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AMORPHIC COMPLEXITY OF GROUP ACTIONS WITH

APPLICATIONS TO QUASICRYSTALS

GABRIEL FUHRMANN, MAIK GRÖGER, TOBIAS JÄGER, AND DOMINIK KWIETNIAK

Abstract. In this article, we define amorphic complexity for actions of lo-

cally compact σ-compact amenable groups on compact metric spaces. Amor-
phic complexity, originally introduced for Z-actions, is a topological invariant
which measures the complexity of dynamical systems in the regime of zero
entropy. We show that it is tailor-made to study strictly ergodic group actions
with discrete spectrum and continuous eigenfunctions. This class of actions
includes, in particular, Delone dynamical systems related to regular model sets
obtained via Meyer’s cut and project method. We provide sharp upper bounds
on amorphic complexity of such systems. In doing so, we observe an intimate
relationship between amorphic complexity and fractal geometry.

1. Introduction

The study of low-complexity notions for group actions is both a timely and
a classical topic. Its roots go back to Halmos, Mackey, and von Neumann who
classified actions with discrete spectrum, as well as Auslander, Ellis, Furstenberg,
and Veech who set the foundations of the theory of equicontinuous actions and their
extensions. Recent years have seen plenty of progress in illuminating the richness
of possible dynamical behaviour of minimal actions of general groups in the low
complexity regime, see for example [Kri07,CP08,CM16,ST17,Gla18, �LS18,FK20].
As a matter of fact, the investigation of this regime not only contributes to the
understanding of group actions as such but is of fundamental importance in the
understanding of aperiodic order—with further applications to geometry, number
theory and harmonic analysis [Mey72, BG13]—and the diffraction spectra of so-
called Delone sets, that is, mathematical models of physical quasicrystals. The
latter results from the observation that diffraction spectra of Delone sets can be
studied by means of certain associated Delone dynamical systems [LM06,BLM07,
Len09], see also [BG13] for further information and references. Analysing these
Delone dynamical systems, it is most natural to ask when two such systems are
conjugate [KS14]. The standard operating procedure to answer this question clearly
is to utilize dynamical invariants and one might be tempted to study topological
entropy of Delone dynamics. However, the physically most interesting case of pure
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point diffraction turns out to necessarily come with zero entropy [BLR07]. There
is hence a need for finer topological invariants which can distinguish zero entropy
systems.

In this article, we propose amorphic complexity—a notion recently introduced
for Z-actions [FGJ16]—as a promising candidate for this purpose. To that end, we
extend amorphic complexity to actions of locally compact, σ-compact and amenable
groups. We will see that amorphic complexity is tailor-made to study strictly er-
godic systems with discrete spectrum and continuous eigenfunctions, that is, mini-
mal mean equicontinuous systems [FGL22, Corollary 1.6]. Most importantly, how-
ever, we show that amorphic complexity is not only theoretically well-behaved but
also well-computable in specific examples. This is particularly true due to a neat
connection to fractal geometry. We elaborate on this in the last section of this article
where we apply our findings to model sets—particular Delone sets constructed by
means of Meyer’s cut and project method [Mey72]. Note that the relation between
fractal geometry and ergodic theory is a well-established field of research which
goes back to Billinglsey and Furstenberg [Bil60,Fur67]. For results on this relation
in the context of quasicrystals and, more generally, aperiodic order, we refer the
interested reader, for instance, to [Fog02,KLS15,Jul17] and references therein.

Before we introduce amorphic complexity and discuss our main results in more
detail, let us briefly clarify some basic terminology. A triple pX,G, αq is called a
(topological) dynamical system if X is a compact metric space (endowed with a
metric d), G is a topological group and α is a continuous action of G on X by
homeomorphisms (continuity of α is understood as continuity of the map G ˆ X Q

pg, xq ÞÑ αpgqpxq P X). In the following, we use the shorthand gx instead of αpgqpxq

for the action of g P G on x P X via α. Likewise, we may occasionally keep the
action α implicit and simply refer to pX,Gq as a dynamical system.

As mentioned before, we throughout assume that G is locally compact, σ-
compact and amenable. Recall that there is hence a (left) Følner sequence, that
is, a sequence pFnqnPN of compact subsets of G having positive Haar measure such
that

lim
nÑ8

mpKFn�Fnq

mpFnq
“ 0 for every compact K Ď G,(1)

where � denotes the symmetric difference and m is a (left) Haar measure of G
(we may synonymously write |F | for the Haar measure mpF q of a measurable set
F Ď G) [EG67, Theorem 3.2.1]. We will also make use of the existence of right
Følner sequences which fulfil a condition analogous to (1) with the left Haar mea-
sure and the multiplication from the left replaced by the right Haar measure and
multiplication from the right, respectively. However, we would like to stress that
in the following, each Følner sequence is assumed to be a left Følner sequence if
not stated otherwise. Given a (left or right) Følner sequence F “ pFnq, the (upper)
asymptotic density of a measurable subset E Ď G with respect to F is defined as

(2) adF pEq “ lim
nÑ8

|E X Fn|

|Fn|
.

Let us next turn to the definition of amorphic complexity of a dynamical system
pX,Gq with respect to a Følner sequence F “ pFnqnPN in G. Given x, y P X, δ ą 0,
we set

ΔpX,G, δ, x, yq “ tt P G | dptx, tyq ě δu .
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For ν P p0, 1s, we say that x and y are pδ, νq-separated with respect to F if

adF pΔpX,G, δ, x, yqq “ lim
nÑ8

|ΔpX,G, δ, x, yq X Fn|

|Fn|
ě ν.

Accordingly, a subset S Ď X is said to be pδ, νq-separated with respect to F if all
distinct points x, y P S are pδ, νq-separated. This already yields the first key notion
in this work: the (asymptotic) separation number of pX,Gq with respect to δ ą 0
and ν P p0, 1s, denoted by SepF pX,G, δ, νq, is the supremum over the cardinalities
of all pδ, νq-separated sets in X.

In general, the asymptotic separation numbers do not have to be finite (even
though X is compact) which immediately gives the following dichotomy: if
SepF pX,G, δ, νq is finite for all δ, ν ą 0, we say pX,Gq has finite separation numbers
with respect to F otherwise, we say it has infinite separation numbers. The first
result which we would like to highlight identifies canonical classes of group actions
with infinite and finite separation numbers, respectively. The corresponding proofs
can all be found in Section 3.

Theorem 1.1. Suppose pX,Gq is a dynamical system with X a compact metric
space and G a locally compact, σ-compact and amenable group.

(i) If pX,Gq is weakly mixing with respect to a non-trivial G-invariant prob-
ability measure, then pX,Gq has infinite separation numbers with respect
to every Følner sequence. Likewise, if G allows for a uniform lattice and
pX,Gq has positive topological entropy, then pX,Gq has infinite separation
numbers with respect to every Følner sequence.

(ii) If G is unimodular, that is, there is a two-sided (left and right) Følner
sequence and pX,Gq is minimal, then pX,Gq has finite separation num-
bers with respect to every Følner sequence if and only if pX,Gq is mean
equicontinuous.

It is worth mentioning that the class of mean equicontinuous systems comprises
all Delone dynamical systems associated to regular model sets, see also Section 5.
For further examples of mean equicontinuous actions of groups different from Z, we
refer the reader to the literature [Rob96,Rob99,Cor06,Vor12,GR17,Gla18, �LS18,
FK20,GL21,FGL22].

If pX,Gq has finite separation numbers, we are in a position to obtain finer
information by studying the scaling behaviour of the separation numbers as the
separation frequency ν tends to zero. Here, we may in principle consider arbitrary
growth rates. So far, however, previous results indicate that polynomial growth
is the most relevant, see [FGJ16,GJ16, FG20] for G “ Z. With this in mind, we
define the lower and upper amorphic complexity of pX,Gq with respect to F as

acF pX,Gq “ sup
δą0

lim
νÑ0

log SepF pX,G, δ, νq

´ log ν
and

acF pX,Gq “ sup
δą0

lim
νÑ0

log SepF pX,G, δ, νq

´ log ν
.

