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April 15, 2015

Abstract

We study the phenomenon of mode-locking in the context of quasiperiodically forced
non-linear circle maps. As a main result, we show that under certain C1-open condition on
the geometry of twist parameter families of such systems, the closure of the union of mode-
locking plateaus has positive measure. In particular, this implies the existence of infinitely
many mode-locking plateaus (open Arnold tongues). The proof builds on multiscale
analysis and parameter exclusion methods in the spirit of Benedicks and Carleson, which
were previously developed for quasiperiodic SL(2,R)-cocycles by Young and Bjerklöv.
The methods apply to a variety of examples, including a forced version of the classical
Arnold circle map.

1 Introduction

The paradigm example for the phenomenon of mode-locking in dynamical systems is the
Arnold circle map

(1.1) fα,τ : T1 → T
1 , x 7→ x+ τ +

α

2π
sin(2πx) mod 1 ,

with non-linearity parameter α ∈ [0, 1] and twist parameter τ ∈ [0, 1]. If Fα,τ : R → R

denotes the canonical lift of fα,τ , then its rotation number is given by

(1.2) ρ(Fα,τ ) = lim
n→∞

(Fn
α,τ (x)− x)/n .

Mode-locking in this context refers to the fact that for certain values of α and τ the
mapping τ ′ 7→ ρ(Fα,τ ′) is locally constant in τ ′ = τ . Maximal parameter intervals with
constant rotation number are called mode-locking plateaus. It is well-known that for
the Arnold circle map and similar parameter families mode-locking is abundant. More
precisely, for all α ∈ (0, 1] the graph of [0, 1] → [0, 1], τ 7→ ρ(Fα,τ ) is a devils staircase,
that is, it is locally constant on an open and dense subset while increasing from 0 to 1 over
the unit interval (e.g. [1, Chapter 11]). As a basic model, this gives an understanding of
mode-locking phenomena occuring in a variety of real-world situations, including damped
pendula and electronic oscillators [2], heart-beat [3] or paradoxical neural behaviour [4, 5].

Generalisations of these results to more complex situations and higher dimension are
certainly highly desirable. However, it turns out that substantial difficulties have to be
overcome in this direction. One particular example that demonstrates well this fact is
the so-called Harper map. It is the real-projective action of a quasiperiodic SL(2,R)-
cocycle associated to the almost-Mathieu operator, a discrete 1D Schrödinger operator
with quasiperiodic potential [6, 7, 8]. Due to an intimate relation between orbits of the
Harper map and formal eigenfunctions of the almost-Mathieu operator, a fruitful blend
of methods from spectral theory, harmonic analysis and dynamical systems can be used
to analyse this model. Nevertheless, it has taken decades before the existence of a devil’s
staircase had been established for all parameters in several steps [9, 10, 11].

Here, our aim is to show abundance of mode-locking, in a slightly weaker sense than
above, for more general, non-linear quasiperiodically forced (qpf) circle diffeomorphisms.
These are skew product diffeomorphisms of the form

(1.3) f : T2 → T
2 , (θ, x) 7→ (θ + ω, fθ(x)) ,
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where ω ∈ R \Q and all fibre maps fθ : T1 → T1 are circle diffeomorphisms. In addition,
we require f to be homotopic to the identity and denote the class of such maps by Fω,
where ω refers to the rotation number on the base. The Harper map mentioned above fits
into this setting, although the particular linear-projective structure makes it quite special.
In the genuinely non-linear case, much fewer techniques are available for the investigation
of such systems, and the theory is far less developed in general.

Yet, there is one well-established method of choice for the analysis of qpf circle diffeo-
morphisms in the hyperbolic regime – characterised by non-vanishing Lyapunov exponents
– which is multiscale analysis and parameter exclusion in the spirit of Benedicks and Car-
leson [12]. In the above context, it was first developed by Young [13] and Bjerklöv [14, 15]
for the linear-projective case and later adapted to non-linear systems in [16, 17]. Origi-
nally, this method was used to show the non-uniform hyperbolicity of certain quasiperi-
odic SL(2,R)-cocycles [13, 14], which corresponds to the existence of strange non-chaotic
attractors in the general case.

The principle goal of the present article is to develop this approach further, and to
show how it can be applied to the problem of mode-locking. The trick which does this is
a somewhat twisted argument. In a first step, parameter exclusion is used to identity a
large set of parameters for which the dynamics are non-uniformly hyperbolic and minimal
and no mode-locking occurs. These are ‘good’ parameters in the sense of the multiscale
analysis scheme. In a second step, the information obtained in this process is then used to
show that a small shift allows to change from any of these good parameters to a ‘bad’ one,
previously excluded during the parameter elimination, at which the multiscale analysis
scheme terminates at a finite level and the system becomes uniformly hyperbolic and
mode-locked. As a result, this yields that a large set (in the sense of positive Lebesgue
measure) of parameters with non-uniformly hyperbolic behaviour can be approximated
with mode-locked parameters.

In order to formulate our main result, we denote by Pω the set of C1-parameter families
of qpf circle diffeomorphisms with parameter τ ∈ T1 and rotation number ω on the base,
that is

(1.4) Pω =
{

(fτ )τ∈T1 | fτ ∈ Fω for all τ ∈ T
1 and (τ, θ, x) 7→ fτ (θ, x) is C

1
}

.

Elements of Pω will be denoted by f̂ , that is, f̂ = (fτ )τ∈T1 . Any f ∈ Fω lifts to a
diffeomorphism F of A = T1 × R of the form F (θ, x) = (θ + ω, Fθ(x)), where each fibre
map Fθ : R → R is a lift of the circle diffeomorphism fθ . The fibred rotation number of f
is defined by

(1.5) ρ(f) = lim
n→∞

(Fn
θ (x)− x) /n mod 1 ,

where Fn
θ = Fθ+(n−1)ω ◦ . . . ◦ Fθ. This limit always exists and is independent of θ and x

[6, 7]. Given f̂ ∈ Pω, we let

(1.6) M(f̂) =
{

τ ∈ T
1 | τ ′ 7→ ρ(fτ ′) is locally constant in τ ′ = τ

}

.

In other words, M(f̂) is the union of mode-locking plateaus of f̂ . It is known that on the
set M(f̂) the rotation number only takes values in the module Q+ ωQ [18].

An f -invariant graph is the graph of a measurable function ϕ : T1 → T1 which satisfies

(1.7) fθ(ϕ(θ)) = ϕ(θ + ω) .

Hereby, we will identify invariant graphs which coincide Lebesgue-almost surely and im-
plicitly speak of equivalence classes. The (vertical) Lyapunov exponent of an invariant
graph is given by

(1.8) λ(ϕ) =

∫

T1

log
∣

∣f ′
θ(ϕ(θ))

∣

∣ dθ .

If an invariant graph is non-continuous, meaning that there is no continuous representative
in the equivalence class, and has negative Lyapunov exponent, then it is called a strange
non-chaotic attractor (SNA) [19, 20].
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Theorem 1.1. Suppose ω is Diophantine and δ > 0. Then there exists a C1-open set

U = U(ω, δ) ⊆ Pω such that for all (fτ )τ∈T1 ∈ U there is a set Λf̂ ⊆ T1 of Lebesgue
measure ≥ 1− δ with the properties that

(i) for all τ ∈ Λf̂ , the map fτ has a (unique) SNA and the dynamics of fτ are
minimal;

(ii) Λf̂ ⊆ ∂M(f̂).

For a suitable C1-open set U ⊆ Pω, the existence of a set Λf̂ with property (i) has
already been established in [21]. Hence, the crucial point here is to show that this set
from [21] is contained in the boundary of the union of mode-locking plateaus. The proof
is based on the above-mentioned multiscale analysis scheme from [13, 14, 16].

We note that (ii) implies the existence of infinitely many open mode-locking plateaus.
Yet, at the same time these only take a very small proportion of the parameter space, since

the set Λf̂ already accounts for measure 1− δ. This agrees with the fact that an apparent
‘vanishing’ of the mode-locking plateaus, coming along with the occurrence of SNA, has
been reported in numerical studies [22, 23]. (However, it must be emphasized that it
was left open by the authors whether or not this observation is a numerical artifact.)
The explanation prompted by Theorem 1.1 is that the majority of mode-locking plateaus
persist, but simply become too small to be detected numerically. The collapse of single
plateaus has been described in [16], in contrast to the situation for the unforced Arnold
circle map.

The main aim of the present work is to show how multiscale analysis methods can be
applied to mode-locking problems in the non-linear setting. We believe that it is possible
to go further in this direction and to combine the presented arguments with recent work
by Bjerklöv [24], who extends the multiscale analysis of [14, 15] to all parameters, in
order to prove the existence of a devil’s staircase under similar conditions as above. For
the special case of quasiperiodic Schrödinger cocycles with C2-potential, such a result has
been announced recently by Wang and Zhang [25, 26]. In this setting, however, results
on mode-locking have also been established earlier by different methods (Ten Martini
Problem, [9, 10, 11]).

The set U in Theorem 1.1 is characterised explicitely by a number of C1-estimates,
which are stated in Section 3. This is important in the context of applications, since it
allows to check whether a given parameter family belongs to the set U or not. Thus, it
can be shown that the assertions of the theorem hold for specific examples.

Examples 1.2. (a) First, the above statement can easily be applied to parameter
families of additively forced circle diffeomorphisms of the form

(1.9) fτ (θ, x) = (θ + ω, h(x) + τ + V (θ)) ,

provided the circle diffeomorphism h : T1 → T1 and the forcing function V : T1 →
T1 have suitable geometric properties. In order to give some explicit examples,
suppose p ≥ 2, let ap(x) =

∫ x

0
1/(1 + |ξ|p) dξ and

hα(x) = π

(

ap(αι(x))

2ap(α/2)

)

where α ≥ 1, ι : T1 → (−1/2, 1/2] is the lift of the identity map on T1 and
π : (−1/2, 1/2] → T1 is the canonical projection. Further, assume that V is
such that for all but finitely many x ∈ T1 the set V −1({x}) consists of exactly
two points θ1 and θ2 and we have V ′(θ1) < 0 and V ′(θ2) > 0. Note that for
p = 2 we have ap(x) = arctan(x), and V (θ) = cos(2πθ) is a possible choice of
V . In this case, fτ is the projective action of the quasiperiodic SL(2,R)-cocycle

(θ, v) 7→ (θ + ω,A(θ) · v) with A(θ) = RV (θ)+τ ·

(

α1/2 0

0 α−1/2

)

, where Rϑ

is the rotation matrix with angle ϑ. Yet, for other values of p no such cocycle
representation is available.

If ω is Diophantine and α is chosen sufficiently large, then the parameter family
fτ (θ, x) = (θ + ω,hα(x) + τ + V (θ) belongs to the set U in Theorem 1.1, which
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will be explicitely characterised in Section 3 below. The details are easy to check,
see [16, Section 3.8] (compare also [21, Corollary 1.2]). Thus, in this case (fτ )τ∈T1

satisfies the assertions of Theorem 1.1.

(b) The presented methods and results can also be applied to the quasiperiodically
forced version of the Arnold circle map given in (1.1), with a suitable forcing
function like Vβ(θ) = arctan(β sin(2πθ))π with large β > 0. Strictly speaking,
some modifications are needed to include this case. This results from the fact that
the Arnold circle map does not show arbitrarily strong expansion, which we work
with in our proofs below. However, this can be made up for by requiring a special
shape of the forcing function, translating into a largeness assumption on β above.

The required modifications have been carried out in detail in [16, 21], and it is on
the level of an advanced exercise to implement them as well for our setting. As a
result, one obtains that in the parameter family fτ (θ, x) = (θ+ω,hα,τ (x)+Vβ(θ))
the boundary of M(f̂) has positive measure, provided ω is Diophantine, α ∈ (0, 1)
and β > 0 is sufficiently large. We note that due to the different geometry, the
measure of ∂M(f̂) cannot be ensured to be close to 1 in this case (compare [16]).

(c) The most prominent example of a quasiperiodically forced system is probably the
so-called Harper map, which is induced real-projective action of the quasiperiodic
Schrödinger cocycle associated to the almost-Mathieu operator. It takes the form

fτ (θ, x) =

(

θ + ω,
1

π
arctan

(

−1

tan(πx)− τ + λ cos(2πθ)

)

mod 1

)

.

Again, a slight modification of our methods would allow to treat this example for
large coupling parameters λ > 0. However, as mentioned above, stronger results
are available for this special case [11, 26], so we refrain from providing any details.

