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Abstract. We study fractal properties of an invariant graph of a hyperbolic

and partially hyperbolic skew product diffeomorphism in dimension three. We
describe the critical (either Lipschitz or at all scales Hölder continuous) reg-

ularity of such graphs. We provide a formula for their box dimension given

in terms of appropriate pressure functions. We distinguish three scenarios ac-
cording to the base dynamics: Anosov, one-dimensional attractor, or Cantor

set. A key ingredient for the dimension arguments in the latter case will be

the presence of a so-called fibered blender.

1. Introduction

We study regularity properties and box dimension of fractal graphs appearing
as attractors, repellers, or saddle-sets in skew product dynamics.

Our motivation is two-fold. First, there is an intrinsic interest in the fractal prop-
erties of such graphs, which is best exemplified by the well-known and paradigmatic
examples of Weierstrass functions. Based on dynamical methods, recent advances
have allowed to obtain a detailed understanding of their fractal structure including
their Hausdorff dimension (thus solving a long-standing conjecture) [1, 24, 40].

Second, there is a general motivation for these endeavors. The investigation of
fractal attractors, repellers, horseshoes, and other types of hyperbolic sets has been
a major driving force for many important developments in ergodic theory and its
interfaces with mathematical physics and fractal geometry (see, for instance, [26, 32,
14] for more information). Thereby, the situation is fairly well understood for two-
dimensional hyperbolic systems (see [28, 44, 31] and Theorem 1.1 below), which is
essentially a conformal setting and comparable to the study of conformal repellers
(see [36]). However, extending the theory to higher-dimensional and genuinely
nonconformal situations is well known to be difficult, and there exist only few and
specific results in this direction (see, for example, [22, 12, 41, 18] and more details
in Remark 1.3). Amongst the different phenomena that complicate matters are:

• The possible loss of equality between Hausdorff and box dimensions,
• both dimensions may not vary continuously with the dynamics.
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A natural, and quite common, approach to proceed is to study gradually more
complex (e.g. higher-dimensional) systems. We proceed by studying graphs in
three-dimensional skew product systems

T : Ξ× R→ Ξ× R, T (ξ, x) = (τ(ξ), Tξ(x)),

with hyperbolic surface diffeomorphisms, or their restrictions to basic pieces τ : Ξ→
Ξ, in the base, building on previous results in [22, 3, 15]. Summarizing our main
results, except in a nongeneric case when the graph is Lipschitz, its box dimension
is given by ds + d, where ds is the dimension of stable slices of Ξ and where d is
determined as the unique solution of the pressure equation

Pτ |Ξ(ϕcu + (d− 1)ϕu) = 0.

Here ϕcu, ϕu are appropriately defined geometric potentials taking into account the
expansion rates in the fiber center unstable and the strong unstable directions,
respectively. The above formula will be established in three scenarios (Anosov
in the base, one-dimensional attractors in the base, and fibered blenders). These
results can be viewed as a natural step to address the corresponding technical and
conceptual problems in a nontrivial, but still accessible setting. Thereby, we focus
on the box dimension as the most accessible quantity in a first instance. Although
eventually our approach could be instrumental for describing finer fractal properties
like the Hausdorff dimension or carrying out a multifractal analysis as well, which
is beyond the purposes of this paper.

1.1. Previous results on basic sets of surface diffeomorphisms. Before stat-
ing our first main result, let us provide more details on what is known in the two-
dimensional case. Let τ : M →M be a C1+α surface diffeomorphism. Recall that a
set Ξ ⊂M is basic if it is compact, invariant, locally maximal in the sense that there
is an open neighborhood U of Ξ such that Ξ =

⋂
k∈Z τ

k(U), topologically mixing,
and hyperbolic in the sense that there exist a dτ -invariant splitting F s⊕F u = TΞM
and numbers 0 < µ < 1 < κ such that for every ξ ∈ Ξ

‖dτ |F s
ξ
‖ ≤ µ and κ ≤ ‖dτ |Fu

ξ
‖

(up to an equivalent change of metric), where dτ |F s
ξ

and dτ |Fu
ξ

denote the derivative

of τ at ξ in the stable and unstable directions, respectively. Further, recall that
basic sets have a (local) product structure, that is, they can locally be described as
products of representative stable and unstable slices, given by the intersection of Ξ
with the local stable and unstable manifolds, respectively (see [23]). In dimension
two, their Hausdorff and box dimensions coincide and are given by the following
classical Bowen-Ruelle type formula which is a compilation of results in [28, 44, 31].
Consider for a basic set Ξ ⊂M the functions ϕs, ϕu : Ξ→ R (also called potentials)

ϕs(ξ)
def
= log ‖dτ |F s

ξ
‖, ϕu(ξ)

def
= − log ‖dτ |Fu

ξ
‖. (1.1)

We denote by Pτ |Ξ(ψ) the topological pressure of a potential ψ : Ξ → R (with re-
spect to τ |Ξ) (see Section 2.1 for more details). Further, W s

loc(ξ, τ) and W u
loc(ξ, τ)

denote the local stable and the local unstable manifold of ξ (with respect to τ),
respectively (see Section 4.1 for more details). Last, denote by dimH(E) the Haus-
dorff dimension and by dimB(E) the box dimension of a totally bounded subset E
in a metric space. In general, we have dimH(E) ≤ dimB(E). We recall the defini-
tion of box dimension and some properties in Section 2.2; further information can
be found in [13].
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Theorem 1.1 ([28, 44, 31]). Consider a basic set Ξ ⊂ M of a C1+α surface
diffeomorphism τ : M →M . Let du and ds be the unique real numbers for which

Pτ |Ξ(duϕu) = 0 = Pτ |Ξ(dsϕs). (1.2)

Then for every ξ ∈ Ξ we have

dim(Ξ ∩W u
loc(ξ, τ)) = du and dim(Ξ ∩W s

loc(ξ, τ)) = ds, (1.3)

where dim stands either for dimH or dimB. Moreover, we have

dimH(Ξ) = dimB(Ξ) = ds + du.

Remark 1.2. Formulas (1.3) were derived for the Hausdorff dimension in [28].
That Hausdorff and box dimension coincide was shown in [44] for C2 diffeomor-
phisms and in [31] as stated above (in fact, [31] assumes C1 only). To infer that
the Hausdorff dimension of the (local) product is the sum of the dimensions of the
intersections in (1.3) is conditioned to the fact that Hausdorff and box dimension
coincide (see [13]). It requires the regularity of the stable/unstable holonomies,
too. Yet, for hyperbolic surface diffeomorphisms these holonomies are always bi-
Lipschitz. In [31], the authors also establish the continuous dependence of the
dimensions on the diffeomorphism.

Remark 1.3. In general, as already mentioned, in higher dimensions the above
statements do not remain valid. For example, Hausdorff and box dimension do not
always coincide (confer the paradigmatic example in Remark 3.3, see also [35, 34]).
Further, Hausdorff and box dimension may not vary continuously with the dynamics
(see [8] and Remark 3.1). Moreover, in general it is a difficult task to verify whether
the dimensions of stable/unstable slices are constant (see [18] for an investigation
of the (three-dimensional and hyperbolic) solenoid). From a more technical point
of view, in (non)conformal hyperbolic dynamics the study of dimensions is often
based on a Markov partition and done by efficient coverings of cylinder sets. Notice
that in a nonconformal setting, contrary to the conformal one, cylinder sets can be
strongly distorted in directions of stronger contraction/expansion rates. This usu-
ally leads to a loss of distortion control of potential functions (see [12] for a rigorous
treatment of nonconformal repellers assuming additionally a so-called bunching con-
dition and [27] for a discussion of counterexamples). Last, in a higher-dimensional
setting in general stable/unstable holonomies are not bi-Lipschitz but only Hölder
continuous (see Section 9 for further discussion), hence one cannot conclude about
the dimensions of (local) products of slices.

1.2. Setting. Unless stated otherwise, we will always assume that τ : M → M is
a C1+α diffeomorphism on a Riemannian surface M and that T : M ×R→M ×R
is a C1+α diffeomorphism with skew product structure

T (ξ, x) = (τ(ξ), Tξ(x)). (1.4)

Suppose that Ξ ⊂ M is a basic set (with respect to τ). Moreover, assume that T
is fiberwise expanding (over Ξ), that is,

inf
(ξ,x)∈Ξ×R

|T ′ξ(x)| > 1.

Then there exists a unique graph Φ: Ξ → R that is invariant under the dynamics
in the sense that

Tξ(Φ(ξ)) = Φ(τ(ξ)) (1.5)
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holds for all ξ ∈ Ξ (see [19]). In our setting, Φ is the global repeller (over Ξ)1,2 in
the sense that all initial conditions (ξ, x) ∈ Ξ×R converge exponentially fast to Φ
under iteration by the inverse of T .

Standing hypotheses. Assume that there are numbers

0 < µs ≤ µw < 1 < λw ≤ λs < κw ≤ κs (1.6)

such that for all ξ ∈ Ξ we have

µs ≤ ‖dτ |F s
ξ
‖ ≤ µw, λw ≤ |T ′ξ ◦ Φ| ≤ λs, κw ≤ ‖dτ |Fu

ξ
‖ ≤ κs. (1.7)

Remark 1.4. Conditions (1.6) and (1.7) imply that there exist three one-dimen-
sional invariant bundles Es, Ecu, Euu (we refrain from giving their precise defini-
tions). Using these bundles, we have that Φ (with respect to T ) is at the same time
hyperbolic (considering the splitting into the two bundles Es and Ecu ⊕ Euu) and
partially hyperbolic3 (considering the splitting into the three bundles Es, Ecu, and
Euu). This allows in particular to define the stable, unstable, center unstable, and
strong unstable foliations of T (see Section 4.1), which play a key role in all proofs.
In our case, the center unstable foliation is naturally given by the fibers {ξ}×R of
the skew product.

Similar to (1.1), we consider the additional potential ϕcu : Ξ→ R defined by

ϕcu(ξ) = − log |T ′ξ(Φ(ξ))|. (1.8)

Finally, we assume one additional technical hypothesis to simplify our exposition.

Pinching hypothesis. Suppose that T is C2 and satisfies

κsµw ≤ λw. (1.9)

Remark 1.5. The Pinching hypothesis is only required to ensure that the holo-
nomy map along the invariant manifolds of T is bi-Hölder continuous with a Hölder
constant arbitrarily close to 1. See Section 9 for further details and discussion. Note
that we have κsµw ≤ λw automatically when κs = µ−1

w , independently of λw, as for
example in the affine Anosov case in Section 3.1. This allows us to compute the box
dimension of Φ from the box dimensions of its restriction to local stable/unstable
manifolds of the map τ in the base (which will be provided in Section 8).

1.3. Anosov maps in the base. Let us first consider the simplest case of τ being
an Anosov diffeomorphism and Ξ = M the trivial basic piece.

Theorem A. Let T be a three-dimensional skew product diffeomorphism satisfying
the Standing and Pinching hypotheses. Assume that Ξ = M and that τ : M → M
is an Anosov diffeomorphism. Then

• either Φ is Lipschitz continuous and its box dimension is two,

1Note that we do not distinguish here between the function Φ: Ξ→ R and the associated point

set {(ξ,Φ(ξ)) : ξ ∈ Ξ}, that is, we identify the function with its graph. This is consistent with the
formal definition of a function as a special type of a relation.

2For technical reasons, we only consider expansion in the fibers. The case of contracting fibers

would just amount to use the inverse of a fiberwise expanding system and would not affect the
existence of a unique invariant graph Φ (which is then an attractor).

3This definition refers to what is also known as absolute partial hyperbolicity (see [17] or [9,
Appendix B]). There exist refined versions of partial hyperbolicity which require such type of

norm separation satisfied only pointwise.
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• or Φ is not γ-Hölder continuous at any point for any γ > log λs/ log κw

and its box dimension is given by dimB(Φ) = 1 + d, where d is the unique
number such that

Pτ (ϕcu + (d− 1)ϕu) = 0. (1.10)

We note that the particular case of skew product systems with affine fiber maps
and linear torus automorphisms in the base (see Section 3.1) is already covered
by the results of [22] using Fourier analysis. A more general result that includes
Theorem A has been announced in [45]. However, due to a serious flaw in the
argument given in that paper, a complete proof for the statement in [45] does not
exist so far. We will discuss this issue in detail in Section 1.5 below.

Remark 1.6. The fact that Φ is either Lipschitz or has a maximal Hölder exponent
is often referred to as critical regularity and has already been proven in our setting
in [15]. We reproduce this result here both for the convenience of the reader and
due to the fact that this will be a byproduct of the methods for computing the box
dimension, and we have to introduce the respective concepts and estimates anyway.

Theorem A treats the case of invariant graphs defined over the whole manifold
M . In the broader context of the geometry of hyperbolic sets, it is natural to
consider also the restriction of such graphs to Cantor basic sets of τ in the base.
However, before doing so, we consider an intermediate case.

1.4. One-dimensional hyperbolic attractors in the base. Following the ter-
minology coined in the 70s, we say that a basic set Ξ is a one-dimensional hyperbolic
attractor of τ if it is a hyperbolic attractor (i.e., Ξ =

⋂
k∈N τ

k(U) for some neigh-
borhood U of Ξ) and locally homeomorphic to a direct product of a Cantor set and
an interval (and hence the “intervals” are contained in the unstable manifolds of
the attractor). Important examples of these attractors are the derived from Anosov
(DA) and Plykin attractors4.

Theorem B. Let T be a three-dimensional skew product diffeomorphism satisfying
the Standing and Pinching hypotheses. Assume that the set Ξ ⊂ M is a one-
dimensional attractor of τ . Then

• either Φ is Lipschitz continuous and its box dimension is given by dimB(Φ) =
ds + 1, where ds is as in (1.2),
• or Φ is not γ-Hölder continuous at any point for any γ > log λs/ log κw and

the box dimension of Φ is given by dimB(Φ) = ds +d, where d is the unique
number such that

Pτ |Ξ(ϕcu + (d− 1)ϕu) = 0.

4The construction of the derived from Anosov (DA) diffeomorphism of T2 by Smale in [42]

starts with a linear hyperbolic automorphism of T2 and considers a local perturbation introducing
a repeller in the dynamics in such a way that the resulting diffeomorphism is axiom A and has

two basic sets: the repelling fixed point and a one-dimensional attractor. A DA attractor is

any hyperbolic attractor which is conjugate to the attractor of some DA diffeomorphism. The
construction of Plykin attractors is more involved and a key fact is that they are defined on a

two-dimensional disk (which hence can be embedded into any surface), see for instance [33].
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1.5. Hyperbolic Cantor sets in the base. For the next result we introduce an
additional hypothesis that we call fibered blender with the germ property that we
will discuss below. First, let us observe that blenders appear in a very natural
and ample form in our setting and that they form an open class of examples (see
Proposition 6.13). An informal discussion can be found in [5]. Naively, a blender is
a type of horseshoe which “geometrically” behaves like something “bigger” than a
usual horseshoe. We provide details in Section 6 and give a representative example
in Section 3.2. In our particular setting, a blender guarantees that the invariant
graph appears as if it would have a “two-dimensional stable set” (instead of just a
one-dimensional stable set by assumption). In rough terms, when projecting onto
fibers there are superpositions at all levels in the sense that in any local unstable
manifold, the projection of the graph along strong unstable leaves onto a fiber al-
ways results in a nontrivial interval. Let us observe that a rather different approach
to the construction of “blenders” is considered in [30] starting from hyperbolic sets
(in dimension three or higher) whose fractal dimension is sufficiently large. This
construction relies on the notion of a compact recurrent set (see [29]) which is a
covering like property with the same flavor as the germ property.

Theorem C. Let T be a three-dimensional skew product diffeomorphism satisfying
the Standing and Pinching hypotheses. Assume that Ξ ⊂M is a Cantor set and that
Φ is a fibered blender with the germ property. Then Φ is not γ-Hölder continuous at
any point for any γ > log λs/ log κw and its box dimension is given by dimB(Φ) =
ds + d, where ds is as in (1.2) and d is the unique number such that

Pτ |Ξ(ϕcu + (d− 1)ϕu) = 0. (1.11)

In the Cantor case there is one simple fact that is important to understand,
namely, that not all cases can be covered by a single dimension formula. Instead,
at least two different regimes have to be distinguished, depending on the box di-
mension of Ξ and the parameters in (1.6). The reason for this is the following
observation about two elementary upper bounds for the box dimension (see [13],
compare also [35, Section 4]). Given a γ-Hölder continuous function Φ: Ξ→ R on
a metric space Ξ, on the one hand Hölder continuity implies

dimB(Φ) ≤ dimB(Ξ)

γ
=: D1(γ). (1.12)

On the other hand a covering argument gives (compare also the proof of the first
claim in Proposition 8.2)

dimB(Φ) ≤ dimB(Ξ) + 1− γ =: D2(γ). (1.13)

If dimB(Ξ) ≥ 1, then D2(γ) ≤ D1(γ) for all γ ∈ [0, 1], so that the first bound
does not play any role. When dimB(Ξ) < 1, however, then there is an interval
(d, 1) ⊂ [0, 1] such that D1(γ) < D2(γ) for all γ ∈ (d, 1) (see Figure 1). In this
case, the box dimension of Φ can obviously not be equal to D2(γ). In the context
of Theorem C, this implies that the box dimension cannot be determined by the
analogue of (1.11) in all cases. An explicit example for this will be discussed in
Section 3.2 (see Remark 3.4).

