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Abstract. We study strange non-chaotic attractors in a class of quasiperiodically forced

monotone interval maps known as pinched skew products. We prove that the probability
of positive time-N Lyapunov exponents—with respect to the unique physical measure on

the attractor—decays exponentially as N → ∞. The motivation for this work comes from

the study of finite-time Lyapunov exponents as possible early-warning signals of critical
transitions in the context of forced dynamics.
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1. Introduction4

In this article, we study quasiperiodically forced interval maps of the form

Fκ : TD × [0, 1]→ TD × [0, 1], Fκ(θ, x) = (θ + v, tanh(κx) · g(θ)) , (1)

where κ > 0 is a real parameter, v ∈ TD is a totally irrational rotation vector∗ and the
multiplicative forcing term g : TD → [0, 1] is given by

g(θ) =
1

D
·
D∑
i=1

sin(πθi) . (2)

Systems of this kind are often called pinched skew products, where pinched refers to the fact5

that the forcing term g vanishes for some θ ∈ TD (here, at θ = 0). Pinched skew-products6

received considerable attention due the occurrence of so-called strange non-chaotic attractors7

(SNAs) [1–7]. Due to their specific properties—in particular, the pinching in combination with8

the invariance of the zero line TD×{0}—they are technically more accessible than other forced9

systems that exhibit SNAs so that they have been used on various occasions for case studies10

concerning the structural properties of such attractors. This led, for instance, to first results on11

the topological structure [6] and the dimensions [7] of SNAs, which have later been extended12

to the more difficult situation of additive quasiperiodic forcing [8–10].13

In a similar spirit, the aim of this note is to establish a quantitative result on the distribution
of positive finite-time Lyapunov exponents on the SNA appearing in the system given by (1)
and (2). Given (θ, x) ∈ TD × [0, 1] and N ∈ N, we define the time-N -Lyapunov exponent as

λN (θ, x) = log
(
∂xF

N
κ (θ, x)

)
/N .

The (asymptotic) Lyapunov exponents are then given by

λ(θ, x) = lim
N→∞

λN (θ, x) .

As established in [3], for any κ > κ0 := e−
∫
TD log g(θ)dθ, there exists a unique physical measure14

Pκ of the system (1) that is ergodic and has a negative Lyapunov exponent. As a consequence,15

asymptotic Lyapunov exponents are Pκ-almost surely negative. However, on the invariant16

zero line TD × {0}, the pointwise Lyapunov exponents almost surely equal log κ − log κ0 (see17

Remark 2.1 below). Hence, for κ > κ0, positive asymptotic Lyapunov exponents are still present18

in the system and lead to a positive probability of positive finite-time exponents for all times19

N ∈ N. Our main result provides information on the scaling behaviour of these probabilities.20

∗We say v ∈ TD is totally irrational if there is no non-zero n ∈ Zd with 〈v, n〉 ∈ Z.
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Theorem 1.1. Denote by Pκ the unique physical measure of (1) with forcing function (2). Let1

pκ,N = Pκ({(θ, x) | λN (θ, x) > 0}). Then there exists κ1 > κ0 such that for all κ ≥ κ1, there2

are constants γ+ ≥ γ− > 0 (depending on κ) such that3

exp(−γ+N) ≤ pκ,N ≤ exp(−γ−N)

holds for all N ∈ N.4

Apart from its intrinsic interest, motivation for this result stems from the study of critical5

transitions. One major problem in this field is the identification of suitable (that is, observable6

and reliable) early warning signals [16–21] for such transitions. A commonly proposed and7

utilized early warning signal for fold bifurcations—which are often cited as a paradigmatic8

example of critical transitions—are slow recovery rates (also referred to as a critical slowing9

down) [16–18,20]. Since this notion has been coined in an interdisciplinary context and is used10

in a wide variety of situations, there is no comprehensive and rigorous mathematical definition11

of this term and we refrain from attempting to give one here. However, in the classical case of12

an autonomous fold bifurcation, recovery rates can be identified with the Lyapunov exponents13

of the stable equilibria. Thus, in this situation, critical slowing down simply refers to the fact14

that when the stable and unstable equilibria involved in the bifurcation approach each other15

and eventually merge at the critical parameter, the resulting single fixed point is neutral, that16