Acknowledgements. JW has been supported by a research fellowship of the Alexander-
Humboldt-Foundation. TJ has received support of the German Research Council (Emmy-
Noether grant Ja 1721/2-1 and Heisenberg-Fellowship Oe 538/7-1). The first ideas for
this project have been developed during the International conference on Hamiltonian
dynamcs, Nanjing 2011, and the authors would like to thank the organisers for creating
the opportunity and Hakan Eliasson for a helpful discussion.

2 Review of the multiscale analysis and outline of the proof

2.1 Multiscale analysis of qpf circle maps. The aim of this section is to give
an outline of the proof of Theorem 1.1, in order to provide some guidance through the
technically rather involved later sections and to render these more accessible. To that end,
we first need to give a brief description of the multiscale analysis established in [16, 21],
on which our construction builds. As mentioned, the main result in [21] is the existence

of a C1-open set U ⊆ Pω such that for all f̂ ∈ U there is a set Λf̂ ⊆ T1 of measure

≥ 1 − δ which satisfies assertion (i) in Theorem 1.1, that is, for each τ ∈ Λf̂ the map
fτ has an SNA and minimal dynamics. The proof hinges on the crucial fact that the
existence of an SNA follows from that of a sink-source orbit, that is, an orbit that has
positive Lyapunov exponent both forwards and backwards in time [16]. In the context
of Schrödinger operators, this corresponds to the existence of an exponentially decaying
eigenfunction [8, 14, 27].

We will work with essentially the same sets U and Λf̂ as in [21], and therefore need to
understand the geometric properties of the parameter families in U and the mechanism

which leads to the existence of sink-source orbits for parameters in Λf̂ . A complete list of
the C1-estimates characterising U and precise versions of the following statements will be
given in the next section. Here, we try to sketch an overall picture in order to give some
intuition. Roughly spoken, the geometry of parameter families in U can be described as
follows. We supress the dependence on the parameter τ , since the respective properties
are supposed to be satisfied uniformly over the parameter range.

(a) There exists a small interval E ⊆ T1 and a large interval C ⊆ T1 such that for all
θ ∈ T1 the fibre maps fθ are expanding on E and contracting on C. This gives
rise to an expanding region T1 × E and a contracting region T1 × C.
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(b) Both these regions are ‘almost invariant’, in the following sense. There is a critical
region I0 ⊆ T1, consisting of two small intervals I10 and I20 , such that for all
θ /∈ I0 the fibre map fθ sends T1 \ E into C. In other words, this means that
π1 ◦

(

f(T1 × Ec) ∩ (T1 ×Cc)
)

⊆ I0 + ω. Equivalently, the inverse (fθ)
−1 maps

T1 \ C into E.

(c) If the parameter τ is varied, the two components I10 and I20 move with respect to
each other with some minimal speed.

(d) The images of I10 × C and I20 × C under f intersect T1 × E ‘transversely’ and
qualitatively look as in Figure 2.1(a).

(e) All fibre maps fθ = fτ,θ are monotone in the parameter τ , that is, ∂τfτ,θ(x) > 0
for all (τ, θ, x) ∈ T3. Here ∂ξ denotes the derivative with respect to a variable ξ.

Using these assumptions, the multiscale analysis in [16, 21] concentrates on a se-
quence of critical sets C0, C1, C2, . . ., which are defined recursively with respect to a super-
exponentially increasing sequence of integers (Mn)n∈N0

(time scales) in the following way.

An := {(θ, x) | θ ∈ In − (Mn − 1)ω, x ∈ C} ,(2.1)

Bn := {(θ, x) | θ ∈ In + (Mn + 1)ω, x ∈ E} ,(2.2)

Cn := fMn−1
τ (An) ∩ f−Mn−1

τ (Bn),(2.3)

In+1 := int(π1(Cn)) .(2.4)

It is important to note that all the above sets and also the time scales Mn implicitely
depend on the parameter τ . We will sometimes make this dependence explicit by writing
In(τ ),Cn(τ ), ect. The projection In of Cn−1 will be called the n-th critical region of fτ .
In general, not much can be said about the critical sets and critical regions. However,

it turns out that for a large set of parameters Λf̂
n it is possible to obtain a very precise

control up to stage n of the construction. These sets Λf̂
n are defined by the validity of the

following slow-recurrence conditions for the critical regions of fτ .

(X )n d(Ij ,Xj) > 3εj ∀j = 0, . . . , n, and

(Y)n d((Ij − (Mj − 1)ω) ∪ (Ij + (Mj + 1)ω),Yj−1) > 0 ∀j = 1, . . . , n ,

where

Xn =

2KnMn
⋃

l=1

(In + lω) ,(2.5)

Yn =
n
⋃

j=0

Mj+2
⋃

l=−Mj

(Ij + lω) ,(2.6)

with (Kn)n∈N an exponentially increasing sequence of integers and (εn)n∈N a sequence of
positive numbers decreasing to zero super-exponentially. We have

(2.7) Λf̂
n =

{

τ ∈ T
1 | conditions (X )n and (Y)n are satisfied for the map fτ

}

.

The conditions (X )n and (Y)n play a central role in the construction (as in previous
work in [14, 28, 16, 21]). The reason is that if (X )n and (Y)n hold, then a number of rather
straightforward and mainly combinatorial arguments allow to establish the following facts
concerning the geometry of the first n+ 1 critical sets and regions.

(i) The critical sets are nested and non-empty, that is, C1 ⊇, . . . ,⊇ Cn+1 6= ∅.

(ii) For all j = 1, . . . , n + 1 the critical region Ij consists of exactly two intervals I1j
and I2j , each of which has length ≤ εj .

(iii) If we denote by Aι
j = (Iιj − (Mj − 1)ω) × C and Bι

j = (Iιj + (Mj + 1)ω) × E
with ι = 1, 2 the two connected components of Aj and Bj , then the intersections
fMj (Aι

j) ∩ f−Mj (Bι
j) are ‘transversal’ and qualitatively look as in Figure 2.1(a),

but the size of the involved sets decreases super-exponentially.
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(iv) If the parameter τ is varied, then the two components I1j and I2j move relative to
each other with a certain minimal speed.

(v) For any starting point (θ, x) ∈ cl(Cn), the first Mn forwards iterates remain in
the expanding region ‘most of the time’, whereas the first Mn backwards iterates
mostly remain in the contracting region.

Based on the above statements, the existence of sink-source orbits can be established

rather easily. Since all the Λf̂
n are large, the same is true for the intersection Λf̂ =

⋂

n∈N
Λf̂

n. Given τ ∈ Λf̂ , the intersection C =
⋂

n∈N
cl(Cn) is non-empty due to (i), and it

follows from (v) that any orbit starting in C is a sink-source orbit.
The crucial issue in the above statements is the qualitative description of the geometry

of the intersections fMj (Aι
j) ∩ f−Mj (Bι

j) in (iii). For the first stage of the construction,
this is quite plausible from the above assumptions (a)–(e). If M0 is chosen such that
I0 + kω ∩ I0 = ∅ for all k = −M0 + 1, . . . ,−1, then due to (b) the iterates fk(Aι

0) of
Aι

0 all remain in the contracting region T1 × C. Consequently, the image fM0−1(Aι
0) is

a ‘strip’ contained in Iι0 × C, which is very thin and more or less horizontal due to the
contraction insides T1 × C. A more precise version of condition (d) then ensures that
the next image fM0(Aι

0) is a thin strip with more or less uniform slope, slanted either
upwards or downwards. A similar argument yields that the preimage f−M0(Bι

0) is a very
thin horizontal strip, and the two sets intersect as depicted in Figure 2.1(a). The main
issue in [16, 21] is to ensure that for most parameters, this qualitative picture remains
valid on all levels of the construction. This is achieved by showing that the iterates fk(Aι

n)
with k = 1, . . . ,Mn − 1 remain in T1 × C at least most of the times, even if they may
visit the critical parts I0×T1 of the phase space and thus leave the contracting region for
short periods. We refer to [21, Section 4.1] for a more detailed description of these ideas.

2.2 Outline of the proof. The proof of Theorem 1.1 directly builds upon this multi-

scale analysis. However, the task is now quite different. Since the existence of the set Λf̂

of ‘good parameters’ with measure ≥ 1− δ has already been established in [21], we may
assume a priori that this set exists, satisfies assertion (i) of Theorem 1.1 and moreover the

recurrence conditions (X )n and (Y)n hold for all τ0 ∈ Λf̂ . The aim is then to prove that
an arbitrarily small perturbation of τ0 allows to find a nearby parameter τ for which fτ
displays mode-locking. The crucial observation in this context is the fact that if Cn = ∅
for some n ∈ N, then fτ has an attracting continuous invariant curve and consequently its
rotation number is mode-locked. This is stated in Proposition 4.7 below. Hence, what we

need to show is that an arbitrarily small shift of a parameter τ0 ∈ Λf̂ allows to render the
intersection Cn empty for some n ∈ N, while at the same time keeping the slow-recurrence
conditions (X )n−1 and (Y)n.

In order to achieve this goal, we first perturb the parameter τ0 in such a way that
the slow recurrence conditions (X )n−1 and (Y)n still hold, but there is a fast return of
In to itself. More precisely, the control on the parameter-dependence of the critical sets
obtained in [21] is used to shift τ0 in such a way that I1n + kω ∩ I2n 6= ∅ for some relatively
small k ≥ 0. For the second component of Cn, on which we concentrate now, this implies
that when A2

n = (I2n − (Mn − 1)ω)×C is iterated forwards, it passes through the critical
region I1n × T1 before it approaches I2n × T1 to intersect with the Mn-th preimage of
B2

n = (I2n + (Mn + 1)ω).
This results in a drastic change in the geometry of the resulting image fMn(A2

n), and
qualitatively the situation then looks as in Figure 2.1(b). The set fMn(A2

n) now has two
‘hooks’, and the vertical extension of the gap between these hooks is greater than that of
f−Mn(B2

n). A more detailed explanation for this behaviour is difficult to give at this stage,
but will be provided in Section 5 (see Figures 5.1 and 5.2). Moreover, when the parameter
τ is varied further, the hooks move both horizontally and, more importantly, also vertically
with τ , whereas the set f−Mn (B2

n) remains more or less stable. As a consequence, for some
parameters τ the involved sets have to reach a position where their intersection remains
empty, as shown in Figure 2.1(c). A similar picture holds simultaneously for the first
component fMn(A1

n) ∩ f−Mn(B1
n), thus showing that Cn = ∅ for some τ close to τ0. As

mentioned above, this will allow to complete the proof of Theorem 1.1 via Proposition 4.7.
For the rigorous implementation of this proof, the major task will be to describe

the geometry and parameter-dependence of the set fMn(An). Instead of trying to define
precisely what it means to be ‘hook-shaped’, we show that fMn(Aι

n)∩(T
1×E) is contained



Aboundance of mode-locking in qpf circle maps 7

�
�
�
�
�
�

�
�
�
�
�
�

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

������
������
������
������
������
������

������
������
������
������
������
������

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

��
��
��
��
��
��
��

��
��
��
��
��
��
��

����
����
����
����
����
����
����

����
����
����
����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

f−Mn(An) f−Mn(An)

f−Mn(An)

f−Mn(Bn) f−Mn(Bn) f−Mn(Bn)

Cn Cn f−Mn(An)

(a) (b) (c)

Figure 2.1: The geometry of the critical sets Cn+1 in the multiscale analysis: (a) in the standard
setting and (b) and (c) in the case of fast returns. Note that the two ‘hooks’ of fMn (A1

n) are
connected to each other as the set wraps once around the torus, but this is not depicted.

in the disjoint union of certain polygons L and R. We provide quantitative estimates on
the shape and position of these sets which imply that the preimage f−Mn(Bι

n), which is
a thin and more or less horizontal strip contained in T1 × E, cannot intersect both of
them at the same time. Moreover, we show that by moving τ it is possible to force an
intersection with L at one parameter near τ0 and with R at another one, which implies
that for some intermediate parameter there is no intersection with either of them.

The precise quantitative version of our main result, including the explicit character-
isation of the set U in terms of C1-estimates, is given in the next section. Section 4
collects some further information and statements on the multiscale analysis scheme from
[16, 21, 17]. In Section 5, we state the properties and quantitative estimates for the poly-
gons L and R containing fMn(Aι

n) and on f−Mn (Bι
n) and show how these statements

imply the main result. The proofs of these estimates are then given in Section 6.

3 Quantitative version of the main result

We first state the precise conditions on the geometry of the considered parameters families,
which were only circumscribed in the previous section.

I. Diophantine condition. We say ω ∈ T1 satisfies the Diophantine condition with con-
stants γ and ν if

(3.1) d(nω, 0) > γ · |n|−ν ∀n ∈ Z \ {0} .