This also points out an error in [45], whose main result can be seen to be false
exactly because it asserts that the box dimension equals D2(γ) (and its generalized
version corresponding to (1.11)) in situations where D1(γ) < D2(γ). Specifically,
compare Section 3.2. More precisely, one of the main problems in [45] is that the
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γ

1

d 1

d/γ

d+ 1− γ

d

Figure 1. Comparison between the estimates D2(γ) (straight
line) and D1(γ) (convex curve) for the case d = dimB(Ξ) < 1.

Intermediate Value Theorem (IVT) is applied to continuous functions defined only
on Cantor sets. Even for situations where the formula for the box dimension in
[45] is expected to be the correct one, we do not see how to fix this gap in a direct
way.5 On the contrary, this rather leads to the concept of fibered blenders, that in
certain situations provides us with an analogue of the IVT. The blender property is
a way to recover the one-dimensional structure which instead in the strong unstable
direction is now observed in the transverse center unstable (fiber) direction.

Finally, the example in Section 3.2 illustrates well that when such a blender
exists, then the strategy to use the upper estimate (1.13) is essential and optimal.
In Section 6.3 we present a class of examples of horseshoes which we call fibered
blender-horseshoes for which we show that they are fibered blenders with a germ
property. We close this section with two remarks about our main results.

Remark 1.7 (Continuity of box dimension). As long as the skew product struc-
ture is maintained, all objects and quantities in the above three theorems depend
continuously on the map. Hence, the box dimension of the invariant graph depends
continuously on the map (when restricting to skew product maps).

Remark 1.8 (Upper bound for dimension and dimension of slices). In Section 8
we study the dimensions of slices of the graph by stable and unstable manifolds
(see Propositions 8.1 and 8.2). Note that the dimension value d in any of the three
theorems is in fact an upper bound for the upper box dimension of unstable slices
just assuming the Standing hypotheses (see first claim in Proposition 8.2).

1.6. Main ingredients and organization. Let us briefly sketch the main idea
for proving the theorems, at the same time giving an overview of the content of
the paper. In Section 2 we state some basic facts about entropy, pressure and box
dimension. In Section 3 we provide some paradigmatic examples. In Section 4 we
provide preliminary results about (partially) hyperbolic systems and the Markov
structure of our sets. The latter provides a natural (semi-)conjugation between the
dynamics on the graph and the dynamics on a corresponding shift space (this is
essential since all dynamical quantifiers of T such as Birkhoff averages and pres-
sure have their corresponding quantifier in the symbolic setting). In Section 5 we

5It is interesting to compare this observation with the discussion and open problem in [35,
Section 4, Remark 6].
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discuss the critical regularity of the hyperbolic graphs. Section 6 is devoted to
the presentation and study of blenders. In Section 7 we explain how to deal with
the thermodynamic quantifiers when studying the dynamics on unstable manifolds
only which amounts in studying the associate space of onesided infinite sequences.
We also give a pedestrian approach to the multifractal analysis which is needed
(see Remark 7.4). The results of this section then will be applied in Section 8 to
determine the dimension of stable and unstable slices. Here, we follow a strategy by
Bedford [3] and perform a multifractal analysis of pairs of Lyapunov exponents of
points in Φ by studying the weak expanding fiber direction (governed by Birkhoff
averages of the potential ϕcu) and the strong expanding direction tangent to the
local strong unstable manifolds (governed by Birkhoff averages of the potential ϕu).
Then we choose the (uniquely determined) pair (α1, α2) such that the topological
entropy of its level set L(α1, α2) is maximal. The level set is close to being “homo-
geneous” in the sense that every point in it has the very same pair of exponents and
hence one can cover it by rectangles of approximately equal widths and heights. To
argue that in a refining cover of those rectangles by squares indeed all squares are
required, we distinguish two cases:

• either τ is an Anosov surface (hence mixing) diffeomorphism on Ξ = M or
Ξ is a one-dimensional hyperbolic attractor,
• or we invoke the germ property of a fibered blender (see Section 6).

This will provide an estimate from below of the box dimension. The upper estimate
is based on standard Moran cover arguments. Finally, in Section 9 we provide more
details about stable/unstable holonomies and the dimension of (local) products.
The proofs of Theorems A, B, and C will be concluded at the end of Section 9.

2. Preliminaries on entropy, pressure, and box dimension

2.1. Entropy and pressure. Consider a continuous map T : X → X of a compact
metric space (X, d). Given ε > 0 and n ≥ 1, a finite set of points {xk} ⊂ X is
(n, ε)-separated (with respect to T ) if maxm=0,...,n−1 d(T m(xi), T m(xj)) > ε for all
xi, xj , xi 6= xj . Given a continuous function ψ : X → R and n ≥ 0, the nth Birkhoff
sum of ψ (with respect to T ) is

Snψ
def
= ψ + ψ ◦ T + · · ·+ ψ ◦ T n−1.

The topological pressure of ψ (with respect to T ) is defined by

PT (ψ)
def
= lim

ε→0
lim sup
n→∞

1

n
log sup

∑
k

eSnψ(xk),

where the supremum is taken over all sets of points {xk} ⊂ X which are (n, ε)-

separated (see [46] for properties of the pressure). Recall that h(T )
def
= PT (0) is the

topological entropy of T .
Let M(T ) be the space of T -invariant probability measures. Given ν ∈ M(T ),

denote by h(ν) its (metric) entropy (with respect to T ), see for instance [46]. Recall
that the topological pressure satisfies the following variational principle

PT (ψ) = max
ν∈M(T )

(
h(ν) +

∫
ψ dν

)
.
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2.2. Box dimension. Definition and properties. We recall some standard
definitions and facts (see [13]). Let (X, d) be a metric space and A ⊂ X a totally
bounded set. Given δ > 0, denote by N(δ) ≥ 1 the smallest number of δ-balls
which are needed to cover A. Define the lower and upper box dimension of A by

dimB(A)
def
= lim inf

δ→0

logN(δ)

− log δ
and dimB(A)

def
= lim sup

δ→0

logN(δ)

− log δ
,

respectively. If both limits coincide, then the box dimension of A is defined by

dimB(A)
def
= dimB(A) = dimB(A). Later on we will make us of the fact that

in our setting we can also count by N(δ) the least number of squares of size δ
needed to cover A, since after taking limits we obtain an equivalent definition of
the corresponding dimensions (see [13]).

Note that dimB is stable in the sense that for totally bounded sets A,B ⊂ X
satisfying dimB(A) = dimB(A) and dimB(B) = dimB(B) the box dimension of
A ∪B is well defined and

dimB(A ∪B) = max{dimB(A),dimB(B)}.

If π : X → Y with (X, dX), (Y, dY ) metric spaces is a Hölder continuous map with
Hölder constant γ and A ⊂ X is totally bounded, then dimB(π(A)) ≤ γ−1dimB(A)
(the same holds for dimB and dimH, respectively). Hence, box dimension (and also
Hausdorff dimension) is invariant under maps which are bi-Hölder continuous with
Hölder exponents arbitrarily close to 1 or which are bi-Lipschitz continuous.

Finally, recall that if A,B ⊂ X are two totally bounded sets for which the box
dimension is well-defined, then the box dimension of the direct product A × B is
as well and

dimB(A×B) = dimB(A) + dimB(B). (2.1)

3. Examples

3.1. Anosov map in the base. Kaplan et al. [22] study the map

T̃ : T2 × R→ T2 × R, (ξ, x) 7→ (τ̃(ξ), p(ξ) + λ−1x), (3.1)

where T2 is the two-dimensional torus and τ̃ : T2 → T2 is the linear hyperbolic
(Anosov) torus automorphism induced by the matrix

A =

(
2 1
1 1

)
with eigenvalues κ = (3 +

√
5)/2 and µ = κ−1, where λ ∈ (1, κ), and p : T2 → R is

a C3 function of period 1 in each coordinate. They show that for Φ̃ : T2 → R the
invariant graph for (3.1) either

(a) Φ̃ is smooth (and hence dimB(Φ̃) = 2), or

(b) Φ̃ is nowhere differentiable and

dimB(Φ̃) = 3− log λ

log((3 +
√

5)/2)
. (3.2)

In particular, the box dimension does not depend on the map p.
Theorem A applies to the inverse of this system T = T̃−1 and τ = τ̃−1. In this

case the potentials defined in (1.1) and (1.8) are constant and given by ϕcu = − log λ
and ϕu = − log κ. Observe that the Lebesgue measure m is an SRB measure which
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is, at the same time, a measure of maximal dimension and maximal entropy. Hence,
h(T ) = h(m) = log κ = |logµ|. This implies that for every d ∈ R it holds

Pτ (ϕcu + (d− 1)ϕu) = max
ν∈M(τ)

(
h(ν) +

∫
T2

(ϕcu + (d− 1)ϕu) dν

)
= log κ− log λ− (d− 1) log κ.

Hence, d satisfies (1.10) if, and only if, 2−d = log λ/ log κ. Hence, the box dimension
of the invariant graph can be computed explicitly and equals (3.2).

For the particular case λ = 3/2 and p(ξ1, ξ2) = sin(2πξ1) sin(2πξ2) + cos(4πξ2),
the global attractor of (3.1) is depicted in Figure 2. Two-dimensional slices through
the ξ1- and ξ2-axis are shown in Figure 3.

ξ1

ξ2

x

ξ1 ξ2

x

Figure 2. The attractor of the skew product system (3.1) for the
particular case considered, viewed from two different angles.

Figure 3. Slices through the attractor depicted in Figure 2 along
the unstable manifold (left) and the stable manifold (right) through
the point ξ = (0, 0), respectively.
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3.2. Cantor set in the base. In [8] there are studied the following (very classical)
models (see also [34]) which are paradigmatic examples of blenders. For that reason
we will provide the detailed construction. Fix numbers 0 < µ < 1/2 < 1 < λ < κ,
κ > 2. Start with a surface diffeomorphism τ exhibiting a horseshoe Ξ. To simplify
the exposition, let Ξ =

⋂
n∈Z τ

n(R) ⊂ R2, R = [−2, 2]2, assume that τ−1(R) ∩ R
consists of two connected components D̃1, D̃2, and that τ is affine in each of them
and satisfies

dτ |D̃1∪D̃2
=

(
µ 0
0 κ

)
.

In particular, D̃i = [−2, 2] ×Di where Di is some interval in [−2, 2], i = 1, 2. Let
ξ = (ξs, ξu) be the usual coordinates in R = [−2, 2]2. Suppose that the fixed point

of τ in D̃1 is located at (0, 0) and that the other fixed point of τ is located at

(1, 1) ∈ D̃2. The set Ξ is a direct product Ξ = Cs × Cu ⊂ [−2, 2]2 of two Cantor
sets (for each of them Hausdorff dimension and box dimension coincide) which
satisfy dim(Cs) = log 2/|logµ| and dim(Cu) = log 2/ log κ and hence dim(Ξ) =
log 2/|logµ|+ log 2/ log κ (see [13]).

Consider a family {Tt}t∈(−δ,δ), δ small, of diffeomorphisms of [−2, 2]2 ×R satis-
fying

Tt(ξ
s, ξu, x) =

{(
τ(ξs, ξu), λx

)
if ξu ∈ D1,(

τ(ξs, ξu), λx− t
)

if ξu ∈ D2.

Note that Tt has two hyperbolic fixed points, P t0 = (0, 0, 0) and P t1 = (1, 1, t/(λ−1)).
Consider the basic set Φ0 = Ξ × {0} (with respect to T0) which is an invariant

graph. With the above we have

dimH(Φ0) = dimB(Φ0) =
log 2

|logµ|
+

log 2

log κ
.

Denote by Φt the continuation for Tt (t small) of Φ0 which is also an invariant
graph. Also note that it is a direct product Φt = Cs × Ft, where Ft ⊂ [−2, 2]× R
is a self-affine limit set of a (contracting) iterated function system of affine maps
which map the rectangle [0, 1]× [0, t/(λ− 1)] to the rectangles

St0 = [0, κ−1]×
[
0,

t

λ(λ− 1)

]
, St1 = [1− κ−1, 1]×

[
t

λ
,

t

λ− 1

]
, (3.3)

respectively (compare Figure 4, see also [34]).
Let us now discuss the dimension in the case t 6= 0. There is a dichotomy between

the cases λ ∈ (1, 2) and λ ≥ 2 (recall that we always require λ < κ and κ > 2).

3.2.1. Fibered blenders: λ ∈ (1, 2). Note that for t 6= 0 and λ ∈ (1, 2) the projec-
tions of the rectangles St0 and St1 to the vertical axis (fiber) overlap in the nontrivial
interval [t/λ, t/(λ(λ − 1))]. Following ipsis litteris the construction in [8] one can
verify that for every t 6= 0 the set Φt is a fibered blender with the germ property.
Note that in this case µs = µw = µ, λs = λw = λ, and κs = κw = κ. Thus, for
appropriate choices of the constants µ, λ, κ the Pinching hypothesis holds. Thus,
Theorem C can be applied. Let us observe that in the case where the graph is a
direct product and the holonomies are trivial and hence bi-Lipschitz continuous,
the pinching restriction to the parameters in (1.9) is in fact not required, recall
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St0

St1

ξu

x
ξs

D̃1 D̃2

Tt−→

Figure 4. The iterated function system in (3.3) (left figure) and
action of Tt (right figures).

Remark 1.5. The potentials (1.1) and (1.8) are constant and given by ϕs = logµ,
ϕcu = − log λ, and ϕu = − log κ. Thus, for every d ∈ R

Pτ |Ξ(ϕcu + (d− 1)ϕu) = log 2− log λ− (d− 1) log κ.

Hence, d satisfies (1.11) if, and only if,

d =
log 2

log κ
+ 1− log λ

log κ
.

Moreover, as Cs is a dynamically defined Cantor set, we have ds = log 2/|logµ|.
Hence, for t 6= 0 we have

dimB(Φt) =
log 2

|logµ|
+

log 2

log κ
+ 1− log λ

log κ
.

In fact, this formula is a consequence of [34, Case 5]. We conclude the study of this
case with some general remarks.

Remark 3.1 (Discontinuity of dimension). The example above illustrates that
in general Hausdorff dimension and box dimension do not continuously depend
on the dynamics. Suppose that we have chosen the parameters µ, κ such that
dimH(Ξ) = dimB(Ξ) < 1 and hence dimH(Φ0) = dimB(Φ0) < 1. Note that for
every ξs ∈ Cs the projection of the set Ft onto the fiber contains the interval
[t/λ, t/(λ(λ − 1))] implying that dimH(Φt) > 1 for every t 6= 0, t small. This
immediately implies discontinuity of the dimensions (in fact, this is the point of [8]).

Remark 3.2 (Lipschitz regularity). Since Φt consists of identical copies of Ft over
the Cantor set Cs, to see the regularity of the graph it suffices to study its restriction
to any unstable leaf, that is, to study the structure of Ft. Note that this graph is
a Lipschitz graph over the Cantor set Cu if, and only if, the unstable manifolds of
the two fixed points of the iterated function system generating Ft (i.e. the maps
(ξu, x) 7→ (κξu, λx) and (ξu, x) 7→ (κξu, λx − t)) coincide, that is, if and only if
t = 0 (compare [3, Proposition 2]).

Remark 3.3 (Coincidence of Hausdorff and box dimension). The issue when Haus-
dorff dimension and box dimension coincide is in general a difficult task. There exist
number-theoretic sufficient conditions on λ to verify that both dimensions do not
coincide. For example, if λ ∈ (1, 2) is the reciprocal of a Pisot-Vijayarghavan num-
ber, then the Hausdorff and box dimension of Φt, t 6= 0 small, do not coincide
(see [35, 34], for instance, or [2] for most recent results and further references).
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Remark 3.4 (A priori estimates of the dimension). To further explain the esti-
mates by the numbers D1 and D2 defined in (1.12) and (1.13), note the graph
Φ has a “critical” Hölder exponent in the sense of Lemma 5.1 given by γ =
log λ/ log κ. The Cantor set Cu (and hence any unstable slice Ξ ∩ W u

loc(·, τ))
has box dimension log 2/ log κ. Note that we have that D1(γ) = log 2/ log λ and
D2(γ) = log 2/ log κ + 1 − log λ/ log κ and hence D1(γ) = D2(γ) if λ = 2. Hence
λ ∈ (1, 2) and λ > 2 correspond to the cases D2(γ) < D1(γ) and D1(γ) < D2(γ),
respectively.

3.2.2. The case λ ≥ 2. Although this case is not covered by our methods, we remark
that when t 6= 0 small and λ ≥ 2, by [34, Case 2] we have

dimH(Ft) = dimB(Ft) =
log 2

log λ

and hence

dimH(Φt) = dimB(Φt) =
log 2

|logµ|
+

log 2

log λ
.

Remark 3.5 (Failure of blender property). The projection of Ft to the fiber axis
by the canonical projection (ξs, x) 7→ x is a Cantor set. Hence, it follows that Φt
is not a fibered blender with the germ property. Indeed, the germ property (see
Definition 6.5) is not satisfied.