is, it has exponent zero.17

This picture changes significantly when a fold bifurcation takes place under the influence of18

external quasiperiodic forcing. First of all, the resulting non-autonomous systems generally do19

not allow for fixed points. Therefore, when carrying over ideas from an autonomous to a non-20

autonomous setting, one needs an appropriate replacement. In the present context, this part is21

played by so-called invariant graphs (see Section 2) and accordingly, non-autonomous fold bifur-22

cations occur as invariant graphs approach each other upon a change of system parameters. In23

stark contrast to autonomous fold bifurcations, this does not necessarily yield neutral invariant24

graphs but may instead lead to a strange non-chaotic attractor-repeller-pair [14,15] created at25

the bifucation point. This alternative pattern is referred to as a non-smooth saddle-node bifur-26

cation. Moreover, just as for pinched systems, under suitable conditions, there exists a unique27

physical measure P which is supported on the attractor and has a negative Lyapunov exponent28

(see [3, 12]). However, this means that Lyapunov exponents remain P-almost surely negative29

and bounded away from zero during a non-smooth saddle-node bifurcation (see Section 2 for30

more details).31

Figure 1. A logarithmic plot of the numerically obtained probability pN = pκ,N over N for
the system (1) with D = 1, κ = 3 and v the golden mean. The graph shows the relative

frequency of non-negative finite-time Lyapunov exponents among a grid of 5 · 106 initial
conditions on the SNA (see also Figure 2). Consistent with the statement of Theorem 1.1,
the plot indicates an exponential decay.
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While this seems to rule out the viability of slow-recovery rates as early warning signals1

for non-smooth fold bifurcations, one should bear in mind that experiments never measure2

the actual Lyapunov exponent but rather approximations of it. In other words, one rather3

measures finite-time Lyapunov exponents instead of asymptotic ones. Since the presence of an4

SNA implies that positive finite-time exponents occur with positive probability for any time5

N ∈ N [2, 22], one may hence wonder whether the observation of non-negative finite-time Lya-6

punov exponents can help to detect an SNA in practice. However, if N is chosen too small, then7

positive time-N -exponents can be observed already far from a bifurcation. Conversely, for large8

N , the probability of observing positive exponents on this time-scale converges to zero since the9

unique physical measure has a negative exponent. It is in this context that the scaling behaviour10

of the probabilities of time-N -exponents with N → ∞ becomes important. Numerical studies11

for the quasiperiodically forced Allee model performed in [22] remained somewhat inconclusive,12

which is partly explained by the fact that the simulation of continuous-time systems is consider-13

ably more time-consuming than that of discrete-time systems. The exponential decay obtained14

in Theorem 1.1 is an indication that very large data sets may be required to detect this kind15

of early-warning signals in practice. As mentioned before, this interpretation relies on the hy-16

pothesis that quasiperiodically forced systems undergoing a saddle-node bifurcation—as studied17

in [22]—show a behaviour comparable to that of pinched systems treated here. We expect that18

using techniques from [8, 10, 12], similar statements can be established for non-pinched sys-19

tems but this would require a considerably more involved analysis due to the inherent technical20

difficulties.21

This article is organised as follows. In the next section, we introduce some technical back-22

ground on forced monotone interval maps and their invariant graphs. There, we also describe23

the physical measure P from above in more detail. In Section 3, we specify the class of pinched24

skew-products for which we prove (a more general version of) the above theorem. This proof25

and the full statement—Theorem 4.4 and Theorem 4.8 (which gives the upper bound and is26

the harder part)—are given in the final section, Section 4.27

Acknowledgments. This project has received funding from the European Union’s Horizon28

2020 research and innovation program under the Marie Sk lodowska-Curie grant agreements No29

643073 and No 750865. TJ acknowledges support by a Heisenberg grant of the German Research30

Council (DFG grant OE 538/6-1).31

2. Forced monotone interval maps and invariant graphs32

Throughout this note, we deal with quasiperiodically forced (qpf) monotone interval maps,33

that is, skew products of the form34

F : TD × [0, 1]→ TD × [0, 1], (θ, x) 7→ (ρ(θ), Fθ(x)), (3)

where TD = RD/ZD is the D-dimensional torus (for some D ≥ 1),35

ρ : TD → TD, θ 7→ θ + v

is a minimal rotation with a rotation vector v and for each θ ∈ TD, Fθ is a continuously differ-36

entiable non-decreasing map on [0, 1] such that (θ, x) 7→ F ′θ(x) is continuous. It is customary37

to refer to (TD, ρ) as the forcing system (defined on the base TD); the maps Fθ (θ ∈ TD) are38

also referred to as fibre maps (defined on the fibres {θ} × [0, 1]).39

An invariant graph of (3) is a measurable function φ : TD → [0, 1] which satisfies

Fθ(φ(θ)) = φ(θ + ρ) for all θ ∈ TD.