In case that both values coincide, we call acF pX,Gq “ acF pX,Gq “ acF pX,Gq

the amorphic complexity of pX,Gq with respect to F . It is convenient to set
acF pX,Gq “ 8 if pX,Gq has infinite separation numbers with respect to F . We
discuss the most basic properties of amorphic complexity—including its invariance
under conjugacy—in Section 2.
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The next question we address is to which extent the asymptotic separation num-
bers and amorphic complexity depend on the particular Følner sequence F . In
general, we cannot rule out different amorphic complexities with respect to dif-
ferent Følner sequences. In fact, this problem already occurs when G “ Z, see
Section 4. With the next theorem, however, we provide a sufficient criterion for
the independence from F . Here, we say a dynamical system pX,Gq is pointwise
uniquely ergodic if every orbit closure is uniquely ergodic. A strengthening of the
following statement and its proof can be found in Section 4.

Theorem 1.2. Let pX,Gq be a dynamical system whose product pX2, Gq is point-
wise uniquely ergodic. Then pX,Gq has infinite separation numbers with respect to
some Følner sequence if and only if it has infinite separation numbers with respect
to all Følner sequences. Moreover, acF pX,Gq and acF pX,Gq are independent of
the particular Følner sequence F .

It is worth mentioning that mean equicontinuous systems verify the assumptions
of the above theorem [FGL22, Theorem 1.2].

Finally, we apply amorphic complexity to the dynamics of regular model sets.
Before we come to the precise formulation, we need to introduce some terminology.
In doing so, we restrict to a rather brief description of the most essential notions
and refer the reader to Section 5 for the details. A cut and project scheme is a triple
pG,H,Lq, where G and H are locally compact abelian groups and L is an irrational

lattice in G ˆ H. Together with a compact subset W “ intpW q Ď H—referred to
as a window—pG,H,Lq defines a particular instance of a Delone set, a so-called
model set

NpW q “ πGppG ˆ W q X Lq,

where πG : G ˆ H Ñ G denotes the canonical projection. We call W as well as
NpW q regular if BW is of zero Haar measure and say W is irredundant if th P

H | h ` W “ W u “ t0u. Now, as NpW q is a subset of G, G naturally acts on
NpW q by translations. It turns out that the closure of all translated copies of
NpW q is compact (in a suitable topology on subsets of G). Denoting this closure
by ΩpNpW qq, we arrive at the Delone dynamical system pΩpNpW qq, Gq associated
to the model set NpW q. We obtain

Theorem 1.3. Let pG,H,Lq be a cut and project scheme with W Ď H a regular
irredundant window and suppose G and H are second countable. Then for every
Følner sequence F in G, we get

acF pΩpNpW qq, Gq ď
dimBpHq

dimBpHq ´ dimBpBW q
,

assuming that dimBpHq is finite.

Here, dimBp¨q denotes the upper box dimension, see Section 5 for the details.
Let us remark that we further show that the above estimates are sharp in that they
are realised by particular model sets. In conclusion, we obtain that every value in
r1,8q can be attained by amorphic complexity of minimal systems.

Motivated by the above results, we finish with the following question.

Given a locally compact, σ-compact and amenable group acting minimally on a
compact metric space. Which values can amorphic complexity attain?
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In particular, for minimal Z- or R-actions, we conjecture that amorphic complexity
cannot take values in p0, 1q. Indeed, this complexity gap was recently established
for subshifts associated to primitive constant length substitutions [FG20] and is
a classical phenomenon which is well known to occur for polynomial entropy of
minimal symbolic subshifts. For non-minimal Z-actions, however, it was recently
shown that all values in p0, 1q can be obtained by amorphic complexity, see [Kul21,
Kul22].

2. Basic properties of amorphic complexity

In this section, we collect the most basic properties of amorphic complexity. In
particular, given a group G which allows for a lattice L, we discuss how amorphic
complexity of a G-action relates to amorphic complexity of the associated L-action.

The proof of the following statement is verbatim as the proofs of [FGJ16, Propo-
sition 3.4 & Proposition 3.9].

Proposition 2.1. Let pX,Gq and pY,Gq be dynamical systems. We have:

(a) If pY,Gq is a factor of pX,Gq, then

acF pY,Gq ď acF pX,Gq and acF pY,Gq ď acF pX,Gq.

In particular, (upper and lower) amorphic complexity is a topological in-
variant.

(b) We have that

acF pX ˆ Y,Gq ě acF pX,Gq ` acF pY,Gq,

acF pX ˆ Y,Gq ď acF pX,Gq ` acF pY,Gq.

In particular, if acF pX,Gq and acF pY,Gq exist, then acF pX ˆ Y,Gq exists
as well.

Before we proceed with further properties of amorphic complexity, we take a
closer look at certain particularly well-behaved Følner sequences. Recall that a van
Hove sequence pAnqnPN in G is a sequence of compacta An Ď G of positive Haar
measure such that

lim
nÑ8

m
`

BKAnq

mpAnq
“ 0,

for every compact set K Ď G with e P K, where BKAn :“ KAnz int
`
Ş

gPK gAn

˘

(see [Tem92, Appendix 3] and [Str05] for further reference). It is not hard to see
that every van Hove sequence is a Følner sequence. In fact, it holds

Proposition 2.2 ([Tem92, Appendix 3.K]). Let G be a locally compact σ-compact
amenable topological group. A sequence pAnq of compact subsets of G is a van Hove
sequence if and only if it is a Følner sequence and

lim
nÑ8

mpBUAnq

mpAnq
“ 0,(3)

for some open neighbourhood U of the neutral element e in G.

Remark 2.3. In particular, if G is discrete, then every Følner sequence in G is, in
fact, a van Hove sequence.

It is well known that every locally compact σ-compact amenable group allows
for a van Hove sequence. For the convenience of the reader, we prove the following
(possibly well-known) refinement of this statement which we need in the sequel.
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Proposition 2.4. Let G be a locally compact σ-compact amenable topological group.
Suppose pFnq is a Følner sequence in G and B is a compact neighbourhood of e.
Then An :“ BFn defines a van Hove sequence in G with adpAnqpEq “ adpFnqpEq

for every measurable E Ď G.

Proof. The last part follows from E X An Ď pE X Fnq Y pFn�Anq and

0 ď lim
nÑ8

mpAn�Fnq{mpAnq ď lim
nÑ8

mpBFn�Fnq{mpFnq “ 0,(4)

which is a consequence of the fact that pFnq is a Følner sequence and Fn Ď BFn “

An.
For the first part, we make use of Proposition 2.2. To that end, observe that

for every (compact) K Ď G we have KAn�An Ď pKAn�Fnq Y pFn�Anq “

pKBFn�Fnq Y pFn�Anq. Due to (4) and the fact that pFnq is a Følner sequence,
this gives that pAnq is a Følner sequence, too. To see (3), we need the following

Claim 2.5. There is a relatively compact open neighbourhood U of e such that
Fn Ď int

`
Ş

gPU gAn

˘

for each n P N.

Proof of the claim. First, observe that int
`
Ş

gPU gBFn

˘

Ě int
`
Ş

gPU gB
˘

Fn. To

prove the claim, it hence suffices to show that there is U with e P int
`
Ş

gPU gB
˘

.

For a contradiction, suppose e P
Ť

gPU gBc for every U in the open neighbour-

hood filter U of e. In other words, suppose there is a net pgU qUPU with gU P U
(so that gU Ñ e) and a net phU qUPU in Bc such that gUhU Ñ e. This, however,
implies hU Ñ e which contradicts e P intpBq. Therefore, there is U P U with
e P int

`
Ş

gPU gB
˘

. Clearly, U can be chosen open and relatively compact. �

Now, pick some U as in the above claim. As pFnq is a Følner sequence, we have

mpBUAnq{mpAnq ď mpUAnzFnq{mpFnq ď mpUBFnzFnq{mpFnq
nÑ8
ÝÑ 0.