3.3. Further examples of fractal graphs. Finally, we want to point out that
there exist close analogies between the methods we employ here and those used
in recent advances on Weierstrass graphs, whose Hausdorff dimensions have been
determined in [1, 24, 40]. The following comments may be helpful to compare the
different approaches. A Weierstrass function is given by a converging Fourier series

ϕ(t) =

∞∑
n=1

λ−n cos(2πbnt),

where λ > 1, b ∈ N and λ < b. It is easily checked that ϕ defines an invariant graph
of the skew product system

T̃ : T1 × R→ T1 × R, (t, x) 7→ (bt mod 1, λ(x− cos(2πt))). (3.4)

In contrast to our setting, here the base transformation is an expanding map of the
circle and, in particular, is not invertible. Following [22, 3], using the baker’s map

τ : T2 → T2, ξ = (ξ1, ξ2) 7→ (bξ1 mod 1, (ξ2 + bbξ2c)/b)
as a canonical extension of the base in (3.4) leads to the invertible system

T : T2 × R→ T2 × R, (ξ, x) 7→ (τ(ξ), λ(x− cos(2πξ1))),

whose unique invariant graph is given by Φ(ξ) = ϕ(ξ1). In this situation Φ is
constant along the stable leaves of τ given by vertical fibers {ξ1}×T1. Therefore, it
suffices to determine the dimensions of Φ restricted to the unstable leaves T1×{ξ2}.
For this reason, the discontinuity of the baker’s map along the circles {k/b} × T1,
k = 0, . . . , b − 1, does not play any role on the technical level and the setting is
analogous to the one in Theorems A and B with diffeomorphisms in the base.

A crucial step in [1, 24] is to show the absolute continuity of the projection of
the canonical invariant measure on Φ ∩ (T1 × {ξ2} × R) (which is the projection
of the Lebesgue measure in the base onto Φ) to the section {(0, ξ2)} ×R along the
strong unstable manifolds of T . Using either Ledrappier-Young theory [1, 26, 25]
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or more direct elementary arguments [24], this allows to determine the pointwise
dimension of the canonical measure almost surely, which then entails the result on
the Hausdorff dimension.

As this discussion indicates, the strong unstable foliation equally plays a crucial
role in these arguments, similar to the considerations on the box dimension pre-
sented here. We thus hope that adapting and expanding arguments from [1, 24]
will eventually allow to determine the Hausdorff dimension of broader classes of
fractal graphs such as those in this paper.

4. Invariant manifolds and Markov structures

We recall some well-known facts and properties of basic sets (see [20, 11, 23] for
details).

4.1. Stable and unstable manifolds. Recall that we assume that Ξ ⊂ M and
Φ ⊂ Ξ×R are both basic sets (with respect to τ and T , respectively). Let d1 be the
metric in M . The stable manifold of a point ξ ∈ Ξ (with respect to τ) is defined by

W s(ξ, τ)
def
= {η ∈M : d1(τn(η), τn(ξ))→ 0 if n→∞}

and is an injectively immersed C1 manifold of dimension dimF s = 1 tangent to F s

on Ξ. The local stable manifold of ξ ∈ Ξ (with respect to τ and a neighborhood U
of Ξ) is

W s
loc(ξ, τ)

def
=
{
η ∈ W s(ξ, τ) : τk(η) ∈ U for every k ≥ 0

}
. (4.1)

Note that there exists δ > 0 such that for every ξ ∈ Ξ the local stable manifold of
ξ contains a C1 disk centered at ξ of radius δ. The local unstable manifold at ξ,
W u

loc(ξ, τ), is defined analogously considering τ−1 instead of τ . For every ξ ∈ Ξ we
have

τ(W s
loc(ξ, τ)) ⊂ W s

loc(τ(ξ), τ) and τ−1(W u
loc(ξ, τ)) ⊂ W u

loc(τ−1(ξ), τ).

The sets ⋃
k≥1

τ−k
(
W s

loc(ξ, τ)
)

and
⋃
k≥1

τk
(
W u

loc(ξ, τ)
)

(4.2)

each are dense in Ξ.
We equip M × R with the metric d((ξ, x), (η, y)) = sup{d1(ξ, η), |x− y|}.
By the skew product structure (1.4) and (1.6), the invariant bundle Ecu is tangent

to the fiber direction. The strong unstable subspace Euu
X and the stable subspace

Es
X vary Hölder continuously in X ∈ Φ, that is, there exist C > 0 and β > 0

such that ∠(EiX , E
i
Y ) ≤ Cd(X,Y )β for all X,Y ∈ Φ, i = uu, s. Indeed, the Hölder

exponent β can be controlled through the hyperbolicity estimates (see [17]). At
every point X = (ξ,Φ(ξ)) the subspace Euu

X (Es
X) projects to the unstable subspace

F u
ξ (the stable subspace F s

ξ ) (with respect to τ) in the tangent bundle of the base
M , which vary Hölder continuously in ξ ∈ Ξ. Hence the functions ϕu, ϕs : Ξ → R
defined in (1.1) are Hölder continuous.

Analogously to the above, we define the stable manifold W s(X,T ) and the un-
stable manifold W u(X,T ) of X ∈ Φ as well as the local stable and local unstable
manifold of X ∈ Φ (with respect to T and the open set U × I, I an interval) by

W s
loc(X,T )

def
=
{
Y ∈ W s(X,T ) : T k(Y ) ∈ U × I for every k ≥ 0

}
,

W u
loc(X,T )

def
=
{
Y ∈ W u(X,T ) : T−k(Y ) ∈ U × I for every k ≥ 0

}
,
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respectively. Note that W s
loc(·, T ) (W u

loc(·, T )) is a lamination through Φ composed
by a union of C1 leaves tangent to Es (to Eu = Ecu ⊕ Euu). Given X = (ξ,Φ(ξ)),
we simply will work with

W u
loc(X,T ) = W u

loc(ξ, τ)× I.

Tangent to Euu there is a lamination of local strong unstable manifolds W uu
loc through

Φ which subfoliates W u
loc. Further, W uu

loc (X,T ) is contained in the strong unstable
manifold of X

W uu(X,T )
def
=
{
Y ∈M ×R : lim sup

n→∞

1

n
log d(T−n(Y ), T−n(X)) ≤ − log κw

}
. (4.3)

On the other hand the bundle Ecu is tangent to the fiber direction and so naturally
also integrates to a lamination through Φ, as well as Es ⊕ Ecu integrates to a
lamination through Φ which is subfoliated by W s.

Remark 4.1. Since T is partially hyperbolic satisfying the Standing hypotheses,
at each X = (ξ,Φ(ξ)) each local strong unstable manifold W uu

loc (X,T ) is a graph of
a function with finite derivative uniformly bounded by some constant independent
on X.

4.2. Markov rectangles. Markov rectangles will provide building blocks in our
proofs. Let us recall some well-known facts.

By hyperbolicity and local maximality of Ξ, there exists δ > 0 such that for
every ξ, η ∈ Ξ with d1(ξ, η) < δ the intersection

[ξ, η]
def
= W s

loc(ξ, τ) ∩W u
loc(η, τ) ∈ Ξ (4.4)

contains exactly one point, which is in Ξ.
A nonempty closed set R ⊂ Ξ is called a rectangle if diamR < δ, R = int(R)

(relative to the induced topology on Ξ), and if for every ξ, η ∈ R we have [ξ, η] ∈ R.
A finite cover of Ξ by rectangles R1, . . . , RN is a Markov partition of Ξ (with respect
to τ) if the rectangles have pairwise disjoint interior and if ξ ∈ int(Ri)∩τ−1(int(Rj))
for some i, j, then

τ
(
Ri ∩W s

loc(ξ, τ)
)
⊂ Rj ∩W s

loc(τ(ξ), τ),

Rj ∩W u
loc(τ(ξ), τ) ⊂ τ

(
Ri ∩W u

loc(ξ, τ)
)
.

By [11, Chapter C], there exists a Markov partition with arbitrarily small diameter
(where the diameter of the partition is the largest diameter of a partition element).

Consider the shift space Σ = {0, . . . , N − 1}Z and the usual left shift σ : Σ→ Σ
defined by σ(. . . i−1.i0i1 . . .) = (. . . i0.i1i2 . . .). We endow it with the standard

metric ρ(i, i′) = 2−n(i,i′), where n(i, i′) = sup{|`| : ik = i′k for k = −`, . . . , `}.
Consider the associated transition matrix A = (ajk)Nj,k=1 defined by

ajk =

{
1 if τ

(
int(Rj)

)
∩ int(Rk) 6= ∅,

0 otherwise

and denote by ΣA ⊂ Σ the subshift of finite type for this transition matrix and con-
sider the standard shift map σ : ΣA → ΣA. For each i ∈ ΣA the set

⋂
n∈Z τ

−n(Rin)
consists of a single point, we denoted it by χ(i). The map χ : ΣA → Ξ is a Hölder
continuous surjection, χ ◦ σ = τ ◦ χ, and χ is one-to-one over a residual set. If Ξ is
a Cantor set, then χ is a homeomorphism (see [23, Proposition 18.7.8]).
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Remark 4.2. Since our dynamics are topologically mixing, without loss of gener-
ality we will from now on assume that ΣA = Σ, that is, ajk = 1 for every index
pair jk.

Given ξ ∈ Ξ, denote by R(ξ) a Markov rectangle which contains ξ. Consider the
Markov unstable rectangle

Ru(ξ)
def
= R(ξ) ∩W u

loc(ξ, τ).

Given n ≥ 1, consider the nth level Markov unstable rectangle defined by

Ru
n(ξ)

def
= Ru(ξ) ∩ τ−1

(
Ru(τ(ξ))

)
∩ . . . ∩ τ−n+1

(
Ru(τn−1(ξ))

)
.

By the invariance of the continuous graph Φ, given a Markov partition {R1, . . . , RN}
of Ξ (with respect to τ), by defining

Ri
def
= {(ξ,Φ(ξ)) : ξ ∈ Ri} (4.5)

we obtain a Markov partition of Φ (with respect to T ) (which is analogously defined,
see [23]). This partition shares the analogous properties as above and has the very
same transition matrix. In particular, we point out that and if X ∈ int(Ri) ∩
T−1(int(Rj)) for some i, j, then

T
(
Ri ∩W s

loc(X,T )
)
⊂ Rj ∩W s

loc(T (X), T ),

Rj ∩W u
loc(T (X), T ) ⊂ T

(
Ri ∩W u

loc(X,T )
)
.

(4.6)

We also adopt the analogous notation of (nth level) Markov rectangles Rn and
Markov unstable rectangles Ru

n.

5. Critical regularity of the invariant graph

We discuss now the regularity of the invariant graph Φ. We start with the
following result that follows directly from [19, 20], see also [43].

Lemma 5.1. Let T be a C1+α three-dimensional skew product diffeomorphism
satisfying the Standing hypotheses. Then the associated invariant graph Φ: Ξ→ R
is Hölder continuous with Hölder exponent γ for every γ ∈ (0, α] satisfying γ <
log λw/ log κs.

In our setting, the graph is always regular in the stable leaves and has the
following striking critical regularity in the unstable leaves.6 We say that Φ: Ξ→ R
is Lipschitz on the local unstable manifold of ξ ∈ Ξ if there exists L(ξ) > 0 such
that for every η ∈ W u

loc(ξ, τ) we have |Φ(η)−Φ(ξ)| ≤ L(ξ)d1(η, ξ). We say that Φ is
Lipschitz on local unstable manifolds if Φ is Lipschitz on the local unstable manifold
at every ξ with a Lipschitz constant which does not depend on ξ. Analogously, we
define Lipschitz continuity on local stable manifolds.

Proposition 5.2. Let T be a C1+α three-dimensional skew product diffeomorphism
satisfying the Standing hypotheses. The graph of Φ restricted to Ξ ∩ W s

loc(ξ, τ)
is contained in the local strong stable manifold of X = (ξ,Φ(ξ)) and hence Φ is
Lipschitz on local stable manifolds. Moreover, only one of the following two cases
occurs:

(a) Φ is Lipschitz on local unstable manifolds.

6Even though this situation is not studied in this paper, we recall that if κs < λw and α = 1,
then Φ would be Lipschitz on Ξ.
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(b) Φ is nowhere contained in local strong unstable manifolds in the sense that
for every ξ ∈ Ξ there is a sequence (ηk)k ⊂ Ξ ∩ W u

loc(ξ, τ), ηk → ξ, such
that (ηk,Φ(ηk)) /∈ W uu

loc (X,T ).

We will conclude the proof of the above proposition towards the end of this
section. In particular, we will derive the following sufficient condition for global
Lipschitz continuity.

Corollary 5.3. If Φ is Lipschitz on the local unstable manifold of some point, then
Φ is Lipschitz on local unstable manifolds.

This corollary will be a consequence of the following result (which can be seen
as a local version of [3, Proposition 2]) and Lemma 5.12 below.

Proposition 5.4. For ξ ∈ Ξ periodic the following facts are equivalent:

(1) Φ is Lipschitz on the local unstable manifold of ξ,
(2) Φ ∩ W u

loc(X,T ) is contained in the local strong unstable manifold of X =
(ξ,Φ(ξ)).

To prove the above proposition, we follow very closely and extend [15], in par-
ticular since proofs there are given in the particular case of τ Anosov.

Remark 5.5. In the case that τ is an Anosov diffeomorphism if Φ is Lipschitz,
then, in fact, Es and Euu are jointly integrable and the tangent bundle Es ⊕ Euu

is tangent to Φ. Indeed, as Φ inherits the regularity of local stable and local strong
unstable manifolds, Φ is uniformly C1 on local stable manifolds and on local strong
unstable manifolds and hence Journé’s theorem [21] applies.

5.1. Parametrizing local strong unstable manifolds. Below we will use the
following notations

Tnξ = Tτn−1(ξ) ◦ . . . ◦ Tξ, T−nξ = T−1
τ−n(ξ) ◦ . . . ◦ T

−1
τ−1(ξ).

Consider the following family of auxiliary functions. Given ξ ∈ Ξ, for n ≥ 1 define
γu,n
ξ : Ξ ∩W u

loc(ξ, τ)→ R by

γu,n
ξ (η)

def
= Tnτ−n(η)

(
Φ(τ−n(ξ))

)
= Tnτ−n(η)

(
T−nξ (Φ(ξ))

)
,

where for the equality we used the invariance relation (1.5) of the graph.

Lemma 5.6. For every ξ ∈ Ξ the sequence (γu,n
ξ )n converges uniformly to a func-

tion γu
ξ : Ξ ∩ W u

loc(ξ, τ) → R which is Lipschitz continuous and has a backward
invariant graph, in the sense that

T−1(η, γu
ξ (η)) =

(
τ−1(η), γu

τ−1(ξ)(τ
−1(η))

)
, (5.1)

which is contained in the strong unstable manifold of X = (ξ,Φ(ξ)) (with respect to
T ). Moreover, the family (γu

ξ )ξ∈Ξ is equicontinuous.

Proof. Since T is C1+α, the maps Tξ depend Lipschitz continuously on ξ with
some Lipschitz constant L. Given η ∈ Ξ ∩ W u

loc(ξ, τ), recalling (1.6), using the
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invariance (1.5), and the Lipschitz continuity, we have∣∣γu,n+1
ξ (η)− γu,n

ξ (η)
∣∣ =

∣∣Tnτ−n(η)

(
Tτ−n−1(η)(Φ(τ−n−1(ξ)))

)
− Tnτ−n(η)

(
Φ(τ−n(ξ))

)∣∣
≤ λns

∣∣Tτ−n−1(η)(Φ(τ−n−1(ξ)))− Φ(τ−n(ξ))
∣∣

= λns
∣∣Tτ−n−1(η)(Φ(τ−n−1(ξ)))− Tτ−n−1(ξ)(Φ(τ−n−1(ξ))

∣∣
≤ λns Ld1(τ−n−1(η), τ−n−1(ξ))

≤ λns Lκ−n−1
w d1(η, ξ) = Lκ−1

w (λsκ
−1
w )nd1(η, ξ).

Hence, for every m ≥ n ≥ 1∣∣γu,m+1
ξ (η)− γu,n

ξ (η)
∣∣ ≤ Lκ−1

w

1

1− λsκ
−1
w

(λsκ
−1
w )nd1(η, ξ).

Since η was arbitrary and since by (1.6) the last expression converges to zero expo-
nentially fast as n→∞, (γu,n

ξ )n is a Cauchy sequence and converges uniformly to a

continuous limit γu
ξ (note that d1(·, ·) is uniformly bounded due to the compactness

of Ξ). Let us postpone the proof of the Lipschitz continuity of γu
ξ for a moment

and instead first prove that its graph is contained in a strong unstable manifold.
Take a point Y = (η, γu

ξ (η)) in the graph of γu
ξ . Observe that for every n ≥ 1

d
(
T−n(η, γu

ξ (η)), T−n(ξ,Φ(ξ))
)

≤ d
(
T−n(η, γu

ξ (η)), T−n(η, γu,n
ξ (η))

)
+ d
(
T−n(η, γu,n

ξ (η)), T−n(ξ,Φ(ξ))
)
.

For the latter term we have

d
(
T−n(η, γu,n

ξ (η)), T−n(ξ,Φ(ξ))
)
≤ d1(τ−n(η), τ−n(ξ)) ≤ κ−nw d1(η, ξ).

