(0, -r) \in 0^+ \operatorname{epi}(g^*)$ with r > 0. But g is proper and so g^* never attains $-\infty$.

Choose some y^* according to (2). Since $(f + g)^*(0), f^*(-y^*), g^*(y^*) \in \mathbb{R}$ and as $epi(f^*)$ and $epi(g^*)$ are nonempty convex sets, by [2, Theorem 8.1], it holds

$$\begin{array}{ll} \forall \lambda \geq 0: & (-y^*, f^*(-y^*)) + \lambda \cdot (x^*, r) \in \operatorname{epi}(f^*) \\ \forall \mu \geq 0: & (y^*, g^*(y^*)) & -\mu \cdot (x^*, r) \in \operatorname{epi}(g^*) \end{array}$$

Adding both conditions and taking into account (2) we get

$$\forall \gamma \in \mathbb{R}: \quad (0, (f+g)^*(0)) + \gamma \cdot (x^*, r) \in \operatorname{epi}(f^*) + \operatorname{epi}(g^*). \tag{9}$$

Let $\gamma = 1$ in (9). There exist $(u^*, s) \in \operatorname{epi}(f^*)$ and $(v^*, t) \in \operatorname{epi}(g^*)$ such that $u^* + v^* = x^*$ and $s + t = (f + g)^*(0) + r$. It follows

$$(f+g)^*(x^*) \le f^*(u^*) + g^*(v^*) \le s+t = (f+g)^*(0) + r \tag{10}$$

Setting $\gamma = -1$ in (9), we obtain analogously

$$(f+g)^*(-x^*) \le (f+g)^*(0) - r \tag{11}$$

The conditions (10) and (11) must hold with equality. Indeed, adding both inequalities where one of them is strict, we get a contradiction to the fact that $(f+g)^*$ is convex. Hence $(f+g)^*(u^*+v^*) = f^*(u^*) + g^*(v^*)$. This contradicts (3), because of $u^* + v^* = x^* \neq 0$.

References

- Boţ, R.I., Wanka G. (2006): A weaker regularity condition for subdifferential calculus and Fenchel duality in infinite dimensional spaces, Nonlinear Analysis: Theory, Methods & Applications 64 (12), 2787–2804.
- [2] Rockafellar, R.T. (1970): *Convex analysis*, Princeton University Press, Princeton.
- [3] Simons, S.: From Hahn-Banach to Monotonicity, Springer-Verlag, Berlin, in press.