M_{24} in characteristic 3

- FM_{24} has six blocks: the principal block B_1 of defect 3 with extraspecial defect groups of exponent 3, the blocks B_2 , $B_3 = B_2^*$, B_4 , B_5 of defect 1, and B_6 of defect 0.
- $P \in \text{Syl}_3(M_{24})$; $N_{M_{24}}(P)$ has order 216, and $N_{M_{24}}(P)/P$ is isomorphic to the dihedral group of order 8. The simple $FN_{M_{24}}(P)$ -modules are denoted by $1_1 = F$, 1_2 , 1_3 , 1_4 , 2, according to their dimensions.
- $C_{3,1}$ denotes a common defect group of the blocks B_2 , B_3 and B_5 . Then $N_{M_{24}}(C_{3,1}) \cong L_2(7) \times \mathfrak{S}_3$. Identifying both groups via this isomorphism, the simple $FN_{M_{24}}(C_{3,1})$ -modules can be denoted as $F = 1_1 \boxtimes F$, $F \boxtimes \operatorname{sgn}$, $3_1 \boxtimes F$, $3_2 \boxtimes F$, $3_1 \boxtimes \operatorname{sgn}$, $3_2 \boxtimes \operatorname{sgn}$, $6_1 \boxtimes F$, $6_1 \boxtimes \operatorname{sgn}$, $7_1 \boxtimes F$, $7_1 \boxtimes \operatorname{sgn}$. Here, sgn denotes the alternating $F\mathfrak{S}_3$ -module $D^{(2,1)}$.
- $C_{3,2}$ denotes a defect group of the block B_4 ; $N_{M_{24}}(C_{3,2})$ is isomorphic to an extension $3.\mathfrak{S}_6$. There are two projective simple $FN_{M_{24}}(C_{3,2})$ -modules, namely the inflations of the simple $F\mathfrak{S}_6$ -modules $D^{(4,2)}$ and $D^{(2^2,1^2)} = D^{(4,2)} \otimes \mathbf{sgn}$ both of which have dimension 9.
- Apart from the simple module $D(483)_{24}$ belonging to B_1 , all simple FM_{24} -modules have the defect groups of their blocks as vertices.
- The module $D(483)_{24}$ has a vertex Q whose normalizer $N_{M_{24}}(Q)$ is isomorphic to $\operatorname{Aut}(M_9)$, that is to a split extension $M_9:\mathfrak{S}_3$. Moreover, $N_{M_{24}}(Q)/Q \cong \operatorname{GL}(2,3)$ which is one of the double covers of \mathfrak{S}_4 . There are two projective simple $F[N_{M_{24}}(Q)/Q]$ -modules, namely the inflation 3_1 of the simple $F\mathfrak{S}_4$ -module $D^{(3,1)}$, and the inflation 3_2 of the simple $F\mathfrak{S}_4$ -module $D^{(2,1^2)}$. Both of these have dimension 3.
- For a suitable labelling, the Green correspondents and the sources of the simple FM_{24} modules belonging to the blocks of positive defect have the following Loewy structures:

block	B_1						
module	$D(1)_{24}$	$D(22)_{24}$	$D(231)_{24}$	$D(770)_{24}$	$D(770)_{24}^*$	$D(1243)_{24}$	D(483)
Green	F	$\begin{bmatrix} 1_2 \\ 2 \\ 1_2 \end{bmatrix}$	$\begin{bmatrix} 2 \\ 1_1 \ 1_3 \\ 2 \end{bmatrix}$	$\begin{bmatrix} 1_4 \\ 2 \\ 1_3 1_4 \end{bmatrix}$	$\begin{bmatrix} 1_3 & 1_4 \\ 2 \\ 1_4 \end{bmatrix}$	$\begin{bmatrix} 2\\ 1_1 \ 1_2 \ 1_3\\ 2 \ 2\\ 1_3 \ 1_4\\ 2 \ 2\\ 1_1 \ 1_2\\ 2 \end{bmatrix}$	31
source layer dims.	1	1,2,1	1,1,1	1,2,2	2, 2, 1	2, 3, 4, 2, 4, 2, 2	1

block	Ε	B_2	B_3		B_5	
module	$D(45)_{24}$	$D(990)_{24}$	$D(45)_{24}^*$	$D(990)_{24}^*$	$D(1035)_{24}$	$D(2277)_{24}$
Green	$3_1 \boxtimes \mathbf{sgn}$	$3_1 \boxtimes F$	$3_2 \boxtimes \mathbf{sgn}$	$3_2 \boxtimes F$	$6_1 \boxtimes F$	$6_1 \boxtimes \mathbf{sgn}$
source	F	F	F	F	F	F

block	B_4				
module	$D(252)_{24}$	$D(5544)_{24}$			
Green	$Inf_{C_{3,2}}^{N_{M_{24}}(C_{3,2})}(D^{(4,2)})$	$\operatorname{Inf}_{C_{3,2}}^{N_{M_{24}}(C_{3,2})}(D^{(2^2,1^2)})$			
source	F	F			

- standard generators of M_{24} : a := (1,13)(2,20)(3,8)(4,17)(5,14)(6,7)(9,22)(10,18)(11,19)(12,23)(15,24)(16,21), b := (2,13,10)(3,4,14)(5,7,18)(6,19,15)(9,11,22)(17,21,23)
- representative for conjugacy class 23A: ab

module	conj. class	modular char. value	Brauer char.
$D(770)_{24}$	23A	0	$arphi_9$
$D(45)_{24}$	7A	$\mathbb{F}_9.1^5 = 2\mathbb{F}_9.1 = \overline{b7}$	$arphi_3$

Hence, for the simple modules belonging to B_1 we get:

$$D(1)_{24} = F \leftrightarrow \varphi_1, \quad D(22)_{24} \leftrightarrow \varphi_2, \quad D(231)_{24} \leftrightarrow \varphi_5, \quad D(483)_{24} \leftrightarrow \varphi_7,$$

 $D(770)_{24} \leftrightarrow \varphi_9, \quad D(770)_{24}^* \leftrightarrow \varphi_8, \quad D(1243)_{24} \leftrightarrow \varphi_{13},$

and for the simple modules belonging to the remaining blocks of positive defect we get:

B_2	B_3	B_5	B_4
$D(45)_{24} \leftrightarrow \varphi_3$	$D(45)_{24}^* \leftrightarrow \varphi_4$	$D(1035)_{24} \leftrightarrow \varphi_{12}$	$D(252)_{24} \leftrightarrow \varphi_6$
$D(990)_{24} \leftrightarrow \varphi_{10}$	$D(990)_{24}^* \leftrightarrow \varphi_{11}$	$D(2277)_{24} \leftrightarrow \varphi_{14}$	$D(5544)_{24} \leftrightarrow \varphi_{15}$