By D(γ, ν), we denote the set of ω ∈ T1 which satisfy (3.1).

II. Critical regions. Let E = [e−, e+] and C = [c−, c+] be two non-empty, compact and
disjoint subintervals of T1. We assume that for all τ ∈ T1 there exists a set I0(τ ) ⊆ T1

which is the union of two disjoint open intervals I10 (τ ), I
2
0 (τ ) and satisfies

(A1) fτ,θ(cl(T
1 \E)) ⊆ int(C) ∀θ /∈ I0(τ ) .

Note that this implies

(A1′) f−1
τ,θ (cl(T

1 \ C)) ⊆ int(E) ∀θ /∈ I0(τ ) + ω .

III. Bounds on the derivatives. Concerning the derivatives of the fibre maps fτ,θ, we
assume that for some α > 1 and p ≥ 2 we have

(A2) α−p < ∂xfτ,θ(x) < αp ∀(θ, x) ∈ T
2 ;
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(A3) ∂xfτ,θ(x) > α2/p ∀(θ, x) ∈ T
1 ×E ;

(A4) ∂xfτ,θ(x) < α−2/p ∀(θ, x) ∈ T
1 × C .

Further, we fix S > 0 such that

(A5) |∂θfτ,θ(x)| < S ∀(θ, x) ∈ T
2 .

IV. Transversal Intersections. The following condition ensures that the image of Iι0(τ )×C
crosses (Iι0(τ ) + ω)×E exactly once and not several times.

(A6)
∃!θ1ι ∈ Iι0(τ ) with fτ,θ1ι (c

+) = e− and

∃!θ2ι ∈ Iι0(τ ) with fτ,θ2ι (c
−) = e+ .

The slope of f(Iι0(τ )×C) is controlled by

(A7)

{

∂θfτ,θ(x) < −s ∀(θ, x) ∈ I10 (τ )× T1

∂θfτ,θ(x) > s ∀(θ, x) ∈ I20 (τ )× T1 ,

where s is a constant with 0 < s < S. Note that thus f(Iι0(τ )×C) crosses (Iι0(τ )+ω)×E
‘downwards’ if ι = 1 and ‘upwards’, as in Figure 2.1(a), if ι = 2.

V. Dependence on τ . First, we assume that fτ,θ(x) is monotonically increasing with
respect to τ , and we fix upper and lower bounds L, ℓ > 0 on ∂τfτ,θ(x), that is,

(A8) ℓ < ∂τfτ,θ(x) < L ∀(θ, x) ∈ T
2 .

Writing Iι0(τ ) = (aι
0(τ ), b

ι
0(τ )) for ι = 1, 2, we further assume that the functions aι

0, b
ι
0 are

continuously differentiable with respect to τ . Then we assume

(A9) inf
τ∈T1

(

min{∂τa
1
0(τ ), ∂τ b

1
0(τ )} −max{∂τa

2
0(τ ), ∂τb

2
0(τ )}

)

> ℓ/S .

This ensures that the two components of I0 ‘move relative to each other’ with minimal
speed ℓ/S. Finally, by increasing L further if necessary, we can assume that

(A10) sup
τ∈T1

max{|∂τa
1
0(τ )|, |∂τ b

1
0(τ )|, |∂τa

2
0(τ )|, |∂τb

2
0(τ )|} < 2L/s .

Given A ⊆ T1, we denote by |A| the Lebesgue measure of A. In particular, if A is an
interval, then |A| is simply its length. The quantitative version of Theorem 1.1, with an
explicit characterisation of the set U , now reads as follows.

Theorem 3.1. Let ω ∈ D(γ, ν), δ > 0 and suppose f̂ ∈ Pω satisfies the conditions
(A1)– (A10) above. Let ε0 = supτ∈T1 max

{

|I10 (τ )|, |I
2
0 (τ )|

}

.
Then there exist contants α∗ = α∗(δ, γ, ν, p, S, s, ℓ, L) > 0 and ε∗ = ε∗(δ, γ, ν, p, S, s, ℓ, L)

such that if α > α∗ and ε0 < ε∗, then there exists a set Λf̂ ⊆ T1 of measure at least 1− δ
with the property that

(i) for all τ ∈ Λf̂ , the map fτ has a (unique) SNA and the dynamics of fτ are
minimal;

(ii) Λf̂ ⊆ ∂M(f̂).

Note that since the above conditions (A1)–(A10) are all C1-open, this directly implies
Theorem 1.1.

4 Preliminaries on the multiscale analysis

As mentioned before, the existence of SNA and the minimality of the dynamics in The-
orems 1.1 and 3.1 are already contained in [16, 21]. However, in order to build on these
results, we need restate them in a precise way and provide some additional quantitative
information. In particular, this concerns the slow recurrence conditions (X )n and (Y)n,
which are replaced by the following stronger versions.

(X ′)n d(Ij ,Xj) > 9εj ∀j = 0, . . . , n,

(Y ′)n d((Ij − (Mj − 1)ω) ∪ (Ij + (Mj + 1)ω),Yj−1) > 2εj−1 ∀j = 1, . . . , n .

With these notions, we can restate [21, Theorem 3.1] as follows. The information on the
sequences (Kj)j∈N, (Mj)j∈N and (εj)j∈N is taken from the proof of this theorem.
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Theorem 4.1 ([21]). Let ω ∈ D(γ, ν), δ > 0 and suppose f̂ ∈ Pω satisfies the conditions
(A1)–(A10) above. Let ε0 = supτ∈T1 max{|I10 (τ )|, |I

2
0 (τ )|}. Then there exist constants α′

∗

and ε′∗, both depending on the constants δ, γ, ν, p, S, s, ℓ, L above, with the property that if

α > α′
∗ and ε0 < ε′∗, then there exists a set Λf̂ ⊆ T1 of measure at least 1 − δ such that

for all τ ∈ Λf̂ the map fτ has an SNA and minimal dynamics.

Further, for each τ ∈ Λf̂ there exist sequences (Kj)j∈N, (Mj)j∈N and (εj)j∈N such that
for all n ∈ N the critical regions In defined in (2.1)– (2.4) satisfy the slow-recurrence
assumptions (X ′)n and (Y ′)n and in addition

(4.1) max{|I1n|, |I
2
n|} ≤ εn .

Moreover, the above sequences can be chosen such that M0 = 3, Kj = 2j+t+2 for some
t ≥ 4 which satisfies

(4.2) 2−t ≤ log

(

p2 + 2

p2 + 1

)

,

and for all j ∈ N0 we have

Mj+1 ∈
[

αMj/2pq , 2αMj/pq
]

,(4.3)

εj+1 ∈ [2α−Mj/p/s, 2α−Mj/2p/s] ,(4.4)

where q = max{8, 4ν}.

Remark 4.2. We note that there are actually two small modifications in Theorem 4.1
in comparison to [21, Theorem 3.1].

The first is just the correction of an unfortunate typo. In the statement of (Y ′)n on
[21, Page 1488], the given lower bound is 2εj instead of 2εj−1. However, it can be seen
from estimate (4.21) in [21, Lemma 4.7] and its use in the proof of [21, Lemma 4.9] that
all the respective statements hold with a lower bound of 2εj−1.

The second modification concerns the definition of Yn in (Y)n, where the index l in the
union on the right runs from −Mj to Mj +2, instead of only from −Mj +1 to Mj +1 as
in the respective definition in [21]. This is an adaption that we need to make for technical
reasons. However, this difference does not have any influence on the proofs in [21], which
go through in literally the same way, so that the result remains valid in the above form.

The statement of Theorem 4.1 provides the basis for our further analysis. In addition
we will need a number of technical lemmas which allow to control the behaviour of orbits
of finite length on time-scales corresponding to the slow-recurrence conditions (X )n and
(Y)n. The philosophy of these statements is the following. Suppose (θ0, x0) ∈ T1×C and
let (θn, xn) = fn

τ (θ0, x0). Then the almost invariance of the contracting region, given by
(A1), implies that xn ∈ C as long as θj /∈ I0 for all j = 0, . . . , n− 1. Thus, an orbit that
starts in the contracting region will stay there as long as its θ-coordinate stays away from
the critical region I0. The key observation on which the whole multiscale analysis hinges
is the fact that even for longer orbits, whose first coordinates do visit the critical regions,
a similar statement nevertheless holds at least ‘most of the times’. In order to make this
precise, let

(4.5) V−
n =

n
⋃

j=0

0
⋃

l=−Mj+2

(Ij + lω) and W+
n :=

n
⋃

j=0

Mj+1
⋃

l=1

(Ij + lω)

Then we have

Lemma 4.3 ([17, Lemma 4.4], Forwards Iteration). Suppose fτ satisfies (A1) and (Y)n−1

holds. Let L ≥ 0 be the first integer such that θL ∈ In. Then

(B1)n

{

θ0 /∈ V−
n−1

x0 /∈ int(E)

implies that

(C1)n θm /∈ W+
n−1 ⇒ xm ∈ int(C) ∀m = 1, . . . ,L .
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We note that in [17] the lemma is stated under the additional assumption that (X )n−1

holds as well, but this is actually not needed and is not used in the proof. The same applies
to Lemma 4.4 below.

It can be seen from (4.1)–(4.4) that for large α the exceptional sets V−
n and W+

n are
very small. Hence, an orbit starting in (T1 \ V−

n ) × C typically remains trapped in the
contracting region most of the time, until it enters In+1 × C. A similar statement holds
for the backwards iteration. Let

(4.6) V+
n =

n
⋃

j=0

Mj
⋃

l=1

(Ij + lω) and W−
n =

n
⋃

j=0

0
⋃

l=−Mj+1

(Ij + lω) .

Lemma 4.4 ([17, Lemma 4.4], Backwards Iteration). Suppose fτ satisfies (A1) and
(Y)n−1 holds. Let R ≥ 0 be the first integer such that θ−R ∈ In + ω. Then

(B2)n

{

θ0 /∈ V+
n−1

x0 /∈ int(C)
,

implies

(C2)n θ−m /∈ W−
n−1 ⇒ x−m ∈ int(E) ∀m = 1, . . . ,R .

It should be emphasized here that the above two statements are purely combinatorial
in nature, and only rely on the almost invariance of the contracting and expanding region
given by (A1). If they are combined with quantitative estimates on the derivates like
in (A2)–(A7), they can be used to obtain a wealth of further information on finite-time
Lyapunov exponents or the geometry of iterates of suitable small curves or sets. The basis
of such a quantified analysis are suitable estimates on the proportion of time spent in the
contracting or expanding region. To that end, given τ, θ0, x0 and 0 ≤ m ≤ N , let

PN
m = #{l ∈ [m,N − 1] : xl ∈ C} ,(4.7)

QN
m = #{l ∈ [m,N − 1] : x−l ∈ E} .(4.8)

Further, let β0 = 1 and βn =
∏n−1

j=0 (1−K−1
j ). Note that due to the choice of the Kj in

Theorem 4.1 and (4.2), we have

(4.9)
2

p
βn − (1− βn)p ≥

1

p

for all n ∈ N. Lemmas 4.3 and 4.4 now lead to the following quantitative estimates.

Lemma 4.5 ([17, Lemma 4.6]). Suppose fτ satisfies (A1) and conditions (X )n−1 and
(Y)n−1 hold. Let 0 < L1 < L2 < . . . < LJ = L denote all those times Li ≤ L for which
θLi ∈ In−1. Further, assume that (B1)n holds. Then for each j = 1, . . . , J, we have

(4.10) P
Lj
m ≥ βn(Lj −m) ∀m = 0, . . . , Lj − 1.

Further xLj ∈ C, ∀j = 1, . . . , J.
Similarly, let 0 < R1 < . . . < RJ = R denote are all those times Ri ≤ R for which

θ−Ri ∈ In−1 + ω. Then for each j = 1, . . . , J, we have

(4.11) Q
Rj
m ≥ βn(Rj −m) ∀m = 0, . . . , Rj − 1.

Further x−Rj ∈ E, ∀j = 1, . . . , J.

These estimates can be used to obtain precise control on the size and parameter
dependence of the critical intervals.

Proposition 4.6 ([16, Proposition 3.11] and [21, Lemma 4.5]). Suppose f̂ ∈ Pω satisfies
(A1)-(A10), (X )n−1, (Y)n−1 hold for some n ≥ 1 and α is sufficiently large. Then the
two connected components of In(τ ), denoted as Iιn(τ ) = (aι

n(τ ), bιn(τ )), ι = 1, 2, are
differentiable in τ . Further, we have

(4.12) |Iιn(τ )| ≤ εn, ι = 1, 2,

(4.13) min{∂τa
1
n(τ ), ∂τ b

1
n(τ )} −max{∂τa

2
n(τ ), ∂τb

2
n(τ )} > ℓ/S ,

(4.14) |∂τI
ι
n(τ )| ≤ 2L/s, ι = 1, 2,

where |∂τI
ι
n(τ )| = max{|∂τa

ι
n(τ )|, |∂τ b

ι
n(τ )|}, ι = 1, 2.
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Note that for n = 0, the respective estimates hold by assumption.