From an intuitive perspective, invariant graphs are to be seen as non-autonomous fixed points40

of (3).† This idea is the basis for a bifurcation theory of invariant graphs, see [14,15]. Indepen-41

dently of this analogy, invariant graphs of qpf monotone interval maps are key to understanding42

the dynamics of (3) due to their intimate relationship with the invariant sets and ergodic mea-43

sures.44

Every invariant graph φ comes with an ergodic measure µφ where µφ(A) = LebTD (φ−1A)
for each measurable A ⊆ TD × [0, 1] and likewise, to each ergodic measure µ of (3) there is an

†Observe that due to the minimality of ρ, (3) does not allow for actual fixed points.
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invariant graph φ with µ = µφ [25, 26]. Moreover, given an invariant set A ⊆ TD × [0, 1] (that
is, A is closed and F (A) = A), let

φ+A(θ) = sup{x ∈ [0, 1] : (θ, x) ∈ A} and φ−A(θ) = inf{x ∈ [0, 1] : (θ, x) ∈ A}

for each θ ∈ TD. Then φ+A and φ−A define the so-called upper and lower boundary graphs of1

A which are invariant and—due to the compactness of A—upper and lower semi-continuous,2

respectively [5]. Of particular relevance for us will be the upper boundary graph of the global3

attractor4 ⋂
n∈N

Fn(TD × [0, 1]),

which we simply denote by φ+.5

The long-term behaviour of orbits near an invariant graph φ is largely characterized by its
Lyapunov exponent

λ(φ) =

∫
TD

logF ′θ(φ(θ))dθ,

provided this integral exists.6

If λ(φ) > 0, then φ is repelling; if λ(φ) < 0, then φ is attracting and µφ is a physical measure,7

see [23] for the details. Here, by physical measure, we refer to an F -invariant ergodic measure P8

for which there is a positive Lebesgue measure set V ⊆ TD×[0, 1] such that for every continuous9

observable f : TD × [0, 1]→ R and all (θ, x) ∈ V10

1/n ·
n−1∑
`=0

f(F `(θ, x)) =

∫
f dP,

see also [27]. It is noteworthy that under suitable concavity assumptions on Fθ (which are11

verified by (1)), (3) has a unique physical measure given by the measure µφ+ on the upper12

boundary graph φ+ of the global attractor, see [3, 15].13

Observe that due to Birkhoff’s Ergodic Theorem, λ(φ) equals the Lyapunov exponent of the
point (θ, φ(θ)) for LebTD -almost every θ (equivalently: for µφ-almost every (θ, x)) since

λ(θ, φ(θ)) = lim
n→∞

1

n
log(Fnθ )′(φ(θ)) = lim

n→∞

1

n

n−1∑
`=0

logF ′ρ`(θ)(φ(ρ`(θ)))

for LebTD -almost every θ ∈ TD. Note that on the left-hand side of the above equation, we
made use of the customary notation

Fnθ (x) = π2 ◦ Fn(θ, x) = Fθ+(n−1)ρ ◦ . . . ◦ Fθ+ρ ◦ Fθ(x), (4)

where π2 : TD × [0, 1]→ [0, 1] denotes the projection to the second coordinate.14

Remark 2.1. Note that for the model (1) and the a priori invariant graph ψ = 0 given by15

zero line, we have that F ′θ(ψ(θ)) = F ′θ(0) = κ · g(θ), so that16

λ(ψ) = log κ0

∫
TD

log g(θ) dθ = log κ− log κ0

in this case. Hence, the zero line is repelling for all κ > κ0, and pointwise Lyapunov exponents17

on this line are positive almost surely (with respect to the Lebesgue measure on TD × {0}).18