We will now show that also the former term is of the order at most κ−nw and hence
we will conclude that

lim sup
n→∞

1

n
log d

(
T−n(η, γu

ξ (η)), T−n(ξ,Φ(ξ))
)
≤ − log κw. (5.2)

Thus, recalling (4.3), we will obtain that Y = (η, γu
ξ (η)) ∈ W uu

loc (X,T ). Since Y was
an arbitrary point in the graph of γu

ξ , we will obtain that this graph is contained
in the strong unstable manifold of X and thus inherits all its regularity and, in
particular, Lipschitz continuity. Moreover, it will also imply equicontinuity of the
family (γu

ξ )ξ∈Ξ. Indeed to estimate the former term note that

d
(
T−n(η, γu

ξ (η)),T−n(η, γu,n
ξ (η))

)
=
∣∣T−nη (γu

ξ (η))− Φ(τ−n(ξ))
∣∣

= lim
m→∞

∣∣T−nη (γu,m
ξ (η))− Φ(τ−n(ξ))

∣∣
= lim
m→∞

∣∣T−nη ◦ Tmτ−m(η)(Φ(τ−m(ξ)))− Φ(τ−n(ξ))
∣∣

= lim
m→∞

∣∣Tm−nτ−m(η)(Φ(τ−m(ξ)))− Tm−nτ−m(ξ)(Φ(τ−m(ξ)))
∣∣.

Claim 5.7. For every ` ≥ 1, ζ ∈ Ξ, ζ ′ ∈ W u
loc(ζ, τ), and z ∈ R we have

∣∣T `ζ (z)− T `ζ′(z)
∣∣ ≤ L `−1∑

k=0

λks d1(τ `−k+1(ζ), τ `−k+1(ζ ′)).



HYPERBOLIC GRAPHS 19

Proof. Note that∣∣T `ζ (z)− T `ζ′(z)
∣∣ =

∣∣Tτ`−1(ζ) ◦ T `−1
ζ (z)− Tτ`−1(ζ′) ◦ T `−1

ζ′ (z)
∣∣

≤
∣∣Tτ`−1(ζ) ◦ T `−1

ζ (z)− Tτ`−1(ζ′) ◦ T `−1
ζ (z)

∣∣
+
∣∣Tτ`−1(ζ′) ◦ T `−1

ζ (z)− Tτ`−1(ζ′) ◦ T `−1
ζ′ (z)

∣∣
≤ Ld1(τ `−1(ζ), τ `−1(ζ ′)) + λs

∣∣T `−1
ζ (z)− T `−1

ζ′ (z)
∣∣,

where we used Lipschitz dependence of the fiber maps and uniform expansion by the
common fiber map Tτ`−1(ζ′) by at most the factor λs. Applying the same argument
` times implies the claim. �

Continuing with the above calculations, with this claim we obtain∣∣Tm−nτ−m(η)(Φ(τ−m(ξ)))− Tm−nτ−m(ξ)(Φ(τ−m(ξ)))
∣∣

≤ L
m−n−1∑
k=0

λks d1

(
τm−n−k+1(τ−m(η)), τm−n−k+1(τ−m(ξ))

)
= L

m−n−1∑
k=0

λks d1

(
τ−n−k+1(η), τ−n−k+1(ξ)

)
≤ L

m−n−1∑
k=0

λks κ
−(n+k−1)
w d1(η, ξ) ≤ Lκ−nw κw

∞∑
k=0

(λsκ
−1
w )kd1(η, ξ)

= κ−nw

Lκw

1− λsκ
−1
w

d1(η, ξ).

Thus, we obtain (5.2).
Invariance (5.1) is easily verified. Thus the lemma is proved. �

Remark 5.8. By compactness of Φ, regularity, and hyperbolicity of T , all functions
γu
ξ , ξ ∈ Ξ, have a common Lipschitz constant. Following the steps in the proof of

Lemma 5.6, one can actually determine this constant; however we refrain from
doing so.

5.2. Lipschitz regularity – sufficient conditions.

Lemma 5.9. Let γ > log λs/ log κw. Let ξ ∈ Ξ and η ∈ Ξ ∩ W u
loc(ξ, τ). If there

exist C ′ > 0 and a sequence nk →∞ so that for every k ≥ 1 we have∣∣Φ(τ−nk(η))− Φ(τ−nk(ξ))
∣∣ ≤ C ′d1(τ−nk(η), τ−nk(ξ))γ , (5.3)

then Φ(η) = γu
ξ (η).

Proof. Since Φ is invariant and T is fiberwise expanding (1.7), we have∣∣Tnk
τ−nk (η)

(Φ(τ−nk(ξ)))− Φ(η)
∣∣ =
∣∣Tnk
τ−nk (η)

(Φ(τ−nk(ξ)))− Tnk
τ−nk (η)

(Φ(τ−nk(η)))
∣∣

≤λnks

∣∣Φ(τ−nk(ξ))− Φ(τ−nk(η))
∣∣.

By our hypothesis on the γ-Hölder regularity of Φ at τ−nk(ξ) we have

|Φ(τ−nk(η))− Φ(τ−nk(ξ))| ≤ C ′d1

(
τ−nk(η), τ−nk(ξ)

)γ
and from the fact that η is in the local unstable manifold of ξ we obtain

d1

(
τ−nk(η), τ−nk(ξ)

)
≤ κ−nkw d1(η, ξ).
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So, these three facts and the definition of γu,nk
ξ together imply∣∣γu,nk

ξ (η)− Φ(η)
∣∣ ≤ C ′(λsκ

−γ
w

)nkd1(η, ξ)γ .

Hence, if λsκ
−γ
w < 1 and nk →∞, then together with Lemma 5.6 we can conclude

that γu
ξ (η) = limk→∞ γu,nk

ξ (η) = Φ(η). �

Recall that for δ > 0 sufficiently small every local unstable manifold contains a
disk of radius δ. Denote

W u
δ (ξ, τ)

def
= W u

loc(ξ, τ) ∩Bδ(ξ).
The following now is an immediate consequence of Lemma 5.9.

Corollary 5.10. Let γ > log λs/ log κw. Let ξ ∈ Ξ. If there exist C ′ > 0 and δ > 0
such that for every η ∈ Ξ∩W u

δ (ξ, τ) there is a sequence nk →∞ such that for every
k ≥ 1 we have (5.3), then Φ(η) = γu

ξ (η) for every η ∈ Ξ ∩ W u
δ (ξ, τ). Hence, in

particular, the graph of Φ restricted to Ξ∩W u
δ (ξ, τ) is contained in the local strong

unstable manifold of X = (ξ,Φ(ξ)).

Proof of Proposition 5.4. Given ξ periodic with period n, we apply Corollary 5.10
to ξ taking nk = kn. �

It is convenient to define the following function (see also [15]) which measures
in a way the “obstructions” to the regularity of the invariant graph Φ on local
unstable manifolds. Given ξ ∈ Ξ let

∆u
δ (ξ)

def
= sup

η∈Ξ∩W u
δ (ξ,τ)

|Φ(η)− γu
ξ (η)|. (5.4)

Lemma 5.11. ∆u
δ : Ξ→ R is continuous.

Proof. This follows from uniform convergence of the sequence (γu,n
ξ )n in Lemma 5.6.

Indeed, the distance between γu,n
ξ and γu

ξ varies equicontinuously in n and ξ. Now,

observe that γu,n
ξ varies continuously in ξ and recall continuity of the unstable

manifolds W u
loc(·, τ) and continuity of the graph Φ. �

Lemma 5.12. Assume that ∆u
δ (ξ) = 0 for some ξ ∈ Ξ. Then ∆u

δ = 0 and hence
Φ is Lipschitz on local unstable manifolds.

Proof. By hypothesis, Φ(η) = γu
ξ (η) for every η ∈ Ξ∩W u

δ/2(ξ, τ) and, in particular,

Φ(η) is contained in the strong unstable manifold of X = (ξ,Φ(ξ)).
Clearly, ∆u

δ (ξ) = 0 = ∆u
δ/2(η) for every η ∈ Ξ∩W u

δ/2(ξ, τ). If δ was small enough,

then for every n ≥ 1 we have τn(W u
δ/2(η, τ)) ⊃ W u

δ/2(τn(η), τ) and from invariance

of the graph Φ we conclude ∆u
δ/2(τn(η)) = 0.

By hyperbolicity (recall (4.2)), the union of all images of Ξ∩W u
δ/2(ξ, τ) is dense

in Ξ. Hence we obtain ∆u
δ/2 = 0 densely, and continuity implies ∆u

δ/2 = 0. This

proves the lemma. �

Proof of Corollary 5.3. Is a consequence of Proposition 5.4 and Lemma 5.12. �

Proof of Proposition 5.2. The proof of the first claim is as in [15]. The second claim
is a consequence of Lemma 5.12. �

Analogously to (5.4), we can define a function ∆s
δ : Ξ→ R considering local stable

manifolds instead of local unstable manifolds. This function is also continuous and
we have ∆s

δ = 0.
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W u
loc(ξ)ξηζ

Y

X

În(ξ) R̂u
n(X)

Ru(ξ, n)

Iζ

W uu
loc (X,T )

Figure 5. Definition of the set R̂u
n(X) (shaded region)

Corollary 5.13. Assume that ∆u(ξ) = 0 for some ξ ∈ Ξ. Then Φ: Ξ → R is
Lipschitz.

Proof. By Lemma 5.12 and the above we have ∆u = ∆s ≡ 0 everywhere on Ξ,
that is, the graph is Lipschitz along unstable manifolds and along stable manifolds.
Note that the local product structure of unstable and stable local manifolds [ξ, η] =
W s

loc(ξ, τ)∩W u
loc(η, τ) for η sufficiently close to ξ (see Section 4.2) has the property

that η 7→ d1(ξ, [ξ, η]) is Lipschitz. Thus the graph is Lipschitz on the whole Ξ. �

For further reference in Section 5.3 we formulate the following immediate conse-
quence of Corollary 5.10 (recalling that assumption (1.6) gives 1 > log λs/ log κw,
we put γ = 1).

Corollary 5.14. Assume that Φ is not Lipschitz continuous on local unstable man-
ifolds. Then for every δ > 0 there exists C = C(δ) > 0 such that ∆u

δ ≥ C.

5.3. Size of Markov unstable rectangles. Assume that R1, . . . , RN is a Markov
partition of Ξ (with respect to τ) and that R1, . . . , RN is a corresponding Markov
partition of Φ (with respect to T ) as in Section 4.2, see (4.5). For every η ∈ Ξ
consider the fiber

Iη
def
= {η} × R.

Given X = (ξ,Φ(ξ)) and n ≥ 1, to define the “size” of an unstable rectangle Ru
n(X)

(note that its projection to the base is either a Cantor set or a smooth curve where
the latter case occurs when τ is an Anosov map or Ξ is a one-dimensional attractor),
let Ru(ξ, n) be the minimal curve contained in W u

loc(ξ, τ) containing Ru
n(ξ). Let

R̂u
n(X)

def
=
{
W uu

loc (Y, T ) : Y ∈ Ru
n(X)

}
∩
{
Iζ : ζ ∈ Ru(ξ, n)

}
(compare Figure 5), which is the smallest set containing the Markov unstable rec-
tangle (with respect to T ) of level n containing X which is “foliated” by local strong
unstable manifolds of points in this rectangle and which is bounded by fibers which
project to points in the base bounding the Markov unstable rectangle (with respect
to τ). Let

În(ξ)
def
= Iξ ∩ R̂u

n(X).
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Remark 5.15. Notice that the segment În(ξ), by definition, is bounded by points

which are on the local strong unstable manifolds of some points in Φ ∩ R̂u
n(X).

Given Y = (η,Φ(η)) ∈ Ru
n(X), denote by `h(Y ) the minimal length of a segment

in the fiber containing the set Iη∩ R̂u
n(X). Define the height of an nth level Markov

unstable rectangle by

|Ru
n(X)|h

def
= max

Y ∈Ru
n(X)

`h(Y ).

Define the width of an nth level Markov unstable rectangle to be

|Ru
n(X)|w

def
= |Ru

n(ξ)|w
def
= |Ru(ξ, n)|,

where |·| denotes the length of a curve in M .
The following estimate of the width and height of a Markov unstable rectan-

gle involves a bounded distortion argument and the invariance of strong unstable
manifolds. Recall the definitions of the potentials ϕu and ϕcu in (1.1) and (1.8).

Proposition 5.16. There exists c > 1 such that for every X = (ξ,Φ(ξ)), n ≥ 1,
and η ∈ Ru

n(ξ) we have
1

c
≤ |Ru

n(X)|w
exp(Snϕu(η))

≤ c.

Proof. Recall that there is θ > 0 such that ϕu is θ-Hölder continuous. By (1.7)
for every η ∈ Ru

n(ξ) we have d1(η, ξ) ≤ c2κ
−n
w , where c2 denotes the maximal

diameter of a Markov rectangle Ri. Hence, there exists c3 > 0 such that for every
i = 0, . . . , n− 1 we have

|ϕu(τ i(η))− ϕu(τ i(ξ))| ≤ c3κ−θ(n−i)w .

This implies

|Snϕu(η)− Snϕu(ξ)| ≤ c3
n−1∑
i=0

κ−θ(n−i)w < c3

∞∑
i=0

κ−θiw =: c4 <∞.

Thus, by the mean value theorem and the above, there exists η′ ∈ W u
loc(ξ, τ) ∩

Ru(ξ, n) such that

|Ru
n(X)|w = |Ru

0(Tn(X))|w ‖dτn|Fu
η′
‖−1 = |Ru

0(Tn(X))|w eSnϕ
u(η′).

Since there are only finitely many Markov rectangles and each of them has nonempty
interior, the widths of Markov unstable rectangles |Ru(·)|w are uniformly bounded
from below and above by positive numbers. This proves the proposition. �

We also have the following estimate for the height of Markov unstable rectangles.
Its proof follows an alternative, perhaps more conceptual, way to control the size
of Markov rectangles in comparison to the approach in [3].

Proposition 5.17. If Φ is Lipschitz on local unstable manifolds, then for every
X ∈ Φ and n ≥ 0 we have

|Ru
n(X)|h = 0.

Otherwise, if Φ is not Lipschitz on local unstable manifolds, then there exists c > 1
such that for every X = (ξ,Φ(ξ)), n ≥ 1, and ζ ∈ Ru

n(ξ) we have

1

c
≤ |Ru

n(X)|h
exp(Snϕcu(ζ))

≤ c.
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Proof. By Proposition 5.2, Φ is Lipschitz on local unstable manifolds if, and only if,
there exists δ > 0 such that ∆u

δ (ξ) = 0 for every ξ ∈ Ξ and, in particular, the graph
is contained in the local strong unstable manifold at every point X = (ξ,Φ(ξ)). This
immediately implies that the above defined height of an Markov unstable rectangle
is 0 at every ξ ∈ Ξ.

If Φ is not Lipschitz on local unstable manifolds, then by Corollary 5.14 for
every δ > 0 there is C(δ) > 0 such that ∆u

δ (ξ) ≥ C(δ) for every ξ. Now given
X = (ξ,Φ(ξ)) and n ≥ 1, by the Markov property (4.6) we have

Tn
(
Ru
n(X)

)
= Tn

(
Rn(X) ∩W u

loc(X,T )
)
⊃ R(Tn(X)) ∩W u

loc(Tn(X), T ).

In particular, it contains some point Y ′ = (η′,Φ(η′)) ∈ W u
loc(X ′, T ), where X ′ =

(ξ′,Φ(ξ′)) = Tn(X), so that d1(η′, ξ′) ≤ δ and |γu
ξ′(η

′)− Φ(η′)| ≥ C(δ). Note that

|γu
ξ′(η

′)−Φ(η′)| is the distance between the point of intersection of the local strong

unstable manifold through X ′ with the fiber Iη′ and the point Y ′. Preimages by
T−k of these points are both in the common fiber Iτ−k(η′), for any k ≥ 1.

Since the fiber maps are uniformly Hölder and T−1 is uniformly fiber contracting,
we can find a constant D > 1 (independent of ξ ∈ Ξ) such that

|T−nη′ (γu
ξ′(η

′))− T−nη′ (Φ(η′))| ≥ D−1 · |(T−nη′ )′(Φ(η′))| · |γu
ξ′(η

′)− Φ(η′)|.

And since τ−k exponentially contracts the distance between η′ and ξ′, with η =
τ−n(η′) we also obtain

|(T−nη′ )′(Φ(η′))| = |(Tnη )′(Φ(η))|−1 ≥ D−1|(Tnξ )′(Φ(ξ))|−1.

In fact, in this inequality we can replace ξ by any point ζ in Ru
n(ξ). Finally, recalling

the definition (1.8) of ϕcu we obtain

|Ru
n(X)|h ≥ |T−nη′ (γu

ξ′(η
′))− T−nη′ (Φ(η′))| ≥ eSnϕ

cu(ζ) ·D−2 · C(δ).

The upper bound follows analogously recalling that Φ is compact and hence the
height of the initial Markov rectangles is uniformly bounded from above. �

6. Fibered blenders

A blender (see [6] and [4]) is a hyperbolic and partially hyperbolic set Λ of a
diffeomorphism T with splitting Es⊕Ecu⊕Euu (where Es is the stable bundle and
Ecu⊕Euu the unstable one) being locally maximal in an open neighborhood which
has an additional special structure. Namely there is a strong unstable (expanding)
cone field Cuu around the strong unstable bundle Euu and an open family D of
disks, called blender plaques or simply plaques, tangent to Cuu that satisfies the
following invariance and covering properties: every D ∈ D contains a subset D0

such that T (D0) ∈ D.
Note that every plaque of a blender intersects the local stable manifold of Λ

(defined analogously to (6.1) below), see Lemma 6.3 below and its versions in [4].
Though there are points in Λ whose strong unstable manifold has nothing to do
with the blender in the sense that it does not contain a blender plaque.7 It is
essential in our arguments that the family of plaques of the blender is sufficiently
big assuring that the “dynamics of the plaques” and the dynamics of the blender
are related and that the plaques capture an essential part of its dynamics. This

7An example for the hyperbolic set Φt, t 6= 0 small, in Section 3.2.1 is given by the “boundary”
strong unstable manifold of the fixed point P t0 = (0, 0, 0) (compare Figure 6).
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blender plaques

P
W uu

loc (P, T )

W u
loc(P, T )

Figure 6. A blender for the example in Section 3.2.1: the almost
horizontal plaques cover the intersection region; the local unsta-
ble manifold of P = P t0 (shaded region) contains the local strong
unstable manifold of P (horizontal line ξs = 0) which does not
contain any blender plaque.

leads to a blender with the germ property defined below. In Remark 6.2 we will
compare these notions with other related ones in the literature.

