$2.M_{22}.2$ in characteristic 3

- $F[2.M_{22}.2]$ has 13 blocks; the faithful ones of positive defect are the block B_4 whose defect groups are elementary abelian of order 9, and the blocks B_5 and B_6 of defect 1
- $P \in \text{Syl}_3(2.M_{22})$ is a defect group of B_4 ; $N_{2.M_{22},2}(P)$ has order 288 and is isomorphic to an extension $N_{2.M_{22}}(P).2$
- The Brauer correspondent of B_4 is denoted by b_4 , and it contains the simple $F[N_{2.M_{22},2}(P)]$ modules 1_5 , 1_6 , 1_5^* , 1_6^* , 2_3 , 2_5 , 2_6 . The modules 2_5 and 2_6 restrict irreducibly to $N_{2.M_{22}}(P)$,
 and the restriction of 2_3 to $N_{2.M_{22}}(P)$ splits into the direct sum of two one-dimensional
 modules.
- $C \leq 2.M_{22}$ is a defect group of both B_5 and B_6 ; $N_{2.M_{22},2}(C)$ has order 288 and is isomorphic to an extension $N_{2.M_{22}}(C).2 \cong (\mathfrak{S}_4 \times C_2).2$. We identify $N_{2.M_{22}}(C)$ with $\mathfrak{S}_4 \times C_2$, and view it as the inner direct product of the subgroups $H_1 := \{(x,1) \mid x \in \mathfrak{S}_4\} \cong \mathfrak{S}_4$ and C_2 . Then the Brauer correspondent b_5 of B_5 contains simple modules 3_3 and 3_4 , and the Brauer correspondent b_6 of B_6 contains simple modules 3_5 and 3_6 such that

$$\operatorname{Res}_{N_{2.M_{22}}(C)}^{N_{2.M_{22}}(C)}(3_3) \cong \operatorname{Inf}_C^{N_{2.M_{22}}(C)}(D^{(2,1^2)} \boxtimes \operatorname{sgn}) \cong \operatorname{Res}_{N_{2.M_{22}}(C)}^{N_{2.M_{22}}(C)}(3_5)$$

and

$$\operatorname{Res}_{N_{2.M_{22}}(C)}^{N_{2.M_{22}}(C)}(3_4) \cong \operatorname{Inf}_C^{N_{2.M_{22}}(C)}(D^{(3,1)} \boxtimes \operatorname{sgn}) \cong \operatorname{Res}_{N_{2.M_{22}}(C)}^{N_{2.M_{22}}(C)}(3_6).$$

Here sgn denotes the alternating FC_2 -module.

• The simple $F[2.M_{22}.2]$ -modules belonging to the blocks B_4 , B_5 and B_6 , respectively, have the defect groups of their blocks as vertices. Moreover all of these modules have trivial sources, and, for an appropriate labelling, their Green correspondents are as follows:

block	B_4						
module	$D(10_1)$	$D(10_1)^*$	$D(10_2)$	$D(10_2)^*$	$D(56_1)$	$D(56_2)$	D(308)
Green	1_{5}	1_{5}^{*}	1_{6}	1_{6}^{*}	2_{5}	2_{6}	2_{3}
block	B_5			B_6			
module	$D(120_1)$	$D(210_4)$	D(120)	$_{2}) D(210$	$()_{3})$		
Green	3_4	3_3	3_{6}	3_5			

- $2.M_{22}.2 \longrightarrow M_{22}:2$ the natural epimorphism, c and d standard generators of $M_{22}:2$
- standard generators of $2.M_{22}.2$ are preimages C of c and D od d such that CD has order 11
- g := CCDCDCDCDDCDD and $h := g^3$ are non-conjugate element of order 14
- x := CDCDD is an element of order 10

- $y := (CDD)^3$ has order 2, its conjugacy class lies above conjugacy class 2B of $M_{22}:2$
- $\zeta := \exp(2\pi i/8), \ ^-: \mathbb{Z}[\zeta] \longrightarrow \mathbb{F}_9, \ \zeta \longmapsto \mathbb{F}_9.1$ the lifting map

Then the modular character of the simple modules belonging to B_4 are as follows:

module	g	h	x
$D(10_1)_{2.22.2}$	$\mathbb{F}_{9}.1 + 2 = \overline{b7**}$	$2\mathbb{F}_9.1 = \overline{b7}$	0
$D(10_2)_{2.22.2}$	$\mathbb{F}_{9}.1^3 = -b7 * *$	$\mathbb{F}_{9}.1 = -b7$	0
$D(10_1)^*_{2.22.2}$	$\overline{b7}$	$\overline{b7**}$	0
$D(10_1)^*_{2.22.2}$	-b7	-b7 * *	0
$D(56_1)_{2.22.2}$	0	0	$-(\mathbb{F}_{9}.1+1) = \overline{-r5}$
$D(56_2)_{2.22.2}$	0	0	$\mathbb{F}_{9}.1 + 1 = \overline{r5}$

Furthermore, the modular character of $D(120_2)_{2.22.2}$ on y is $8 \equiv 2 \pmod{3}$, and that of $D(210_4)_{2.22.2}$ on y is $1 \equiv 28 \pmod{3}$.