W:=GF(4).1; gens:=[Matrix(GF(4),6,6,[1, W, W^2, 1, 1, 0, 0, W^2, 1, 1, 0, W, 1, 1, 0, 0, W, W^2, W^2, W^2, 0, 1, 1, 1, 1, W^2, W^2, W, 1, W, 1, W, W, 1, 0, W ]), Matrix(GF(4),6,6,[1, 1, 1, 1, W^2, 1, 0, 1, 0, W, 1, 0, 0, W^2, W^2, W, W, W^2, 1, 1, W^2, W, 0, W^2, W^2, W, 0, W, W^2, W^2, 1, 1, W^2, 1, 1, W ]), Matrix(GF(4),6,6,[W, 0, 0, W^2, 0, W^2, W^2, 0, 0, W^2, W^2, W^2, 0, 0, W^2, 1, W, 0, W^2, W^2, W^2, W^2, W^2, W^2, 1, W, 0, 1, 0, 1, W^2, 0, W, W, W, W ]), Matrix(GF(4),6,6,[W, 0, W, W, W, W^2, W, W^2, 1, 1, 0, W, 1, 0, W, W^2, W^2, 1, 0, W^2, 0, 1, W, 0, W^2, W^2, W, W, 1, W^2, W, 0, 1, 1, 1, W^2 ]), Matrix(GF(4),6,6,[1, W, 0, 0, 1, 0, 0, W, 0, 0, W, 0, 1, W^2, 1, W, 0, 1, W^2, W^2, 0, 0, W^2, W^2, 0, 1, 0, 0, W, 0, 1, 1, 0, W, 1, 0 ]), Matrix(GF(4),6,6,[0, 0, 1, 0, 0, 1, 0, W, 0, 0, W, 0, 0, W^2, 1, 0, W, 0, 0, W^2, 0, 1, W, 0, 0, 1, 0, 0, W, 0, 1, W^2, 1, 0, W, 0 ]), Matrix(GF(4),6,6,[0, W, 1, 0, 1, 1, 0, 1, W, W^2, W^2, 0, 0, 0, W, 1, 1, 0, 0, 0, 1, W^2, W, 0, 0, 0, W^2, 1, 0, 0, 1, W, W, 1, 0, 0 ])]; print("action generators of the Green correspondent of the simple 3.M22-module D6d over GF(4) in N (normalizer of vertex P in 3.M22)");