In the definition of a blender, the familyD is open in the ambient space. However,
here for our purpose it is enough to consider a (sub-)family of discs in the unstable
manifold of Λ. This leads to a fibered blender defined in Section 6.2.

In Section 6.3, following the definition of a blender-horseshoe in [7, Section 3],
we will introduce a class of fibered blenders which have the germ property and are
topologically conjugate to a shift in N symbols. We will call them fibered blender-
horseshoes. It is easy to verify that the horseshoes Φt, t 6= 0, in Section 3.2.1 are
examples of such objects (indeed they are the paradigmatic examples), see also
Example 6.15. We note that the fibered blender-horsehoes are nonaffine general-
izations of these affine horseshoes (as were also the blender-horseshoes in [7]).

In what follows, we continue with the fibered setting from Section 1.

6.1. Fibered blender. As in Section 1, let U ⊂ M be neighborhood of Ξ such
that Ξ =

⋂
k∈Z τ

k(U). Recall the definition of a local unstable manifold W u
loc(ξ, τ)

of a point ξ ∈ Ξ (with respect to τ and U) in (4.1). Recall that the set Φ is an
invariant graph. Given X = (ξ,Φ(ξ)), recalling Section 4.1, let

W u
loc(X,T )

def
= W u

loc(ξ, τ)× I,

where I ⊂ R is some open interval. Observe that this set indeed is contained in a
local unstable manifold of Φ (with respect to T ). Let

W u
loc(Φ, T )

def
=
⋃
X∈Φ

W u
loc(X,T ). (6.1)

We fix a cone field Cuu around the bundle Euu which is strictly invariant and
uniformly expanding. More precisely, for every X ∈ Φ the open cone Cuu

X ⊂ TX(M×
R) contains Euu

X and the image of its closure under dTX is contained in Cuu
T (X) and

dTX uniformly expands vectors in Cuu
X . We assume that this cone field can be

extended to the neighborhood U × I keeping the dT invariance and expansion
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properties (here we assume that X and T (X) ∈ U × I).8 We continue to denote
the extension of this cone field by Cuu.

A plaque associated to the cone field Cuu is a finite union D =
⊔m
i=1Di of

pairwise disjoint closed C1-curves Di (the decomposition of D) homeomorphic to
closed intervals and tangent to the cone field Cuu (i.e., TXD ⊂ Cuu

X ). Given a
curve Di, we denote by |Di| its length and define the length of a plaque D by
|D| =

∑m
i=1|Di|.

Definition 6.1 (Fibered blender). A family B = (Φ, U × I, Cuu,D) is a fibered
blender for T if it satisfies the following properties: the set Φ is hyperbolic, partially
hyperbolic, and locally maximal in U × I. The cone field Cuu is a strong unstable
expanding one-dimensional cone field defined on U × I which is forward invariant.
The familyD is a family of plaques associated to Cuu satisfying the following relative,
open and covering, and expanding properties:

FB1 (relative) Every plaque D ∈ D is contained in W u
loc(Φ, T ) and its decompo-

sition D =
⊔m
i=1Di is such that Di ⊂ W u

loc(Xi, T ) for some Xi ∈ Φ;
FB2 (open and covering) There is εD > 0 such that for every plaque D′ εD-close

to some plaque D ∈ D and contained in W u
loc(Φ, T ) the set T (D′) contains

a plaque in D.
FB3 (expanding) There is κ > 1 such that for every plaque D ∈ D there is

D0 ⊂ D such that |D0| ≤ κ−1|D| and T (D0) ∈ D.

Remark 6.2 (Blenders and fibered blenders). The term fibered refers to the fact
that we consider the fibered setting from Section 1. The term relative refers to the
fact that we consider only plaques contained in local unstable manifolds. As in [4],
a fibered blender is persistent by perturbations preserving the fiber structure (see
also Proposition 6.13). We will provide in Section 6.3 important examples where a
fibered blender is persistent.

Note that the role of the set Φ in the definition of a fibered blender is in some
sense only instrumental and the important objects are the plaques. In general, the
set of plaques could be small in the sense of not capturing all the dynamics of Φ.
For instance, there could be unstable leaves of Φ that do not contain any plaque.

Note that in our setting of hyperbolic graphs the important object is the set Φ.
Bearing this in mind, below for fibered blenders we will introduce a germ property
that guarantees that the hyperbolic set of a fibered blender has a sufficiently rich
family of plaques that captures all the dynamics of the hyperbolic set and is also
sufficiently rich to go on in the dimension arguments. We need that essentially
every leaf W u

loc(X,T ), X ∈ Φ, contains some plaque (this is the meaning of the
term “capture”).

The following key result is well known in the realm of blenders, see [4, Remark
3.12 and Lemma 3.14], for completeness we include its proof.

Lemma 6.3. Let B = (Φ, U × I, Cuu,D) be a fibered blender. Then every D ∈ D
intersects W s

loc(Φ, T ).

Proof. LetD ∈ D. We define a nested sequence of subsets ofD as follows. LetD0 be
a subset given by item FB3) in the definition of a fibered blender. Assume that we
have already defined subplaques Dk ⊂ Dk−1 ⊂ . . . ⊂ D0 such that T i+1(Di) ∈ D,

8Note that this cone field can be extended to any small neighborhood of Φ keeping the invari-
ance and expansion properties. The point here is that the neighborhood U is fixed a priori.



26 L. J. DÍAZ, K. GELFERT, M. GRÖGER, AND T. JÄGER

ξ

X

W u
loc(ξ, τ)

Bu
m(ξ) ξ

D̂

Figure 7. Left: mth level u-box of ξ, Bu
m(ξ) (shaded region).

Right: germ plaque D̂ of a well-placed germ plaque in a relative
blender

for every i = 0, . . . , k. Then let D̂k+1 be a subset of T k+1(Dk) ∈ D given by

FB3), that is T (D̂k+1) ∈ D, and let Dk+1 = T−(k+1)(D̂k+1). By construction and
FB3), there exists a point z ∈

⋂
k≥0Dk such that its forward orbit {z, T (z), . . .} is

contained in U × I. Hence z ∈ W s
loc(Φ, T ). �

The following result is an immediate consequence of the above lemma based on
the relative property of a fibered blender.

Corollary 6.4. Let B = (Φ, U ×I, Cuu,D) be a fibered blender. Then every D ∈ D
contains a point in Φ.

Proof. Given D ∈ D, by the relative property we have D ⊂ W u
loc(Φ, T ). By

Lemma 6.3, D contains a point X in the local stable manifold of Φ. Hence
X ∈ W u

loc(Φ, T )∩W s
loc(Φ, T ). Since Φ is locally maximal in U×I, we get X ∈ Φ. �

6.2. Germ property. We will now explore in more detail the Markov structure
in the fibered blender. Recall the notation in Section 4.2. Given ξ ∈ Ξ, recall that
Ru(ξ,m) denotes the minimal curve contained in W u

loc(ξ, τ) containing the mth level
Markov unstable rectangle Ru

m(ξ). Consider the mth level u-box of ξ defined by

Bu
m(ξ)

def
= Ru(ξ,m)× I.

Given X ∈ Φ, for a set C ⊂ W u
loc(X,T ) and Y = (η, y) ∈ C, let I(C, Y ) denote

the connected component of C ∩ Iη which contains Y , where Iη = {η} × R. Let

|C|h
def
= inf

{
|I(C, Y )| : Y ∈ C

}
.

Definition 6.5 (Germ property). A fibered blender B = (Φ, U × I, Cuu,D) has
the germ property if there is δ > 0 such that for every ξ ∈ Ξ and every m ≥ 0 the
mth level u-box B = Bu

m(ξ) satisfies the following properties:

(a) There is a closed curve Jm = Jm(ξ) ⊂ Iξ such that every Z ∈ Jm is in some
plaque of D.

(b) Let DZ ∈ D be any plaque containing a point Z ∈ B and denote by D̂Z the
connected component of DZ ∩B containing Z. There is a family of plaques
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DZ , Z ∈ Jm such that D̂R
def
= {D̂Z : Z ∈ Jm} is a continuous foliation of

the set

R
def
=

⋃
Z∈Jm

D̂Z .

(c) We have
– |Tm(R)|h ≥ δ,
– T i(R) ⊂ U × I for all i = 0, . . . ,m, and

– for every D̂Z , Z ∈ Jm, we have Tm(D̂Z) ∈ D
(compare Figure 7). We call any such R a germ rectangle and D̂Z a germ plaque
(with respect to B).

Remark 6.6. Property (a) says that the fibered blender is sufficiently rich captur-
ing the dynamics of the hyperbolic set in the sense that for every ξ ∈ Ξ the local
unstable leaf of X = (ξ,Φ(ξ)) (with respect to T ) contains blender plaques.

Note also that the choice of a plaque DZ in D is arbitrary, we require that the
above holds for any such a choice and some continuation to a foliation by plaques
in D.

Finally, (b) and (c) will imply (see Corollary 6.7) that the fibered blender is
sufficiently rich in the sense that (locally) in every mth level u-box the projection
of the points of Φ in this box is an interval whose image blows up to a uniform
minimal size (height, that is, its size in the center unstable fiber direction).

As an immediate consequence of Corollary 6.4 we get the following result which is
the key ingredient to show the lower bound for the box dimension (see Claim 8.6).

Given ξ ∈ Ξ, m ≥ 0, Bu
m(ξ), Jm, and a germ rectangle R =

⋃
Z D̂Z and its

associated foliation D̂R = {D̂Z} as in Definition 6.5, denote by πD̂R
: R → Jm the

projection along the leaves of this foliation. Then we have

πD̂R

(
Φ ∩ R

)
= Jm.

We get the following corollary.

Corollary 6.7. Let B = (Φ, U × I, Cuu,D) be a fibered blender with the germ
property. Then any germ plaque of a germ rectangle contains a point of Φ.

6.3. Fibered blender-horseshoes. In this section we translate the definition of
a blender-horseshoe in [7] to our fibered setting and provide examples of fibered
blenders. This translation follows closely the exposition in [7, Section 3.2] (though
here we consider a horseshoe conjugate to a shift of N symbols instead of one
conjugate to a shift of two symbols only, moreover (as observed above) we will
focus on local unstable manifolds only, see FBH3) and FBH4). The rough idea of
our definition is that every blender-horseshoe with a skew product structure is a
fibered blender with the germ property and hence provides a class of examples of
the objects considered in Sections 6.1 and 6.2.

We assume that the hyperbolic set Φ and the open sets U ⊂ M , I ⊂ R are as
in Section 4.1. In what follows we assume that Ξ (and hence Φ) is conjugate to
the full shift in N symbols. We will discuss more general cases at the end of this
section. We consider the following properties.

FBH1 There are two fixed points P0 and P1 ∈ Φ, called reference saddles, such that
for any point X in Φ the local stable manifolds W s

loc(Pi, T ) each intersects
W u

loc(X,T ) in just one point that we denote by Xi, i = 0, 1.
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FBH2 There is a continuous cone field Cuu around the bundle Euu defined on U×I
which is strictly invariant and uniformly expanding.

A curve contained in W u
loc(X,T ) for some X ∈ Φ and tangent to Cuu is called a

Cuu-curve.

FBH3 There is a continuous family {R(X)}X∈Φ of closed sets (rectangles) such
that

(i) R(X) ⊂ W u
loc(X,T ) and R(Y ) = R(X) if W u

loc(Y, T ) = W u
loc(X,T ),

(ii) each rectangle is bounded by four curves: D+,− = D+,−(X) are Cuu-
curves and F `,r = F `,r(X) are contained in fibers,

(iii) X0, X1 are contained in the interior of R(X), and
(iv) every Cuu-curve containing X0 or X1 is disjoint from D− ∪D+.

A Cuu-curve D ⊂ R(X) for some X ∈ Φ is uu-complete if it intersects both
(boundary) fibers F `(X) and F r(X) of R(X). A Cuu-curve in R(X) is well located
if it is uu-complete and disjoint from D±(X).

FBH4 For every X ∈ Φ any pair of Cuu-curves containing X0 and X1, respectively,
are disjoint. In particular, for every X ∈ Φ, there is no uu-complete Cuu-
curve in R(X) simultaneously containing X0 and X1.

Every well located Cuu-curve D in R(X) splits this rectangle into two connected
components which we denote by C± = C±(D), R(X)\D = C+(D)∪C−(D). There
are three pairwise different possibilities:

• either X0 ∈ D or X1 ∈ D,
• X0 and X1 are in the same component C±, and
• X0 and X1 are in different components C− and C+.

A Cuu-curve which is well located and satisfies the first possibility is extremal. One
satisfying the last possibility is in between W s

loc(P0, T ) and W s
loc(P1, T ), or simply,

in between.
We denote by D the family of all well located Cuu-curves in between. This family

will turn out to be the invariant family of plaques in a fibered blender. We denote
by Dext the family of Cuu-curves in D together with all extremal Cuu-curves.

We will need a geometrically more precise version of the covering property in
the definition of a fibered blender “every plaque D ∈ D contains a subplaque D̂
such that T (D̂) ∈ D”. Let us state this condition more precisely. We call a strip a
set which is homeomorphic to a rectangle foliated by curves in Dext. To emphasize
the role of the foliating curves for a strip S, we write S = {Dt}t∈[0,1]. A strip is
u-complete or simply complete if its boundary contains a pair of (different) extremal

Cuu-curves. The height of a strip S is h(S)
def
= max{|Iξ ∩ S|h : ξ ∈ Ξ}. A set S′ is a

substrip if it is a subset of some strip and T (S′) is again a strip.
Given a strip S = {Dt}t∈[t1,t2] we consider an extension of it to a complete strip

S′ = {D′t}t∈[0,1] (i.e., D′t = Dt for every t ∈ [t1, t2]). If the strip S is not complete,
its extension to a complete strip is not unique. Note that these extensions always
exist. Note that, by construction, every strip contains at least one substrip.

Remark 6.8. By condition FBH4), there is ν > 0 such that the height of every
complete strip is at least ν.

FBH5 For every D ∈ Dext and every complete strip S = {Dt}t∈[0,1] such that D =
Ds for some s ∈ [0, 1] there are parameters 0 = t0 < t1 < t2 < · · · < tN = 1
such that:



HYPERBOLIC GRAPHS 29

– for each i = 0, . . . , N − 1 there exists a family of subsets Di
t of Dt,

t ∈ [ti, ti+1] such that
⋃
t∈[ti,ti+1] T (Di

t) is a complete strip,

– the union of (disjoint) substrips

Si
def
=

⋃
t∈[ti,ti+1]

Di
t, i = 0, . . . , N − 1

covers Φ ∩W u
loc(X,T ) for some X ∈ Φ.

Remark 6.9. Since the foliating Cuu-curves are tangent to the uniformly expanding
cone field Cuu we have |Di

t| ≤ κ−1|Dt| for some κ > 1.

Remark 6.10. Given any X = (ξ,Φ(ξ)) and its rectangle R(X), for every complete
strip S in R(X) and every m ≥ 0 it holds Bu

m(ξ)∩Φ ⊂ Si for some i = 0, . . . , N−1.
Note also that (Bu

m(ξ) ∩ Φ) ∩ Sj = ∅ for every j 6= i.

Definition 6.11 (Fibered blender-horseshoe). A hyperbolic and partially hyper-
bolic set Φ satisfying the Standing hypotheses in Section 1.2 is a fibered blender-
horseshoe if there are an open set U×I, a cone field Cuu, and a family of Cuu-curves
D satisfying conditions FBH1)–FBH5). We call the family D the family of plaques
of the fibered blender-horseshoe.

Remark 6.12 (Fibered blender-horseshoes versus blender-horseshoes). We briefly
compare the definition of a fibered blender-horseshoe with the original blender-
horseshoe in [7]. Our definition is a translation of that definition to our set-
ting where some conditions are written in a more suitable way adapted to our
needs. Properties FBH1)–5) are related to properties BH1)–6) in the definition
of a blender-horseshoe in [7] as follows: property FBH1) is a consequence of the
Markov properties in BH1). Properties FBH2) and FBH4) correspond exactly to
BH2) and BH4), respectively. FBH3) is a consequence of BH3)–4). Finally, FBH5)
joins BH5) and BH6).

Let us observe that property FBH5) implies that a fibered blender-horseshoe
is a fibered blender. Properties FBH1)-FBH4) are used to guarantee the germ
property. Also observe that condition FBH1) has only an instrumental role to
define the family of plaques of the blender.