Finally, it follows from Proposition 2.2 that pAnq is a van Hove sequence. �

For the next statement, recall that a uniform lattice L in G is a discrete subgroup
of G such that there exists a measurable precompact subset C Ď G, referred to as
fundamental domain, with G “

Ů

λPLCλ and mpCq ą 0. With the lattice L being
a subgroup of G, we have a naturally defined dynamical system pX,Lq and it turns
out that amorphic complexity is well behaved when going from pX,Gq over to
pX,Lq.

Lemma 2.6. Assume pX,Gq is a dynamical system and G allows for a uniform
lattice L. Then for every Følner sequence F in G there is a Følner sequence F 1 in
L such that

acF pX,Gq “ acF 1 pX,Lq and acF pX,Gq “ acF 1 pX,Lq.

Furthermore, pX,Gq has infinite separation numbers with respect to F if and only
if pX,Lq has infinite separation numbers with respect to F 1.

Proof. We denote the Haar measure on G by m and that on L by | ¨ |. Let C Ď G
be a fundamental domain as in the above definition of a uniform lattice. First,
observe that for all δ ą 0 there are δ´

δ , δ
`
δ ą 0 such that for all x, y P X and c P C

we have dpc´1x, c´1yq ě δ´
δ whenever dpx, yq ě δ and dpcx, cyq ě δ`

δ whenever

dpx, yq ě δ´
δ . This straightforwardly follows from the precompactness of C.
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Further, due to Proposition 2.4, we may assume without loss of generality that
F is a van Hove sequence. Under this assumption, there are van Hove sequences
F 1 “ pF 1

nq and F2 “ pF 2
nq in L with limnÑ8 |F 1

n|{|F 2
n | “ 1 such that CF 1

n and
CF 2

n are von Hove sequences in G and CF 1
n Ď Fn Ď CF 2

n , see for example [Hau21,
Lemma 3.2]. We will show that for all x, y P X and δ ą 0 we have

adF pΔpX,G, δ, x, yqq ď adF 1 pΔpX,L, δ´
δ , x, yqq ď adF pΔpX,G, δ`

δ , x, yqq.(5)

Clearly, this implies that for all ν P p0, 1q and all δ ą 0

SepF pX,G, δ, νq ď SepF 1 pX,L, δ´
δ , νq ď SepF pX,G, δ`

δ , νq

and thus proves the statement.
By definition of δ´

δ and δ`
δ and since C is a fundamental domain, we have

ΔpX,G, δ, x, yq Ď CΔpX,L, δ´
δ , x, yq Ď ΔpX,G, δ`

δ , x, yq.

Hence, utilizing the fact that for any subset F Ď L we have mpCF q “ |F | ¨ mpCq,
we obtain (5) from the following computation

adF pΔpX,G, δ, x, yqq “ lim
nÑ8

mpΔpX,G, δ, x, yq X Fnq{mpFnq

ď lim
nÑ8

mpCΔpX,L, δ´
δ , x, yq X CF 2

nq{mpCF 1
nq

“ lim
nÑ8

mpCΔpX,L, δ´
δ , x, yq X CF 2

nq{mpCF 2
nq ¨ |F 2

n |{|F 1
n|

“ adF2 pΔpX,L, δ´
δ , x, yqq “ adF 1 pΔpX,L, δ´

δ , x, yqq

“ lim
nÑ8

mpCΔpX,L, δ´
δ , x, yq X CF 1

nq{mpCF 2
nq

ď lim
nÑ8

mpΔpX,G, δ`
δ , x, yq X Fnq{mpFnq

“ adF pΔpX,G, δ`
δ , x, yqq. �

Remark 2.7. There is no known general characterisation of groups that allow for
uniform lattices. However, one well-known consequence of the existence of a lattice
in a group G is that G is unimodular (for a definition in the context of amenable
groups, see the paragraph before Corollary 3.7).

Prominent examples of groups with lattices are Rd, or the Heisenberg group and,
of course, discrete groups (which, in general, may obviously allow for non-trivial
lattices). A natural example of an amenable group without lattices are the p-adic
numbers.

Remark 2.8.

(a) If pFnq is a van Hove sequence, then the sets F 1
n and F 2

n in the above
proof are explicitly given by F 1

n “ th P L | Ch Ď Fnu and F 2
n “ th P

L | Ch X Fn ‰ Hu, see the proof of [Hau21, Lemma 3.2].
(b) Let us briefly comment on the necessity of the passage through Proposi-

tion 2.4 in the above proof. As mentioned in Remark 2.3, a Følner sequence
in a discrete group is necessarily a van Hove sequence. Consequently, given
a Følner sequence pF 1

nq in the lattice L of G, pF 1
nq is actually a van Hove

sequence and therefore, one can show that pCF 1
nq defines a van Hove se-

quence in G. Accordingly, whenever we seek to bound a Følner sequence
pFnq in G from below and above by sequences pCF 1

nq and pCF 2
nq similarly

as in the previous proof, we actually bound pFnq by van Hove sequences.
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It turns out that this implies that pFnq itself must be van Hove. These
observations are straightforward (though slightly tedious) to check.

3. On finiteness of separation numbers

This section deals with the scope of amorphic complexity. In particular, we
identify mean equicontinuous systems as those systems where separation numbers
are finite with respect to every Følner sequence and amorphic complexity may hence
be finite itself. Moreover, we show that positive entropy as well as weak mixing
imply infinite separation numbers.

3.1. Mean equicontinuity and finite separation numbers. We next discuss
a natural class of dynamical systems with finite separation numbers: the class of
mean equicontinuous systems, see [Aus59,Rob96,HJ97,Rob99,Cor06,Vor12,DG16,
Gla18, �LS18,FG20,FK20,GL21,FGL22] for numerous examples. In our discussion
of mean equicontinuity, we follow the terminology of [FGL22]. Given a left or right
Følner sequence F , a system pX,Gq is (Besicovitch) F-mean equicontinuous if for
all ε ą 0 there is δ ą 0 such that for all x, y P X with dpx, yq ă δ we have

DF px, yq :“ lim
nÑ8

1{mpFnq

ż

Fn

dptx, tyq dmptq ă ε.

In this case, DF clearly defines a continuous pseudometric on X. Thus, by identi-
fying points x, y P X with DF px, yq “ 0, we obtain a compact metric space which
we denote by X{DF .

Before we proceed, let us briefly recall the concept of the (upper) box dimension
of a compact metric space pM,dq. Given ε ą 0, we call a subset S of M ε-separated
if for all s ‰ s1 P S we have dps, s1q ě ε and denote by Mε the maximal cardinality
of an ε-separated subset of M . It is well known and easy to see that Mε ă 8 due
to compactness. With this notation, the upper box dimension of M is defined as

dimBpMq “ lim
εÑ0

logMε

´ log ε
.

Now, for F-mean equicontinuous pX,Gq, we have

DF px, yq ě lim
nÑ8

1{mpFnq

ż

Fn

1rδ,8qpdptx, tyqq ¨ dptx, tyq dmptq

ě δ ¨ adF pΔpX,G, δ, x, yqq

for all δ ą 0 and x, y P X and hence, pX{DF qδν ě SepF pX,G, δ, νq. It follows

Proposition 3.1. If pX,Gq is F-mean equicontinuous for some left or right Følner
sequence F , then it has finite separation numbers with respect to F and

acF pX,Gq ď dimBpX{DF q.

