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ABSTRACT. The aim of this article is to obtain a better understanding and classifi-
cation of strictly ergodic topological dynamical systems with (measurable) discrete
spectrum. To that end, we first determine when an isomorphic maximal equicontin-
uous factor map of a minimal topological dynamical system has trivial (one point)
fibres. In other words, we characterize when minimal mean equicontinuous systems
are almost automorphic. Furthermore, we investigate another natural subclass of mean
equicontinuous systems, so-called diam-mean equicontinuous systems, and show that
a minimal system is diam-mean equicontinuous if and only if the maximal equicontin-
uous factor is regular (the points with trivial fibres have full Haar measure). Combined
with previous results in the field, this provides a natural characterization for every step
of a natural hierarchy for strictly ergodic topological models of ergodic systems with
discrete spectrum. We also construct an example of a transitive almost diam-mean
equicontinuous system with positive topological entropy, and we give a partial answer
to a question of Furstenberg related to multiple recurrence.

1. INTRODUCTION

The family of ergodic systems with discrete spectrum was one of the early objects
of study of formal Ergodic Theory (by von Neumann in 1932 [47]). It is one of the
few families where the isomorphism problem is well understood (using spectral iso-
morphism): as stated by the Halmos-von Neumann theorem [28], every isomorphism
class can be represented with a simple object, a group rotation on a compact abelian
group. More generally, the celebrated Jewett-Krieger theorem states that every ergodic
system is isomorphic to a strictly ergodic (uniquely ergodic and minimal) model.

However, even in the case of discrete spectrum, strictly ergodic systems may be very
different from a group rotation. Surprisingly, recent work has shown that the family of
all topological dynamical systems that are strictly ergodic models of discrete spectrum
systems may exhibit a rich range of behaviours (from a topological point of view)
[39, 19, 8, 13, 23, 31]. It turns out that these properties can be classified in a natural
hierarchy, in which the best-understood systems with topological discrete spectrum
– namely the equicontinuous systems – just present the simplest subclass and only a
small fraction of the whole family. Apart from the intrinsic interest, the aim for a better
understanding of this class of systems is also motivated by mathematical studies of
quasicrystals, whose associated dynamical models often fall into this category (that is,
they combine strict ergodicity and discrete spectrum [6]).
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For simplicity, we restrict to the case of Z+-actions and say a topological dynamical
system (t.d.s) is a pair (X ,T ) consisting of a compact metric space X and a continu-
ous transformation T : X → X . When it comes to classifying strictly ergodic systems
(with or without discrete spectrum), an important and well-known concept is that of
the maximal equicontinuous factor (Xeq,Teq) and its factor map πeq : X → Xeq. The
latter exists for every topological dynamical system (e.g. see [11]) and can be obtained
in a constructive way via the regionally proximal equivalence relation [46] (also see
[2]). If (X ,T ) is minimal, then (Xeq,Teq) is both minimal and uniquely ergodic, and
we denote its unique invariant measure by νeq. The following is a natural hierarchy for
strictly ergodic systems with discrete spectrum, based on the invertibility properties of
the map πeq:

πeq is a conjugacy (1-1)
⇒ πeq is regular (almost surely 1-1, that is, 1-1 on a set of full measure)
⇒ πeq is isomorphic and almost 1-1 (that is, 1-1 on a residual subset)
⇒ πeq is isomorphic
⇒ (X ,µ,T ) has discrete spectrum (where µ is the unique invariant Borel probability

measure of (X ,T )).

Note that if an ergodic system has discrete spectrum, then it has to be isomorphic to
an equicontinuous system, but this isomorphism is not necessarily given by the maxi-
mal equicontinuous factor map (actually every ergodic system has a uniquely ergodic
mixing topological model [38]). In other words, the Kronecker factor in the Halmos-
von Neumann theorem may be strictly bigger than the maximal equicontinuous factor,
and this is the case if and only if there exist L2(µ)-eigenfunctions that are not con-
tinuous (see [25] for an example which is a uniquely ergodic minimal distal system).
Hence, the last property is strictly weaker than the previous one. Also, it is not difficult
to check that systems with discrete spectrum always have zero metric entropy and are
never weakly mixing (a non-uniquely ergodic t.d.s. may have fully supported measures
with discrete spectrum and positive topological entropy [43]).

An important notion for this theory is mean equicontinuity (or mean-L-stability),
which is a weakening of equicontinuity. It was introduced by Fomin already in 1951
[12], but in the next 60 years only a few papers studying this property appeared [3, 45].
In particular, it was left as an open question if minimal mean equicontinuous systems
(equipped with their unique ergodic measure) have discrete spectrum. Recently, this
question was answered independently by Li, Tu and Ye [39], and by Garcı́a-Ramos [19]
using different methods (also see [30, 22]). Garcı́a-Ramos characterized when topolog-
ical representations of an ergodic system have discrete spectrum, using a weaker notion
called µ-mean equicontinuity (which also relies on the measure). Li, Tu and Ye proved
that mean equicontinuity is stronger than just discrete spectrum because the isomor-
phism to the group rotation can be achieved using the maximal equicontinuous factor.
Downarowicz and Glasner [8] proved the converse, that is, if the maximal equicon-
tinuous factor of a minimal systems yields an isomorphism then the system must be
mean equicontinuous. Furthermore, they showed that some minimal mean equicon-
tinuous systems are not almost automorphic ( πeq is not almost 1-1). Altogether, this
means that the last two steps in the above hierarchy can be characterized using (µ-
)mean equicontinuity. For a survey on mean equicontinuity see [40].
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In this paper, we aim to characterize the second and third step (the first is just
equicontinuity) using weak forms of equicontinuity. To that end, we use the notions
of frequent stability (Definition 3.3) and diam mean equicontinuity (Definition 4.1),
closely related to Lyapunov stable sets and mean equicontinuity. Under the assumption
of minimality, we show that for mean equicontinous systems the maximal equicontin-
uous factor map πeq is almost 1-1 if and only if (X ,T ) is frequently stable (Theorem
3.4). Moreover, we show that πeq is regular if and only if (X ,T ) is diam-mean equicon-
tinuous (Theorem 4.12).

Other known families of systems with discrete spectrum are null systems (zero topo-
logical sequence entropy [36, 26, 31]) and tame systems (Glasner [23, 34]). It is now
understood that these properties are very closely related to the hierarchy. It is not dif-
ficult to see that every equicontinuous system is null. Kerr and Li proved that these
notions can be characterized using combinatorial independence and that every null sys-
tem is tame [34]. Using a result from Glasner [24] and a result from Fuhrmann, Glasner,
Jäger and Oertel [13], we obtain that for every minimal tame system, πeq is regular. See
[31, 19] for previous weaker results.