As a first consequence of the above statements, we obtain that the emptyness of a
critical region implies mode-locking.

Proposition 4.7. The constants α′
∗ and ε′∗ in Theorem 4.1 can be chosen such that if

α > α∗ and ε0 < ε∗, then the following holds.
Let K0, . . . ,Kn be chosen as in Theorem 4.1. Further, suppose that for some τ ∈ T1 the

numbers M0, . . . ,Mn can be chosen such that (4.3) holds for j = 0, . . . , n−1 and conditions
(X )n−1 and (Y)n are satisfied, but Cn = ∅. Then fτ has an attracting continuous invariant
graph. In particular, fτ is mode-locked.

Proof. For convenience, we omit the parameter τ throughout the proof. First, by Propo-
sition 4.6, we have |Iιj | ≤ εj , ι = 1, 2, j = 0, . . . , n. Then by (4.3), (4.4) and (4.5), we
know that W+

n , V−
n are unions of small intervals which satisfy the following estimates

(4.15) Leb(W+
n ) ≤

n
∑

j=0

(Mj + 1)εj < 2M0ε0 +
8

s
·

n
∑

j=1

α−
Mj−1

4p <
1

2(p2 + 2)
,

(4.16) Leb(V−
n ) ≤

n
∑

j=0

Mjεj ≤ M0ε0 +
4

s
·

n
∑

j=1

α
−

Mj−1

4p <
1

4(p2 + 2)
,

for α large and ε0 small. Thus, there must be some interval J ′ ⊆ T1 \ (V−
n ∪W+

n ). We let
J ′ = (a′, b′) and λ = |J ′| > 0. Let J = [a′ + λ/3, b′ − λ/3]. Since ω is irrational, there
must be some K ∈ N such that int(J +Kω)∩ int(J ) 6= ∅ and b′ −λ/3 ∈ int(J +Kω). In
particular, we have J +Kω ⊆ J ′. Since (Y)n holds, In+1 = ∅ and J ∩ (W+ ∪ V−) = ∅,
Lemma 4.3 implies

(4.17) fK(J × C) ⊆ (J +Kω)× C .

Hence, we obtain fK(J ×C) ∩ (J ×C) 6= ∅, and thus

(4.18) f (j+1)K(J × C) ∩ f jK(J ×C) 6= ∅, j = 1, 2, . . .

Moreover, there exists N > 1, such that int(J +NKω)∩ int(J ) 6= ∅, a′ +λ/3 ∈ int(J )+
NKω and a′ +λ/3 /∈ J +(N +1)Kω. Then we have ∪N

j=0(J + jKω) = T1. By the same
reasoning as above, we further have that fNK(J × C) ⊆ (J +NKω)× C, and

(4.19) fNK(J × C) ∩ (J × C) 6= ∅.

Consequently, the set

(4.20) A :=
N
⋃

j=0

f jK(J ×C)

is connected and wraps around the torus in the horizontal direction. In fact, if we assume
N to be minimal with the above property, A horizontally wraps around the torus exactly
once. We now claim that f (N+1)K(J × C) ⊆ (J × C) ∪ fK(J × C), which immediately
implies

(4.21) fK(A) ⊆ A .

The reason is the following. Suppose (θ, x) ∈ f (N+1)K(J ×C). Then since d(Kω, 0) < |J |
and due to the choice of N above, there are two possibilities. On the one hand, we may
have θ ∈ J . In this case, the fact that J ∩ (W+

n ∪ V−
n ) = ∅ implies, via Lemma 4.3,

that (θ, x) ∈ J × C. On the other hand, we may have θ − Kω ∈ J . Then the same
argument yields f−K(θ, x) ∈ J ×C, and thus (θ, x) ∈ fK(J ×C). In both cases, we have
(θ, x) ∈ (J × C) ∪ fK(J × C).

Since W+
n is a finite union of small intervals and ω is irrational, then by Weyl’s

criterion, {θ0 +mω}m∈N is equidistributed in T1 for all θ0 ∈ T1, which means that

(4.22) lim
m→∞

1

m

m−1
∑

j=0

1
W+

n
(θ0 +mω) = Leb(W+

n ).
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Let (θ0, x0) ∈ J × C. Using Lemma 4.3 in combination with (4.22), (A2) and (A4), we
obtain

lim
1

n
log ∂xf

n
θ0 (x0) ≤ (−2/p+ (2/p+ p)Leb(W+

n )) logα
(4.15)

≤ − logα/p .

By the definition of A, it is now easy to show that all points in A have negative vertical
Lyapunov exponents. By [29, Corollary 1.15], this implies that the compact invariant
set

⋂

n∈N
fnK(A) is the graph of a continuous curve with negative vertical Lyapunov

exponent. Since this implies mode-locking [18], the proof is complete.

One task which will frequently come up in the proof of the main theorem is to con-
trol the geometry of small arcs whose iterates remain in the contracting region (resp.
expanding region) most of the time. The following statements cover all these situations.

Lemma 4.8 (Forwards Iteration). Suppose fτ satisfies assumptions (A1), (A2), (A4),
(A5), (A7) and the slow recurrence conditions (X )n−1 and (Y)n−1 hold. Let I ⊂ T1 be
an interval and N ≥ 1. Then, if α is sufficiently large and ε0 is sufficiently small, the
following are true.

If φ1 : I → T1 \ int(E) is a C1-curve and

(D1)n







I ∩ V−
n−1 = ∅,

I +Nω ⊂ In−1,
(I + lω) ∩ In = ∅, ∀ l = 0, 1, . . . , N − 1,

then we have

(4.23)
∣

∣

∣∂θf
N
τ,θ

(

φ1(θ)
)

∣

∣

∣ ≤
N−1
∑

l=0

α−l/pS + α−N/p
∣

∣∂θφ
1(θ)

∣

∣ .

Further, we also have

(i) if I +Nω ⊂ I1n−1, then

−S −
S

α1/p − 1
− α

−N+1

p
∣

∣∂θφ
1(θ)

∣

∣ ≤ ∂θf
N+1
τ,θ (φ1(θ))

≤ −s+
S

α1/p − 1
+ α

−N+1

p
∣

∣∂θφ
1(θ)

∣

∣ ;

(4.24)

(ii) if I +Nω ⊂ I2n−1, then

s−
S

α1/p − 1
− α

−N+1

p
∣

∣∂θφ
1(θ)

∣

∣ ≤ ∂θf
N+1
τ,θ (φ(θ))

≤ S +
S

α1/p − 1
+ α−N+1

p
∣

∣∂θφ
1(θ)

∣

∣ .

(4.25)

Moreover, if φ1, φ2 : I → T1 \ int(E) are C1-curves and (D1)n holds, then

(4.26)
∣

∣

∣
f j
τ,θ(φ

1(θ))− f j
τ,θ(φ

2(θ))
∣

∣

∣
≤ α−j/p

∣

∣φ1(θ)− φ2(θ)
∣

∣ for j = N,N + 1.

Proof. Again, we omit the parameter τ during the proof. Moreover, we assume that the
parameter α is sufficiently large, and all estimates below should be understood under this
premise. For any m ≥ 1, θ ∈ I and ι = 1, 2, we let φι

m(θ) = fm
θ (φι(θ)). Set θ0 := θ ∈ I

and x0 := φι(θ0) /∈ int(E). Then we have

∂θφ
ι
m(θ) =

(

∂θfθm−1

)

(xm−1) +
(

∂xfθm−1

)

(xm−1) · ∂θf
m−1
θ0

(φι(θ0)) = · · ·

= ∂θfθm−1
(xm−1) +

m−2
∑

l=0

(

∂xf
m−l−1
θl+1

)

(xl+1) · (∂θfθl )(xl)

+
(

∂xf
m
θ0

)

(x0) · ∂θφ
ι(θ),

(4.27)

where

(4.28)
(

∂xf
m−l−1
θl+1

)

(xl+1) =

m−1
∏

j=l+1

(

∂xfθj
)

(xj), l = −1, 0, . . . ,m− 2.
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Taking m = N we can apply Lemma 4.5, whose conditions hold due to (D1)n. We thus
obtain

PN
l+1 ≥ βn(N − l − 1),

which implies that

∣

∣

∣

(

∂xf
N−l−1
θl+1

)

(xl+1)
∣

∣

∣
≤ α− 2

p
PN

l+1αp(N−l−1−PN
l+1

)

≤
(

α− 2
p
βn+(1−βn)p

)N−l−1 (4.9)

≤ α−N−l−1

p .

As |∂θfθl | ≤ S, ∀l by (A5), this yields the estimate (4.23). Further, since

∣

∣φ1
N(θ)− φ2

N(θ)
∣

∣ =
∣

∣

∣
∂xf

N
θ0(ξ0)

∣

∣

∣
·
∣

∣φ1(θ)− φ2(θ)
∣

∣ ≤ α−N/p
∣

∣φ1(θ)− φ2(θ)
∣

∣

for some ξ0 /∈ int(E) between φ1(θ) and φ2(θ), we also obtain (4.26) for j = N in the same
way. In order to show (4.26) for j = N +1, note that

[

φ1
N (θ), φ2

N (θ)
]

⊆ C by Lemma 4.5.
There exists η ∈

[

φ1
N (θ), φ2

N(θ)
]

such that

|fθ0+Nω(φ
1
N (θ))− fθ0+Nω(φ

2
N (θ))| = |∂xfθ0+Nω(η)||φ

1
N (θ)− φ1

N (θ)|

(A4)

≤ α−2/p|φ1
N(θ)− φ2

N(θ)| ≤ α−N+1

p |φ1(θ)− φ2(θ)| .

Finally, in order to show (i), suppose I +Nω ⊂ I1n−1. Then we have

∂θf
N+1
θ (φι(θ)) = (∂θfθN )(xN) + (∂xfθN )(xN)∂θφ

ι
N (θ).

Since θN ∈ I1n−1 ⊂ I10 and xN = φι
N(θ) ∈ C, we obtain (4.24) from (4.23), (A5) and (A7),

provided that α is large enough. The proof of (ii) is analogous.

A similar statement holds for the backwards iteration.

Lemma 4.9 (Backwards Iteration). Suppose f satisfies the conditions (A1)-(A3), (A5),
(A7) and the slow recurrence conditions (X )n−1 and (Y)n−1 hold. Let I ⊂ T1 be an
interval and N ≥ 1. Then, if α is sufficiently large and ε0 is sufficiently small, the
following are true.

If φ1, φ2 : I → T1 \ int(C) are C1-curves and

(D2)n







I ∩ V+
n−1 = ∅,

I −Nω ⊂ In−1 + ω,
(I − lω) ∩ (In + ω) = ∅, ∀ l = 0, 1, . . . , N − 1,

then we have

(4.29)
∣

∣

∣
∂θf

−N
θ (φι(θ))

∣

∣

∣
≤

N
∑

l=1

α−l/pS + α
−N+1

p |∂θφ
ι(θ)| , ι = 1, 2,

and

(4.30)
∣

∣

∣
f−N
θ

(

φ1(θ)
)

− f−N
θ

(

φ2(θ)
)

∣

∣

∣
≤ α−N/p

∣

∣φ1(θ)− φ2(θ)
∣

∣ .

Proof. As before, we omit τ . For ι = 1, 2, let φι
−N (θ) = f−N

θ (φι(θ)) , θ ∈ I . Further, let
θ0 := θ ∈ I and x0 := φι(θ0) /∈ int(C). We proceed in a similar way as in Lemma 4.8, but
this time consider the map f−1 instead of f . Thus, we write θl = θ0−lω and xl = f−l

θ0
(x0).

First, note that

(4.31) ∂xf
−1
θ (x) =

1

(∂xfθ−ω)(f
−1
θ (x))

∈ (α−p, α−2/p) if f−1
θ (x) ∈ E

by (A2), (A3) and

(4.32) ∂θf
−1
θ (x) = −

(∂θfθ−ω)(f
−1
θ (x))

(∂xfθ−ω)(f
−1
θ (x))

.
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Similarly to (4.27), we have

∂θφ
ι
−N (θ) =

(

∂xf
−N
θ0

)

(x0) · ∂θφ
ι(θ0) +

N−1
∑

l=0

(

∂xf
−(N−l−1)
θl+1

)

(xl+1) · (∂θf
−1
θl

)(xl).