It is important to note that if F is a left Følner sequence, then DF is not
necessarily invariant. In particular, the equivalence relation defined by DF may
not define a factor of pX,Gq even if DF is continuous. However, it is easy to see
that DF is invariant if F is a right Følner sequence. We utilize this observation
below.
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In any case, it is certainly desirable to have an invariant pseudometric which
does not depend on a particular (right) Følner sequence. To that end, we may
consider

Dpx, yq :“ suptDF px, yq | F is a left Følner sequenceu

which is, in fact, invariant (see [FGL22, Proposition 3.12]). We say pX,Gq is (Weyl)
mean equicontinuous if D is continuous.

Proposition 3.2 ([FGL22, Proposition 5.8]). Suppose pX,Gq is F-mean equicon-
tinuous for some right Følner sequence F . Then pX,Gq is mean equicontinuous.

Given a left or right Følner sequence F , a system pX,Gq is called F-mean sen-
sitive if there exists η ą 0 such that for every open set U Ď X we can find x, y P U
with DF px, yq ě η. Moreover, we say pX,Gq is (Weyl) mean sensitive if there exists
η ą 0 such that for every open set U Ď X we can find x, y P U with Dpx, yq ě η.
We have the following direct generalisation of the equivalence of (1) and (3) in
[LTY15, Proposition 5.1] whose proof extends almost literally to the current set-
ting.

Proposition 3.3. The system pX,Gq is F-mean sensitive (with respect to a left
or right Følner sequence F) if and only if there is η ą 0 such that for every x P X
we have that ty P X | DF px, yq ě ηu is residual in X.

Clearly, if adF pΔpX,G, η{2, x, yqq ă η{2, thenDF px, yq ď η{2`p1´η{2q¨η{2 ă η
(assuming, w.lo.g., that the maximal distance of points in X is 1).

Corollary 3.4. If a dynamical system pX,Gq is F-mean sensitive (for a left or
right Følner sequence F), then it has infinite separation numbers with respect to F .

In the following, we take a closer look at the relation between mean equiconti-
nuity and mean sensitivity in the minimal case. The proof of the next statement
is similar to the one for Z-actions [LTY15, Proposition 4.3 & Theorem 5.4–5.5],
see also [GR17, Theorem 8] & [GRM19, Theorem 2.7] and [ZHL22, Corollary 5.6]
for similar statements for abelian (continuous) groups and for countable amenable
groups, respectively. For the convenience of the reader, we provide a direct proof
in the current setting.

Lemma 3.5. Let pX,Gq be minimal. Then pX,Gq is either mean equicontinuous
or mean sensitive. Furthermore, if pX,Gq is mean sensitive, then it is F-mean
sensitive for every right Følner sequence F .

Proof. Suppose pX,Gq is not mean equicontinuous. That is, there is x P X and
η ą 0 such that for all δ ą 0 there is yδ P Bδpxq with Dpx, yδq ą η. Now, given
any open set U Ď X, there is g P G and δ0 ą 0 such that gBδ0pxq Ď U . Since D is
invariant, we have Dpgx, gyδ0q “ Dpx, yδ0q ą η which proves the first part.

For the second part, observe that Proposition 3.2 gives that for every right Følner
sequence F there exist x P X and η ą 0 such that for all δ ą 0 there is y P Bδpxq

with DF px, yq ą η. Since F is assumed to be a right Følner sequence, DF is
invariant and we can argue similarly as for D to obtain F-mean sensitivity. �
Remark 3.6. Recall that G acts effectively on X if for all g P G there is x P X
such that gx ‰ x. According to [FGL22, Corollary 7.3], G is necessarily maximally
almost periodic (see [FGL22] and references therein) if G allows for a minimal,
mean equicontinuous and effective action on a compact metric space X. Hence,
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Lemma 3.5 gives that every minimal effective action by a group which is not max-
imally almost periodic (such as the continuous Heisenberg group H3pRq) is mean
sensitive.

Recall that a locally compact σ-compact amenable group G is unimodular if and
only if G allows for a two-sided Følner sequence, that is, a sequence F which is
both a left and a right Følner sequence. In conclusion to the above statements, we
obtain

Corollary 3.7. Suppose G is unimodular and pX,Gq is minimal. Then pX,Gq is
mean equicontinuous if and only if the separation numbers of pX,Gq are finite with
respect to every left Følner sequence.

Proof. By definition, mean equicontinuity implies F-mean equicontinuity with re-
spect to every left Følner sequence. Hence, the “only if”-part follows from Propo-
sition 3.1.

For the other direction, let F be a two-sided Følner sequence. Since we assume
the separation numbers with respect to F to be finite, we have that pX,Gq is not
F-mean sensitive. Since DF is invariant, we can argue similarly as in Lemma 3.5 to
obtain that pX,Gq is F-mean equicontinuous. Utilizing Proposition 3.2, we obtain
the desired statement. �

3.2. Entropy, mixing and infinite separation numbers. In this section, we
discuss how chaotic behaviour—more specifically: weak mixing or positive entropy
—implies infinite separation numbers. Here, we occasionally have to assume that a
Følner sequence we consider is tempered, that is, there is C ą 0 such that for all n
we have mp

Ť

kăn F
´1
k Fnq ă C ¨mpFnq. It is well known that every Følner sequence

allows for a tempered subsequence, see [Lin01, Proposition 1.4].
In line with [GW16], we call an invariant measure μ of pX,Gq weakly mixing

if for every system pY,Gq and all of its ergodic measures ν we have that μ ˆ ν is
ergodic for pX ˆ Y,Gq. Hence, if μ is weakly mixing, μm “

Śm
k“1 μ is ergodic for

pXm, Gq and all m P N.

Theorem 3.8. Let pX,Gq be a dynamical system with a weakly mixing measure μ
and suppose the support of μ is not a singleton. Then pX,Gq has infinite separation
numbers with respect to every Følner sequence.

Proof. For a tempered Følner sequence, the proof is similar to that of the respective
statement for Z-actions ([FGJ16, Theorem 2.2]) if we replace Birkhoff’s Ergodic
Theorem by Lindenstrauss’ Pointwise Ergodic Theorem [Lin01, Theorem 1.2]. Here,
we have to make use of the ergodicity of μm just as in [FGJ16].

Now, given an arbitrary Følner sequence, we can always go over to a tempered
subsequence (see [Lin01, Proposition 1.4]). This gives infinite separation numbers
for a subsequence and hence, due to the lim sup in (2), infinite separation numbers
for the original sequence. �

We next turn to systems with positive topological entropy. Our goal is to show

Theorem 3.9. Suppose G allows for a uniform lattice and the dynamical system
pX,Gq has positive topological entropy. Then pX,Gq has infinite separation numbers
with respect to every Følner sequence in G.
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Remark 3.10. Observe that the proof of a similar statement for Z-actions (see
[FGJ16, Theorem 2.3]) utilised results that are only available for G “ Z. The
present approach provides an alternative to the somewhat implicit argument in
[FGJ16].

Remark 3.11. We do not make explicit use of the actual definition of entropy in
the following and rather utilize results from the theory of topological independence.
Therefore, we refrain from discussing the basics of entropy theory in the present
work. Interested readers are referred to e.g. [OW87,KL16,Bow20,Hau21,HS22] for
a background and further references.

In order to prove Theorem 3.9, we first restrict to actions of countable discrete
(and, as throughout assumed, amenable) groups.

Definition 3.12 (cf. [KL16, Definition 8.7]). Let pX,Gq be a dynamical system
and suppose G is countable and discrete. Given a pair A “ pA0, A1q of subsets of
X, we say that a set J Ď G is an independence set for A if for every non-empty
finite subset I Ď J and every psgqgPI P t0, 1uI there exists x P X with gx P Asg for
every g P I.

Theorem 3.13 ([KL16, Theorem 12.19 & Proposition 12.7]). Suppose G is discrete
and countable and pX,Gq is a dynamical system. If pX,Gq has positive topological
entropy, then there is a pair A “ pA0, A1q of disjoint compact subsets of X and
d ą 0 such that for every tempered Følner sequence F “ pFnq in G there is an
independence set J of A with adF pJq “ limnÑ8 |Fn X J |{|Fn| ě d ą 0.