Recall that given a hyperbolic set Φ of a diffeomorphism T in the manifold
M ×R there is a C1 neighborhood U of T such that every T̃ ∈ U has a hyperbolic
set ΦT̃ which is close to Φ and such that the restriction of T̃ to ΦT̃ is conjugate

to the restriction of T to Φ, we call ΦT̃ the continuation of Φ for T̃ . Analogously,

we denote by PT̃ the continuation of a saddle P for T̃ . We are interested in the

particular fibered context. Denote by Diff1
skew(M×R) the subset of the space of C1

diffeomorphisms Diff1(M×R) consisting of diffeomorphisms with the skew product
structure in (1.4). Following the arguments in [7, Lemma 3.9] we get the following.

Proposition 6.13. Fibered blender-horseshoes exist and are persistent in the sense
that for a given fibered blender-horseshoe Φ of T ∈ Diff1

skew(M × R) with reference
saddles P and Q there is a neighborhood U of T in Diff1

skew(M × R) such that for

all T̃ ∈ U the continuation of Φ for T̃ is a fibered blender-horseshoe with reference
saddles PT̃ and QT̃ .

Theorem 6.14. Every fibered blender-horseshoe is a fibered blender which has the
germ property.
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a) b)

T0 TN−1

p0 x1
c)

T0 T1T2

x0 x2 x1y2y1y0

Figure 8. Fiber maps for examples of step skew products

Proof. The fact that a fibered blender-horseshoe is a fibered blender follows imme-
diately from FBH5): just embed a plaque Dt ∈ D in a complete strip and consider
any subset Di

t as in FBH5) and note that by Remark 6.9 |Di
t| ≤ κ−1|Dt|, κ > 1.

To get the germ property take any ξ ∈ Ξ and any m ≥ 1 and consider Bu
m(ξ).

This set is contained in some rectangle R(X) ⊂ W u
loc(X,T ). We consider a complete

strip S in W u
loc(X,T ) and its associated substrips Si, i = 0, . . . , N −1, as in FBH5).

Then the strips T (Si) are complete by definition. By Remark 6.10 we have Bu
m(ξ)∩

Φ ⊂ Si0 for some i0 and we denote by S
(0)
i0

= Si0 . We let S(1) def
= T (S

(0)
i0

) and note

that, by construction, S(1) is complete. Thus by Remark 6.8 we have |S(1)|h ≥ ν.
Moreover, S(1) intersects Φ.

We can argue analogously with the complete strip S(1) and the set Bu
m−1(τ(ξ))

and consider the corresponding substrip S
(1)
i1

that contains the set Bu
m−1(τ(ξ)) ∩

Φ. Arguing recursively, for j = 0, . . . ,m − 1, we obtain complete strips S(j) and

substrips S
(j)
ij

of S(j) such that S(j+1) = T (S
(j)
ij

). Consider the final strip S(m) and

let R
def
= S

(0)
i0

= T−m(S(m)). By construction, the set R is a rectangle satisfying
conditions (b) and (c) in the germ property with δ = ν, the interval Jm = R ∩ Iξ,
and D̂Z = T−m(DZ), where the strip S(m) is foliated by plaques DZ . �

6.4. Examples. As mentioned already, our definition of a fibered blender-horseshoe
does not aim for full generality. In what follows we present some examples and also
some variations of these fibered blender-horseshoes satisfying its essential proper-
ties.

For simplicity, in the following examples, we consider affine models and study
maps of the form T : Σ × R → Σ × R (that is, instead of (1.4) already associating
the symbolic code i = χ−1(ξ) of a point ξ ∈ Ξ) with step skew product structure

T (i, x) = (σ(i), Ti0(x)),

where Σ = {0, . . . , N − 1}Z, N ∈ N and σ is the shift map. We also refrain from
giving the details of the construction.

Example 6.15 (Example in Section 3.2 continued). Assuming t 6= 0 and λ ∈ (1, 2),
Φt satisfies all properties of a fibered blender-horseshoe. Clearly, it defines a step
skew product with hyperbolic and partially hyperbolic dynamics and immediately
provides the associated cone fields and plaque families. If λ ∈ (1, 2), then any
complete strip contains two substrips whose projections to the (ξu, x)-plane are the
rectangles St0 and St1 defined in (3.3). Note that the projection of these rectangles
to the (vertical) x-axis overlap in the interval [t/λ, t/(λ(λ − 1))]. In this case we
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a) b) c)

Figure 9. Fibered blender-horseshoes in a subset (Figure a)) and
in the full invariant set (Figures b) and c))

have that both fixed points P t0 = (0Z, 0) and P t1 = (1Z, t/(λ − 1)) have disjoint
local strong unstable manifolds and in particular satisfy property FBH3) item (iv)
whenever the cone field is chosen small enough.

Example 6.16. Figure 9 gives variations of Example 6.15 with three symbols
(Figure 9 b) and c)) and where a fibered blender-horseshoe can only be found in
some genuine subset (Figure 9 a)).

Let us point out that our conditions do not explicitly require that the fiber maps
preserve orientation. Although the fact that the hyperbolic set is confined between
the local stable manifolds of P0 and P1, respectively, (compare property FBH3)
item (iii)) implies that the fiber maps of the skew product, defining the fibered
blender-horseshoe and relating these reference saddles, do preserve the orientation,
as for example depicted in the Figure 8 a).

Example 6.17. We can adapt the definition of a fibered blender-horseshoe to
a model as in Figure 8 b). Let p0 be the fixed point of the fiber map T0 and
P0 = (0Z, p0). Given X ∈ Φ, we define the point X0 as before and let X1 = (i, x1) be
the point in T−1(W s

loc(P0, T )∩R(T (X))) with TN−1(x1) = p0, compare Figure 8 b),
where R(·) denote the corresponding rectangles for FBH3). The fact that the
hyperbolic invariant set in Σ × R is a fibered blender with the germ property in
such a model follows now exactly as in the proof of Theorem 6.14.

Example 6.18. We can also consider mixing subshifts ΣA ⊂ Σ as, for example,
the one associated to the transition matrix

A =

1 1 0
0 1 1
1 1 1


with N = 3 and the fiber maps T0, T1, and T2 depicted in Figure 8 c). Consider
intervals I0 = [x0, y0], I1 = [y1, x1], and I2 = [x2, y2], with x0 < x2 < y0 < y1 <
y2 < x1, and expanding maps T0, T1, and T2 defined on these intervals such that
Ti(xi) = xi, T0(I0) = I0 ∪ I2 = [x0, y2], T1(I1) = I0 ∪ I1 ∪ I2 = [x0, x1], and
T (I2) = I1 ∪ I2 = [x2, x1].

We only provide a picture proof indicating the definition of the complete strips
and substrips (compare FBH5)). The two fixed points are X0 = (0Z, x0) and
X1 = (1Z, x1). To prove that we have a fibered blender-horseshoe, consider u-boxes
Bu

2 (jk) = {i ∈ ΣA : i0 = j, i1 = k}. The set of plaques D is depicted in Figure 10

according to the coordinate i0. Note that each plaque D contains a D̂ such that
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2 (00) Bu
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2 (21) Bu
2 (10) Bu
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Figure 10. Strips and u-boxes in Example 6.18

T (D̂) is a plaque. As for the fibered blender-horseshoes, we can consider strips:
there are three possibilities of complete strips S0, S1, and S2 (also depending on
the coordinate i0) which are also depicted in that figure. We also define substrips
Sij such that T (Sij) ⊃ Sj when Sij is nonempty. Note that (since there are no

transitions from 0 to 1 and from 2 to 0) the sets S0
1 and S2

0 are both empty. The
complete strips are the sets

S0 = Bu
1 (0)× [x0, y0], S1 = Bu

1 (1)× [y1, x1], S2 = Bu
1 (2)× [x2, y2].

Remark 6.19 (Example in Section 3.1 continued). We observe that a hyperbolic
and partially hyperbolic graph Φ over an Anosov diffeomorphism of a surfaceM = Ξ
as in Section 3.1 can be considered as a “boundary case” of a fibered blender with
germ property. Indeed, consider the one plaque family D provided by the family of
all local strong unstable manifolds of points in Φ. They clearly provide a continuous
foliation of every local unstable manifold by plaques which are contained in local
unstable manifolds (property FB1)). As (4.6) analogously holds for all local strong
unstable manifolds W uu

loc we verify property FB3).

7. Some thermodynamics in shift spaces

We recall some basic facts about thermodynamic objects in shift spaces. Stan-
dard references are, for example, [11, 32], though we provide an almost self-contained
pedestrian approach.

7.1. Future and past shifts. Consider the shift space Σ = {0, . . . , N−1}Z and the
usual left shift σ : Σ→ Σ as above (Section 4.2). We denote by Σ+ = {0, . . . , N−1}N
the space of right-sided infinite sequences on N symbols and consider the shift
σ+ : Σ+ → Σ+ defined by σ+(i0i1 . . .) = (i1i2 . . .). Denote by π+ : Σ → Σ+ the
projection π+(i) = i+ = (i0i1 . . .). Note that the projection of any σ-invariant

set is σ+-invariant. Given n ≥ 1, we denote by Σ+
n

def
= {0, . . . , N − 1}n the set
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of one-sided finite sequences of length n. Given n,m ∈ Z, n ≤ m, and a finite
sequence (jn . . . jm), we denote by [jn . . . jm] = {i ∈ Σ: ik = jk for k = n, . . . ,m}
the corresponding cylinder set of length m−n+1. Analogously, we define one-sided
infinite cylinders [. . . j−2j−1.] = {i ∈ Σ: ik = jk for k ≤ −1} and [j0j1 . . .] = {i ∈
Σ: ik = jk for k ≥ 0}. If 0 ≤ n ≤ m, let [jn . . . jm]+ = π+([jn . . . jm]).

For symbolic systems and continuous potentials, the topological pressure can be
computed in a simplified way by choosing representatives from all the cylinders of
a given length. More precisely, if ψ : Σ+ → R is continuous, then

Pσ+(ψ) = lim
n→∞

1

n
log

∑
(i0...in−1)∈Σ+

n

exp
(
Snψ(i+)

)
, (7.1)

where for each finite sequence (i0 . . . in−1) the sequence i+ ∈ [i0 . . . in−1]+ is any
completion of the given prefix to an infinite sequence.

7.2. Joint Birkhoff averages. Given a continuous function ψ : Σ → R2, ψ(i) =
(ψ1(i), ψ2(i)), and a vector a = (a1, a2) ∈ R2, we consider the level set of joint
Birkhoff averages

L(ψ,a)
def
=
{
i ∈ Σ: lim

n→∞

1

n
Snψ1(i) = a1, lim

n→∞

1

n
Snψ2(i) = a2

}
.

Note that L(ψ,a) is σ-invariant. Let Lirr(ψ) be the set of all sequences at which at
least one of the averages does not converge (which is also σ-invariant). Let

D(ψ)
def
= {a ∈ R2 : L(ψ,a) 6= ∅}.

Note that D(ψ) is compact. Observe the so-called multifractal decomposition of Σ

Σ =
⋃

a∈D(ψ)

L(ψ,a) ∪ Lirr(ψ).

7.3. Multifractal analysis on the future shift. As later on we will focus on
Markov unstable rectangles, we now restrict our considerations to σ+ : Σ+ → Σ+.
For that, given a potential ψ : Σ → R, we now recall a classical way to define

associate thermodynamical quantities (ψ̂ the unstable part of the potential ψ and

its pressure Pσ+(ψ̂) associated to ψ and Pσ(ψ)).
First, given ψ : Σ→ R and n ≥ 0 define

varn ψ
def
= sup{|ψ(j)− ψ(i)| : i ∈ [j−n . . . jn]}

and let F denote the family of all continuous functions ψ : Σ→ R for which varn ψ ≤
bαn for all n ≥ 0 for some positive constants b and α ∈ (0, 1). It is easy to see that
if ψ is Hölder continuous, then it is in F .

Given a Hölder continuous function ψ : Σ → R, by [11, 1.6 Lemma] there is
φ ∈ F such that φ is homologous to ψ, that is, there is u ∈ F such that

φ = ψ − u+ u ◦ σ−1,

and that for every j ∈ Σ we have

φ(i) = φ(j) for every i ∈ [j0j1 . . .].
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Hence, the function ψ̂ : Σ+ → R, ψ̂(i+)
def
= φ(i) for any i ∈ [i0i1 . . .], is well-defined

and called the unstable part of ψ.9

Remark 7.1. By [32, Proposition A2.2] we have

Pσ(ψ) = Pσ+(ψ̂).

Note that the homology relation immediately implies for every i ∈ Σ

lim
n→∞

1

n
Snψ(i) = lim

n→∞

1

n
Snψ̂(i+)

(where we simultaneously use the symbol Sn for the Birkhoff sum with respect to
σ and σ+, respectively) whenever the limit on either side exists. More precisely, for
every n ≥ 1 we have

Sn(ψ̂ ◦ π+) = Snψ − u+ u ◦ σ−n,
which immediately implies the following lemma.

Lemma 7.2. For every ε > 0 there is n0 = n0(ε, ψ) ≥ 1 such that for every n ≥ n0

we have

|Sn(ψ̂ ◦ π+)− Snψ| < ε.

Given two Hölder continuous functions ψ1, ψ2 : Σ → R, ψ = (ψ1, ψ2) and their

unstable parts ψ̂1, ψ̂2 : Σ+ → R, ψ̂ = (ψ̂1, ψ̂2), for a = (a1, a2) ∈ D(ψ) consider

L+(ψ̂,a)
def
=
{
i+ ∈ Σ+ : lim

n→∞

1

n
Snψ̂1(i+) = a1, lim

n→∞

1

n
Snψ̂2(i+) = a2

}
and let

D+(ψ̂)
def
= {a ∈ R2 | L+(ψ̂,a) 6= ∅}.

By Remark 7.1, it is easy to see that the domains for nonempty level sets coincide,

that is, D+(ψ̂) = D(ψ). Moreover, L+(ψ̂,a) = π+(L(ψ,a)) for every a ∈ D(ψ).
Since we work mainly on the one-sided shift space Σ+ from now on, we skip

the notation ̂ and simply assume that ψ1, ψ2 : Σ+ → R. Given ψ = (ψ1, ψ2),
a ∈ D+(ψ), θ > 0, and n ≥ 1, let

M(ψ,a, θ, n)
def
= card

{
(j0 . . . jn−1) ∈ Σ+

n : ∃ i+ ∈ [j0 . . . jn−1]+

with
∣∣∣ 1
n
Snψ`(i

+)− a`
∣∣∣ < θ for ` = 1, 2

}
.

Further, we define

S(ψ,a, θ)
def
= lim inf

n→∞

1

n
logM(ψ,a, θ, n),

S(ψ,a, θ)
def
= lim sup

n→∞

1

n
logM(ψ,a, θ, n).

Proposition 7.3. For every a ∈ D+(ψ) we have

lim
θ→0

S(ψ,a, θ) = lim
θ→0

S(ψ,a, θ)
def
= H(ψ,a).

9Note that there is an equivalent way to define ψ̂ by

log ψ̂(i+)
def
= lim

n→∞
log

µ([i0 . . . in])

µ([i1 . . . in])
,

where µ is the Gibbs equilibrium state of ψ (with respect to σ) (see [11] and [32, Appendix II]).
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Remark 7.4 (Pedestrian approach). The letter H indicates that the number
H(ψ,a) is closely related to the topological entropy of σ+ on the level set L+(ψ,a)
(see [10] for the definition of topological entropy on noncompact sets). Proposi-
tion 7.3 as well as the further results in the remainder of this section are contained
in a similar form in [3], where they are proved by invoking thermodynamic for-
malism. However, this leads to some technical restrictions that we want to avoid
here, so we take a more direct and elementary and also more general approach and
provide a self-contained proof.10 In particular, we do not require a ∈ int(D+(ψ)).

We immediately note the following direct consequence of Proposition 7.3.

Corollary 7.5. For any a ∈ D+(ψ) and ε > 0 there exists θ0 = θ0(a, ε) > 0 and
for every θ ∈ (0, θ0) there exists n0 = n0(a, ε, θ) ≥ 1 such that for n ≥ n0 we have

n(H(ψ,a)− ε) ≤ logM(ψ,a, θ, n) ≤ n(H(ψ,a) + ε).

To prove Proposition 7.3, we need the following elementary distortion result,
which we state without proof.

Lemma 7.6 (Bounded distortion). There exists a constant C > 0 such that for all
(j0 . . . jn−1) ∈ Σ+

n and i+, k+ ∈ [j0 . . . jn−1]+ we have

|Snψ`(i+)− Snψ`(k+)| ≤ C, ` = 1, 2.

The above lemma implies the following one which we also state without proof.

Lemma 7.7. Given θ > 0 there exists n1 = n1(θ) ≥ 1 such that for every n ≥ n1

for every i+ ∈ Σ+ there exists a = (a1, a2) ∈ D+(ψ) satisfying∣∣∣ 1
n
Snψ`(i

+)− a`
∣∣∣ < θ, ` = 1, 2.

Proof of Proposition 7.3. Given i = (i0 . . . in−1) ∈ Σ+
n and j+ ∈ Σ+, we denote

the one-sided infinite sequence (i0 . . . in−1j0j1 . . .) by i j+ and adopt the analogous

notation for pairs of finite sequences. For any i+ ∈ [i]+, by Lemma 7.6 we have∣∣Sn+mψ(i j+)− Snψ(i+)− Smψ(j+)
∣∣ =

∣∣Snψ(i j+)− Snψ(i+)
∣∣ ≤ C.