In summary, we obtain the following hierarchy for minimal systems:

Equicontinuity (⇔ topological discrete spectrum)
⇒null (⇔no unbounded independence)
⇒tame (⇔ no infinite independence)
⇒diam-mean equicontinuous (⇔ πeq regular)
⇒mean equicontinous and frequently stable (⇔ πeq almost 1-1 and isomorphic)
⇒mean equicontinuous (⇔ πeq isomorphic)
⇒ µ−mean equicontinuous. (⇔ discrete spectrum).

Note that there exist counter-examples showing that each of these implications is
strict [26, Section 5], [35, Section 11] or [15], [24, Remark 5.8], [9, Example 5.1], and
[8, Theorem 3.1]. Recently, Garcı́a-Ramos and Kwietniak introduced a weakining of
mean equicontinuity using the Feldman-Katok pseudometric, and characterized models
of zero entropy loosely Bernoulli systems [20], this could be considered a next step in
the previous hierarchy.

We should mention that some work has been done for non-minimal systems and
non-ergodic measures [14, 44, 30], but further work will be required to extend our
results in this direction. In contrast to this, with the use of [14], the extension to locally
compact amenable group actions should be straightforward (except for Section 6). In
particular for Z-actions, Z (or bilateral) equicontinuity is equivalent to Z+ (or forward)
equicontinuity, and the same is true for mean equicontinuity (e.g. see [14, Theorem
1.3]). Also, we are confident that our results and proofs remain valid for first-countable
Hausdorff spaces. However, when first countability is dropped (as for uncountable
products of compact metric spaces), and sequential compactness cannot be used any
further, it is much less clear to us if the statements remain true. In any case, the proofs
would require substantial modifications.

In addition to the above-mentioned results, we also study almost diam-mean equicon-
tinuity, a weakening of diam-mean equicontinuity. We show that transitive almost
diam-mean equicontinuous systems may have positive topological entropy (note that
mean equicontinuous systems always have zero topological entropy). So, at least in
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this sense, almost diam-mean equicontinuous systems do not exhibit different proper-
ties than almost mean equicontinuous systems (in contrast to the minimal case). Finally,
we give a partial answer to a question of Furstenberg related to multiple topological re-
currence.

Another important generalization of equicontinuous systems are the distal systems,
which are the subjects of the well-known Furstenberg structure theorem [16]. The mean
version of distal systems was studied by Ornstein and Weiss [41]. Mean equicontinuity
and mean distality are perpendicular notions, in the sense that a mean equicontinuous
system is mean distal if and only if it is equicontinuous [19, Proposition 69].

The paper is organized as follows. In Section 2, we give some basic notions of t.d.s.
In Section 3 we show that for mean equicontinous systems πeq is almost 1-1 if and
only if (X ,T ) is frequently stable. In Section 4 we study the basic properties of diam-
mean equicontinuous systems and we prove that πeq is regular if and only if (X ,T ) is
diam-mean equicontinuous. In Section 5 we consider diam-mean sensitivity and almost
diam-mean equicontinuity. Furstenberg asked if for every t.d.s. (X ,T ) and d ∈N, there
is x ∈ X such that (x,x, . . . ,x) is a minimal point for T × T 2× . . .× T d . We give a
positive answer for the class of mean equicontinuous systems in Section 6.

Acknowledgments. We thank Eli Glasner for useful discussion in the early stage of the
paper, Gabriel Fuhrmann for pointing out a way to simplify the proof of Theorem 3.4
and further helpful remarks, and Jian Li for pertinent comments and references. X. Ye
was supported by NNSF of China (11431012), T. Jäger by a Heisenberg grant of the
German Research Council (DFG-grant OE 538/6-1) and F. Garcı́a-Ramos by CONA-
CyT (287764).

2. PRELIMINARIES

Throughout this paper, we denote by Z+ and N the sets of non-negative integers and
natural numbers, respectively. We denote the cardinality of a set A by |A|.

2.1. Subsets of Z+. Let F be a subset of Z+. The upper density and upper Banach
density of F are defined by

D(F) = lim sup
n→∞

|{F ∩ [0,n−1]}|
n

and

BD∗(F) = limsup
N−M→∞

|{F ∩ [M,N−1]}|
N−M

= limsup
n→∞

{
sup

N−M=n

|{F ∩ [M,N−1]}|
n

}
,

respectively. It is clear that D(F)≤BD∗(F) for any F ⊂Z+. When a set is denoted with
braces, for example {A}, we simply write D{A}= D({A}) and BD∗{A}= BD∗({A}).

2.2. Topological dynamics. We say (X ,T ) is a topological dynamical system (t.d.s.)
if X is a compact metric space (with metric d) and T : X → X is a continuous function.
We denote the forward orbit of x ∈ X by orb(x,T ) = {x,T x, . . .} and its orbit closure
by orb(x,T ). We say x ∈ X is a transitive point if orb(x,T ) = X . On the other hand,
a t.d.s. (X ,T ) is transitive if for any non-empty open sets U,V ⊂ X there exists n ∈ N
such that T nU ∩V 6= /0 and is minimal if every point of X is transitive. We say (X ,T )
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is uniquely ergodic if there is only one T -invariant Borel probability measure on X . A
t.d.s. is stricly ergodic if it is minimal and uniquely ergodic.

We call x ∈ X an equicontinuity point if for any ε > 0 there exists δ > 0 such that
for every y ∈ X with d(x,y) < δ , we have d(T nx,T ny) < ε for all n ∈ Z+. A t.d.s. is
equicontinuous if every x ∈ X is an equicontinuity point (note that by compactness
every equicontinuous t.d.s. is uniformly equicontinuous, so a t.d.s. is equicontinuous if
and only if the family {T n} is equicontinuous).

Let (X ,T ) and (X ′,T ′) be two t.d.s. We say (X ′,T ′) is a factor of (X ,T ) if there
exists a surjective continuous map π : X → X ′ such that π ◦T = T ′ ◦π (we refer to π as
a factor map). A factor map π : X → X ′ is almost 1-1 if {x ∈ X : π−1π(x) = {x}} is
residual (that is, it is the countable intersection of dense open sets) and almost finite to
one if {x ∈ X : |π−1π(x)| < ∞} is residual. If (X ′,T ′) is minimal then π is almost 1-1
if and only if {x ∈ X : π−1π(x) = {x}} is non-empty. Every t.d.s. (X ,T ) has a unique
(up to conjugacy) maximal equicontinuous factor (m.e.f.) (Xeq,Teq) [11], that is, an
equicontinuous factor such that every other equicontinuous factor of (X ,T ) is a factor
of (Xeq,Teq). We will denote the maximal equicontinuous factor map by πeq. Every
transitive equicontinuous system is strictly ergodic and we denote the invariant Borel
probability measure by νeq.

Given a t.d.s. the Besicovitch pseudometric is given by

ρb(x,y) := lim sup
n→∞

1
n

n

∑
i=1

d(T ix,T iy).