Let A, F and J Ď G be as in the above statement. Observe that due to the
compactness of A0 and A1 we actually have that for every s “ psjqjPJ P t0, 1uJ

there exists x P X which follows s, that is, jx P Asj for every j P J .

Lemma 3.14. Let G be a countable discrete group and suppose pX,Gq has positive
topological entropy. Then pX,Gq has infinite separation numbers with respect to
every Følner sequence in G. In fact, there are δ ą 0 and ν P p0, 1s such that for
every Følner sequence there is an uncountable pδ, νq-separated set.

Proof. Let A “ pA0, A1q and d ą 0 be as in Theorem 3.13. Given a Følner sequence
F , we may assume without loss of generality that F is tempered. By Theorem 3.13,
we have an associated independence set J Ď G for A with adF pJq ě d. Set
δ “ distpA0, A1q and ν “ d{2 ď adF pJq{2. Our goal is to show that there is an
infinite subset S Ď t0, 1uJ such that whenever x, y P X follow distinct elements in
S, then adF pΔpX,G, δ, x, yqq ě ν.

To that end, we first define a sequence pGnqnPN of pairwise disjoint non-empty
finite subsets of G such that for every infinite set M Ď N we have

adF p

ď

nPM

Gnq ě 1 ´ ν.(6)

We may do so by starting with G1 “ F1. Assuming we have already chosen
G1, . . . , Gn for some n P N, let N “ Npnq P N be large enough to guarantee
that

|FNzpG1 Y . . . Y Gnq| ě p1 ´ νq|FN |
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and set Gn`1 “ FNzpG1 Y . . . Y Gnq. Note that this gives that pGnq satisfies (6)
for every infinite M Ď N because

adF p

ď

nPM

Gnq ě lim
nÑ8
nPM

|FNpn´1q X Gn|

|FNpn´1q|
ě 1 ´ ν,

for any infinite M Ď N.
Now, let E be an uncountable family of subsets of N such that M�M 1 is infinite

for distinct M,M 1 P E. Given M P E, we define sM P t0, 1uJ by

sMj “

#

1 if j P Gn and n P M,

0 otherwise.

Set S “ tsM P t0, 1uJ | M P Eu. Given s P S, choose some xpsq P X which follows
s (recall the discussion before the statement). It is straightforward to see that for

distinct M,M 1 P E, we have for x “ xpsM q and x1 “ xpsM
1
q that

ΔpX,G, δ, x, x1
q “ tg P G | dpgx, gx1

q ě δu Ě tg P J | sMg ‰ sM
1

g u

“ J X
`

ď

nPM�M 1

Gn

˘

.

Using (6), we obtain

adF
`

J X

ď

nPM�M 1

Gn

˘

ě adF pJq{2 ě ν.

Hence, txpsq P X | s P Su is the uncountable pδ, νq-separated set we sought. �

Remark 3.15. The above arguments are heavily based on the concept of topological
independence. Another notion in the regime of zero entropy in which related ideas
feature prominently is topological sequence entropy, see for instance [Goo74,KL07,
Cán08,HY09,SYZ20]. An in-depth comparison of topological sequence entropy and
amorphic complexity—and possibly other so-called slow entropy notions (see for
example [Car97,HK02,DHP11,Mar13,KC14,CPR21])—is certainly an interesting
topic for further investigation. As this is beyond the scope of the present work, we
refer the interested reader to [FGJ16,GJ16] for first steps in this direction.

Proof of Theorem 3.9. Let us denote by L a lattice (as provided by the assump-
tions) in G. Note that since G is σ-compact, we have that L is countable.

Due to [Hau21, Theorem 5.2], positive topological entropy of pX,Gq implies pos-
itive topological entropy of pX,Lq. Hence, Lemma 3.14 gives that pX,Lq has infi-
nite separation numbers with respect to every Følner sequence. Due to Lemma 2.6,
this implies infinite separation numbers of pX,Gq with respect to every Følner
sequence. �

We close this section with two immediate corollaries of the above. The first one
is a consequence of Theorem 3.9, Proposition 3.1 and Lemma 3.5. For the prize of
additionally assuming minimality, it extends [ZHL22, Theorem 6.6] to actions of
non-abelian and/or uncountable groups.

Corollary 3.16. If G allows for a uniform lattice and pX,Gq is minimal and has
positive topological entropy, then pX,Gq is (Weyl) mean sensitive.
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The second consequence extends [ZHL22, Theorem 1.2] and follows from Propo-
sition 3.1 and Theorem 3.9.1

Corollary 3.17. If G allows for a uniform lattice and pX,Gq is mean equicontin-
uous, then pX,Gq has zero topological entropy.

It is worth mentioning that under the assumption of an appropriate variational
principle, this statement also follows from the results in [FGL22, Theorem 3.14].
Alternatively, in the setting of discrete amenable groups, we could also use that
discrete spectrum is equivalent to measure-theoretic nullness, see [KL09] for more
details.

Remark 3.18. Elaborating on the relation of the results in this section and [ZHL22],
we would like to mention that for minimal actions of countable abelian groups,
Theorem 3.9 readily follows from [ZHL22, Theorem 6.6] in conjunction with Corol-
lary 3.7.

4. Independence of Følner sequences

In general, amorphic complexity might depend on the particular Følner sequence
with respect to which we compute the separation numbers. For G “ Z, this can be
seen by considering the example in [FGJ16, page 541]. There, acF pX,Zq “ 8 for
F “ pr0, nqqnPN while acF 1 pX,Zq “ 0 for F 1 “ pp´n, 0sqnPN.

The goal of this section is to show

Theorem 4.1. Let pX,Gq be a dynamical system whose product pX2, Gq is point-
wise uniquely ergodic. Then acF pX,Gq and acF pX,Gq are independent of the par-
ticular (left) Følner sequence F .

Remark 4.2. Notice that due to [FGL22, Theorem 1.2], the above gives that amor-
phic complexity of mean equicontinuous systems is independent of the particular
Følner sequence.

In fact, we have the following stronger statement which immediately yields The-
orem 4.1.

Theorem 4.3. Let pX,Gq be a dynamical system whose product pX2, Gq is point-
wise uniquely ergodic. The following holds.

(i) Suppose there is a Følner sequence F such that SepF pX,G, δ, νq “ 8 for
some δ, ν P p0, 1q. Then there exists δ0 ą 0 such that SepF 1 pX,G, δ1, νq “ 8

for every Følner sequence F 1 and every δ1 P p0, δ0s.
(ii) Let F0 and F1 be Følner sequences and suppose SepF0pX,G, δ, νq ă 8 for

all ν, δ P p0, 1q. Then there is a cocountable set A P p0, 1q such that for all
δ P A we have SepF0pX,G, δ, νq “ SepF1pX,G, δ, νq for all but countably
many ν.