Since condition (D2)n holds, Lemma 4.5 yields

QN
l+1 ≥ βn(N − l − 1), l = −1, . . . , N − 1.

Then

∣

∣

∣

(

∂xf
−(N−l−1)
θl+1

)

(xl+1)
(

∂θf
−1
θl

)

(xl)
∣

∣

∣
=

∣

∣

∣

∣

∣

∣

N−1
∏

j=l+1

(

∂xf
−1
θj

)

(xj)

(

∂θfθl+1

)

(xl+1)
(

∂xfθl+1

)

(xl+1)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

N−1
∏

j=l

(

∂xf
−1
θj

)

(xj) ·
(

∂θfθl+1

)

(xl+1)

∣

∣

∣

∣

∣

∣

≤ α− 2
pα− 2

p
QN

l+1αp(N−l−1−QN
l+1

)S

≤ α− 2
p

(

α− 2
p
βn+(1−βn)p

)N−l−1

S ≤ α−N−l
p S

for l = −1, 0, . . . , N − 1. This implies (4.29). The estimate (4.30) is obtained in a similar
way as (4.26).

Remark 4.10. By equality (4.27), for any C1-curves φ1, φ2 defined on an interval I ⊂ T1,
m ≥ 1, we obtain that

(4.33) |∂θf
m
θ (φι(θ))| ≤

m−1
∑

l=0

αplS + αpm|∂θφ
ι(θ)| , ι = 1, 2,

and

(4.34) α−pm
∣

∣φ1(θ)− φ2(θ)
∣

∣ ≤
∣

∣fm
θ

(

φ1(θ)
)

− fm
θ

(

φ2(θ)
)∣

∣ ≤ αpm
∣

∣φ1(θ)− φ2(θ)
∣

∣ ,

provided f satisfies conditions (A2) and (A5).

5 Geometric estimates and the proof of Theorem 3.1

In this section, we collect the key technical lemmas about the geometry of the intersections
shown in Figure 2.1 and show how this information can be combined to prove Theorem 3.1.
The proofs of the lemmas will then be given in Section 6.

Recall that our main aim is to render the critical set Cn empty by shifting the parameter

τ ∈ Λf̂ . As mentioned in Section 2.2, the first step is to create a fast return of In to
itself. Thereby, it will be important to ensure that the following condition, which is an
itermediate between (Y)n and (Y ′)n, still holds.

(Y ′′)n d ((Ij − (Mj − 1)ω) ∪ (Ij + (Mj + 1)ω),Yj−1) > εj−1 ∀j = 1, . . . , n.

Lemma 5.1. Let f̂ satisfy the assertions of Theorem 4.1, assume that τ0 ∈ Λf̂ and fix
the corresponding sequences Mn and εn. Then for all ζ > 0 there exist integers n ∈ N,
k ∈ [2Kn−1Mn−1 + 1, M

4q(ν+1)
n−1 ] and an interval Γ = [τ−, τ+] ⊆ Bζ(τ0) such that for all

τ ∈ Γ the following hold.

(i) Conditions (X )n−1 and (Y ′′)n are satisfied.

(ii) The intervals I1n + kω and I2n have distance no more than 4εn.

(iii) At τ = τ−, the interval I1n + kω is to the left of I2n, whereas at τ = τ+ it is to the
right (in a local sense).

Remark 5.2. Note that due to the assumptions on the sequences Kn and Mn in Theo-
rem 4.1, we have Mn−1 ≪ k ≪ Mn if α and n are large.



Aboundance of mode-locking in qpf circle maps 15

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

C fk(A1
n
)

A′ A2
n

E

A′ A2
n

C

I1n − (Mn − k − 1)ω I2n − (Mn − 1)ω
︸ ︷︷ ︸

J − (Mn − 1)ω (a)

fMn−k−1(A′)

C

E

C

︸ ︷︷ ︸

J − kω (b)

���������������������
���������������������
���������������������
���������������������
���������������������
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���������������������
���������������������
���������������������
���������������������
���������������������

E

f−Mn−1(Dc)

fMn−k(A′)

︸ ︷︷ ︸

J − (k − 1)ω (c)

C D
fMn−k+Mn−1(A′)

Dc

E

C D

︸ ︷︷ ︸

J − (k −Mn−1 − 1)ω (d)

Figure 5.1: Strategy for the proof of Theorem 3.1: The different steps in the forward iteration of
A′, explaining the creation of the two hooks in Figure 2.1. (a) It suffices to consider the sets A′

and B′ defined in (5.2), since A′ contains A2
n ∪ fk(A1

n), and similarly B′ contains B1
n ∪ f−k(B2

n)
(Lemma 5.3). (b) After Mn − k − 1 iterates, the image of A′ is a thin horizontal strip in the
contracting region T1 × C. (c) In the next step, it is mapped into the expanding region T1 × E
with negative slope. Therefore it intersects the preimage of the complement of D under fMn−1

in a transveral way. (d) After Mn−1 further steps, the image of A is mostly contained in D, but
transverses the expanding region in a small interval. Continued in Figure 5.2 . . . .
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For any τ ∈ Γ, we define J = J(τ ) by

(5.1) J = cl
(

B4εn (I
1
n + kω) ∪B4εn (I

2
n)
)

.

Note that due to statement (ii) in Lemma 5.1, J is always an interval. We further let

(5.2) A′ = (J − (Mn − 1)ω)×C and B′ = (J + (Mn − k + 1)ω)×E .

The overall strategy from now on is illustrated and outlined Figure 5.1.
The following lemma ensures that it is sufficient to consider A′ and B′ (instead of the

four sets A1
n,A

2
n,B

1
n and B2

n).

Lemma 5.3. For all τ ∈ Γ, the following inclusions hold.

fMn(A2
n) ∩ f−Mn(B2

n) ⊆ fMn(A′) ∩ f−(Mn−k)(B′)(5.3)

fk
(

fMn(A1
n) ∩ f−Mn(B1

n)
)

⊆ fMn(A′) ∩ f−(Mn−k)(B′)(5.4)

Hence, in order to apply Proposition 4.7 it will be sufficient to show that fMn (A′) ∩
f−(Mn−k)(B′) = ∅, since in this case both components of Cn are empty.

Next, it will be important to control the geometry of the sets fMn (A′) and f−(Mn−k)(B′).
To that end, we introduce the following notation. If I ⊆ T1 is an interval and A ⊆ T1, we
denote by supI A and infI A the supremum, respectively infimum, of A with respect to
the natural ordering on I , induced by the counter-clockwise orientation on T1. Note that
thus infI I and supI I are the left and right endpoints of I . Given A ⊆ T2, θ ∈ π1(A),
we let Aθ = {x ∈ T1 | (θ, x) ∈ A}. If Aθ is an interval for all θ ∈ π1(A), we define the
boundary graphs of A as

ϕ+
A : π1(A) → T

1 , ϕ+
A(θ) = supAθ Aθ

ϕ−
A : π1(A) → T

1 , ϕ−
A(θ) = infAθ Aθ .

With these notions, we have

C

fk−Mn−1−1(D) fMn−1(A′)

fMn−1(A′)

E

C

︸ ︷︷ ︸

J (e)

E fMn(A′)

D′

fMn(A′)

︸ ︷︷ ︸

J + ω (f)

Figure 5.2: Strategy for the proof of Theorem 3.1: (e) After k−Mn−1 − 1 more iterates the set D
gets mapped to a thin horizontal strip in the contracting region. (f) In the next step, it gets mapped
into the expanding region with positive slope (Lemma 5.6). Due to the relative position of the two
sets, this forces the image of A′ to develop the two hooks already mentioned in Figure 2.1(b) and
(c) (Lemma 5.7).
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Lemma 5.4. For all τ ∈ Γ, the set B′′ = cl(f
−(Mn−k)
τ (B′)) is included in (J + ω) × E

and satisfies the following.

(i) |B′′
θ | ≤ |E| · α−Mn−k

p for all θ ∈ J + ω;

(ii) |∂θϕ
±
B′′(θ)| ≤ S

α1/p−1
for all θ ∈ J + ω.

Lemma 5.5. For all τ ∈ Γ, the set A′′ = cl(fMn
τ (A′)) satisfies the following.

(i) |A′′
θ | ≤ |C| · α−

Mn
p

+(p+ 1
p
)k for all θ ∈ J + ω;

(ii) |∂θϕ
±
A′′ (θ)| ≤ αpk · 2S

1−α−p for all θ ∈ J + ω.

Further, the crucial step in the argument will be to control the position of fMn(A′)
with respect to an intermediate set D′ that is defined as follows. Let

(5.5) D = (J − (k −Mn−1 − 1)ω)× C and D′ = fk−Mn−1(D) .

Concerning the geometry of D′ itself, we have

Lemma 5.6. For all τ ∈ Γ, the set D′ satisfies the following assertions.

(i) D′ ⊆ (J + ω)× E;

(ii) |C| · α−p(k−Mn−1) ≤ |D′
θ | ≤ |C| · α−

k−Mn−1

p for all θ ∈ J + ω;

(iii) s− S

α1/p−1
≤ ∂θϕ

±
D′(θ) ≤ S + S

α1/p−1
for all θ ∈ J + ω.

Now, the following statements yield the required information about the relations be-
tween D′ and fMn(A′).

Lemma 5.7. For all τ ∈ Γ there exists an open interval P0 ⊆ J + ω of length between
1−|C|
4S

·α−pMn−1 and 4(1−|C|)
s

·α−Mn−1/p such that π1(A
′′ ∩D′) = (J+ω)\P0. Moreover,

A′′ leaves and enters D′ in the clockwise direction at the endpoints of P0 and the boundary
curves of A′′ intersect those of D′ exactly once. Further, P0 ∩ (I1n + (k + 1)ω) 6= ∅.

Lemma 5.8. There exists an arc Ξ = {(θ, ξ(θ)) | θ ∈ J + ω} ⊆ (J + ω) × C, with
continuous ξ : J + ω → C, such that P1 = π1(A

′′ ∩ Ξ) is an interval.

Remark 5.9. Note that since D′ ⊆ (J + ω) × E, |A′′
θ | ≤ α−

Mn
p

+(p+ 1
p
)k and d(C,E) >

α−
Mn
p

+(p+ 1
p
)k if n ∈ N is sufficiently large, we have that P1 ⊆ P0. From now on, we

always assume that this is the case. Moreover, as the slope of ∂θϕ
±
A′′(θ) is smaller than

αpk · 2S
1−α−p , we obtain

(5.6) d(P1,T
1 \ P0) ≥

d(C,E)− 2α−
Mn
p

+(p+ 1
p
)k

αp(k+1) · 2S
αp−1

≥ d(C,E) · α−p(k+1)/2 ≥ α−2pk ,

where the last inequality again requires that n (and thus k ≥ Mn−1) is sufficiently large.

Denote by J− and J+ the left, respectively right component of (J + ω) \ P0. Define

L1 = {(θ, x) | θ ∈ J−, x ∈ [e−, ϕ+
D′(θ)]}

R1 = {(θ, x) | θ ∈ J+, x ∈ [ϕ−
D′(θ), e

+]} .

Further, denote by P−
0 and P+

0 the left, respectively right component of P0 \ int(P1).
Define

L2 = {(θ, x) | θ ∈ P−
0 , x ∈ [e−, ϕ−

D′(θ)]}

R2 = {(θ, x) | θ ∈ P+
0 , x ∈ [ϕ+

D′(θ), e
+]} .

Let L = L1 ∪ L2 and R = R1 ∪R2. (See Figure 5.3 for an illustration.)

Remark 5.10. We have A′′ ∩ ( (J + ω) ×E) ⊆ L ∪R if α and n are large.

Proof. Note that since Ξ ⊆ (J + ω) × C and |A′′
θ | ≤ α−

Mn
p

+(p+ 1
p
)k < d(C,E) (using

k ≪ Mn and assuming α to be large), we have A′′ ∩ (P1 × E) = ∅. Moreover, A′′ only
crosses the arc Ξ once. The statement therefore follows from the way A′′ leaves and enters
D′ ⊆ (J + ω)× E, according to Lemma 5.7.
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C
Ξ

R1
A′′

R2

E

B′′

L2

D′

L1

C

P1
︸ ︷︷ ︸

P0

Figure 5.3: Illustration of the different sets considered in the proof of Theorem 3.1.

Finally, the following statement ensures that at the extremal points of Γ, different
situations occur.

Lemma 5.11. At τ = τ−, the set B′′ intersects R, whereas at τ = τ+ it intersects L.

Based on the above statements, we can now turn to the proof of Theorem 3.1, which
is illustrated in Figure 5.3.