A t.d.s. (X ,T ) is a subshift if X ⊂ Σk = {0,1, . . . ,k−1}N is a closed (with respect to
the product topology) shift invariant subset. The ith coordinate of x ∈ Σk is denoted by
xi and the shift map σ : Σk→Σk is defined by the condition that σ(x)n = xn+1 for n∈N.
Toeplitz subshifts are almost 1-1 extensions of odometers (i.e. (Xeq,Teq) is an odometer
and πeq is almost 1-1). Although we will not work directly with Toeplitz subshifts,
some examples will be relevant in the paper. For a survey on Toeplitz subshifts see [7].

3. CHARACTERIZATION OF ALMOST AUTOMORPHIC MEAN EQUICONTINUOUS
SYSTEMS

In this section we characterize when the maximal equicontinuous factor map of a
minimal mean equicontinuous t.d.s. is almost 1-1.

Definition 3.1. A t.d.s. (X ,T ) is mean equicontinuous if for every ε > 0 there exists
δ > 0 such that if d(x,y)≤ δ then ρb(x,y)≤ ε .

Theorem 3.2 ([39, Theorem 3.8], [8, Theorem 2.1]). A minimal t.d.s. (X ,T ) is mean
equicontinuous if and only if (X ,T ) is uniquely ergodic (with a measure µ) and πeq is
a measurable isomorphism between (X ,T,µ) and (Xeq,Teq,νeq).

Every equicontinuous t.d.s. is mean equicontinuous. The previous theorem im-
plies that the Sturmian subshift (isomorphic to an irrational rotation) or any regular
Toeplitz subshift (isomorphic to an odometer [33, Theorem 6]) is mean equicontinuous.
Nonetheless, simple arguments indicate that no aperiodic subshift can be equicontinu-
ous.

These previously mentioned examples (as most known minimal mean equicontinu-
ous examples) are almost automorphic, i.e. πeq is almost 1-1. These systems can be
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constructed with concrete methods using a compact abelian group and a semi-cocycle
(see [7, 42]). Nonetheless, there exist (more complicated) minimal mean equicon-
tinuous systems that are not almost automorphic [8, Theorem 3.1]. In this section we
characterize exactly when this happens using a simple condition which we call frequent
stability.

By Bδ (x) we denote the open ball of radius δ centered at x. For A ⊂ X , we denote
the diameter of A by diam(A).

Definition 3.3. Let (X ,T ) be a t.d.s. We say that x ∈ X is a frequently stable point, if
for every ε > 0 there exists δ > 0 such that

D
{

i ∈ Z+ : diam(T iBδ (x))> ε
}
< 1.

Theorem 3.4. Let (X ,T ) be a minimal mean equicontinuous t.d.s. Then the following
are equivalent:

(i) πeq : (X ,T )→ (Xeq,Teq) is almost 1-1;
(ii) every x ∈ X is frequently stable;

(iii) there exists at least one frequently stable point of x;
(iv) πeq : (X ,T )→ (Xeq,Teq) is almost finite to one.

To prove this theorem we will need the following lemmas.

Lemma 3.5 ([39, Theorem 3.5], [19, Proposition 49]). Let (X ,T ) be a t.d.s. If (X ,T )
is mean equicontinuous then ρb(x,y) = 0 if and only if πeq(x) = πeq(y).

Lemma 3.6 ([8, Lemma 2.4]). Let (X ,T ) and (X ′,T ′) be minimal t.d.s., (Y,S) invert-
ible, and π : X → X ′ a factor map. Then either π is almost 1-1 or there exists ε > 0
such that diam(π−1(y))> ε for every y ∈ X ′.

It is well-known that factor maps between minimal systems are always semi-open.
We provide a proof for the convenience of the reader.

Lemma 3.7. Let π : (X ,T )→ (X ′,T ′) be a factor map between two minimal t.d.s. with
(X ′,T ′) invertible. Then for each δ > 0 there is η > 0 such that the image under π of
any δ -ball in X contains an η-ball in X ′.

Proof. Fix δ > 0 and x ∈ X . By minimality of (X ,T ), there exists n ∈ N such that⋃n
i=0 T iBδ (x) covers X . Therefore, π(Bδ (x)) needs to have non-empty interior, other-

wise Y =
⋃n

i=0 π(T iBδ (x)) would be a finite union of meager sets (complement of a
residual set), contradicting Baire’s category theorem. Using compactness again, one
obtains that there exists η > 0 such that the image under π of any δ -ball in X contains
an η-ball in X ′. �

We can now turn to the proof of Theorem 3.4. The crucial part in this is the im-
plication from (iii) to (i). Since the argument includes a number of technicalities, we
want to give a heuristic description of the main idea before we turn to the rigorous
implementation.

Strategy for the proof of Theorem 3.4. We will proceed by contradiction and as-
sume that (X ,T ) is not almost 1-1, so that all fibres are non-trivial and the diameter of
the fibres is uniformly bounded from below by some constant ε > 0 (Lemma 3.6). As
π is isomorphic (Theorem 3.2), there exists a measurable inverse ρ : X0

eq→ X0, where
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ρ(T n
eq(Bη(y)))

Bδ(x)
T n

ϕ(Bη(y))

T n(ϕ(Bη(y)))

ρ(T n
eq(Bη(y)))

x
T n(x) T n(Bδ(x))

FIGURE 1. Illustration of the proof of implication (iii)⇒ (i) in Theo-
rem 3.4. In order to show that no point is frequently stable, we start
with a δ -ball Bδ (x) and a measurable selection ϕ : Bη(y) → Bδ (x),
where Bη(y) ⊆ π(Bδ (x)). Under iteration, for most n ∈ N, the image
T n(ϕ(Bη(y))) will be close to ρ(Bη(T n

eq(y)). As the range of the lat-
ter set is at least ε , one obtains a uniform lower bound for the range of
T n(ϕ(Bη(y))), and hence for T n(Bδ (x)).

X0
eq and X0 are full measure subsets of Xeq and X , respectively. The function ρ maps

µeq to µ , that is ρ∗µeq = µ , so that the latter measure is supported on the image of ρ .
As the fibres of π are ε-large and µ has full topological support, the image of every

η-ball Bη(x) under ρ will have diameter ε . Furthermore, it is possible to show that π

maps to two ε/4-separated regions in X with a positive probability that only depends
on η .

Now, the aim is to prove that no point in X is frequently stable. Using the fact that π

is semi-open, for any δ > 0 the projection πeq(Bδ (x) contains some η-ball Bη(y), with
η only dependent on δ . We then consider a mapping ϕ : Bη(y)→ Bδ (x) which is a
local measurable left inverse of π , that is, π ◦ϕ(y′) = y′ for all y′ ∈ Bη(y).

