M_{23} in characteristic 3

- FM_{23} has seven blocks: the principal block B_1 of defect 2 with elementary abelian defect groups, the block B_4 of defect 1, and the blocks B_2 , $B_3 = B_2^*$, B_5 , $B_6 = B_5^*$ and B_7 of defect 0.
- $P \in \text{Syl}_3(M_{23}); N_{M_{23}}(P)$ is isomorphic to a split extension $M_9:2$
- The simple $FN_{M_{23}}(P)$ -modules are denoted by $1_1 = F$, 1_2 , 1_3 , 1_4 , 2_1 , 2_2 , $2_3 = 2_2^*$, according to their dimensions.
- $C \cong C_3$ denotes a defect group of the block B_4 .
- The normalizer $N_{M_{23}}(C)$ is isomorphic to a split extension $(\mathfrak{A}_5 \times C_3) : 2$, and $N_{M_{23}}(C)/C \cong \mathfrak{S}_5$. The unique projective simple $F\mathfrak{S}_5$ -module is $D^{(3,1^2)}$ of dimension 6.
- All simple FM_{23} -modules have the defect groups of their blocks as vertices. For a suitable labelling, the Green correspondents and the sources of the simple modules belonging to B_1 and B_4 , respectively, have the following Loewy structures:

block	B_1							
module	$D(1)_{23}$	$D(22)_{23}$	$D(104)_{23}$	$D(104)_{23}^*$	$D(253)_{23}$	$D(770)_{23}$	$D(770)_{23}^*$	
Green	F	13	$\begin{bmatrix} 1_4 \\ 2_3 \\ 2_1 \end{bmatrix}$	$\begin{bmatrix} 2_1 \\ 2_2 \\ 1_4 \end{bmatrix}$	1_2	2_2	2_3	
source	F	F	$\begin{bmatrix} F \\ F F \\ F F \end{bmatrix}$	$\begin{bmatrix} F & F \\ F & F \\ F \end{bmatrix}$	F	F	F	

block	B_4
module	$D(231)_{23}$
Green	$\operatorname{Inf}_{C}^{N_{M_{23}}(C)}(D^{(3,1^2)})$

- standard generators of M_{23} : a := (1,19)(2,23)(3,15)(4,5)(8,16)(9,18)(12,17)(20,22), b := (1,7,16,14)(2,4,6,19)(3,17,13,23)(5,21)(9,20)(10,12,18,11)
- representative for conjugacy class 11A: abababababababababababab
- representative for conjugacy class 23A: $(ab)^5$

module	conj. class	modular char. value	Brauer char.
$D(104)_{23}$	11A	0	$arphi_6$
$D(770)_{23}$	23A	0	$arphi_{10}$

Hence, for the simple modules belonging to \mathcal{B}_1 we get:

$$D(1)_{23} = F \leftrightarrow \varphi_1, \quad D(22)_{23} \leftrightarrow \varphi_2, \qquad D(104)_{23} \leftrightarrow \varphi_6, \quad D(104)_{23}^* \leftrightarrow \varphi_5, D(253)_{23} \leftrightarrow \varphi_8, \qquad D(770)_{23} \leftrightarrow \varphi_{10}, \quad D(770)_{23}^* \leftrightarrow \varphi_9,$$

and the simple module $D(231)_{23}$ belonging to B_4 has Brauer character φ_7 .