Proof. Without loss of generality, we may assume that diampXq “ 1. We start
by providing some general observations. Given δ P p0, 1q, let ph�q and pH�q be
sequences of non-decreasing continuous self-maps on r0, 1s. For large enough 
 P N,
assume that h�pzq “ 0 for z P r0, δs and h�pzq “ 1 for z P rδ ` 1{
, 1s as well as

1Observe that [ZHL22, Theorem 1.2] is formulated in terms of Banach mean equicontinuity
which, however, in the setting of [ZHL22] and beyond, coincides with the notion of mean equicon-
tinuity discussed here, see [�LS18, Theorem 12] as well as [ZHL22, Theorem 4.3].
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H� “ 0 on r0, δ ´ 1{
s and H� “ 1 on rδ, 1s. Clearly, h�pzq ď 1rδ,1spzq ď H�pzq for
all z P r0, 1s and large enough 
 P N. Hence, for all x, y P X, every Følner sequence
F “ pFnq, and sufficiently large 
, we have

ż

X2

h�pdpv, wqqdμpx,yqpv, wq “ lim
nÑ8

1{|Fn| ¨

ż

Fn

h�pdpsx, syqqdmpsq

ď lim
nÑ8

1{|Fn| ¨

ż

Fn

1rδ,1spdpsx, syqqdmpsq “ adF pΔpX,G, δ, x, yqq

ď lim
nÑ8

1{|Fn| ¨

ż

Fn

H�pdpsx, syqqdmpsq “

ż

X2

H�pdpv, wqqdμpx,yqpv, wq,

(7)

where we used the pointwise unique ergodicity of pX2, Gq and where μpx,yq denotes

the unique invariant measure on the orbit closure of px, yq P X2. Sending 
 Ñ 8,
we obtain equality in (7) unless

(8) μpx,yqptpv, wq P X2
| dpv, wq “ δuq ą 0.

In other words, if (8) does not hold, then adF pΔpX,G, δ, x, yqq is actually inde-
pendent of the Følner sequence F . Notice that given px, yq, there can be at most
countably many δ which verify (8).

Let us prove statement (i). Suppose F is a Følner sequence and SepF pX,G, δ, νq

“ 8 for some δ, ν P p0, 1q. Let S be a countable family of finite pX,G, δ, νq-
separated sets (with respect to F) such that supSPS #S “ 8. Further, let C Ď p0, 1q

be the collection of all δ P p0, 1q such that for some S P S there are px, yq P S2 such
that (8) holds. As C is at most countable, there exists δ0 P p0, δs such that for any
S P S we have

adF 1 pΔpX,G, δ0, x, yqq “ adF pΔpX,G, δ0, x, yqq ě adF pΔpX,G, δ, x, yqq ě ν

for all x ‰ y P S and any Følner sequence F 1 where we used that |ΔpX,G, ¨, x, yq|

is non-increasing. It straightforwardly follows that each S is pX,G, δ1, νq-separated
with respect to any Følner sequence F and every δ1 P p0, δ0s. As S can be chosen
arbitrarily large, this proves the first assertion.

Let us consider (ii). First, observe that due to (i), we have SepF1pX,G, δ, νq ă 8

for all δ, ν P p0, 1q. Given δ P p0, 1q, we call ν P p0, 1q δ-singular if SepFipX,G, δ, νq

ă SepFipX,G, δ ´ ε, νq for all ε ą 0 and some i P t0, 1u. Otherwise, we say ν is
δ-regular. The collection of all δ-singular elements of p0, 1q is denoted by Bδ. We
say δ is singular if Bδ is uncountable. Otherwise, we call δ P p0, 1q regular. The
collection of all singular δ in p0, 1q is denoted by B. We set A “ p0, 1qzB.

Next, we show that for all δ P p0, 1q and each ν P Bc
δ we have SepF0pX,G, δ, νq “

SepF1pX,G, δ, νq. To prove (ii), it then remains to show that B is countable.
Given δ P p0, 1q, let ν P p0, 1q be δ-regular. By definition, there is ε ą 0 such that

SepFipX,G, δ, νq “ SepFipX,G, δ1, νq for all δ1 P pδ ´ ε, δq and i “ 0, 1. Let S Ď X
be δ-ν-separated w.r.t. F0 and suppose S is of maximal cardinality. As S is finite,
the collection of all δ P p0, 1q which verify (8) for some pair px, yq P S2 is countable.
There is hence δ1 P pδ ´ ε, δq which does not verify (8) for any px, yq P S2. Clearly,
S is δ1-ν-separated for F0. By the above, S is also δ1-ν-separated for F1. Hence,

SepF1pX,G, δ, νq “ SepF1pX,G, δ1, νq ě SepF0pX,G, δ1, νq “ SepF0pX,G, δ, νq.

By changing the roles of F0 and F1, we obtain the converse inequality and accord-
ingly SepF0pX,G, δ, νq “ SepF1pX,G, δ, νq for all δ-regular ν.
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It remains to show that B is countable. To that end, we need the following

Claim 4.4. If δ P p0, 1q is singular, then Bδ has non-empty interior.

Proof of the claim. Let ν P p0, 1q be δ-singular and ν 1 P p0, νq be δ-regular. Observe
that due to the monotonicity in both arguments of SepFipX,G, ¨, ¨q, there has to be
a jump point ν0 between ν and ν 1 (possibly coinciding with ν or ν 1), i.e., a point ν0
such that for i “ 0 or i “ 1 we have SepFipX,G, δ, ν0 ´ εq ą SepFipX,G, δ, ν0q for
all ε ą 0. As SepFipX,G, δ, ¨q is non-increasing and integer-valued, each compact
subinterval of p0, 1q can contain at most finitely many such jump points. Therefore,
the set of δ-singular points is a union of isolated points and intervals. Since a subset
of p0, 1q with only isolated points is at most countable, this proves the claim. �

Now, for a contradiction, assume that B is uncountable. By the above claim,
Bδ contains an interval Iδ whenever δ P B. Thus, there must be an uncountable
set B1 Ď B with

Ş

δPB1 Iδ ‰ H. Accordingly, there is ν P p0, 1q such that ν is
δ-singular for all δ P B1. As SepFipX,G, ¨, νq is non-increasing, there can be at
most countably many δ with SepFipX,G, δ ´ ε, νq ą SepFipX,G, δ, νq for all ε ą 0.
This contradicts the uncountability of B1. Hence, B is at most countable. This
finishes the proof. �

5. Application to regular model sets

In this section, we study amorphic complexity of (the dynamical hull of) model
sets. Given a model set, our third main result provides an upper bound for its
amorphic complexity which may be understood as a measure of its amorphicity.
We start by collecting a number of preliminary facts concerning Delone sets, cut
and project schemes and their associated dynamics.

5.1. Delone dynamical systems and model sets. From now on, in what fol-
lows, G is a locally compact second countable abelian group with Haar measure
mG. Further, in all of the following, we switch to additive notation for the group
operation in G, accounting for its commutativity. By the Birkhoff-Kakutani The-
orem, G is metrizable and the metric dG can be chosen to be invariant under G.
In fact, open balls with respect to dG are relatively compact [Str74] so that G is
automatically σ-compact.

A set Γ Ď G is called r-uniformly discrete if there exists r ą 0 such that
dGpg, g1q ą r for all g ‰ g1 P Γ. Moreover, Γ is called R-relatively dense (or
R-syndetic) if there exists R ą 0 such that Γ X BGpg,Rq ‰ H for all g P G, where
BGpg,Rq denotes the open dG-ball of radius R centred at g. We call Γ a Delone
set if it is uniformly discrete and relatively dense. The collection of all Delone sets
in G will be denoted by DpGq.

Given ρ ą 0 and g P Γ, the tuple pBGp0, ρq X pΓ ´ gq, ρq is called a (ρ-)patch of
Γ. The set of all patches of Γ is denoted by PpΓq. A Delone set Γ is said to have
finite local complexity (FLC) if for all ρ ą 0 the number of its ρ-patches is finite.
For Γ,Γ1 P DpGq, set

distpΓ,Γ1
q “ inf

�

ε ą 0 | Dg P BGp0, εq : pΓ ´ gq X BGp0, 1{εq “ Γ1
X BGp0, 1{εq

(

.

Then dpΓ,Γ1q “ mint1{
?
2, distpΓ,Γ1qu defines a metric on DpGq (see [LMS02,

Section 2]). Moreover, for any Delone set Γ Ď G with FLC the dynamical hull of
Γ, defined as

ΩpΓq “ tΓ ´ g | g P Gu,
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where the closure is taken with respect to d, is compact [Sch99, Proposition 2.3].
The dynamical system pΩpΓq, Gq, given by the translation action of G on the hull
ΩpΓq, is called a Delone dynamical system.