The crucial observation is the fact that the image of ϕ will converge to that of ρ

(in a suitable sense, to be made precise below) under forward iteration. Hence, for
most sufficiently large n, the diameter of T n(ϕ(Bη(y))) will be close to the diameter
of ρ(T n

eq(Bη(y))), and in particular larger than ε/8. As ϕ(Bη(y)) ⊆ Bδ (x), this will
show that diam(T n(Bδ (x))) ≥ ε/8 for most n. As x ∈ X and δ > 0 are chosen arbi-
trary, this will prove the non-existence of frequently stable points and thus conclude the
contradiction argument. An illustration of the last step is given in Figure 1.

Proof of Theorem 3.4. The facts that (ii) implies (iii), and (i) implies (iv) are obvious.
First we will prove (iv) implies (i). Suppose that there exists y ∈ Xeq such that

π−1
eq (y) is finite. Using Lemma 3.5, we have that for every ε > 0 there exists n ∈ N

such that d(T nx,T nx′) ≤ ε for every x,x′ ∈ π−1
eq (y). Note that T nx,T nx′ ∈ π−1

eq (T n
eqy).
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Since (X ,T ) is minimal, we have that T : X → X is surjective and hence, for each
z ∈ π−1

eq (T n
eqy) there is x ∈ π−1

eq (y) such that T nx = z. Thus, d(z,z′) < ε for all z,z′ ∈
π−1

eq (T n
eqy). Using Lemma 3.6, we conclude that πeq is almost 1-1.

The fact that (i) implies (ii) is an application of Theorem 3.1 and Theorem 3.4 of
[29]. Nonetheless, we can provide a short direct proof. By hypothesis, there exists
y0 ∈ Xeq such that |π−1

eq (y0)|= 1. Let ε > 0. There exists η > 0 such that

diam(π−1
eq (Bη(y)))≤ ε

for every y ∈ Bη(y0). Since νeq is fully supported, Bη(y0) has positive measure and
(using standard arguments) must contain a smaller ball with positive measure and νeq-
null boundary. Thus, by strict ergodicity, we have that

D
{

n ∈ N : T n
eqy ∈ Bη(y0)

}
> 0

for every y ∈ Xeq.
Let x ∈ X . Since πeq is continuous, there exists δ > 0 such that

diam(πeq(Bδ (x)))< η .

Without loss of generality, we may assume Teq is an isometry. This implies that

Bη(T n
eqπeq(x)) = T n

eqBη(πeq(x))

for every n ∈ N. Consequently

T n(Bδ (x))⊆ π
−1
eq (Bη(T n

eqπeq(x)))

for all n ∈ N. So, if T n
eqπeq(x) ∈ Bη(y0) then diam(T nBδ (x)) < ε; since this happens

with positive density, we conclude (X ,T ) is frequently stable.

Hence, it remains to show that (iii) implies (i). Without loss of generality, suppose
that diam(X) = 1. Assume that πeq is not almost 1-1. We will show that no point in
X is frequently stable. Using Theorem 3.2, there exists X0 ⊂ X , Y0 ⊂ Xeq such that
µ(X0) = 1 and πeq : X0→ Y0 = πeq(X0) is bijective. Let ρ : Y0→ X0 be the inverse of
πeq. This implies that µ(A) = νeq({y ∈ Y | ρ(y) ∈ A}) for every measurable set A⊆ X .

Since πeq is not almost 1-1, we have that
∣∣π−1

eq (y)
∣∣ > 1 for all y ∈ Xeq. By Lemma

3.6, there exists ε > 0 such that diam(π−1
eq (y))> ε for every y ∈ Xeq.

Claim: for every η > 0 there exists κ = κ(η) > 0 such that for any y ∈ Y and any
x ∈ π−1

eq (y) we have that µ(Bε/8(x)∩π−1
eq (Bη(y))≥ κ .

Suppose for a contradiction that this is not the case. Then, there exist yn ∈ Y0 and
xn ∈ π−1

eq (Bη(yn)) such that limn→∞ µ(Bε/8(xn)∩ π−1
eq (Bη(yn))) = 0. By minimality,

the topological support of µ is all of X ; hence, every non-empty open subset of X has
positive measure. In particular, if y = limn→∞ yn and x = limn→∞ xn (where we go over
to convergent subsequences if necessary to ensure existence of the limits), the open set
U = Bε/16(x)∩π−1

eq (Bη/2(y)) has positive measure. However, for n large enough, U is
contained in Bε/8(xn)∩π−1

eq (Bη(yn)), leading to a contradiction. This proves the claim.
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If we apply the above claim to any y ∈ Y0 and two points x1,x2 ∈ π−1
eq (y) with

d(x1,x2) > ε/2, and define A j = πeq
(
Bε/8(x j)∩π−1

eq (Bη(y)∩Y0)
)

for j ∈ {1,2}, we
obtain the following statement.

For every η > 0 there exists κ > 0 such that for all y ∈ Y0 there are

A1(y),A2(y)⊂ Bη(y) such that νeq(A1(y)),νeq(A2(y))> κ and

d(ρ(A1(y)),ρ(A2(y)))> ε/4.
(1)

Let x ∈ X and δ > 0. Due to Lemma 3.7, there exist η > 0 and y ∈ πeq(Bδ (x)) such
that Bη(y) ⊆ πeq(Bδ (x)). Using the Jankov-von Neumann selection theorem (e.g. see
[27, Corollary 2.6]), there exists a measurable mapping ϕ : Bη(y)→ Bδ (x) that satisfies
πeq ◦ϕ(y′) = y′ for all y′ ∈ Bη(y). Then Lemma 3.5 implies that

lim
n→∞

1
n

n

∑
i=0

d(T i
ϕ(y′),T i

ρ(y′)) = 0

for all y′ ∈ Bη(y). Hence, the dominated convergence theorem yields

lim
n→∞

1
n

n

∑
i=0

∫
Bη (y)

d(T i
ϕ(y′),T i

ρ(y′)) dνeq(y′) = 0.

Furthermore, if we let

Ei = { y′ ∈ Bη(y)∩Y0 : d(T i
ϕ(y′),T i

ρ(y′))≤ ε/8} ,
then this implies

D
{

i ∈ Z+ : νeq(X \Ei)≥ κ/2
}
= 0 .

Consequently, we obtain that

(2) D
{

i ∈ Z+ : νeq(Ei)> νeq(Bη(y))−κ/2
}
= 1.

For any i ∈ Z+, let A′1 := A1(T i
eq(y)) and A′2 := A2(T i

eq(y)) be given by (1). Then,

νeq(A′1),νeq(A′2)> κ .

