gens:=[Matrix(GF(3),6,6,[1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1 ]), Matrix(GF(3),6,6,[0, 1, 2, 2, 1, 1, 0, 0, 2, 2, 1, 2, 1, 1, 0, 1, 2, 1, 0, 2, 1, 2, 2, 2, 2, 0, 0, 0, 1, 0, 1, 2, 0, 2, 1, 0 ]), Matrix(GF(3),6,6,[1, 1, 2, 2, 2, 0, 0, 2, 1, 2, 1, 1, 0, 2, 0, 1, 0, 0, 1, 2, 2, 1, 2, 2, 2, 1, 2, 0, 1, 1, 1, 1, 2, 1, 2, 1 ]), Matrix(GF(3),6,6,[1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1 ]), Matrix(GF(3),6,6,[2, 0, 1, 1, 1, 0, 2, 0, 2, 1, 0, 1, 2, 2, 1, 2, 0, 0, 1, 0, 2, 0, 1, 2, 2, 1, 2, 1, 2, 1, 0, 0, 0, 0, 0, 1 ]) ]; NC31:=PermutationGroup<24|(1, 3, 10)(2, 15, 21)(4, 16, 17)(5, 14, 18)(6, 19, 7)(8, 11, 13)(9, 23,12)(20, 24, 22),(2, 7, 8)(4, 5, 9)(6, 11, 15)(12, 17, 18)(13, 21, 19)(14, 23, 16),(1, 6, 16)(3, 19, 17)(4, 10, 7)(5, 8, 9)(11, 23, 14)(12, 18, 13), (1, 3)(6, 19)(11, 13)(12, 23)(14, 18)(15, 21)(16, 17)(22, 24),(1, 12, 5, 24, 3, 9, 14, 22, 10, 23, 18, 20)(2, 6, 17, 8, 15, 19, 4, 11, 21,7, 16, 13)>; V1035:=GModule(NC31,gens); print("the Green correspondent V1035 of the simple M24-module D1035 over GF(3) in NC31 (normalizer of vertex C31 in M24), and a permutation representation of NC31 on 24 points");