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Abstract

English. We provide an equivalent characterisation for the existence of one-dimensional
irrational rotation factors of conservative torus homeomorphisms that are not eventually
annular. It states that an area-preserving non-annular torus homeomorphism f is semi-
conjugate to an irrational rotation Rα of the circle if and only if there exists a well-defined
speed of rotation in some rational direction on the torus, and the deviations from the con-
stant rotation in this direction are uniformly bounded. By means of a counterexample,
we also demonstrate that a similar characterisation does not hold for eventually annular
torus homeomorphisms.

1 Introduction

The question of irrational rotation factors, that is, the existence of a semiconjugacy or
conjugacy to an irrational rotation of the circle, is a classical problem in dynamical systems
theory. An equivalent formulation is to ask for the existence of continuous eigenfunctions
of the associated Koopman operator with irrational eigenvalues. Typically, this issue is
addressed by using the powerful tools of KAM-theory, which even yield smooth conjugacies
(‘smooth linearisation’). The price to pay for this, however, is the requirement of strong
assumptions concerning the smoothness of the considered systems and the arithmetic
properties of the involved rotation numbers. Moreover, this approach is mostly restricted
to systems which are small perturbations of the underlying rotations.

At the same time, the very first result relating non-linear dynamics to irrational cir-
cle rotations is the celebrated Poincaré Classification Theorem, which states that an
orientation-preserving homeomorphism of the circle is semiconjugate to an irrational rota-
tion if and only if its rotation number is irrational [1]. It is remarkable that this statement
draws strong conclusions from purely topological assumptions, and no restrictions on the
rotation number other than its irrationality are needed. The fact that the existence of
full conjugacies cannot generally be expected in a topological setting is well-known and
demonstrated by classical examples of Denjoy [2].

Even 130 years after Poincaré’s contribution, similar results in this direction are quite
rare. In recent years, however, there has been substantial progress on ‘topological lin-
earisation’ in a number of situations and system classes, including skew-products over
irrational rotations [3], mathematical quasicrystals [4], reparametrisations of irrational
flows [5], area-preserving torus homeomorphisms [6] and dynamics on circle-like continua
[7]. Most importantly, some general pattern and methods start to emerge. In particular,
a common element in most of the proofs is the identification of a suitable dynamically
defined partition of the phase space carrying a circular order structure.

Our aim here is to push forward this line of research by providing a more or less com-
plete description of the situation concerning the existence of one-dimensional irrational
rotation factors of area-preserving homeomorphisms of the two-torus. For the non-annular
case we provide an equivalent characterisation in terms of rotational behaviour, whereas in
the eventually annular case we show that an analogous statement is not valid. This com-
plements a previous result in [6], which treats the existence of two-dimensional rotation
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factors. Here, we note that a periodic point free area-preserving torus homeomorphism is
annular if there exists an essential (but not fully essential) invariant continuum or, equiv-
alently, an essential invariant open annulus. It is eventually annular if it has an annular
iterate. The general definitions are given in Section 2 below. In the eventually annular
case, the dynamics of the respective iterate of f can be embedded in a compact annulus.
This situation is quite different from the non-annular case,1 where the dynamics truly
involve the full topology of the torus. Annular homeomorphisms have been extensively
studied in own right (see, for example, [8, 9, 10]) and significant information concerning
their dynamical behaviour is available. However, as we exemplify in Section 4, the ques-
tion of irrational rotation factors is more intricate than in the non-annular case and does
not have a similar solution.

Given a homeomorphisms f of the two-torus T2 “ R2{Z2, we denote its lift to R2 by
F . We say v “ pp, qq P Z2zt0u is reduced if gcdpp, qq “ 1 and call w P Z2 complementary if
detpw, vq “ 1. Suppose that for some reduced integer vector v we have F pz`vq “ F pzq`v
for all z P R2. Note that this property is independent of the choice of the lift. Moreover,
when f is homotopic to the identity, this holds for all reduced integer vectors. The rotation
interval of F in the direction of v is given by

ρvpF q “
č

nPN

ď

měn

KpF,mq ,

where KpF,mq “ txFmpzq ´ z, vy{m | z P R2u. It is always a compact interval [11]. If
ρvpF q “ tαu for some α P R and moreover there exists a constant C ą 0 such that

|xFnpzq ´ z, vy ´ nα| ď C

for all n P N and z P R2, then we say f has bounded deviations (from the constant rotation)
in the direction of v. Denote the rotation by α P R on T1 by Rα. Then our main result
reads as follows.

Theorem 1.1. Suppose f is a non-annular area-preserving homeomorphism of T2. Then
f is semiconjugate to an irrational rotation Rα on T1 if and only if there exists a reduced
integer vector v and a positive integer k such that ρvpF q “ tα{k}v}2u and f has bounded
deviations in the direction of v.

Suppose that f is homotopic to the identity and there exist a vector ρ “ pα, βq P R2

and a constant C ą 0 such that

|Fnpzq ´ z ´ nρ| ď C

for all n P N and z P R2. In this case, we say f is a pseudorotation (has a unique rotation
vector) with uniformly bounded deviations. If ρ is totally irrational, then Theorem 1.1
can be applied twice to obtain a semiconjugacy to the irrational rotation by ρ on the
two-torus. This is precisely the statement of Theorem C in [6]. However, we actually use
[6, Theorem C] in the proof of Theorem 1.1, in order to treat exactly the above-mentioned
situation. The new ingredient we provide is a complementary argument that addresses
the cases where deviations are only bounded in one direction, or where f is homotopic
to a Dehn twist. This part also works under the weaker assumption of nonwandering
dynamics and is stated as Theorem 3.3. The proof is based on the concepts of strictly
toral dynamics and dynamically essential points developed in [12].