Hence, if

(3) νeq(Ei)> νeq(Bη(y))−κ/2,

then
A′j∩Ei 6= /0

for j = 1,2. Since (3) happens for a set of i of full density and

d(ρ(A′1),ρ(A
′
2))> ε/4,

we obtain that

D
{

i ∈ N : ∃yi
1,y

i
2 ∈ Bη(y) with d(ϕ(T i

eqyi
1)),ϕ(T

i
eqyi

2))≥ ε/8
}
= 1.

Considering that πeq is a factor map and πeq ◦ϕ(y′) = y′ for all y′ ∈ Bη(y), then

D
{

i ∈ N : ∃yi
1,y

i
2 ∈ Bη(y) with d(T i

ϕ(yi
1),T

i
ϕ(yi

2))≥ ε/8
}
= 1.

Consequently, as ϕ(yi
1),ϕ(y

i
2) ∈ Bδ (x), we obtain

D
{

i ∈ N : diam(T iBδ (x))≥ ε/8
}
= 1.
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As x ∈ X and δ > 0 were arbitrary, we conclude that there are no frequently stable
points of (X ,T ). �

This result implies that the mean equicontinuous systems from [8] cannot be fre-
quently stable and the maximal equicontinuous factors, of those systems, have to be
infinite to one at every point.

Corollary 3.8. Let (X ,T ) be a minimal t.d.s. Then πeq is isomorphic and almost 1-1 if
and only if (X ,T ) is mean equicontinuous and frequently stable.

Question 1. Does there exist a minimal t.d.s. that is frequently stable but not almost
automorphic (obviously non-mean equicontinuous)?

4. CHARACTERIZATION OF DIAM-MEAN EQUICONTINUITY

As we noted in the previous section, an isomorphic πeq does not imply πeq is almost
1-1. Actually, the converse also does not hold; for every Toeplitz subshift πeq is almost
1-1 but some of them even have positive topological entropy [7]. Nonetheless, if

µ({x ∈ X : π
−1
eq πeq(x) = {x}}) = 1,

then πeq must automatically be an isomorphism. Using a stronger form of mean equicon-
tinuity, namely diam-mean equicontinuity, we will characterize when this happens
(Theorem 4.12). Note that there exist Toeplitz subshifts (hence almost automorphic)
that are mean equicontinuous but not regular, that is, the above equation does not hold
([9, Example 5.1]). An improved understanding of these kind of examples can be ob-
tained using the cut and project formalism [5].

4.1. The basic properties of diam-mean equicontinuous systems. Diam-mean equicon-
tinuity was introduced in [19].

Definition 4.1. Let (X ,T ) be a t.d.s. We say x ∈ X is a diam-mean equicontinuity
point if for every ε > 0 there exists δ > 0 such that

lim sup
N→∞

1
N

N

∑
i=1

diam(T iBδ (x))< ε.

We say (X ,T ) is diam-mean equicontinuous if every x ∈ X is a diam-mean equicon-
tinuity point. We say (X ,T ) is almost diam-mean equicontinuous if the set of diam-
mean equicontinuity points is residual.

Since X is compact, a t.d.s. is diam-mean equicontinuous if and only if for every
ε > 0 and x ∈ X there exists δ > 0 such that limsupN→∞

1
N ∑

N
i=1 diam(T iBδ (x)) < ε .

It is not difficult to check that a transitive t.d.s. is almost diam-mean equicontinuous
if and only if there exists a diam-mean equicontinuity point and that a minimal almost
diam-mean equicontinuous system is always diam-mean equicontinuous.

A t.d.s (X ,T ) is mean equicontinuous if and only if for every ε > 0 there exist δ > 0
and N ∈ N such that if d(x,y)≤ δ then 1

n ∑
n
i=1 d(T ix,T iy)< ε for any n≥ N [44]. We

will now give a similar characterization.
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Definition 4.2. Let (X ,T ) be a t.d.s. We say a set U ⊂ X is ε−stable in the mean if

(4) sup
N∈N
{ 1

N

N

∑
i=1

diam(T iU)}< ε.

Lemma 4.3. Let (X ,T ) be a t.d.s. Then, (X ,T ) is diam mean equicontinuous if and
only if for each ε > 0 there is δ > 0 such that for each x ∈ X, Bδ (x) is ε-stable in the
mean.

Proof. It is clear that the late condition implies diam mean equicontinuity. Now assume
that (X ,T ) is diam mean equicontinuous. For each ε > 0 there is δ > 0 such that for
each x ∈ X

(5) limsup
n→∞

1
n

n−1

∑
i=0

diam(T iBδ (x))< ε.

Assume that (4) does not hold. Then, there are xi ∈ X , δi→ 0, ε0 > 0 and Ni→ ∞

such that
1
Ni

Ni

∑
j=1

diam(T jBδi(xi))≥ ε0, ∀i ∈ N.

Without loss of generality, assume that xi→ x and δ = δ (ε0). When i is large enough
we have that Bδi(xi)⊂ Bδ (x); a contradiction to (5). �

Lemma 4.4. Let (X ,T ) be a t.d.s. Then, x ∈ X is a diam-mean equicontinuity point if
and only if for every η > 0 there exists δ > 0 such that

D
{

i ∈ Z+ : diam(T iBδ (x))> η
}
< η .

Proof. We assume, without loss of generality, that the diameter of X is bounded by 1.
(⇒) Let x ∈ X be a diam-mean equicontinuity point. Assume that there exists η > 0

such that for every δ > 0 we have that

D
{

j ∈ Z+ : diam(T iBδ (x))> η
}
≥ η .

Let ε = η2. Since x is a diam-mean equicontinuity point, we may choose δ ∈ (0,ε)
such that

lim sup
n→∞

1
n

n

∑
j=1

diam(T iBδ (x))< ε.

At the same time, we have that

lim sup
n→∞

1
n

n

∑
j=1

diam(T iBδ (x))

≥ ηD
{

j ∈ Z+ : diam(T iBδ (x))> η
}

≥ η
2 = ε,

a contradiction.

(⇐) Now assume that for every η > 0 there exists δ > 0 such that

D
{

i ∈ Z+ : diam(T iBδ (x))> η
}
< η .
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Given ε > 0, let η = ε/2 and choose δ > 0 such that the previous inequality holds.
Thus,

lim sup
n→∞

1
n

n

∑
j=1

diam(T iBδ (x))

≤ D
{

j ∈ Z+ : diam(T iBδ (x))> η
}
+D

{
j ∈ Z+ : diam(T iBδ (x))≤ η

}
·η

≤ 2η = ε.

Hence, x is a diam-mean equicontinuity point. �

In summary, we have the following.

Proposition 4.5. Let (X ,T ) be a t.d.s. The following are equivalent:
(1) (X ,T ) is diam-mean equicontinuous
(2) For every ε > 0 there exists δ > 0 such that for every x ∈ X

sup
n∈N

1
n

n

∑
j=1

diam(T jBδ (x))< ε.