Proof of Theorem 3.1. Suppose ω ∈ D(γ, ν) and f̂ ∈ Pω satisfies conditions (A1)–
(A10). Fix δ > 0, denote by α′

∗, ε
′
∗ > 0 the constants given by Theorem 4.1 and recall

that q ≥ max{8, 4ν}. We have to show that for any parameter τ0 contained in the set

Λf̂ from Theorem 4.1 and any ζ > 0 there exists some τ ∈ Bζ(τ0) such that fτ is mode-
locked, provided that α > α′

∗ is sufficiently large and ε0 < ε′∗ is sufficiently small. The
largeness and smallness assumptions on α and ε0 will be used implicitely from now on,
and all estimates below should be understood under this premise.

To that end, fix τ0 ∈ Λf̂ and ζ > 0. Choose n ∈ N and Γ = [τ−, τ+] ⊆ Bζ(τ0)
according to Lemma 5.1. By Proposition 4.7, it suffices to find some τ ∈ Γ such that
Cn = ∅. Moreover, due to Lemma 5.3, this follows if we can show that

(5.7) fMn
τ (A′) ∩ f−(Mn−k)

τ (B′) = A′′ ∩ B′′ = ∅ .

Due to Lemma 5.4, we know that B′′ ⊆ (J + ω)× E, and we have A′′ ∩ ((J + ω)×E) ⊆
L(τ ) ∪ R(τ ) by Remark 5.10. We claim that for all τ ∈ Γ the strip B′′ can intersect at
most one of the two sets L and R. Since it intersects R for τ = τ− and L for τ = τ+

by Lemma 5.11 and all sets are closed and depend continuously on τ , this means that for
some τ ∈ (τ−, τ+) we must have f

−(Mn−k)
τ (B′)∩ (L(τ )∪R(τ )) = ∅. This, in turn, yields

(5.7) and thus completes the proof.

Hence, it remains to show that B′′ cannot intersect both L and R at the same time.
Suppose for a contradiction that (θ1, x1) ∈ B′′ ∩L and (θ2, x2) ∈ B′′ ∩R. By Lemma 5.4,
we have

(5.8) x2 − x1 ≤
S

α1/p − 1
· |θ2 − θ1|+ |E| · α−Mn−k

p .
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We distinguish four cases. Thereby, we will use freely the fact that α is sufficiently large
and indicate when this is used by placing (α) over the respective inequality signs.

Case I Suppose (θ1, x1) ∈ L1 and (θ2, x2) ∈ R1. In this case, we have that

(5.9) θ2 − θ1 ≥ |P0| ≥
1− |C|

4S
· α−pMn−1

by Lemma 5.7 and

x2 − x1 ≥ ϕ−
D′(θ2)− ϕ+

D′(θ1)

Lem. 5.6(ii)

≥ ϕ−
D′(θ2)− ϕ−

D′(θ1)− α−
k−Mn−1

p

Lem. 5.6(iii)

≥
s

2
· (θ2 − θ1)− α

−
k−Mn−1

p

(5.9),(α)

≥
S

α1/p − 1
· (θ2 − θ1) + α

−Mn−k
p ,

contradicting (5.8).

Case II Suppose (θ1, x1) ∈ L1 and (θ2, x2) ∈ R2. In this case, we have

(5.10) θ2 − θ1 ≥ d(P1,T
1 \ P0) ≥ α−2pk

by Remark 5.9. Moreover, the definitions of L1(τ ) and R2(τ ) imply that

x2 − x1 ≥ ϕ+
D′(θ2)− ϕ+

D′(θ1)

Lemma 5.6(iii),(α)

≥
s

2
· (θ2 − θ1)

(5.10),(α)

≥
S

α1/p − 1
· (θ2 − θ1) + α

−Mn−k
p ,

again contradicting (5.8).

Case III The case (θ1, x1) ∈ L2 and (θ2, x2) ∈ R1 is symmetric to the preceeding one
and can be treated in the same way.

Case IV Finally, suppose (θ1, x1) ∈ L2(τ ) and (θ2, x2) ∈ R2(τ ). In this case

x2 − x1 ≥ ϕ+
D′(θ2)− ϕ−

D′(θ1)

Lemma 5.6(ii)

≥ ϕ+
D′(θ2)− ϕ+

D′(θ1) + |C| · α−p(k−Mn−1)

Lemma 5.6

≥
s

2
· (θ2 − θ1) + |C| · α−p(k−Mn−1)

(α)

≥
S

α1/p − 1
· (θ2 − θ1) + α−

Mn−k
p ,

contradicting (5.8) as before.

6 Proofs of the geometric estimates

Throughout the proofs of this section, we will at most times omit the parameter τ from
the notation and write f , fθ and Iιn instead of fτ , fτ,θ and Iιn(τ ) (with the exception of the
proof of Lemma 5.1). Moreover, we will always assume implicitely that the parameter α
is sufficiently large and ε0 is sufficiently small. All estimates below should be understood
in this sense. Sometimes, but not always, we will indicate that this fact is used by placing
(α) or (ε0) over the respective inequality signs.

6.1 Proof of Lemma 5.1. According to (4.3) and (4.4), there exists some n ∈ N,
n ≥ 10, so that s

4L
εn−1 < ζ. We fix this n and first prove that there exists some

k ∈
[

2Kn−1Mn−1 + 1, M
4q(ν+1)
n−1

]

, such that

(6.1) d
(

I1n(τ0) + kω, I2n(τ0)
)

<
sℓ

8LS
εn−1

and I1n(τ0) + kω is to the left of I2n(τ0) in a local sense. Since (X )n−1 holds for τ0, it is
obvious that k ≥ 2Kn−1Mn−1 + 1.
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For any N ∈ N, there is a positive integer m ≤ N such that d(mω, 0) ≤ 1
N
. Moreover,

since ω is Diophantine, we have d(mω, 0) ≥ γm−ν ≥ γN−ν . Together, this implies that
after N

(

[γ−1Nν ] + 1
)

iterates, the orbit of ω is 1
N

dense in the circle. Thus, there exists
some k ≤ N

(

[γ−1Nν ] + 1
)

≤ 2γ−1Nν+1 such that d
(

I1n(τ0) + kω, I2n(τ0)
)

≤ 1/N and

I1n(τ0) + kω is to the left of I2n(τ0). Taking N =
[

4LS
ℓ

αMn−2/p
]

+ 1, we obtain

d(I1n(τ0) + kω, I2n(τ0)) <
ℓ

4LS
α−Mn−2/p

(4.4)

≤
sℓ

8LS
εn−1

and

k ≤
2

γ

(

4LS

ℓ
αMn−2/p + 1

)ν+1

(4.3)

≤
2

γ

(

4LS

ℓ
M2q

n−1 + 1

)ν+1 (α)

≤ M
4q(ν+1)
n−1

(α)
≪ Mn .

We now claim that conditions (X )n−1 and (Y ′′)n are satisfied for all τ with |τ − τ0| <
s
4L

εn−1. In order to do so, we proceed by induction on j. Suppose that (X )j−1 and
(Y ′′)j−1 hold for τ ∈ B s

4L
εn−1

(τ0). Then we have |Iιj(τ )| ≤ εj and |∂τI
ι
j(τ )| ≤ 2L

s
,

ι = 1, 2, by Proposition 4.6 if j ≥ 1 and by assumption if j = 0. If dH denotes the
Hausdorff distance, then this implies that dH(Iιj(τ ), I

ι
j(τ0) ≤

2L
s

· |τ − τ0|.
Thus, using (X ′)j for τ0, we have for all l = 1, . . . , 2KjMj and ι1, ι2 = 1, 2,

d(Iι1j (τ ), Iι2j (τ ) + lω)

≥ d(Iι1j (τ0), I
ι2
j (τ0) + lω)− dH(Iι1j (τ0), I

ι1
j (τ ))− dH(Iι2j (τ0) + lω, Iι2j (τ ) + lω)

> 9εj −
2L

s
·
sεn−1

4L
−

2L

s
·
sεn−1

4L
> 3εj

if j ≤ n− 1. Hence, (X )j holds for τ . In a similar way, using (Y ′)j for τ0, we have that
for ι1, ι2 = 1, 2, j ≤ n, 0 ≤ j′ ≤ j − 1, and −Mj′ ≤ l ≤ Mj′ + 2

d(Iι1j (τ )− (Mj − 1)ω, Iι2j′ (τ ) + lω) > εj−1 ,

and
d(Iι1j (τ ) + (Mj + 1)ω, Iι2j′ (τ ) + lω) > εj−1 ,

as long as j ≤ n. Therefore, conditions (X )n−1 and (Y ′′)n hold for τ ∈ B s
4L

εn−1
(τ0) as

claimed.
Now, due to (4.13) the interval I1n(τ ) + kω moves with positive minimal speed ℓ/S

relative to I2n(τ ). Hence, it follows from (6.1) that I1n(τ ) + kω moves from the left to the
right of I2n(τ ) when τ transverses the interval [τ0, τ0 + s

4L
εn−1]. (note that |Iιn(τ )| ≤ εn

by Proposition 4.6 and εn ≪ εn−1). Thus, we can choose a subinterval Γ = [τ−, τ+] ⊆
[τ0, τ0 +

s
4L

εn−1] that satisfies all the assertions of the lemma.

6.2 Proof of Lemma 5.3 We first need the following statement.

Claim 6.1. Let Γ be as in Lemma 5.1. Then for all τ ∈ Γ the following statement holds.

(6.2) (J + lω) ∩ In = ∅, ∀ l ∈ {−Mn − k + 1, . . . ,Mn + 1} \ {−k, 0}.

Proof. By Lemma 5.1, we have k ≤ M
4q(ν+1)
n−1 ≪ Mn for α large, and conditions (X )n−1, (Y

′′)n−1

hold for all τ ∈ Γ. Proposition 4.6, implies |Iιn| ≤ εn, ι = 1, 2. Suppose l ∈ {−Mn − k +
1, . . . ,Mn + 1} \ {−k, 0}. Then ω ∈ D(γ, ν), (4.3) and (4.4) yield

d(I1n + (k + l)ω, I1n) ≥ d((k + l)ω, 0)− |I1n|

≥ γ · |k + l|−ν − εn > γ · (2Mn)
−ν − εn

(α)
> 9εn

and

d(I2n + lω, I2n) ≥ d(lω, 0)− |I2n|

≥ γ · |l|−ν − εn > γ · (2Mn)
−ν − εn

(α)
> 9εn .
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Since J ⊆ B9εn(I
1
n + kω) ∩B9εn(I

2
n), this implies (6.2).

Now we can turn to the proof of Lemma 5.3. Since I2n ∪ (I1n + kω) ⊆ J , we have that
A2

n ⊆ A′ and B1
n ⊆ B′ by definition. Thus, it will be sufficient to show that

f−k(B2
n) ⊆ B′ and fk(A1

n) ⊆ A′.

As for B2
n, we have

(

I2n + (Mn + 1)ω
)

∩V+
n−1 = ∅ by condition (Y ′′)n. Moreover, (Y ′′)n

together with d(I1n + (Mn + 1)ω, I2n + (Mn − k + 1)ω) ≤ 4εn ≪ εn−1 yields (I2n + (Mn −
k+1)ω)∩W+

n−1 = ∅. Moreover, due to Claim 6.1 we have that k is the first integer such

that J − kω intersects In. Thus, we can apply Lemma 4.4 to obtain f−k(B2
n) ⊆ B′.

Similarly, we have
(

I1n − (Mn − 1)ω
)

∩ V−
n−1 = ∅ by (Y ′′)n, and the fact that d(I2n −

(Mn−1)ω, I1n−(Mn−k−1)ω) ≤ 4εn ≪ εn−1 together with (Y ′′)n also imply (I1n−(Mn−
k− 1)ω)∩W+

n−1 = ∅. Thus Claim 6.1 combined with Lemma 4.3 yield fk(A1
n) ⊆ A′.

6.3 Proof of Lemma 5.4 For the proof, we first need the following statement.

Claim 6.2. Let f̂ satisfy the assertion of Theorem 4.1 and assume τ ∈ Λf̂
n−1. Then for

n ≥ 3, we have

(6.3) fMn−1(Aι
n−1) ⊆ T

1 × E, ι = 1, 2,

(6.4) B9εn(I
ι
n) ⊆ Iιn−1, ι = 1, 2.

Proof. The proof is illustrated in Figure 6.1. We let

Iιj = (aι
j , b

ι
j), Ãι

j = fMj (Aι
j), B̂ι

j = f−Mj (Bι
j), ι = 1, 2, j = 0, 1, . . . , n− 1.