The method of choice to construct Delone sets is to utilize a cut and project
scheme (CPS). A CPS consists of a triple pG,H,Lq of two locally compact abelian
groups G (external group) and H (internal group) and a uniform lattice L Ď GˆH
which is irrational, that is, the natural projections πG : G ˆ H Ñ G and πH :
G ˆ H Ñ H satisfy

(i) the restriction πG|L is injective;
(ii) the image πHpLq is dense.

If not stated otherwise, we throughout assume that G and H are second countable.
As a consequence of (i), if we let L “ πGpLq and L˚ “ πHpLq, the star map

˚ : L Ñ L˚ : l ÞÑ l˚ “ πH ˝ πG|
´1
L plq

is well defined and surjective. Given a precompact set W Ď H (referred to as
window), we define the point set

NpW q “ πG pL X pG ˆ W qq “ tl P L | l˚ P W u.

If W is compact and proper (that is, intpW q “ W ), then NpW q is a Delone set and
has FLC [Rob07]. In this case, we call NpW q a model set. If further mHpBW q “ 0,
then we call the window, as well as the resulting model set, regular. Otherwise,
we refer to W and NpW q as irregular. Delone dynamical systems associated to
regular model sets are mean equicontinuous, see [BLM07, Theorem 9] together
with [FGL22, Theorem 1.1] as well as [FGL22, Remark 6.2 & Corollary 6.3]. Note
that the converse is not true, see [DG16,FGJO21] and also [FGL22, Chapter 7.2]
for a thorough discussion and further references.

We say that a subset A Ď H is irredundant if th P H | h`A “ Au “ t0u. Clearly,
if BW is irredundant, then so is W . A CPS is called Euclidean if G “ R

N and H “

R
M for some M,N P N, and planar if N “ M “ 1. Note that in the Euclidean case,

any compact window is irredundant. Further, observe that if W is not irredundant,
it is possible to construct a CPS pG,H 1,L1q with irredundant window W 1 Ď H 1 such
that for each Λ P ΩpNpW qq with NpintpW qq Ď Λ Ď NpW q we have NpintpW 1qq Ď

Λ Ď NpW 1q (compare [LM06, Section 5] and [BLM07, Lemma 7]).
As L is a uniform lattice in G ˆ H, the quotient T :“ pG ˆ Hq{L is a compact

abelian group. A natural action of G on T is given by pu, rs, tsLq ÞÑ rs`u, tsL. Here,
rs, tsL denotes the equivalence class of ps, tq P GˆH in T. Observe that due to the
assumptions on pG,H,Lq, this action is equicontinuous, minimal and has hence a
unique invariant measure μT. Furthermore, if W Ď H is irredundant, pT, Gq is the
maximal equicontinuous factor of pΩpNpW qq, Gq [BLM07]. The respective factor
map β is also referred to as torus parametrization.

Given an irredundant window W , the fibres of the torus parametrization are
characterized as follows: for Γ P ΩpNpW qq, we have

(9) Γ P β´1
prs, tsLq ô NpintpW q ` tq ´ s Ď Γ Ď NpW ` tq ´ s

as well as

Γ P β´1
pr0, tsLq ô D ptjq P L˚N

with lim
jÑ8

tj “ t and lim
jÑ8

NpW ` tjq “ Γ.

In the following, we denote by VolpLq the volume of a fundamental domain of
L. Note that VolpLq is well defined.
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Proposition 5.1 ([HR15, Proposition 3.4]). Let pG,H,Lq be a CPS and W Ď H
be precompact. Then for every van Hove sequence F “ pFnq in G we have

mHpintpW qq

VolpLq
ď lim

nÑ8

7pNpW q X Fnq

mGpFnq
ď lim

nÑ8

7pNpW q X Fnq

mGpFnq
ď

mHpW q

VolpLq
.

Let us collect three more statements which follow easily from the definition of
the metric d on DpGq. Similarly to the notion of pδ, νq-separation of elements of a
dynamical system (see Section 1), given a van Hove sequence F in G, we set

νF pδ,Γ,Γ1
q “ adF ptg P G | dpgΓ, gΓ1

q ě δuq,

where δ ą 0 and Γ,Γ1 P DpGq.

Proposition 5.2. For every van Hove sequence F “ pFnq in G we have

νF pδ,Γ,Γ1
q ď mGpBGp0, 1{δqq lim

nÑ8

7ppΓΔΓ1q X Fnq

mGpFnq
,

with δ ą 0 and Γ,Γ1 P DpGq.

Accordingly, together with Proposition 5.1, we get

Corollary 5.3. If mHpBW q “ 0 and NpintpW qq Ď Γ Ď NpW q, then νF pδ,Γ,Γ1q “

νF pδ,NpW q,Γ1q for all van Hove sequences F , δ ą 0 and Γ1 P DpGq.

Finally, observe that

Proposition 5.4. Suppose δ ą 0, Γ,Γ1 P DpGq and g P BGp0, δ{2q. If dpΓ,Γ1q ě δ,
then dpΓ,Γ1 ` gq ě δ{2.

5.2. Upper bound on the amorphic complexity of regular model sets.
We next come to our third main result. First, recall that for a locally compact
σ-compact group H, the upper box dimension is given by

dimBpHq “ lim
εÑ0

logmH

`

BHph, εq
˘

log ε
,

where h P H is arbitrary. Observe that dimBpHq is well defined because of the
invariance of the metric dH and the Haar measure mH . Note further that the
above definition, as well as the definition of the (upper) box dimension of compact
sets in Section 3.1, are special cases of a more general concept of box dimension.
We refrain from reproducing the slightly technical (and standard) general definition
here and refer the interested reader to [Edg98, Section 1.4] instead.

We will also make use of Minkowski’s characterisation of the box dimension of
a given compact set M Ď H by

dimBpMq “ dimBpHq ´ lim
εÑ0

logmH

`

BHpM, εq
˘

log ε
.

The proof of this fact in our setting is similar to the one in the Euclidean space,
see for instance [Fal03, Proposition 3.2].

Finally, in order to derive upper bounds on amorphic complexity, it is convenient
to make use of an alternative characterisation which utilises spanning sets instead
of separating sets—similar as in the derivation of upper bounds for topological
entropy (or box dimension). Given δ ą 0 and ν P p0, 1s, we say a subset S Ď X
is pδ, νq-spanning with respect to a Følner sequence F if for all x P X there exists
s P S such that adF pΔpX,G, δ, x, sqq ă ν. We denote by SpanF pX,G, δ, νq the
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smallest cardinality among the pδ, νq-spanning sets with respect to F . It is not
difficult to see that SpanF pX,G, δ, νq instead of SepF pX,G, δ, νq can equivalently
be used in defining amorphic complexity, see also [FGJ16, Lemma 3.1 & Corollary
3.2].

Theorem 5.5. Suppose pG,H,Lq is a cut and project scheme, where G and H
are locally compact second countable abelian groups. Furthermore, let W Ď H be
compact, proper, regular and irredundant and assume that dimBpHq is finite. Then

(10) acF pΩpNpW qq, Gq ď
dimBpHq

dimBpHq ´ dimBpBW q
,

for any Følner sequence F .

Proof. As W is regular and hence pΩpNpW qq, Gq mean equicontinuous, we may
assume without loss of generality that F is van Hove, see Remark 4.2 and Theo-
rem 4.3. We first choose compact sets A Ď G and B Ď H such that W Ď B and
πpA ˆ Bq “ T, where π : G ˆ H Ñ T “ pG ˆ Hq{L is the canonical projection.

Given pg, hq P A ˆ B, let Γ̂g,h “ NpW ` hq ´ g. Observe that Γ̂g,h may not
be an element of ΩpNpW qq. While for our asymptotic estimates this will be of no

problem (due to Corollary 5.3), its explicit definition makes Γ̂g,h more convenient
to deal with in computations.