As we will discuss below, the unique physical measure of (1) is given by µφ+ , where φ+ is the
upper boundary graph of the global attractor. Therefore, a big part of the proof of Theorem 1.1
boils down to analysing φ+ in considerable detail. In that context, we will utilize the obvious
fact that φ+ is the pointwise limit of the sequence of iterated upper boundary lines (φn)n∈N≥0

,
where

φn : TD → [0, 1], θ 7→ Fnθ−nρ(1). (5)

Note that the graph of φn coincides with Fn(TD × {1}) (recall the notation from (4)). It is19

further easy to see (and important to note) that the monotonicity of the fibre maps Fθ implies20

φn+1 ≤ φn for all n ∈ N.21

For the convenience of the reader, we close this section with a brief description of the invariant22

graphs of (1). While this description will help to develop an intuition for the dynamics of (1)23
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and, more broadly, for the results discussed in this note, it is strictly speaking not a prerequisite1

for the discussion in Section 3 and Section 4. For simplicity, we may assume that D = 1 in the2

remainder of this section.3

It is immediate that independently of the value of κ, one invariant graph of (1) is given by4

the 0-line (which just happens to be the lower boundary graph of the global attractor). Let us5

denote this graph by φ−. By direct computation, one can obtain that λ(φ−) = log κ− log 2.6

Clearly, if φ− equals the upper boundary graph φ+ of the global attractor, then φ− is the7

only invariant graph of Fκ. However, with help of the iterated upper boundary lines, one can8

show that λ(φ+) ≤ 0, see [23]. Accordingly, if κ > 2, the 0-line φ− is LebT1 -almost surely9

distinct from φ+.10

In other words, Fκ has at least two invariant graphs if κ > 2. Moreover, just as concavity of11

interval maps implies the existence of at most two fixed points (one of which is attracting and12

one of which is repelling), one can show that the concavity of the fibre maps of Fκ implies that13

φ− and φ+ are the only invariant graphs (and further, λ(φ−) > 0 > λ(φ+)), see [3, 15].‡14

Now, since F (0, x) = 0, we have that φ+ necessarily intersects the 0-line along the orbit15

of (ρ, 0) which is, by minimality of ρ, dense in TD × {0}. Therefore, while φ+ is upper-16

semicontinuous (as the upper boundary graph of the global attractor) it clearly is not continuous17

and φ+ is referred to as a strange non-chaotic attractor, see Figure 2 for a plot of φ+.

Figure 2. The SNA φ+ of the parameter family (θ, x) 7→ (θ + ρ, tanh(κx) · sin(πθ)) with
κ = 3 and ρ the golden mean. The points in the above plot are exactly the initial conditions

used to estimate pκ,N in Figure 1.

18

3. Pinched skew-product systems19

In this section, we specify the class of skew products within which we derive asymptotic
estimates on the probability of positive finite-time Lyapunov exponents. For later reference,
we repeat some of the assumptions from the previous section. By F , we refer to the class of
quasiperiodically forced monotone interval maps of the form

F : TD × [0, 1]→ TD × [0, 1], (θ, x) 7→ (ρ(θ), Fθ(x)),

which satisfy20

(F1): the fibre maps Fθ are non-decreasing;21

(F2): the fibre maps Fθ are differentiable and (θ, x) 7→ F ′θ(x) is continuous on TD × I;22

(F3): F is pinched, that is, there is θ∗ ∈ TD with Fθ∗(x) = 0 for all x ∈ [0, 1];23

(F4): Fθ(0) = 0 for all θ ∈ TD (invariance of the 0-line).24

‡Note that accordingly, the physical measure P in the introduction has to coincide with µφ+ .
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Besides the qualitative assumptions (F1)–(F4), we need a number of quantitative assump-
tions. Let F ∈ F and assume that there exist parameters α > 2, β > 0, γ > 0 and L0 ∈ (0, 1)
such that for all θ ∈ TD, the following holds.

|Fθ(x)− Fθ(y)| ≤ α |x− y| for all x, y ∈ [0, 1], (F1)

|Fθ(x)− Fθ(y)| ≤ α−γ |x− y| for all x, y ∈ [L0, 1], (F2)

|Fθ(x)− Fθ′(x)| ≤ β d(θ, θ′) for all x ∈ [0, 1]. (F3)