We have Ij−(Mj−1)ω∩V−
j−1 = ∅ and Ij−(Mj−1−1)ω∩W+

j−1 = ∅ for all j = 0, . . . , n−1

by (Y)n−1. Hence, Lemma 4.3 yields fMj−Mj−1(Aι
j) ⊆ Aι

j−1 for all j = 0, . . . , n− 1 and

therefore Ãι
n−1 ⊆ Ãι

n−2 ⊆ . . . ⊆ Ãι
2. Thus, it suffices to prove (6.3) for the case n = 3. A

similar argument with Lemma 4.4 for the backwards iteration yields f−(M1−M0)(Bι
1) ⊆ Bι

0.
Since f−M0(Bι

0) ⊆ f−M0((Iι0 + (M0 + 1)ω)× cl(T1 \ C)) ⊆ T1 ×E by (A1) and (X )0, we
can use (A2) to obtain

d(T1 \E, B̂ι
1,θ) ≥ α−M0pd(C,E)

for all θ ∈ Iι1 + ω (see Figure 6.1). Moreover, by Lemma 4.8, we have that

|ϕ+

Ãι
1

(θ)− ϕ−

Ãι
1

(θ)| ≤ α−M1/p|C|
(α)
< α−M0pd(E,C) .

Therefore, by definition of Iι2 = int
(

π1

(

B̂ι
1 ∩ Ãι

1

))

, this yields

fM2(Aι
2) ⊆ fM1 ((Iι2 − (M1 − 1)ω)× C) ⊆ T

1 ×E .

This proves (6.3).
As for (6.4), we first consider the case ι = 1 and verify that Ã1

j ‘crosses’ B̂1
j ‘downwards’

for all j = 0, 1, . . . , n − 1. Since (I1j − (Mj − 1)ω) ∩ V−
j−1 = ∅, I1j ⊆ Ij−1 and ∀ l =

0, 1, . . . ,Mj −2, (I1j − (Mj −1− l)ω)∩Ij = ∅ for all j = 0, 1, . . . , n−1 by (X )n−1, (Y)n−1,
Lemma 4.8 implies that

−S −
S

α1/p − 1
≤ ∂θϕ

±

Ã1
j
(θ) < −s+

S

α1/p − 1
.

A similar argument with Lemma 4.9 for the backwards iteration yields

|∂θϕ
±

B̂1
j
(θ)| ≤

S

α1/p − 1
, ∀ j = 0, 1, . . . , n− 1.

Therefore, for any ι1, ι2 ∈ {±}, j = 0, 1, . . . , n− 1, we have

(i) −2S
(α)
< −S − 2S

α1/p−1
≤ ∂θ(ϕ

ι1
Ã1

j

(θ)− ϕι2
B̂1
j

(θ)) ≤ −s+ 2S

α1/p−1

(α)
< −s/2.
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fM1(A1
1) }

≥ α−M0pd(C,E)

f−M0(B1
0)

f−M1(B1
1)

fM2(A1
2)

f−M0((I10 + (M0 + 1)ω)× cl(T1 \ C)) 




≥ α−M0pd(C,E)

I12 + ω
︸ ︷︷ ︸

I11 + ω
︸ ︷︷ ︸

I10 + ω

Figure 6.1: Proof of the inclusion (6.3) in Claim 6.2: Position of fM2(A1
2). Since this set is close

to f−M1(B1
1), which lies well inside the expanding region, we obtain fM2(A1

2) ⊆ T1 × E as well.

Moreover, Ã1
0 is above B̂1

0 at the left end of I10 + ω and below at the right end by (A6)
and (A7), since Ã1

0 ⊆ f(I10 × C) and B̂1
0 ⊆ (I10 + ω) × E by (A1) and (X )0. Since

Ã1
n−1 ⊆ · · · ⊆ Ã1

0 and B̂1
n−1 ⊆ · · · ⊆ B̂1

0 by (X )n−1, (Y)n−1 and Lemma 4.3, 4.4, the
definition of I1j yields

(ii) Ã1
j is above B̂1

j at the left end of I1j + ω and below at the right end. (see Figure
6.2)

Thus, (i) and (ii) ensure that Ã1
j ‘crosses’ B̂1

j ‘downwards’ (and give a precise meaning to
this statement). Hence, by definition of I1j+1, we have

(6.5) ϕ−

Ã1
j
(a1

j+1 + ω)− ϕ+

B̂1
j
(a1

j+1 + ω) = 0, j = 0, 1, . . . , n− 1,

(6.6) ϕ+

Ã1
j
(b1j+1 + ω)− ϕ−

B̂1
j
(b1j+1 + ω) = 0, j = 0, 1, . . . , n− 1 .

Further, we have (I1n−1 − (Mn−1 − 1)ω) ∩ V−
n−2 = ∅ and (In−1 − Mn−2ω) ∩ W+

n−2 = ∅

by (Y)n−1, so that Lemma 4.3 implies fMn−1−Mn−2−1(A1
n−1) ⊆ T1 ×C. Moreover, since

(I1n−1−Mn−2ω)∩I0 = ∅ by (Y)n−1, we also have f((I1n−1−Mn−2ω)×cl(T1\E)) ⊆ T1×C.
Thus, for θ ∈ I1n−1 + ω,

|f
Mn−1−Mn−2

θ−Mn−1ω
(c±)− c±| ≥ α−pd(C,E).

Combined with (A2) this means that if θ ∈ I1n−1 + ω, then

|ϕ±

Ã1
n−1

(θ)− ϕ±

Ã1
n−2

(θ)| = |f
Mn−2

θ−Mn−2ω
(f

Mn−1−Mn−2

θ−Mn−1ω
(c±))− f

Mn−2

θ−Mn−2ω
(c±)|

≥ α−pMn−2 |f
Mn−1−Mn−2

θ−Mn−1ω
(c±)− c±| ≥ α−p(Mn−2+1)d(C,E).

Similarly, given θ ∈ I1n−1 + ω we have

|ϕ±

B̂ι
n−1

(θ)− ϕ±

B̂ι
n−2

(θ)| ≥ α−p(Mn−2+1)d(C,E).
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This yields

ϕ−

Ã1
n−1

(a1
n−1 + ω)− ϕ+

B̂1
n−1

(a1
n−1 + ω)

= ϕ−

Ã1
n−1

(a1
n−1 + ω)− ϕ−

Ã1
n−2

(a1
n−1 + ω)(6.7)

+ ϕ+

B̂1
n−2

(a1
n−1 + ω)− ϕ+

B̂1
n−1

(a1
n−1 + ω)

≥ 2α−p(Mn−2+1)d(C,E),

(see Figure 6.2 with j = n) and similarly

(6.8) ϕ+

Ã1
n−1

(b1n−1 + ω)− ϕ−

B̂1
n−1

(b1n−1 + ω) ≤ −2α−p(Mn−2+1)d(C,E).

Thus, by (i), (6.5) with j = n− 1, (6.7), (4.3) and (4.4), we obtain

a1
n − a1

n−1 ≥
d(C,E)

S
α−p(Mn−2+1) ≥ α−2pMn−2

(α)

≥ ε8p
2

n−1

(α)
> 9εn.

Similarly, (i), (6.6) with j = n− 1, (6.8), (4.3) and (4.4) yield

b1n−1 − b1n > 9εn.

For the intervals I2n−1 and I2n the situation is exactly the same, except for the fact that
Ã2

j crosses B̂2
j upwards instead of downwards.

α−p(Mj−2+1)d(C,E) ≤
{

α−p(Mj−2+1)d(C,E) ≤ {
B̂1
j−2

B̂1
j−1

Ã1
j−1

Ã1
j−1

I1j + ω
︸ ︷︷ ︸

I1j−1 + ω

Figure 6.2: Proof of Claim 6.2: The ‘downwards’ crossing between Ã1
j and B̂1

j .

We now turn to the proof of Lemma 5.4. For τ ∈ Γ, by Lemma 5.1 and Proposition
4.6, we have that (X )n−1, (Y

′′)n are satisfied and |I1n(τ )|, |I
2
n(τ )| ≤ εn.

Due to the definition of J , we have

(6.9) J ⊆ B9εn(I
1
n + kω) ∩B9εn(I

2
n),
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which implies J+(Mn−k+1)ω ⊆ B9εn (I
1
n+(Mn+1)ω). Since 9εn ≤ εn−1, (Y

′′)n yields

(J + (Mn − k + 1)ω) ∩ V+
n−1 = ∅.

Condition (X )n−1 and (6.4), (6.9) also imply that

(J + ω) ∩W−
n−1 = ∅.

Therefore, by (6.2), Lemma 4.4 implies that B′′ ⊆ (J+ω)×E. Moreover, since (J+ω) ⊆
I2n−1 + ω by (6.4) and (6.9), and

(

J + (Mn − k + 1)ω − lω
)

∩ (In + ω) = ∅ for 0 ≤ l ≤ Mn − k − 1,

by (6.2), we can apply Lemma 4.9 with N = Mn − k and φ(θ) = e± to obtain that for
any θ ∈ J + ω,

|B′′
θ | ≤ |E|α−

Mn−k
p , and

|∂θϕ
±
B′′(θ)| ≤

Mn−k
∑

l=1

α
− l

p S ≤
1

α1/p − 1
S.

6.4 Proof of Lemma 5.5 For τ ∈ Γ, by Lemma 5.1, we have that (X )n−1, (Y
′′)n

hold and d(I1n + kω, I2n) ≤ 4εn. Let A
′′′ = fMn−k(A′). Then for θ ∈ J + ω, we have

ϕ±
A′′(θ) = fk

θ−kω(ϕ
±
A′′′ (θ − kω)).

We first derive the estimates for the shape of A′′′. Since (J−kω) ⊆ I1n−1 by (6.4) and (6.9),
(

J−(Mn−1)ω+lω
)

∩In = ∅ for 0 ≤ l ≤ Mn−k−2 by (6.2), and (J−(Mn−1)ω)∩Yn−1 = ∅
by (Y ′′)n and (6.9). Therefore, we can apply Lemma 4.8 to obtain that

(6.10) |A′′′
θ | ≤ α

−Mn−k
p |C|,

(6.11) −S −
S

α1/p − 1
≤ ∂θϕ

±
A′′′ (θ) ≤ −s+

S

α1/p − 1

for all θ ∈ J − (k − 1)ω.
Now in order to obtain the required estimates on A′′, we let φι(θ−kω) = ϕ±

A′′′(θ−kω)
(ι = 1, 2) for θ ∈ J + ω. Then Remark 4.10 yields

|A′′
θ | ≤ αpkα

−Mn−k
p |C|,

|∂θϕ
±
A′′(θ)| ≤

2αp(k+1)S

αp − 1
.

6.5 Proof of Lemma 5.6 Since J − (k −Mn−1 − 1)ω ⊆ I1n−1 + (Mn−1 + 1)ω and
J−(Mn−1−1)ω ⊆ I2n−1−(Mn−1−1)ω by (6.4) and (6.9), conditions (X )n−1 and (Y ′′)n−1

imply that

(6.12) (J − (k −Mn−1 − 1)ω) ∩ V−
n−1 = ∅,

and

(6.13) (J − (Mn−1 − 1)ω) ∩W+
n−1 = ∅.

Then by (6.2) and Lemma 4.3, we have fk−2Mn−1(D) ⊆ (J−(Mn−1−1)ω)×C. Combined
with (6.3), this yields

D′ ⊆ fMn−1(A2
n−1) ⊆ (I2n−1 + ω)× E.

Because (J − (k−Mn−1 − 1)ω + lω) ∩ In = ∅ for 0 ≤ l ≤ k −Mn−1 − 2 by (6.2), and
J ⊆ I2n−1 by (6.4) and (6.9), we can apply Lemma 4.8 with I = J−(k−Mn−1−1)ω, N =
k −Mn−1 − 1, φι = c± (ι = 1, 2), together with (4.34), to obtain that for all θ ∈ J + ω

|C| · α−p(k−Mn−1) ≤ |D′
θ | ≤ |C| · α−

k−Mn−1

p ,

s−
S

α1/p − 1
≤ ∂θϕ

±
D′(θ) ≤ S +

S

α1/p − 1
.
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6.6 Proof of Lemma 5.7 As before, we fix τ ∈ Γ such that assertions (i)-(iii) of
Lemma 5.1 hold.