Given m, r ≥ 1, applying the same argument repeatedly for finite sequences i1, . . .,
im ∈ Σ+

r and corresponding one-sided infinite sequences ik ∈ [ik]+, k = 1, . . . ,m,
we obtain ∣∣∣∣∣Smrψ(i1i2 . . . im−1im)−

m∑
k=1

Srψ(ik)

∣∣∣∣∣ ≤ mC.
This implies that

M(ψ,a, θ,mr) ≥M(ψ,a, θ − C/r, r)m. (7.2)

Moreover, for any L ≥ 1 and n ∈ {0, . . . , L− 1} as

1

L
SLψ =

1

L

(
SL−nψ + Snψ ◦ (σ+)n

)
10In fact, Proposition 7.3 remains true even if ψ is not Hölder continuous, but just continuous.

This can be shown by approximating ψ with a Hölder continuous function ψ̃ and then using the

statement for ψ̃ together with the fact that if ‖ψ− ψ̃‖ < δ, then for any a ∈ R2, θ > 0 and n ∈ N

M(ψ̃,a, θ, n) ≥M(ψ,a, θ − δ, n) and M(ψ,a, θ, n) ≥M(ψ̃,a, θ − δ, n).
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it is immediate that

M(ψ,a, θ, L) ≥M(ψ,a, θ − n‖ψ‖/L,L− n), (7.3)

where ‖ψ‖ def
= sup |ψ|.

Now, fix a ∈ D+(ψ), θ > 0, and δ > 0 and take r ∈ N such that C/r < θ/4 and

1

r
logM(ψ,a, θ/2, r) ≥ S(ψ,a, θ/2)− δ.

Consider L ≥ 1 large enough such that r‖ψ‖/L ≤ θ/4 and take m = m(L) ≥ 1 and
n = n(L) ∈ {0, . . . , r − 1} satisfying L = mr + n. Then with (7.3) we have

M(ψ,a, θ, L) ≥M
(
ψ,a, θ − n‖ψ‖

L
,mr

)
≥M

(
ψ,a, θ − θ

4
,mr

)
.

Thus, with (7.2) we obtain

M
(
ψ,a,

3θ

4
,mr

)
≥M

(
ψ,a,

3θ

4
− C

r
, r
)m ≥M(ψ,a, θ

2
, r
)m
.

Hence, taking the limit L→∞ and hence m(L)→∞, we obtain

S(ψ,a, θ) = lim inf
L→∞

1

L
logM(ψ,a, θ, L)

≥ lim inf
L→∞

bL/rc
L

logM(ψ,a, θ/2, r)

=
1

r
logM(ψ,a, θ/2, r) ≥ S(ψ,a, θ/2)− δ.

As δ > 0 was arbitrary, this shows S(ψ,a, θ) ≥ S(ψ,a, θ/2). The latter, in turn,

immediately implies limθ→0 S(ψ,a, θ) = limθ→0 S(ψ,a, θ) and thus completes the
proof. �

Proposition 7.8. Given a Hölder continuous function ψ : Σ+ → (−∞, 0)2, the
number

t
def
= sup

a=(a1,a2)∈D+(ψ)

H(ψ,a) + a2

−a1

satisfies Pσ+(tψ1 + ψ2) = 0 and is uniquely determined by this equation.

Proof. First, observe that compactness of D+(ψ) implies that t is finite.
Fix ε > 0. First, suppose t′ < t. Choose some a ∈ D+(ψ) such that

H(ψ,a) + a2

−a1
> t′

and note that since a1 < 0 this implies

H(ψ,a) > −t′a1 − a2. (7.4)

Choose θ0 = θ0(a, ε) > 0 according to Corollary 7.5. Taking θ ∈ (0, θ0), choose also
n0 = n0(a, ε, θ) ≥ 1 according to this corollary such that for every n ≥ n0 we have

n(H(ψ,a)− ε) ≤ logM(ψ,a, θ, n) ≤ n(H(ψ,a) + ε).
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Assume first that t′ ≥ 0. With (7.1), but only taking the sum over sequences which
contribute to M(ψ,a, θ, n), we have

Pσ+(t′ψ1 + ψ2) ≥ lim
n→∞

1

n
log
(
M(ψ,a, θ, n) exp

(
n(t′(a1 − θ) + a2 − θ)

))
≥ H(ψ,a)− ε+ t′(a1 − θ) + a2 − θ

by (7.4) > −t′a1 − a2 − ε+ t′(a1 − θ) + a2 − θ
= −ε− θ(t′ + 1).

As θ > 0 and ε > 0 were arbitrarily small, this shows Pσ+(t′ψ1+ψ2) ≥ 0. Assuming
now t′ < 0, analogously we come to the same conclusion.

Second, suppose now that t′ > t. Let A = 1
3 min{|a1| : a = (a1, a2) ∈ D+(ψ)}

and fix some δ sufficiently small. Cover the set D+(ψ) by 2θj-squares (Qj)
`
j=1

Qj = (aj1 − θj , a
j
1 + θj)× (aj2 − θj , a

j
2 + θj)

for appropriately chosen aj = (aj1, a
j
2) ∈ D+(ψ) and θj ∈ (0, δ). Thereby, we

assume that the θj > 0 are such that θj < θ0(aj , ε) where the latter number is as in
Corollary 7.5. Recalling that D+(ψ) is compact, such a finite cover by open squares
exists. For every j let then nj ≥ n0(aj , ε, θj), where the latter is as in Corollary 7.5
and let n0 ≥ maxj=1,...,` nj . Hence, for every j = 1, . . . , ` and n ≥ n0 we have

n(H(ψ,aj)− ε) ≤ logM(ψ,aj , θj , n) ≤ n(H(ψ,aj) + ε).

Note that by the definition of t, for all j = 1, . . . , ` we have

H(ψ,aj) ≤ −taj1 − a
j
2. (7.5)

Moreover, by Lemma 7.7 we can assume that

( 1

n
Snψ1(i+),

1

n
Snψ2(i+)

)
∈
⋃̀
j=1

Qj

for all i+ ∈ Σ+ if n ≥ n0. Then, assuming first that t′ ≥ 0, we have

Pσ+(t′ψ1 + ψ2) ≤ lim
n→∞

1

n
log
∑̀
j=1

M(ψ,aj , θj , n) exp(n(t′(aj1 + θj) + aj2 + θj))

≤ lim
n→∞

1

n
log
∑̀
j=1

exp
(
n
(
H(ψ,aj) + ε+ taj1 + aj2 + t′θj + θj

))
by (7.5) ≤ lim

n→∞

1

n
log (` exp(n(ε+ (1 + t′)δ))) .

As δ and ε were arbitrarily small, this implies Pσ+(t′ψ1 +ψ2) ≤ 0. Again, the case
t′ < 0 can be treated in the same way and leads to the same result.

Altogether, we thus obtain that Pσ+(t′ψ1 + ψ2) is nonnegative if t′ < t and
nonpositive if t′ > t. By the continuity of the pressure function, this implies
Pσ+(tψ1 + ψ2) = 0 as required. Further, since ψ1, ψ2 are negative functions the
number t is unique with that property. This proves the proposition. �
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8. Dimension of stable and unstable slices

The aim of this section is to prove the following two partial results towards the
proof of Theorems A, B, and C.

Proposition 8.1. Let T be a three-dimensional skew product diffeomorphism sat-
isfying the Standing hypotheses. Then for every X ∈ Φ we have

dimH(Φ ∩W s
loc(X,T )) = dimB(Φ ∩W s

loc(X,T )) = ds,

where ds is as in (1.2).

Proof. Let X = (ξ,Φ(ξ)), ξ ∈ Ξ, be an arbitrary point in the graph. By Theo-
rem 1.1, we have

dimH(Ξ ∩W s
loc(ξ, τ)) = dimB(Ξ ∩W s

loc(ξ, τ)) = ds.

By Proposition 5.2, Φ is Lipschitz on local stable manifolds. Notice also that the
projection (ξ,Φ(ξ)) 7→ ξ is Lipschitz. Hence, as the dimensions are invariant under
bi-Lipschitz maps (see Section 2.2), the claim follows. �

Proposition 8.2. Let T be a three-dimensional skew product diffeomorphism satis-
fying the Standing hypotheses. Assume that Φ: Ξ→ R is not Lipschitz continuous,
where Ξ ⊂M is a basic set (with respect to τ). Then for every X ∈ Φ we have

dimB(Φ ∩W u
loc(X,T )) ≤ d,

where d is the unique real number satisfying

Pτ |Ξ(ϕcu + (d− 1)ϕu) = 0.

If, in addition, T satisfies the hypotheses of either Theorems A, B, or C then for
every X ∈ Φ we have

dimB(Φ ∩W u
loc(X,T )) = d.

To prove this proposition, we study the Birkhoff averages of the potentials ϕu and
ϕcu which control the size of Markov unstable rectangles. Covering the restriction
of the invariant graph to a local unstable manifold, with a suitable collection of
such rectangles, will allow to compute the box dimension. Thereby, it turns out
that we can prove the proposition (under any of the three additional hypotheses of
Theorems A, B, or C), since the differences are marginal and can easily be discussed
alongside. We split the proof in a natural way into the upper and the lower estimate
on the box dimension.

Caveat: Throughout the remaining section, we assume that Φ is not Lipschitz.

8.1. Symbolic coding of local unstable manifolds. We first recall the basic
facts concerning the symbolic coding. Recall that a Markov partition of Ξ provides
us with a Hölder semi-conjugacy (conjugacy if Ξ is a Cantor set) χ : Σ→ Ξ (recall
all ingredients in Section 4.2). Fix X = (ξ,Φ(ξ)). Choose i = (. . . i−1.i0 . . .) ∈ Σ
such that χ(i) = ξ. Note that the symbolic coding of every η ∈ R(ξ) ∩ W u

loc(ξ, τ)
starts with the same symbol i0 and that the local unstable manifold of ξ contains
the χ-image of the cylinder [. . . i−1.i0],

Ru(ξ) = R(ξ) ∩W u
loc(ξ, τ) = χ

(
[. . . i−1.i0]

)
.

Correspondingly, for every η = χ(. . . i−1.i0j1 . . .), Y = (η,Φ(η)), n ≥ 0 we have

Ru
n(η) = χ

(
[. . . i−2i−1.i0j1 . . . jn−1]

)
.
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So there is a natural coding between Σ+ and the Markov unstable rectangle Ru(ξ).
The same carries over to the unstable rectangle Ru(X) = R(X) ∩W u

loc(X,T ).
Given the Hölder continuous functions ϕu and ϕcu defined in (1.1) and (1.8),

we consider the lifted functions ϕu ◦ χ, ϕcu ◦ χ : Σ → R. Note that both functions
are strictly negative. Also note that they are Hölder continuous (though possibly
with different Hölder exponents than ϕu, ϕcu). Denote by ψ1, ψ2 : Σ+ → R their
unstable parts

ψ1
def
= ϕ̂u ◦ χ, ψ2

def
= ϕ̂cu ◦ χ

and recall that they are also Hölder continuous. In the following we will use the
methods developed in Section 7.3. In particular, by Remark 7.1 for every t ∈ R

Pσ+(ψ2 + tψ1) = Pσ(ϕcu ◦ χ+ tϕu ◦ χ) = Pτ |Ξ(ϕcu + tϕu) (8.1)

(for the latter equality see also [11, Chapter 4]). Moreover, by Proposition 7.8 the
number

t = sup
a=(a1,a2)∈D+(ψ)

H(ψ,a) + a2

−a1
(8.2)

satisfies Pσ+(tψ1 + ψ2) = 0 and is uniquely determined by this equation.
The coding naturally induces the level sets of one-sided Birkhoff averages studied

in Section 7.3. Given a = (a1, a2) let

L(ϕu, ϕcu,a)
def
=
{
ξ ∈ Ξ: lim

n→∞

1

n
Snϕ

u(ξ) = a1, lim
n→∞

1

n
Snϕ

cu(ξ) = a2

}
and note that with ψ = (ψ1, ψ2) we have L+(ψ,a) = (π+ ◦ χ−1)(L(ϕu, ϕcu,a)).

Finally, as we assume that Φ is not Lipschitz, Propositions 5.16 and 5.17 provide
the following estimates of the sizes of Markov unstable rectangles

1

c
≤ |Ru

n(Y )|w
exp(Snϕu(ζ))

≤ c, 1

c
≤ |Ru

n(Y )|h
exp(Snϕcu(ζ ′))

≤ c, (8.3)

where c > 1 is a fixed constant, Y = (η,Φ(η)), and ζ, ζ ′ ∈ Ru
n(η) are arbitrary

points. Finally also note that, due to Lemma 7.2, the Birkhoff sums can be equally
controlled in terms of the sums of the unstable parts of the symbolic potentials.
Hence, the lemma below follows directly from (8.3).

Lemma 8.3. There exists a constant C > 1 such that for any X = (ξ,Φ(ξ)),
n ≥ 1, and Y = (η,Φ(η)) ∈ Ru

n(X), we have

1

C
≤ |Ru

n(Y )|w
exp(Snψ1(i+))

≤ C, 1

C
≤ |Ru

n(Y )|h
exp(Snψ2(i+))

≤ C,

where i+ = π+(i) and i ∈ χ−1(η) is an arbitrary preimage of η.

8.2. Estimating box dimension from above. The aim of this section is to
prove that d as in Proposition 8.2 provides an upper bound for the box dimension
of Φ∩W u

loc(X,T ) for X ∈ Φ. In order to do so, we will first cover the local unstable
manifold W u

loc(ξ, τ) of the point ξ ∈ Ξ with X = (ξ,Φ(ξ)) by a collection of Markov
rectangles (or rather Markov intervals) of approximately the same size r > 0. This
is often referred to as a Moran cover. The difficulty is then to estimate the vertical
size of the corresponding Markov rectangle in W u

loc(X,T ) = W u
loc(ξ, τ)× I.

The main problem is that the level of the Markov rectangles in the Moran cover
is not constant. Indeed, since we require that the rectangles have approximately
the same size, the level of each Markov rectangle depends on the local expansion
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and hence on the behavior of the Birkhoff average. Nevertheless, we can divide our
Moran cover into collections of rectangles on which the Birkhoff averages of both
ϕu and ϕcu take approximately the same values. Then we consider the symbolic
cylinders corresponding to these rectangles and use Corollary 7.5 to estimate their
maximal number. Since the Birkhoff average of ϕcu provides us with an estimate for
the height of the rectangles via (8.3), we can thus obtain a bound on the number of
squares of side length r that we need to cover the graph in each rectangle. Summing
up over all elements of the Moran cover will then yield the desired upper bound on
dimB(Φ ∩W u

loc(X,T )).

8.2.1. Construction of the Moran covers. For a given parameter r > 0, which will
be the approximate size of Markov rectangles in W u

loc(ξ, τ), we define an appropriate
partition C (r) of Σ+ that we call symbolic Moran cover of parameter r (relative to
the potential ψ1). For every i+ ∈ Σ+ let n(i+) ≥ 1 be the smallest positive integer
n such that

Snψ1(i+) < log r.

Note that, as ψ1 is continuous and negative, there exist positive integers n1 =
n1(r) and n2 = n2(r) such that n1 ≤ n(i+) ≤ n2 for all i+ ∈ Σ+. Given n ∈
{n1, . . . , n2}, let C̃n(r) denote the family of (disjoint) cylinders [i1 . . . in]+ which

contain an infinite sequence i+ ∈ Σ+ with n(i+) = n. Let `n = card C̃n(r).
We now define the partition C (r) recursively. We start with index n = n1. Let

Sn1
= Σ+ and Cn1

(r) = C̃n1
(r). Assuming that all these objects are already defined

for k = n1, . . . , n and that Sn 6= ∅, let

Sn+1
def
= Sn \

⋃
{C : C ∈ C̃n(r)},

Cn+1(r)
def
=

{
C : C ∈ C̃n+1(r), C ⊂ Sn+1

}
.

Since n(·) ≤ n2, we eventually arrive at Sn∗ = ∅ for some n∗ ≤ n2. Then we stop
the recursion and define the family

C (r)
def
= {C : C ∈ Cn(r), n = n1, . . . , n

∗} (8.4)

which partitions Σ+ into pairwise disjoint cylinders. Note that each Cn(r) contains
exactly those cylinders C ∈ C (r) that have length n.

8.2.2. Cardinality of the Moran covers. We fix ε > 0. LetA
def
= minξ{|ψ1(ξ)|, |ψ2(ξ)|}

and ‖ψ‖ def
= max{‖ψ1‖, ‖ψ2‖}.

For every a ∈ D+(ψ) let θ0(a) = θ0(a, ε) > 0 as in Corollary 7.5. Thus, since
D+(ψ) is compact there is a finite cover with cardinality m, for some m = m(ε) ≥ 1,

D+(ψ) ⊂
m⋃
j=1

Qj , where

Qj
def
=
(
aj1 −

θj
2
, aj1 +

θj
2

)
×
(
aj2 −

θj
2
, aj2 +

θj
2

) (8.5)

with aj = (aj1, a
j
2) ∈ D+(ψ) and θj = θ0(aj). Define θ̂ = θ̂(ε) > 0 and θ̃ = θ̃(ε) > 0

by

θ̂
def
= min

j=1,...,m
θj , θ̃

def
= max

j=1,...,m
θj

and observe that θ̂(ε)→ 0 and θ̃(ε)→ 0 as ε→ 0.
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Let θ ∈ (0, θ̂) be small enough such that

4θ

A
‖ψ‖ < θ̂

3

and for every index j choose nj = n0(aj , ε, θ) ≥ 1 as in Corollary 7.5 and let
n0 = maxj nj .