In particular, (F2) implies that the fibre maps Fθ are contracting in [L0, 1].1

While the above assumptions determine F in the fibres, we need some additional control over
the forcing on TD. To that end, we assume that the rotation vector ρ ∈ TD is Diophantine.
More specifically, setting τn = ρn(θ∗) = θ∗ + nρ (the nth-iterate of the pinched point θ∗), we
assume that there are constants c > 0 and d > 1 such that

d(τn, θ∗) ≥ c · n−d for all n ∈ N. (F4)

Finally, bringing the behaviour along the fibres and the dynamics on the base TD together,
we assume that there are constants m ∈ N, a > 1 and 0 < b < 1 with

m > 22

(
1 +

1

γ

)
, (F5)

a ≥ (m+ 1)d, (F6)

b ≤ c, (F7)

d(τn, θ∗) > b for all n ∈ {1, · · · ,m− 1} (F8)

such that

Fθ(x) ≥ min {2L0, ax} ·min

{
1,

2

b
d(θ, θ∗)

}
for all (θ, x) ∈ TD × [0, 1]. (F9)

Our analysis of positive finite-time Lyapunov exponents will take place within the class

F∗ = {F ∈ F : F satisfies (F1)–(F9)}.

Instead of the abstract description of F∗ given above, readers may simply think of the system2

given in (1) (for large κ) in all of the following. This is justified by the next statement.3

Lemma 3.1 (see [7, Lemma 4.2]). Consider Fκ as in (1) and let ρ satisfy the Diophan-4

tine condition (F4) for some c > 0 and d > 1. There exists a constant κ0 = κ0(c, d,D)5

such that for all κ ≥ κ0, the map Fκ satisfies (F1)–(F9) (with appropriately chosen constants6

α, γ, β, L0,m, a, b, c).7

Note that as [0, 1] 3 x 7→ F ′θ(x) is continuous for each θ ∈ TD (due to (F2)), the mean value
theorem and (F9) imply

F ′θ(0) ≥ a ·min

{
1,

2

b
d(θ, θ∗)

}
for all θ ∈ TD. (F10)

While (F10) yields the existence of positive finite-time Lyapunov exponents on the zero line (see
Lemma 4.3 below), in order to ensure big enough lower bounds on the probability of positive
finite-time Lyapunov exponents outside the zero line, we additionally assume that for all δ > 0
there is xδ > 0 with

F ′θ(x) ≥ (1− δ) · F ′θ(0) for all x ∈ [0, xδ] and all θ ∈ TD. (F11)

Clearly, this additional assumption is satisfied by (1) (for all κ,D and ρ).8

4. Rigorous bounds on the probability of positive finite-time Lyapunov9

exponents10

In this section, we show that within the class of pinched skew-products, the µφ+ -measure of11

points (θ, x) with λN (θ, x) ≥ 0 decays exponentially as N →∞.§12

§Recall that φ+ refers to the upper boundary graph of the global attractor, see Section 2.
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We start by deriving a lower bound for this probability. To that end, we first need to study1

the occurrence of positive finite-time Lyapunov exponents on the zero line. Due to (F10), this2

essentially amounts to analysing the frequency of visits of points θ ∈ TD to the vicinity of θ∗.3

For j ∈ N, set

rj =
b

2
a−(j−1) and Rj =

b

2
a
−(j−1)
m . (6)

Proposition 4.1. Suppose (F4)–(F8) are satisfied. Then, for n ∈ {1, . . . ,m− 1}, we have4

Br1(θ∗) ∩ (Br1(θ∗) + nρ) = ∅.
Similarly, for j ≥ 2 and n ∈ {1, . . . , (m+ 1)(j−1)}, we have5

Brj (θ∗) ∩ (Brj (θ∗) + nρ) = ∅.