(3) For every ε > 0 there exists δ > 0 such that for every x ∈ X

D
{

j ∈ Z+ : diam(T jBδ (x))> ε
}
≤ ε.

4.2. Banach diam-mean equicontinuity and regularity. Banach mean equicontinu-
ity was introduced in [39] and has been studied in [44, 8, 14] (on the last two papers
under the name Weyl equicontinuity). In this paper we introduce the diam version.

Definition 4.6. Let (X ,T ) be a t.d.s. We say x ∈ X is a Banach diam-mean equicon-
tinuity point if for every ε > 0 there exists δ > 0 such that

lim sup
N−M→∞

1
N−M

N

∑
i=M+1

diam(T iBδ (x))< ε.

We say (X ,T ) is Banach diam-mean equicontinuous if every x ∈ X is a diam-mean
equicontinuity point. We say (X ,T ) is almost Banach diam-mean equicontinuous if
the set of Banach diam-mean equicontinuity points is residual.

A t.d.s. is Banach diam-mean equicontinuous if and only if for every ε > 0 and
x ∈ X there exists δ > 0 such that limsupN−M→∞

1
N−M ∑

N
i=M+1 diam(T iBδ (x)) < ε . A

transitive t.d.s. is almost Banach diam-mean equicontinuous if and only if there exists
a Banach diam-mean equicontinuity point and a minimal almost Banach diam-mean
equicontinuous system is always Banach diam-mean equicontinuous.

Every Banach diam-mean equicontinuity point is a diam-mean equicontinuity point
but the converse does not hold (see Section 5). The proof of the following lemma is
similar to the proof of Lemma 4.4 and will be omitted.

Lemma 4.7. Let (X ,T ) be a t.d.s. Then x ∈ X is a Banach diam-mean equicontinuity
point if and only if for every ε > 0 there exists δ > 0 such that

BD∗
{

i ∈ Z+ : diam(T iBδ (x))> ε
}
< ε.

Definition 4.8. Let (X ,T ) be a t.d.s. We say πeq is regular (or almost surely 1-1) if

νeq(
{

y ∈ Xeq :
∣∣π−1

eq (y)
∣∣= 1

}
) = 1.
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The next result can be considered a measurable version of (i) implies (ii) in Theo-
rem 3.4.

Proposition 4.9. Let (X ,T ) be a minimal t.d.s. and suppose π : X → Xeq is regular.
Then (X ,T ) is Banach diam-mean equicontinuous.

Proof. Without loss of generality, we may assume Teq is an isometry. Let

F = {y ∈ Xeq : π
−1
eq (y) = {xy}}.

Since πeq is regular we have that νeq(F) = 1. Let ε > 0. There is a compact F ′ ⊂ F
such that νeq(F ′)> 1− ε .

For any y ∈ F ′, there is δy > 0 such that π−1
eq (B2δy(y)) ⊂ Bε(xy). Consider the open

cover {Bδy(y) : y ∈ F ′} of F ′. Since F ′ is compact, there are n ∈ N and y1, . . . ,yn ∈ F ′

such that ∪n
i=1Bδyi

(yi)⊃ F ′. Let

η = min{δyi : 1≤ i≤ n} and Gε = ∪n
i=1Bδyi

(yi).

It is clear that Gε is open and νeq(Gε) > 1− ε . Moreover, for all y ∈ Gε , there is
yi such that y ∈ Bδyi

(yi). This implies that Bη(y) ⊂ Bδyi
(y) ⊂ B2δyi

(yi). By uniform
ergodicity, there exists L > 0 such that

1
K

K+ j−1

∑
i= j

1Gε
◦T i

eq(y)≥ 1− ε

for all j ∈ N, K ≥ L and y ∈ Xeq.
Now, choose δ > 0 such that if U ⊂ X and diam(U) < δ then diam(πeq(U)) < η/2.
Let U be a non-empty open subset of X with diam(U)< δ . Using an equivalent metric
we may assume Teq is an isometry. This implies that diam(T i

eqπeq(U))< η/2 for every
i ∈ N. Let y ∈ πeq(U). For every i ∈ N such that T i

eqy ∈ Gε , we have that T i
eqπeq(U)⊂

Bη(T i
eqy)⊂ B2δyl

(yl) for some 1≤ l ≤ n. Thus,

T i(U)⊂ π
−1
eq πeq(T iU) = π

−1
eq T i

eqπeq(U)⊂ π
−1
eq (B2δyl

(yl))⊂ Bε(xyl).

We conclude that when K ≥ L,

1
K

K+ j−1

∑
i= j

diam(T iU) =
1
K

K+ j−1

∑
i= j

T i
eqy∈Gε

diam(T iU)+
1
K

K+ j−1

∑
i= j

T i
eqy6∈Gε

diam(T iU)

≤ 2ε +diam(X)

(
1
K

K+ j−1

∑
i= j

1X\Gε
◦T i

eq(y)

)
< 2(1+diam(X))ε.

�

A t.d.s. is null if it has zero topological sequence entropy with respect to every sub-
sequence [26]. In [19, Corollary 66], it was shown that every minimal null system is
diam-mean equicontinuous. A t.d.s. is tame if the cardinality of the Ellis semigroup
[10] is smaller or equal than ℵ1 [23]. Every null t.d.s. is tame [35, Proposition 5.4
and 6.4]. Using Proposition 4.9 and the recent result that the m.e.f. map, πeq, of every
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minimal tame t.d.s. is regular ([13, Theorem 1.2] and [24, Corollary 5.4]), we obtain
the following corollary.

Corollary 4.10. Every minimal tame t.d.s. is Banach diam-mean equicontinuous.

Proposition 4.11. Let (X ,T ) be a diam-mean equicontinuous minimal t.d.s. Then πeq
is regular.

Proof. We have that (X ,T ) is mean equicontinuous and frequently stable, hence πeq :
(X ,T )→ (Xeq,Teq) is almost 1-1. Assume that πeq is not regular.

Thus,

νeq({y ∈ Xeq : diam(π−1
eq (y))> 0}) = 1.

This implies that there is ε > 0 such that δ := νeq(Aε)> 0, where

Aε = {y ∈ Xeq : diam(π−1
eq (y))> ε}.

By Birkhoff’s ergodic theorem, there is y ∈ Aε such that

1
N

∣∣{1≤ i≤ N : T i
eqy ∈ Aε}

∣∣= 1
N

N

∑
i=1

1Aε
(T i

eqy)→ νeq(Aε)> 0.

Now, let U be an non-empty open subset of X . Since πeq(U) contains an open non-
empty subset of Xeq, there is y0 ∈ Xeq such that π−1

eq (y0)⊂U is a singleton (because πeq

is almost 1-1). Since (X ,T ) is minimal, there is a sequence (n j) j∈N such that T n j
eq y→ y0.