Claim 5.6. Let δ ą 0. If dGpg, g1q ď δ{2 and dpΓ̂g,h, Γ̂g1,h1 q ě δ, then

r´g,´hsL P π
`

BGp0, 2{δq ˆ pWΔpW ` h1
´ hqq

˘

“: Dpδ, h1
´ hq.

Proof of the claim. By Proposition 5.4, we know that dpΓ̂g,h, Γ̂g,h1 q ě δ{2. Hence,

there exists p
, 
˚q P L with 
 P BGpg, 2{δq and 
 P Γ̂g,hΔΓ̂g,h1 . The latter implies
that 
˚ P pW ` hqΔpW ` h1q.

Equivalently, this means that 
 ´ g P BGp0, 2{δq and 
˚ ´ h P WΔpW ` h1 ´ hq,
so that

r´g,´hsL “ r
 ´ g, 
˚
´ hsL P π

`

BGp0, 2{δq ˆ WΔpW ` h1
´ hq

˘

.

This proves the claim. �

We can now apply the claim to estimate the separation frequency of a pair Γ̂g,h

and Γ̂g1,h1 .

νF pδ, Γ̂g,h, Γ̂g1,h1 q “ lim
nÑ8

1

mGpFnq

ż

Fn

1rδ,8qpdpΓ̂g,h ´ t, Γ̂g1,h1 ´ tqqdt

“ lim
nÑ8

1

mGpFnq

ż

Fn

1rδ,8qpdpΓ̂g`t,h, Γ̂g1`t,h1 qqdt

ď lim
nÑ8

1

mGpFnq

ż

Fn

1Dpδ,h1´hqpr´g ´ t, hsLqdt

p˚q
“ μTpDpδ, h1

´ hqq

ď mGpBGp0, 2{δqq ¨ mHpWΔpW ` h1
´ hqq

ď mGpBGp0, 2{δqq ¨ mHpBHpBW,dp0, h1 ´ hqqq,

where the equality p˚q follows from the unique ergodicity of pT, Gq and the fact
that μTpBDpδ, h1 ´ hqq “ 0.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

AMORPHIC COMPLEXITY OF GROUP ACTIONS 2413

Now, suppose that δ ą 0 and ν ą 0 are given. Let

ε “ inf tη ą 0 | mH pBH pBW, ηqq ě ν{mG pBGp0, 2{δqqu .

Then we have mHpBHpBW, εqq ď ν{mGpBGp0, 2{δqq but at the same time

mH

`

BHpBW, εq
˘

ě ν{mGpBGp0, 2{δqq due to the regularity of Haar measure. Con-
sequently, if dGpg, g1q ă δ{2 and dHph, h1q ă ε, then the first inequality combined

with the above estimate yields that Γ̂g,h and Γ̂g1,h1 cannot be pδ, νq-separated.
For g P G and h P H, let Γg,h denote some element of ΩpNpW qq with NpintpW q`

hq ´ g Ď Γg,h Ď Γ̂g,h, see (9). We cover A by N “ Nδ{2pAq balls of radius δ{2

and B by M “ NεpBq balls of radius ε and denote by pgnqNn“1 and phmqMm“1 the
midpoints of these balls. Then the set tΓgn,hm

| n “ 1, . . . , N, m “ 1, . . . ,Mu is
pδ, νq-spanning due to the above and Corollary 5.3. We obtain the estimate

acF pΩpNpW qq, Gq “ sup
δą0

lim
νÑ0

log SpanF pΩpNpW qq, G, δ, νq

´ log ν

ď sup
δą0

lim
εÑ0

logpNδ{2pAq ¨ NεpBqq

´ logmH

`

BHpBW, εq
˘

“ lim
εÑ0

logNεpBq{ ´ log ε

logmH

`

BHpBW, εq
˘

{ log ε

ď
dimBpHq

dimBpHq ´ dimBpBW q
,

where we used Minkowski’s characterisation in the last step. This completes the
proof. �

Remark 5.7. It is not too difficult to see that the above result is optimal in the
sense that equality is attained for some examples while at the same time, it cannot
hold in general.

(a) In order to see that amorphic complexity can be smaller than the bound pro-
vided by (10), letH “ R and suppose C Ď R is an arbitrary Cantor set of di-
mension d P r0, 1q. LetW be a window given by the union of C with a count-
able number of gaps (that is, bounded connected components of RzC) such
that BW “ C. Clearly, this can be done such that for each n, we have that
W contains less than n intervals of size 2´n or bigger. If ε P p2´n, 2´n`1s,
then each of these intervals contributes at most 2ε to mHpWΔpW ` εqq,
whereas the union of the other intervals contributes at most ε in total (and
BW does not contribute since it is of zero measure). Hence, we obtain
mHpWΔpW ` εqq ď 2εn ď 2εp´ log ε{ log 2 ` 1q. Accordingly, the compu-
tation in the proof of Theorem 5.5 yields acF pΩpNpW qq, Gq ď 1 ă

1
1´d .

(b) The most straightforward examples in which equality is attained in (10) are
given by CPS with H “ R. We refrain from discussing the technicalities
(which are in spirit similar to those in the proof of the above theorem) and
simply sketch the main ingredients of the construction. For γ ą 2, consider
a middle segment Cantor set Cγ which is constructed by always removing
the middle p1 ´ 2{γq-th part of intervals in the canonical construction of
Cantor sets. Observe that Cγ is of dimension dimBpCγq “ log 2{ log γ with
gaps of size p1´2{γq¨γ´n. If W is the window that is obtained by including
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all gaps of size p1 ´ 2{γq ¨ γ´n with n odd, it can be readily checked that

lim
εÑ0

logmHpWΔpW ` εqq

log ε
“ p1 ´ log 2{ log γq.

We may assume without loss of generality to be given an element pu, vq

of some set of generators of L with Cγ Ď r0, vs. Let h1, . . . , ht1{εu P H
be equidistributed in r0, vs Ď H. Similarly to the estimates in the proof
of Theorem 5.5, it can be checked that for small enough δ, we have that
tΓ0,h1

, . . .Γ0,ht1{εu
u is pδ, νq-separated with ν “ mGpBGp0, 1{δqqmHpWΔpW

`εqq as ε (and hence ν) tends to zero. Then one obtains acF pΩpNpW qq, Gq

“ supδą0 limνÑ0
log SepF pΩpNpW qq,G,δ,νq

´ log ν ě
1

1´dimBpCγq
.

(c) Note that the construction sketched in (b) yields uncountably many regular
model sets that lie in different conjugacy classes. In fact, it shows that any
value in r1,8q can be realised as the amorphic complexity of a regular
model set.

(d) The above considerations indicate that while the structure of the boundary
of the window inflicts some upper bound on the complexity of the dynamics
of the resulting model set, it greatly depends on the interior of the window
whether this bound is actually attained or not. This coincides with simi-
lar observations concerning the topological entropy of irregular model sets
[JLO19].

(e) In [BJL16], Toeplitz flows are studied from the viewpoint of aperiodic order.
It is shown that the canonical integer set of a Toeplitz sequence can be
obtained as a model set of some canonically associated cut and project
scheme. Moreover, in the regular case, the box dimension of the window can
be computed from the scaling behaviour of the densities of the p-skeletons in
the construction of the Toeplitz sequence. Combined with Theorem 5.5, this
allows us to estimate the amorphic complexity of zero entropy Toeplitz flows
in terms of the densities of the p-skeletons. We refer to [BJL16, Theorem 2]
for the technical details.
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C. Mauduit and A. Siegel, DOI 10.1007/b13861. MR1970385

[FGJO21] G. Fuhrmann, E. Glasner, T. Jäger, and C. Oertel, Irregular model sets and
tame dynamics, Trans. Amer. Math. Soc. 374 (2021), no. 5, 3703–3734, DOI
10.1090/tran/8349. MR4237960
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