Proof. We only discuss j ≥ 2. With (F8), the other case is obvious.6

Suppose Brj (θ∗) ∩ (Brj (θ∗) + nρ) 6= ∅ for some n, that is, d(θ∗, τn) < 2rj = ba−(j−1). Note7

that (F4) gives d(θ∗, τn) ≥ c · n−d. Therefore, ba−(j−1) > c · n−d and thus, n > (c/b)1/d ·8

a(j−1)/d ≥ (m+ 1)j−1, where we used (F6) and (F7) in the last step. �9

This immediately gives10

Corollary 4.2. Assume (F4)–(F8) and let θ ∈ TD. Suppose n1 < n2 ∈ N are such that11

θ + n1ρ ∈ Brj (θ∗) and θ + n2ρ ∈ Brj (θ∗). If j = 1, then n2 − n1 ≥ m and if j ≥ 2, then12

n2 − n1 ≥ (m+ 1)j−1.13

Lemma 4.3. Suppose F ∈ F∗ and N ∈ N. For each θ ∈ BrN (θ∗), we have14

λN (θ + ρ, 0) ≥ 1/2 · log a.

Proof. Set ∆j = (m + 1)j−1. By the previous corollary, given θ as in the assumptions and
2 ≤ j ≤ N , we have

#{` ∈ {1, . . . , N} : θ + `ρ ∈ Brj (θ∗)} ≤ bN/∆jc
and

#{` ∈ {1, . . . , N} : θ + `ρ ∈ Br1(θ∗)} ≤ bN/mc.
Note further that for j ≥ 0, (F10) gives

F ′θ+`ρ(0) ≥ a · 2

b
rj+1 = a−(j−1) whenever θ + `ρ ∈ Brj (θ∗) \Brj+1(θ∗),

where—for notational convenience—r0 =
√
D and hence Br0(θ∗) = TD. We therefore have

λN (θ + ρ, 0) = 1/N ·
N∑
`=1

logF ′θ+`ρ(0) ≥ 1/N ·
N∑
`=1

∑
j≥0

log a−(j−1) · 1Brj (θ∗)\Brj+1
(θ∗)(θ + `ρ)

= 1/N ·
N∑
`=1

∑
j≥0

(1− j) log a · 1Brj (θ∗)\Brj+1
(θ∗)(θ + `ρ)

= log a− log a · 1/N ·
∑
j≥1

j ·
N∑
`=1

1Brj (θ∗)\Brj+1
(θ∗)(θ + `ρ)

≥ log a− log a · 1/N · (bN/mc+
∑
j≥2

j · bN/∆jc) ≥ log a− log a · (1/m+
∑
j≥2

j/∆j)

= log a− log a · (1/m+
∑
j≥2

j/(m+ 1)j−1) ≥ 1/2 · log a,

where we used (F5) in the last step. �15

In order to prove the lower bound in Theorem 1.1, it remains to show that the positive16

finite-time Lyapunov exponents on the zero line are observable not only on but already close17

to the zero line. This is what the proof of the next statement is about.18

Theorem 4.4. Suppose F ∈ F∗ satisfies (F11). Then there is γ+ > 0 such that for all N ∈ N19

µφ+{(θ, x) ∈ TD × [0, 1] : λN (θ, x) ≥ 0} ≥ e−γ+N .
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Proof. Choose δ > 0 small enough such that

log(1− δ) > −(log a)/4 (7)

and let xδ be such that (F11) holds true. Without loss of generality, we may assume that1

xδ ≤ βb/2 (with β from (F3)). For N ∈ N, set r̃N = xδ/β · α−(N−1). Observe that α ≥ a2

(because of (F1) and (F9)) so that r̃N ≤ rN for all N . We first show that for θ ∈ Br̃N (θ∗) and3

j = 1, . . . , N , we have φ+(θ + jρ) ≤ xδ.4

To that end, observe that the monotonicity of the sequence of the iterated upper boundary5

lines (φn)n∈N (recall (5)) and (F3) yield6

φ+(θ + ρ) = lim
n→∞

φn(θ + ρ) ≤ Fθ(1) ≤ β · d(θ, θ∗).

Therefore, given θ ∈ Br̃N (θ∗) and j = 1, . . . , N , we have—due to F1 and (F1)—that7

φ+(θ + jρ) = F j−1θ+ρ

(
φ+(θ + ρ)

)
≤ F j−1θ+ρ (β · d(θ, θ∗)) ≤ αj−1β · d(θ, θ∗) ≤ xδ.