This implies that there is m = m(U) such that T m(π−1
eq (y))⊂U . It follows that

lim
N→∞

1
N
|{1≤ n≤ N : diam(T nU)> ε}| ≥ lim

N→∞

1
N

N

∑
i=1

1Aε
(T i+m

eq y) = νeq(Aε) = δ .

A contradiction to the diam-mean equicontinuity of (X ,T ), since δ is independent of
U . �

Using a much stronger hypothesis, a similar result was obtained in Theorem 54 of
[19].

Combining the above two propositions, we have obtain the main result of the section.

Theorem 4.12. Let (X ,T ) be a minimal t.d.s. The following statements are equivalent:

(1) (X ,T ) is diam-mean equicontinuous.
(2) (X ,T ) is Banach diam-mean equicontinuous.
(3) πeq : X → Xeq is regular.

A t.d.s. (even non-minimal) is mean equicontinuous if and only if it is Banach mean
equicontinuous [44, 14]. So we ask.

Question 2. Do any of the equivalences of Theorem 4.12 hold for non-minimal sys-
tems?

In the following section we will see that locally (1) and (2) are not equivalent.
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5. DIAM-MEAN SENSITIVITY AND ALMOST DIAM-MEAN EQUICONTINUITY

In this section, first we present a counterpart of diam-mean equicontinuity, diam-
mean sensitivity. Then, we investigate the local version of diam-mean equicontinuity,
that is, almost diam-mean equicontinuity. The main result of this section is the con-
struction of an almost diam-mean equicontinuous systems with positive topological
entropy (Theorem 5.6).

5.1. Diam-mean sensitivity.

Definition 5.1. A t.d.s. (X ,T ) is diam-mean sensitive if there exists ε > 0 such that
for every non-empty open set U we have

D
{

i ∈ Z+ : diam(T iU)> ε
}
> ε.

The following result (the diam mean version of Akin/Auslander/Berg dichotomy [1])
was proved in [19].

Proposition 5.2. A minimal t.d.s. is either diam mean equicontinuous or diam-mean
sensitive. A transitive t.d.s. is either almost diam mean equicontinuous or diam-mean
sensitive.

Definition 5.3. A t.d.s. (X ,T ) is Banach diam-mean sensitive if there exists ε > 0
such that for every open set U we have

BD∗
{

i ∈ Z+ : diam(T iU)> ε
}
> ε.

The proof of the following proposition is similar to the proof of Proposition 5.2 in
[19], and will be omitted.

Proposition 5.4. A minimal t.d.s. is either Banach diam mean equicontinuous or Ba-
nach diam-mean sensitive. A transitive t.d.s. is either almost Banach diam mean equicon-
tinuous or Banach diam-mean sensitive.

5.2. Almost diam-mean equicontinuity. If (X ,T ) is minimal, then x ∈ X is a diam-
mean equicontinuity point if and only if it is a Banach diam-mean equicontinuity point
(Theorem 4.12). We will see this is not true for transitive systems.
The topological entropy is a conjugate invariant number that can be assigned to any
t.d.s. For an introduction to the topic see [48, Chapter 7]. Almost Banach mean
equicontinuous systems always have zero topological entropy but transitive almost
mean equicontinuous systems may have positive topological entropy [39, Corollary
6.7 and 4.8] (for an example with dense periodic points see see [21]). In this section,
we will see that even transitive almost diam-mean equicontinuous systems may have
positive topological entropy.

We will construct symbolic dynamical systems. Let Σk = {0,1, . . . ,k−1}N endowed
with the product topology. For x ∈ Σk, we denote xi = x(i). A metric inducing the
topology is given by d(x,y) = 0, if x = y; otherwise, d(x,y) = 1

i , with i = min{i : xi 6=
yi}. For n∈N, we call A∈ {0,1, . . . ,k−1}n a word and denote the length with λ (A) =
n. For x ∈ Σk and i < j, x[i, j] stands for the finite word xixi+1 . . .x j. Given a word A,
we define [A] =

{
x ∈ Σk : x[1,λ (A)] = A

}
. Given two non-empty words A = x1 . . .xn and

B = y1 . . .ym, we denote the concatenation of the two words with AB = x1 . . .xny1 . . .ym;
also, we say A appears in B, if there exist words C and D, such that CAD = B.
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Recall that the shift map σ : Σk→ Σk is defined by the condition that σ(x)n = xn+1
for n ∈ N. It is easy to see that σ is a continuous surjection. We say X ⊂ Σk is a
subshift if X is non-empty, closed, and σ -invariant (i.e. σ(X)⊂ X); in this case (X ,σ)
is a topological dynamical system.

Example 5.5. Let y ∈ {2,3}N and K = {kn}n∈N a sequence of positive integers. We
will construct a subshift XK

y ⊂ Σ4 = {0,1,2,3}N. In order to do this, we recursively
define words An. Let Bn = y[1,n], and A1 = 11. Assume that An is defined. We set

An+1 = An0knBnAn.

Let x = (x1,x2, . . .) = limn→∞ An. Then x can be written as

A10k1B1A10k3B3A10k1B1A10k2B2A10k1B1A10k4B4...

Let XK
y be the orbit closure of x. It is clear that x is a recurrent point, so (XK

y ,σ) is
transitive, and that orb(y)⊂ XK

y .

Theorem 5.6. There exists K = {kn}n∈N such that (XK
y ,σ) is an almost diam-mean

equicontinuous t.d.s.

Proof. For z ∈ XK
y and i ∈N, let pz

i be the smallest integer such that z[pz
i+1,pz

i+ki] = 0ki ,
and pi := px

i . It is easy to check that pi = λ (Ai). Hence, pi+1 = 2pi + ki + i. Let {ki}
be a sequence defined inductively with the property

(2pi + pi+1− ki)/(ki− pi)→ 0.

Let ε > 0. First we will prove that

limsup
N→∞

1
N

aN ≤ ε,

where

aN = |{1≤ m≤ N : there exists z ∈ XK
y ∩ [A1] such that zm 6= 0}|.

For a given i ∈ N, x can be written as

x = Ai0kiBiAi 0ki+1Bi+1 Ai0kiBiAi 0ki+2Bi+2 Ai0kiBiAi 0ki+1Bi+1 Ai0kiBiAi . . . .

Since A1 only appears in Ai in the above equality, and Ai is followed by 0k j for a
j ≥ i, then for every σn(x) ∈ [A1] and i ∈ N, we have pσn(x)

i ≤ pi. Thus, for every
z ∈ XK

y ∩ [A1] and i ∈ N we have pz
i ≤ pi. Hence, for every i′ such that pi + 1 ≤ i′ ≤

ki− pi we have that zi′ = 0 for every z ∈ XK
y ∩ [A1].