SinceA′′∩D′ = fk
(

fMn−k(A′)∩f−Mn−1(D)
)

, we have π1 (A
′′ ∩ D′) = π1

(

fMn−k(A′)∩

f−Mn−1(D)
)

+ kω. In the following, we will focus on fMn−k(A′) ∩ f−Mn−1(D). We let

A′′′ = fMn−k(A′) as before and set

Dι = (J − (k −Mn−1 − 1)ω)×Xι, D̂ι = f−Mn−1(Dι), ι = 1, 2, 3, c,

where X1 = [c+, e−], X2 = E,X3 = [e+, c−] and Xc = [c+, c−]. Note that ϕ±

D̂c
(θ) =

ϕ∓

f
−Mn−1 (D)

(θ) for θ ∈ J − (k − 1)ω.

We will first prove that A′′′ crosses D̂c exactly once and this crossing is downwards (see
Figure 6.3). The reason is as follows. Since J− (k+Mn−1−1)ω ⊆ I1n−1− (Mn−1−1)ω by

fMn−1(A1
n−1)

fMn−k(A′)

D̂c







D̂3

D̂2

D̂1

a θ1 θ2 b

P0 − kω

︸ ︷︷ ︸

I1n + ω
︸ ︷︷ ︸

J − (k − 1)ω

Figure 6.3: Proof of Lemma 5.7: The definition of P0.

(6.4) and (6.9), and (I1n−1 − (Mn−1 − 1)ω) ∩W−
n−1 = ∅ by conditions (X )n−1, (Y ′′)n−1,

we have (J − (k + Mn−1 − 1)ω) ∩ W−
n−1 = ∅. Together with (6.2) and the fact that

(J − (Mn − 1)ω)∩Yn−1 = ∅ by (6.9) and (Y ′′)n, Lemma 4.3 implies fMn−k−Mn−1(A′) ⊆
A1

n−1 and hence

A′′′ ⊆ fMn−1(A1
n−1).

Recall that Iιn = (aι
n, b

ι
n), ι = 1, 2. By the definition of I1n, we have

(6.14) ϕ−
A′′′ (a

1
n + ω) ≥ ϕ−

f
Mn−1 (A1

n−1
)
(a1

n + ω) = ϕ−

D̂3
(a1

n + ω) .

Since J − (k−Mn−1 − 1)ω ⊆ I1n−1 + (Mn−1 + 1)ω and J − (k − 1)ω ⊆ I1n−1 + ω by (6.4)
and (6.9) and (J − (k − Mn−1 − 1)ω − lω) ∩ (In + ω) = ∅ for l = 0, 1, . . . ,Mn−1 − 1 by
(6.2), we can apply Lemma 4.9, together with (4.34) to obtain that

|Xι| · α
−pMn−1 ≤ |D̂ι,θ | ≤ |Xι| · α

−
Mn−1

p , |∂θϕ
±

D̂ι
(θ)| ≤

S

α1/p − 1
,

for all θ ∈ J − (k − 1)ω and ι = 1, 2, 3, c.
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Writing J − (k − 1)ω =: [a, b] and using (6.10) and (6.11), we obtain

ϕ−
A′′′ (a)− ϕ−

D̂3
(a)

(6.14)

≥ ϕ−
A′′′ (a)− ϕ−

A′′′ (a
1
n + ω) + ϕ−

D̂3
(a1

n + ω)− ϕ−

D̂3
(a)

≥ (s−
S

α1/p − 1
) · (a1

n + ω − a)−
S

α1/p − 1
· (a1

n + ω − a)

(α)

≥
s

2
· 4εn ≥ 4α−

Mn−1

p > sup
θ∈J−(k−1)ω

|D̂3,θ |,

which means
ϕ−

A′′′(a) > ϕ+

D̂3
(a) = ϕ+

D̂c
(a).

Similarly, we obtain
ϕ+

A′′′ (b) < ϕ−

D̂1
(b) = ϕ−

D̂c
(b).

Thus, together with the fact that infθ∈J−(k−1)ω |∂θϕ
±
A′′′ (θ)| > supθ∈J−(k−1)ω |∂θϕ

±

D̂c
(θ)|,

we have that A′′′ ‘downwards’ crosses D̂c exactly one time, which means that in the image
the boundary curves of A′′ intersect those of D′ exactly once. Equivalently,

∃! θ1 ∈ J − (k − 1)ω with ϕ+
A′′′ (θ1) = ϕ+

D̂c
(θ1) and

∃! θ2 ∈ J − (k − 1)ω with ϕ−
A′′′ (θ2) = ϕ−

D̂c
(θ2).

Then we have

ϕ−
A′′′(θ1)− ϕ−

D̂c
(θ1) = (ϕ+

D̂c
(θ1)− ϕ−

D̂c
(θ1))− (ϕ+

A′′′ (θ1)− ϕ−
A′′′ (θ1))

≥ inf
θ∈J−(k−1)ω

|D̂c,θ| − sup
θ∈J−(k−1)ω

|A′′′
θ |,

ϕ−
A′′′ (θ1)− ϕ−

D̂c
(θ1) ≤ sup

θ∈J−(k−1)ω

|D̂c,θ |

s/2 < ∂θ(ϕ
−

D̂c
(θ)− ϕ−

A′′′(θ)) < 2S.

Therefore, for α large, we obtain that

(6.15)
(1− |C|)

4S
· α−pMn−1 < θ2 − θ1 <

4(1− |C|)

s
· α−Mn−1/p.

Moreover, if we let Ã1
n−1 = fMn−1(A1

n−1), then by the definition of I1n, we have ϕ
+

Ã1
n−1

(b1n+

ω) = ϕ−

D̂2

(b1n + ω). Because ∂θ(ϕ
+

Ã1
n−1

− ϕ−

D̂2

) < −s/2 < 0, and

ϕ+

Ã1
n−1

(θ1)− ϕ−

D̂2
(θ1) > ϕ+

A′′′ (θ1)− ϕ−

D̂2
(θ1) > ϕ+

A′′′ (θ1)− ϕ+

D̂3
(θ1) = 0,

we get θ1 < b1n+ω. Similarly, we obtain θ2 > a1
n+ω, which implies that (θ1, θ2)∩(I

1
n+ω) 6=

∅.
If we now let P0 = (θ1 + kω, θ2 + kω), then by the selection of θ1 and θ2, we have

π1(A
′′ ∩ D′) ∩ P0 = ∅,

with (1−|C|)
4S

· α−pMn−1 < |P0| <
4(1−|C|)

s
· α−Mn−1/p and P0 ∩ (I1n + (k + 1)ω) 6= ∅.

6.7 Proof of Lemma 5.8 For θ ∈ I20 + ω, we let

ζ(θ) = c− +min
{

ϕ−

f(I2
0
×(T1\E))

(θ)− ϕ−

f(I2
0
×(T1\E))

(a2
0 + ω), c+ − c−

}

,

and choose ξ to be a small C1-perturbation of ζ which satisfies ξ(θ) ∈ C and |∂θξ(θ)| ≤ S
by (A5) (see Figure 6.4). Then, we let Ξ = {(θ, ξ(θ)) | θ ∈ J + ω} ⊆ (J + ω)× C. Since
the graph of ζ is disjoint from f(J × (T1 \E)), we can choose ξ sufficiently close to ζ such
that this still holds, that is,

(6.16) Ξ ∩ f(J × (T1 \ E)) = ∅ .

In order to verify that π1(Ξ ∩ A′′) is an iterval, we consider the preimage f−k(Ξ) and
show that this curve intersects f−k(A′′) in a transversal way (see Figure 6.5).
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C

f(I20×(T1\E))

c−

E

c+

ζ

C

ξ

Figure 6.4: Proof of Lemma 5.8: Construction of the curves ζ and ξ.

Let Υ = f−1(Ξ) =: {(θ, v(θ)) | θ ∈ J}. Then, by (6.16) above, Υ ⊆ J ×E. Moreover,
as v(θ) ∈ E for all θ ∈ J , we have

|∂θv(θ)| = |(∂xf
−1
θ+ω)(ξ(θ + ω)) · ∂θξ(θ + ω) + (∂θf

−1
θ+ω)(ξ(θ + ω))|

=

∣

∣

∣

∣

1

(∂xfθ)(v(θ))
· ∂θξ(θ + ω)−

(∂θfθ)(v(θ))

(∂xfθ)(v(θ))

∣

∣

∣

∣

≤ α−2/p · S + α−2/p · S
(α)

≤ S.

Let A′′′ := fMn−k(A′) as before and Ψ(θ) := f
−(k−1)
θ+(k−1)ω(υ(θ + (k − 1)ω)), where

θ ∈ J − (k− 1)ω. Since J ⊆ I2n−1 ⊆ I2n−2 ⊆ . . . ⊆ I20 by (6.4) and (6.9), condition (X )n−1

yields

(6.17) J ∩ V+
n−1 = ∅.

Further, as J − (k−Mn−1−1)ω ⊆ I1n−1+(Mn−1+1)ω by (6.4), (6.9), conditions (X )n−1

and (Y ′′)n−1 imply (J − (k−Mn−1 − 1)ω)∩W−
n−1 = ∅. Together with (6.2), Lemma 4.4

yields
f−(k−Mn−1−1)(Υ) ⊆

(

J − (k −Mn−1 − 1)ω
)

× E ⊆ B1
n−1 .

Thus, we obtain

(6.18) f−(k−1)(Υ) ⊆ f−Mn−1(B1
n−1) ⊆ (I1n−1 + ω)× E.

Moreover, Lemma 6.1 yields that (J − lω) ∩ (In + ω) = ∅ for l = 0, . . . , k − 2. Therefore
(6.17) and the fact that J − (k−1)ω ⊆ I1n−1+ω by (6.4) and (6.9) allow to apply Lemma
4.9 in order to obtain

sup
θ∈J−(k−1)ω

|∂θΨ| ≤
S

α1/p − 1
.

Then by (6.11), we get infθ |∂θϕ
±
A′′′(θ)|

(α)
> supθ |∂θΨ|. Thus, by the same argument as

in Section 6.6, A′′′ is above f−(k−1)(Υ) on the left end of J − (k − 1)ω and below on
the right end by (6.18) (see Figure 6.4). Therefore the boundary curves of A′′′ intersect

f−(k−1)(Υ) exactly once, which means π1

(

A′′′ ∩ f−(k−1)(Υ)
)

is an interval. Hence P1 =

π1(A
′′ ∩ Ξ) = π1

(

A′′′ ∩ f−(k−1)(Υ)
)

+ kω is an interval.
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f−k(Ξ)

f−Mn−1(B1
n−1)

fMn−k(A′)

fMn−1(A1
n−1)

P1 − kω
︸ ︷︷ ︸

I1n + ω
︸ ︷︷ ︸

J − (k − 1)ω

Figure 6.5: Transversal intersection between f−k(Ξ) and f−k(A′′) = fMn−k(A′).

6.8 Proof of Lemma 5.11 We will first prove that (X )n actually holds for τ =
τ−, τ+. By Lemma 5.1 and Proposition 4.6, we have |Iιn(τ

±)| ≤ εn, ι = 1, 2, and
d(I1n(τ

±) + kω, I2n(τ
±)) = 4εn. If dH denotes the Hausdorff distance, then dH(I1n(τ

±) +
kω, I2n(τ

±)) ≤ 5εn. Include τ± throughout the proof. The Diophantine condition ω ∈
D(γ, ν) implies d(Iιn, I

ι
n + jω) > 8εn for ι = 1, 2, j ∈ [1, (2Kn +1)Mn] by (4.3) and (4.4),

provided α is large. Then, given l ∈ [1, 2KnMn] \ {k}, we have

d(I2n, I
1
n + lω) ≥ d(I1n + lω, I1n + kω)− dH(I1n + kω, I2n) > 8εn − 5εn = 3εn,

and similarly

d(I1n, I
2
n + lω) ≥ 3εn .

Moreover, by the choice of τ−, τ+ in Section 6.1, we have d(I2n, I
1
n + kω) > 3εn. Thus,

(X )n is satisfied.
Hence, Proposition 4.6 implies that the two components of In+1 are non-empty, which

means fMn(A2
n) ∩ f−Mn(B2

n) 6= ∅. Then Lemma 5.3 implies that B′′ ∩ fMn (A2
n) 6= ∅.

Moreover, Lemma 5.7 implies that P0 ∩ (I1n + (k + 1)ω) 6= ∅. Since |P0| ≤ 2εn (using the
estimate from Lemma 5.7 and (4.4)), and d(I1n + kω, I2n) = 4εn, we get P0 ∩ (I2n +ω) = ∅.
When τ = τ−, then since I2n is to the right of I1n + kω, we have fMn(A2

n) ⊆ R, which
means B′′ intersects R. Conversely, when τ = τ+ we have fMn(A2

n) ⊆ L since I2n is to
the left of I1n + kω and thus B′′ intersects L.
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[7] M. Herman. Une méthode pour minorer les exposants de Lyapunov et quelques exemples
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