As a consequence, Lemma 4.3 and (7) in conjunction with (F11) give that λN (θ + ρ, x) ≥8

(log a)/4 for all (θ, φ+(θ)) with θ ∈ Br̃N (θ∗). The statement follows. �9

Having thus seen how within F∗ (under the additional assumption of (F11)) the probability10

of positive finite-time Lyapunov exponents decays at most exponentially, we next come to show11

that this decay is, in fact, not slower than exponential.12

Before we turn to the rigorous analysis, we briefly explain its idea on an intuitive level. First,13

note that (F2) implies that above L0, fibres are contracted—we emphasize this fact by calling14

TD × [L0, 1] the contracting region. In other words, visits to TD × [L0, 1] contribute negatively15

to the (finite-time) Lyapunov exponent of an orbit. Second, (F9) enables us to control the16

number of times an orbit spends outside of the contracting region. Finally, since (F1) gives an17

upper bound for the possible fibre-wise expansion, the control obtained through (F9) enables18

us to ensure an overall contraction, that is, a negative (finite-time) Lyapunov exponent, along19

most finite orbits.20

Let us specify this control in quantitative terms by collecting two auxiliary statements from
[7]. Given θ ∈ TD and n ∈ N, let θk := ρk−n(θ) and xk := φk(θk) for 0 ≤ k ≤ n. Note that

φk(θk) = F kθ0(1) and φn(θ) = Fn−kθk
(xk). Let

snk := #{k ≤ j < n : xj < 2L0}
and set snn(θ) = 0. Recall the definition of Rj in (6).21

Lemma 4.5 ( [7, Lemma 4.6]). Let F ∈ F∗ and q, n ∈ N with n ≥ mq + 1. Suppose that

θ /∈
n⋃
j=q

BRj (τj) and consider t ≥ mq. Then

snn−t(θ) ≤
11t

m
.

As discussed in Section 2, the iterated upper boundary lines φn approximate the graph φ+22

whose measure µφ+ we are interested in. The next statement effectively provides numerical23

bounds for this approximation.24

Proposition 4.6 ( [7, Proposition 4.4]). Let F ∈ F∗, q ∈ N and η = γ − 11
m (1 + γ) > 0. Then,25

for n ≥ mq + 1 and θ /∈
n⋃
j=q

BRj (τj), we have that |φn(θ)− φn−1(θ)| ≤ α−η(n−1).26

Remark 4.7. Observe that η > 0 due to (F5) and note that η is independent of q.27

Clearly, Proposition 4.6 gives that if k, n ∈ N satisfy mq ≤ k < n and θ /∈
n⋃
j=q

BRj (τj), then

|φn(θ)− φk(θ)| ≤
n∑

i=k+1

|φi(θ)− φi−1(θ)| ≤
n∑

i=k+1

α−η(i−1) ≤ α−ηk

1− α−η
. (8)

With the above statements, we are now in a position to prove the upper bound in Theorem 1.1.28

Theorem 4.8. Suppose F ∈ F∗. Then there is γ− > 0 such that for all N ∈ N29

µφ+{(θ, x) ∈ TD × [0, 1] : λN (θ, x) ≥ 0} ≤ e−γ−N .



PINCHED SYSTEMS 9

Proof. Note that it suffices to show the statement for sufficiently large N .1

Let N ∈ N be given. As φ+ is the pointwise limit of the non-increasing sequence φn and due
to the continuous differentiability of the fibre maps (see (F2)), we have that for each θ

λN (θ0, φ
+(θ0)) =

1

N

N−1∑
k=0

log
∣∣F ′θk(φ+(θk))

∣∣ = lim
n→∞

1

N

N−1∑
k=0

log
∣∣F ′θk(φn(θk))

∣∣ ,
where—as above—θk = ρk−N (θ).2

In a first instance, our goal is to derive assumptions on θ which ensure that the expression3

1
N

∑N−1
k=0 log

∣∣F ′θk(φn(θk))
∣∣ is negative and bounded away from zero for n ≥ N and large enough4

N . The statement then follows by showing that these assumptions are only violated in a set of5

exponentially small measure as N →∞.6

We start by collecting a number of estimates which we will then combine to obtain an

upper bound for 1
N

∑N−1
k=0 log

∣∣F ′θk(φn(θk))
∣∣. First, let κ ∈ N be large enough such that κ ≥ m

and α−η·κ

1−α−η < L0. Consider k0 ∈ N with k0 ≥ κq (for some q ∈ N which we may consider

fixed for now). Then (8) gives that for every n > k ≥ k0 and θ /∈
n⋃
j=q

BRj (τj), we obtain

|φn(θ)− φk(θ)| < L0. In particular, if φk(θ) ≥ 2L0, then φn(θ) ≥ L0. Therefore, if n ≥ k and