There exists i0, such that (2pi + pi+1− ki)/(ki− pi)≤ ε for i≥ i0−1. For i≥ i0, let
N ∈ [pi, pi+1]. We have that

{m ∈ [1,N] : zm 6= 0} ⊆ {1≤ m≤ pi : ∃ z ∈ XK
y ∩ [A1] such that zm 6= 0}

∪ {pi +1≤ m≤ ki− pi : ∃ z ∈ XK
y ∩ [A1] such that zm 6= 0}

∪ {ki− pi +1≤ m≤ pi+1 : ∃ z ∈ XK
y ∩ [A1] such that zm 6= 0} .

By the previous argument, we obtain

|{pi +1≤ m≤ ki− pi : ∃ z ∈ XK
y ∩ [A1] such that zm 6= 0}|= 0.
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We claim that for all N ∈ [ki− pi +1,ki+1− pi+1], we have 1
N aN ≤ ε . Indeed,

if N ∈ [ki− pi +1, pi+1], then
1
N

aN ≤
1

ki− pi
aN ≤

1
ki− pi

(pi + pi+1− (ki− pi))< ε.

If N ∈ [pi+1,ki+1− pi+1], then aN = api+1 and hence aN/N ≤ api+1/pi+1 < ε . As the
claim holds for all i≥ i0 and ε > 0 was arbitrary, we obtain that

lim
N→∞

1
N

aN = 0.

To conclude the proof, we need a standard argument. There is Kε ∈ N such that for
any a,b ∈ Σ4 if a[1,Kε ] = b[1,Kε ] then d(a,b)< ε . Thus,

limsup
N→∞

1
N

N

∑
i=1

diam(T i[A1])≤ ε · limsup
N→∞

1
N
|{1≤ i≤ N : (T iz)[1,Kε ] = 0Kε ,∀ z ∈ [A1]}|

+ limsup
N→∞

1
N
|{1≤ i≤ N : (T iz)[1,Kε ] 6= 0Kε , for some z ∈ [A1]}|

≤ ε + limsup
N→∞

1
N

KεaN = ε .

Hence x is a diam-mean equicontinuity point. �

Furthermore, if we choose y so that (orb(y),σ) has positive topological entropy (for
example a Toeplitz subshift with positive topological entropy) then we obtain the fol-
lowing corollary.

Corollary 5.7. There exist transitive almost diam-mean equicontinuous t.d.s. with pos-
itive topological entropy.

Almost Banach diam-mean equicontinuous systems are almost Banach mean equicon-
tinuous and thus they always have zero topological entropy [39, Corollary 6.7]. This
yields the following.

Corollary 5.8. There exists diam-mean equicontinuity points on transitive systems that
are not Banach diam-mean equicontinuity points.

In summary, for local properties, we have the following diagram.

1) Banach diam-mean eq. point → 2) diam-mean eq. point
↓ ↓

3) Banach mean eq. point → 4) mean eq. point

Every implication is strict. Furthermore, there is no relationship between 2) and 3).
Because, on the one hand, the same reasoning of the previous corollary gives us diam-
mean equicontinuity points that are not Banach mean equicontinuity points. On the
other hand, 3) does not imply 2); for this, consider a non diam-mean equicontinuous
system that is mean equicontinuous, and hence Banach mean equicontinuous.

Remark 5.9. Note that in the proof of Theorem 5.6, we prove that the average diameter
of the orbit of A1 is zero. This property is stronger than almost diam-mean equiconti-
nuity.
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6. FURSTENBERG’S QUESTION

Given a t.d.s. (X ,T ), we say a point x is minimal if (orb(x),T ) is a minimal t.d.s. In
[18, p. 231], Furstenberg asked if for every t.d.s. (X ,T ) and d ∈ N, there is x ∈ X such
that (x,x, . . . ,x) is a minimal point for T×T 2× . . .×T d . Since each t.d.s. has a minimal
subset, we only need to consider the question for a minimal t.d.s. In this section, we
answer the question for the class of mean equicontinuous systems. Recall that every
minimal mean equicontinuous system is uniquely ergodic (e.g. see [39, Corollary 3.4]).

Theorem 6.1. Let (X ,T ) be minimal mean equicontinuous t.d.s. There is a Borel set
X0 with µ(X0) = 1 (where µ is the unique measure) such that for any d ∈N and x ∈ X0,
(x,x, . . . ,x) is a minimal point for T ×T 2× . . .×T d .

Proof. Let {Vi} be a countable base for the topology of X . Let X0 be the set such that
the pointwise multiple ergodic theorem holds, that is, the points x ∈ X0, so that for each
1Vi and each d ∈ N we have that

1
N

N−1

∑
n=0

1Vi(T
nx)1Vi(T

2nx) . . .1Vi(T
dnx)

converges as N → ∞. Theorem 3.2 implies that (X ,T,µ) is measurably distal, hence
using [32, Theorem C] we obtain that µ(X0) = 1. Furthermore, this limit must be
positive [17].

Now, fix d ∈N. Then, for x∈X0, and any non-empty open neighbourhood U =Bε(x)
of x, there is i ∈ N such that x ∈Vi ⊂U . Thus,

(6) liminf
N→∞

1
N

N−1

∑
n=0

1U(T nx) . . .1U(T dnx)≥ lim
N→∞

1
N

N−1

∑
n=0

1Vi(T
nx) . . .1Vi(T

dnx)> 0.

Let y = πeq(x) and π−1
eq y = Xy. Since (y,y, . . . ,y) is minimal for Teq×T 2

eq× . . .×T d
eq,

there is a minimal point (x1,x2, . . . ,xd) ∈ Xd
y for T ×T 2× . . .×T d . We may assume

that x1 = x. To see this, let T nix1→ x and assume that T 2nix2→ x′2, . . . ,T
dnixd → x′d .

Since Xeq is equicontinuous, T niy→ y implies T jniy→ y for j = 2, . . . ,d. We conclude
that πeq(x′j) = y for j = 2, . . . ,d.

Let

B1 = {n ∈ N : T nx ∈U,T 2nx ∈U} and B j = {n ∈ N : d(T jnx,T jnx j)< ε}, 2≤ j ≤ d.

Since B1 has positive upper density (see (6)) and B j has Banach density 1 (see
Lemma 4.7 and consider T j), there must exist n ∈ ∩d

j=1B j 6= /0. Thus, we have

T n(x) ∈U = Bε(x) and T jnx j ∈ B2ε(x), 2≤ j ≤ d.

We conclude that (x,x, . . . ,x) is in the orbit closure of (x,x2, . . . ,xd) under T × T 2×
. . .×T d and hence, minimal under T ×T 2× . . .×T d . �

The first part of this proof is related to Theorem 3.16 of [37].
This is not the first time that an open question is answered partially for mean equicon-

tinuous systems. For instance, in [9] Downarowicz and Kasjan proved the Sarnak con-
jecture under this hypothesis.
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S.L.P., MEXICO

Email address: fgramos@conacyt.mx
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