Recall that log r and all a` + θ, ` = 1, 2, are all negative numbers. Let

K(r)
def
=

∣∣∣∣ log r

log r − ‖ψ‖

∣∣∣∣
and observe that limr→0K(r) = 1. Now choose r = r(ε, θ) > 0 small enough to
ensure that

|log r|
‖ψ‖+ θ

> n0 (8.6)

and that

2‖ψ‖
(

1−
(
1− 2θ

A
)K(r)

)
≤ θ̂

2
. (8.7)

For this choice of r we now consider the Moran cover C (r) of order r as in
Section 8.2.1. Recall that a Moran cover consists of pairwise disjoint cylinders of
variable length, see (8.4). For every index j in the cover (8.5) let

C (r, θj , j)
def
=
{

[i1 . . . in]+ ∈ C (r) :

∃ i+ ∈ [i1 . . . in]+ with n(i+) = n,
( 1

n
Snψ1(i+),

1

n
Snψ2(i+)

)
∈ Qj

}
,

that is, we select only a certain number of cylinders from the Moran cover. Note
that for different pairs this selection is not necessarily disjoint, but this will not
matter for our purposes. We only need an upper bound on their cardinality stated
in Claim 8.4 below.

For that end, for every j let

nj
def
=

⌈
log r − ‖ψ1‖
aj1 + θj

⌉
.

Given [i1 . . . in]+ ∈ C (r, θj , j) and i+ ∈ [i1 . . . in]+ with ( 1
nSnψ1(i+), 1

nSnψ2(i+)) ∈
Qj , by definition we have

n(aj1 − θj) ≤ Snψ1(i+) < n(aj1 + θj), n(aj2 − θj) ≤ Snψ2(i+) < n(aj2 + θj). (8.8)

Since n(i+) = n,

Snψ1(i+) < log r, Sn−1ψ1(i+) ≥ log r.

Further (recalling that ψ1 < 0) note that

log r ≤ Sn−1ψ1(i+) ≤ Snψ1(i+) + ‖ψ1‖ < n(aj1 + θj) + ‖ψ1‖.

Hence, with (8.6) and (8.8) (recall that aj1 + θ < 0) we obtain

n0 <
|log r|
‖ψ1‖+ θ

≤

∣∣∣∣∣ log r

aj1 − θj

∣∣∣∣∣ ≤ n ≤
∣∣∣∣∣ log r − ‖ψ1‖

aj1 + θj

∣∣∣∣∣ ≤ nj . (8.9)

We now state the following estimate.
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Claim 8.4. With the above choice of quantifiers, for every index pair jk we have

card C (r, θj , j) ≤ exp(nj(H(ψ,aj) + ε)),

where H(ψ,aj) is defined as in Proposition 7.3.

Proof. Observe that by our choice of quantifiers, by Corollary 7.5 for every index
j there are at most exp(nj(H(ψ,aj) + ε)) cylinders of length nj which contain a

sequence with finite Birkhoff averages of ψ` of level nj being roughly aj` ± θj , for
` = 1, 2, respectively. Hence, if all cylinders in C (r, θj , j) would have length nj , the
claim would follow immediately (since nj ≥ n0 by (8.9)). As this is in general not
the case, we need to relate the cylinders in C (r, θj , j) to those of length nj .

To that end, let C ∈ C (r, θj , j) be of length n and choose some i+ ∈ C with
n(i+) = n and ( 1

nSnψ1(i+), 1
nSnψ2(i+)) ∈ Qj as above. We have (recall again

nj ≥ n)∣∣∣ 1

nj
Snjψ1(i+)− 1

n
Snψ1(i+)

∣∣∣
≤ 1

nj

∣∣Snjψ1(i+)− Snψ1(i+)
∣∣+

∣∣∣∣( 1

nj
− 1

n

)
Snψ1(i+)

∣∣∣∣
≤ nj − n

nj
‖ψ1‖+

∣∣∣∣ 1

nj
− 1

n

∣∣∣∣n‖ψ1‖ ≤ 2‖ψ1‖
(

1− n

nj

)
.

The analogous estimates can be obtained for ψ2. Using (8.9), this yields

1− n

nj
≤ 1− |a

j
1 + θj |
|aj1 − θj |

·
∣∣∣∣ log r

log r − ‖ψ1‖

∣∣∣∣
= 1−

(
1− 2θj

|aj1 − θj |

)
·
∣∣∣∣ log r

log r − ‖ψ1‖

∣∣∣∣ ≤ 1−
(

1− 2θ

A

)
·K(r).

By (8.8) and (8.7) we obtain∣∣∣ 1

nj
Snjψ1(i+)− aj1

∣∣∣ ≤ θj
2

+
θ̂

2
≤ θj .

The analogous estimates are true for ψ2. Hence, every cylinder in C (r, θj , j) con-

tains a sequence with finite Birkhoff averages of ψ` of level nj being roughly aj`±θj ,
` = 1, 2. But by the above there are at most exp(nj(H(ψ,aj) + ε)) such nj-level
cylinders and hence at most that number of cylinders in C (r, θj , j) as claimed. �

8.2.3. Final estimates. Recall that in Section 8.2.2 we fixed ε > 0 and then in (8.5)
chose a finite cover {Qj}mj=1 of D+(ψ) by sufficiently small open squares of sizes

θj bounded between θ̂(ε) = minj and θ̃(ε) = maxj θj with θ̂(ε) → 0, θ̃(ε) → 0 as
ε → 0. Then for sufficiently small r > 0 depending on those choices we verified
Claim 8.4.

Consider now the Moran cover C (r) of Σ+ for such r. Observe that, by con-
struction

Σ+ =
⋃

j=1,...,m

⋃
{C : C ∈ C (r, θj , j)}.

For any index j, a cylinder [i1 . . . in]+ ∈ C (r, θj , j) projects to a Markov unsta-
ble rectangle Ru

n(η), where η ∈ χ([i1 . . . in]+). Hence, the collection of the cor-
responding Markov rectangles Ru

n(Y ), Y = (η,Φ(η)), forms a cover of Ru(X) ⊂
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Φ∩W u
loc(X,T ). For the width and height of these rectangles, Lemma 8.3 yields the

following estimates

|Ru
n(Y )|w ≤ CeSnψ1(i+) ≤ Cr and |Ru

n(Y )|h ≤ CeSnψ2(i+) ≤ Cen(aj2+θj).

Hence, we can cover Ru
n(Y ) by at most exp(n(aj2 + θj))/r balls of radius Cr. Using

Claim 8.4, this implies that we can cover the union of all Markov rectangles in the
Moran cover, and hence all of Ru(X), by at most N(Cr) balls of radius Cr, where

N(Cr)
def
=

m∑
j=1

exp(nj(H(aj) + ε)) · exp(n(aj2 + θj))

r

≤ m · 1

r
· max
j=1,...,m

exp
(
nj(H(aj) + ε) + n(aj2 + θj)

)
.

Thus,

dimB(Ru(X)) ≤ lim sup
r→0

logN(Cr)

− log r

≤ 1 + lim sup
r→0

max
j=1,...,m

(
nj
− log r

(H(ψ,aj) + ε) +
n

− log r
(aj2 + θ̃)

)
.

By the definition of nj and the relation for n in (8.9) we hence obtain

dimB(Ru(X)) ≤ 1 + max
j=1,...,m

(
−1

aj1 + θ̂
(H(ψ,aj) + ε) +

−1

aj1 − θ̃
(aj2 + θ̃)

)
.

Taking the limits θ̂, θ̃ → 0 and ε→ 0, we finally get

dimB(Ru(X)) ≤ 1 + max
a=(a1,a2)∈D+(ψ)

H(ψ,a) + a2

−a1
.

By (8.2) together with (8.1) the right hand side is the unique number d with
Pσ+(ψ2+(d−1)ψ1) = 0 = Pτ |Ξ(ϕcu+(d−1)ϕu). This finishes the proof of the upper
bound for the upper box dimension of Ru(X) ⊂ Φ ∩W u

loc(X,T ). As this estimate
holds for every X ∈ Φ, the upper bound for the box dimension of Φ ∩ W u

loc(X,T )
in Proposition 8.2 follows.

8.3. Estimating box dimension from below. The lower estimate for the box
dimension is now easier, since we can restrict to just one vector a ∈ D+(ψ).

Lemma 8.5. For every a = (a1, a2) ∈ D+(ψ) and every X ∈ Φ we have

dimB (Φ ∩W u
loc(X,T )) ≥ H(ψ,a) + a2

−a1
+ 1.

Proof. We fix ε > 0 and choose θ = θ0(a, ε) and n0 = n0(a, ε, θ) as in Corollary 7.5.
Then, given n ≥ n0, there exist at least exp(n(H(ψ,a) − ε)) (mutually disjoint)
cylinders of length n containing some i+ ∈ Σ+ with | 1nSnψ`(i

+)− a`| ≤ θ, ` = 1, 2.
Each such cylinder corresponds to an unstable Markov rectangle Ru

n(η), where η is
in the preimage under χ of some sequence i with π+(i) = i+. We label these points
η by ξ1, . . . , ξm, where m ≥ exp(n(H(ψ,a)− ε)), and obtain m Markov rectangles
Ru
n(ξ1), . . . , Ru

n(ξm) with mutually disjoint interiors. Let Xk = (ξk,Φ(ξk)).

Claim 8.6. There exist constants C, C̃ > 1 (independent of ε,a, θ, n) such that for

every k = 1, . . . ,m, at least C̃en(a2−a1) squares of diameter C−1en(a1−θ) each are
needed to cover Φ ∩Ru

n(Xk).
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We now distinguish two different cases corresponding to either i) the hypotheses
of Theorems A or B or ii) the hypotheses of Theorem C.

Proof of Claim 8.6 in case i). If either Ξ = M or if Ξ is a one-dimensional attrac-
tor, then observe that for every ξ ∈ Ξ, the Markov unstable rectangle Ru(ξ) is a
closed curve contained in the local unstable manifold of ξ and with X = (ξ,Φ(ξ))
the Markov unstable rectangle Ru(X) is the graph of a continuous closed curve. By
Lemma 8.3, for every Xk ∈ Ru(X), the widths and heights of the Markov unstable
rectangles of level n can be estimated by

|Ru
n(Xk)|w ≥ C−1en(a1−θ) and |Ru

n(Xk)|h ≥ C−1en(a2−θ),

respectively. As the graph stretches fully over the entire rectangle (there are no
gaps since there are no gaps in its projection to the base W u

loc(ξ, τ)), subdividing we

yield that for each Ru
n(Xk) there are at least C−1en(a2−θ)/(C−1en(a1−θ)) squares

with pairwise disjoint interior of size C−1en(a1−θ) which each contain a point in the
rectangle. �

Note that the crucial argument in the above proof is its very last sentence. In
the case of a general Cantor set Ξ this argument does not anymore apply (and in
fact would overestimate the number of elements used to cover the fractal graph Φ).

Proof of Claim 8.6 in case ii). For Φ being a fibered blender with the germ prop-
erty, by item (c) of the Germ property there exists δ > 0 such that for every
Xk = (ξk,Φ(ξk)) and for every n ≥ 1 the nth level u-box of ξk,

Bu
n(ξk) = Ru(ξk, n)× I,

where Ru(ξk, n) denoted the minimal curve containing Ru
n(ξk), contains a set R of

the form

R =
⋃
Z∈Jn

D̂Z

which is continuously foliated by a family {D̂Z : Z ∈ Jn} of germ plaques such that
|Tn(R)|h ≥ δ. Moreover, by Corollary 6.7, each such germ plaque contains a point
of Φ. Applying the same arguments as in the proof of Proposition 5.17, we get the
following estimate for the width and height of R:

|R|w ≥ C−1en(a1−θ) and |R|h ≥ en(a2−θ) ·D−2 · δ,

where D is the distortion constant as in this proof. Hence, to cover Φ ∩ Ru
n(Xk),

we need at least D−2δen(a2−θ)/(C−1en(a1−θ) squares, each of size C−1en(a1−θ). �

With Claim 8.6, we need at least N(a, ε, θ, n) squares to cover Ru(X) by squares
of size C−1en(a1−θ), where

N(a, ε, θ, n)
def
= en(H(ψ,a)−ε)C̃en(a2−a1).

Thus,

dimB(Ru(X)) ≥ lim inf
n→0

logN(a, ε, θ, n)

− log(C−1en(a1−θ))
≥ H(ψ,a)− ε+ a2 − a1

−a1 + θ
.

Letting θ → 0 and then ε→ 0 proves the lemma. �
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Z

X

Y

W s
loc(X,T ) W u

loc(X,T )

W u
loc(Z, T )

Figure 11. Local stable holonomy hs
X,Z

As a ∈ D+(ψ) was arbitrary in Lemma 8.5, with the same observations as at
the end of Section 8.2.3, we have shown that d as in Proposition 8.2 provides a
lower bound for the box dimension of Φ ∩ W u

loc(X,T ). This finishes the proof of
Proposition 8.2.

9. Regular (local) product structure and proof of the main
theorems

The formula for the box dimension of the full set Φ is based on two crucial facts.
First, the dimension of direct products of sets we recalled in Section 2.2. Second,
we rely on the fact that the local product structure (locally) enables to describe
Φ as a direct product up to a “sufficiently regular change of coordinates”. To be
more precise, given X ∈ Φ let Y, Z ∈ Φ be points sufficiently close to X. Recall
that by (4.4) the local stable manifold of Y intersects the local unstable manifold
of Z in a point in Φ,

[Y,Z]
def
= W s

loc(Y, T ) ∩W u
loc(Z, T ) ∈ Φ

(compare Figure 11). Fixing a point X ∈ Φ, Φ ∩ W u
loc(X,T ) lies in a small

two-dimensional disk which is transverse to the stable lamination. Hence, tak-
ing Z ∈ W s

loc(X,T ) and varying Y ∈ Φ ∩ W u
loc(X,T ), we obtain that locally

Φ ∩ W u
loc(Z, T ) is obtained as the image of Φ ∩ W u

loc(X,T ) under the local stable
holonomy hs

X,Z : Φ ∩ W u
loc(X,T ) → Φ ∩ W u

loc(Z, T ) obtained by sliding Y along

its local stable manifold to hs
X,Z(Y ). Analogously, one defines the local unstable

holonomy hu
X,Y : Φ ∩ W s

loc(X,T ) → Φ ∩ W s
loc(Y, T ) obtained by sliding along local

unstable manifolds.

Remark 9.1 (Hölder holonomies). Since the stable subbundle is one-dimensional,
the local unstable holonomies hu

X,Y and their inverses are both Hölder continuous

with Hölder exponent θ arbitrarily close to 1 (see [31, Theorem C]).
Note that the Pinching hypothesis

κsµw ≤ λw

is merely (1.6) with the factor κs > 1 included. In particular it implies that for
any θ ∈ (0, 1) we have κθsµw < λw. Hence, assuming also that T is C2, then by [37,
Theorems A and A′] (see also the more detailed results in [38, Section 4]) we have
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that the local stable holonomies hs
X,Z together with their inverses are both Hölder

with any Hölder exponent θ ∈ (0, 1).
The hypothesis that T is C2 has been relaxed to C1+ε assuming κθsµw < µθwλw

(see [47] for details). Note also precursors of results of this type in [16] if θ > 1 and
in [39].

Proof of Theorems A, B, and C. Given X ∈ Φ, consider the product space

AX
def
= (Φ ∩W s

loc(X,T ))× (Φ ∩W u
loc(X,T )).

By Proposition 8.1 we have dimB(Φ∩W s
loc(X,T )) = ds. By Proposition 8.2 we have

dimB(Φ ∩W u
loc(X,T )) = d. Then, by (2.1) we have dimB(AX) = ds + d.

It remains to show that the direct product AX has the same dimension as Φ.
For that we follow the arguments in [31]. We consider hX : AX → Φ given by

hX(Y, Z)
def
= [Y, Z] which is a homeomorphism of AX onto a neighborhood of X

in Φ. We will show that hX and h−1
X both are Hölder continuous with Hölder

exponent θ arbitrarily close to 1. Hence, for VX = hX(AX) we will conclude
dimB(VX) ∈ [θ, θ−1] dimB(AX) for every θ ∈ (0, 1) and thus dimB(VX) = ds + d.
Given W1,W2 ∈ AX , let Wi = hX(Yi, Zi) = [Yi, Zi], i = 1, 2. Consider the auxiliary
point W = [Y2, Z1] and observe that W ∈ W u

loc(W1, T ) and W ∈ W s
loc(W2, T ). By

Hölder continuity of the holonomies, there is some positive constant Cθ such that

d(W1,W2) ≤ %u(W1,W ) + %s(W,W2) ≤ Cθ%u(Y1, Y2)θ + Cθ%
s(Z1, Z2)θ

≤ 2Cθ(max{%u(Y1, Y2), %s(Z1, Z2)})θ,
where %s, %u denote the induced distances in the stable and unstable local manifolds,
respectively. Hence hX is θ-Hölder. The proof that h−1

X is θ-Hölder is analogous.
Finally, since {VX}X∈Φ is an open cover of the compact set Φ each having the

same dimension ds + d, we can select a finite subcover and by stability of box
dimension we obtain the claimed property dimB(Φ) = ds + d. This finishes the
proof. �
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