θk /∈
n⋃
j=q

BRj (τj) for some k ≥ k0 with φk(θk) > 2L0, (F2) yields

|F ′θk(φn(θk))| ≤ α−γ . (9)

Second, observe that due to (F1), we have7

N−1∑
k=0

log
∣∣F ′θk(φn(θk))

∣∣ ≤ k0+1∑
k=0

logα+

N−1∑
k=k0

log
∣∣F ′θk(φn(θk))

∣∣ . (10)

Third, let N0 = N0(k0) ∈ N be the smallest integer such that N0−k0 ≥ mk0/κ ≥ mq. Then,8

Lemma 4.5 allows us to estimate the number of times for which φk(θk) < 2L0. Specifically, if9

N ≥ N0 and k ∈ {k0, . . . , N − 1}, we obtain for all θ /∈
N⋃
j=q

BRj (τj)10

sNk0(θ) = sNN−(N−k0)(θ) ≤
11

m
(N − k0). (11)

Observe that with (F1), (11) and (9), we get

N−1∑
k=k0

log
∣∣F ′θk(φn(θk))

∣∣ ≤ sNk0(θ) logα−
(
N − k0 − sNk0(θ)

)
γ logα

≤ 11

m
(N − k0) logα− γ ·

(
N − k0 −

11

m
(N − k0)

)
logα

=

((
γ − 11

m
(1 + γ)

)
k0 +

(
11

m
(1 + γ)− γ

)
N

)
logα = (ηk0 − ηN) logα

(12)

whenever n ≥ N ≥ N0 and θk /∈
n⋃
j=q

BRj (τj) for all k = k0, . . . , N and where η is as in

Proposition 4.6. Plugging (12) into (10), we obtain (under the same assumptions as above)

N−1∑
k=0

log |F ′θk(φn(θk))| ≤ (2 + (η + 1)k0 − ηN) logα. (13)

Now, as η > 0, there is ν = ν(η) > 0 such that for all N ≥ k0/ν, the right-hand side in (13) is11

negative (so that for all n ≥ N , the left-hand side is negative and bounded away from 0). Note12

that we may assume without loss of generality that ν is small enough to ensure k0/ν ≥ N0(k0).13

Set14

Bq,k0,N =
{
θ ∈ TD : θk ∈

∞⋃
j=q

BRj (τj) for some k ∈ {k0, . . . , N}
}
.
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Observe that (13) holds whenever θ is in the complement of the set Bq,k0,N (given k0 ≥ κq and
n ≥ N ≥ N0(k0)). Note that

LebTD (Bq,k0,N ) ≤ (N − k0 + 1) · LebTD

 ∞⋃
j=q

BRj (τj)


≤ (N − k0 + 1) · ζD ·

(
b

2

)D ∞∑
j=q

a
−(j−1)D

m

= (N − k0 + 1) · ζD ·
(
b

2

)D
a−

(q−1)D
m

∞∑
j=0

(a−
D
m )j = (N − k0 + 1) · a−

(q−1)D
m c(D),

where ζD denotes the LebTD -measure of the D-dimensional unit ball and c(D) simply collects1

all the terms in the above estimate which are independent of q, k0 and N , that is, c(D) =2

ζD ·
(
b
2

)D∑∞
j=0(a−

D
m )j .3

Now, set k0(N) = bδNc for some δ ∈ (0, ν) and q(N) = bεNc for some ε ∈ (0, δ/κ). Note
that for large enough N , we have k0(N) ≥ κq(N) and N ≥ k0(N)/ν ≥ N0[= N0(k0(N))].
Hence, for sufficiently large N , the above gives

LebTD ({θ ∈ TD : (λN (θ, φ+(θ)) ≥ 0}) ≤ LebTD (Bq(N),k0(N),N )

≤ N · a−
(bεNc−1)D

m c(D) ≤ a− εND2m .

The statement follows with γ− = (log a) · εD/2M . �4
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