Section 2 collects all the required preliminaries and provides an elementary, but crucial
lemma on strictly toral dynamics. The proof of Theorem 1.1 is given in Section 3, and in
Section 4 we provide a simple counterexample showing that the statement of Theorem 1.1
is false in the eventually annular case.
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European exchange program BREUDS. TJ was supported by the German Research Coun-
cil (Emmy-Noether grant OE 1721/2-1). FT was partially supported by CNPq grant
3004474/2011-8 and Fapesp 2011/16265-8.

1In the context of this note, we use the term ‘non-annular’ is the sense of ‘not eventually annular’.
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2 Definitions and preliminaries

2.1 Circloids. Let S be a two-dimensional manifold. A continuum A Ď S is called
annular, if it is the intersection of a nested sequence of annuli An such that each An`1

is essential in An (not contained in a topological disk D Ď An.) An equivalent definition
is to require that A has an annular neighbourhood A which it separates into exactly two
connected components, both of which are again homeomorphic to the open annulus. We
say A is essential if this annular neighbourhood A is essential in S. We call an annular
continuum C Ď S with annular neighbourhood A a circloid, if it does not contain a strictly
smaller annular continuum which is also essential in A. Note that C may contain a non-
essential annular continuum as a subset, for example when it has non-empty interior.

A compact set A Ď A “ R ˆ T1 is essential if AzA has two unbounded connected
components. In this case, we denote the component which is unbounded to the right by
U

`pAq and the one unbounded to the left by U
´pAq. Note that if A Ď A is an essential

annular continuum, then AzC “ U
´pCqYU

`pCq. Further, we let U`´pAq “ U
´pBU`pAqq

and U
´`pAq “ U

`pBU´pAqq, and define the same notions for longer alternating sequences
of the symbols ´ and ` in the analogous way. This yields a simple procedure to obtain
essential circloids from arbitrary essential compact sets.

Lemma 2.1 ([6, Lemma 3.2]). Suppose A Ď A is compact and essential. Then

C
`pAq “ AzpU`´pAq Y U

`´`pAqq and C
´pAq “ AzpU´`pAq Y U

´`´pAqq

are both essential circloids.

Given two essential circloids C,C 1 Ď A, we write C ă C 1 if C 1 Ď U
`pCq and C ď C 1

if C 1 Ď U
`pCq Y C. Further, we write rC,C 1s “ AzpU´pCq Y U

`pC 1qq and pC,C 1q “
U

`pCq X U
´pC 1q. We will need the following elementary observation.

Lemma 2.2. If C ď C 1 and C ‰ C 1, then pC,C 1q is non-empty.

Proof. Suppose for a contradiction that pC,C 1q is empty. Then, since U
´pC 1q XU

`pCq “
H, the set C˚ “ AzpU´pC 1q Y U

`pCqq is an essential annular continuum. However,
C ď C 1 implies that U

´pCq Ď U
´pC 1q and U

`pC 1q Ď U
`pCq. Therefore C˚ is contained

both in C and C 1, and by minimality of circloids amongst annular continua, with respect
to inclusion, we obtain C˚ “ C “ C 1.

2.2 Strictly toral dynamics. An open set U Ă S is called inessential if every loop
whose image lies in U is homotopically trivial in S, otherwise U is essential. A general
set E Ă S is called inessential if it has an inessential neighborhood, otherwise E is said
to be essential. Note that for subcontinua of A, this coincides with the terminology used
above. A set E Ď T2 whose complement is inessential is called fully essential. An open set
U Ď T2 is called annular if it is neither inessential, nor fully essential. This is equivalent
to saying that the union of U with the inessential components of its complement is a
topological open annulus. If U is open and i : Π1pUq Ñ Π1pT2q is the natural inclusion of
its first homotopy group into the first homotopy group of T2, then U is inessential if and
only if the image of i is trivial, U is fully essential if and only if i is onto, and U is annular
if and only if the image of i is homomorphic to Z. Note that, if U is a connected fully
essential set, then π´1pUq is connected, and that any two open fully essential subsets of
T2 must intersect.

Given a homeomorphism f : T2 Ñ T2, we say that x P T2 is an inessential point for
f or that x is a dynamically inessential point if there exists a neighborhood U of x such
that

Ť
iPZ f

ipUq is inessential, otherwise x is called a dynamically essential point. The
set of dynamically inessential points is denoted by Ine(f) and is open. Its complement is
denoted by Ess(f). If f is nonwandering, then x is an inessential point if and only if it is
contained in some periodic open topological disk. By Brouwer’s theory, it follows that

Lemma 2.3. If f is nonwandering and Ine(f) is not empty, then f has a periodic point.

We say a homeomorphism f of the two-torus is annular if there existsM ą 0, an integer
vector v P Z2 and a lift F of f such that, for any x P R2 and any n P N, |xFnpxq ´x, vy| ă
M. It is eventually annular if it has an annular iterate. Recall that we say f is non-annular
if it is not eventually annular. As stated above, if f is area-preserving and has no periodic
points, then f is annular (eventually annular) if and only if f has an invariant (periodic)
essential open annulus [13, Proposition 3.9]. A homeomorphism f : T2 Ñ T2 is said to
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be strictly toral or to have strictly toral dynamics if, for all n P N, fn is not annular and
Fix(fn) is an inessential set. The following is immediate.

Lemma 2.4. If f is nonwandering and non-annular for all n P N, then every essential
periodic open set is fully essential.

An important piece in the understanding the behavior of essential points is to under-
stand the boundedness properties of the dynamics. We have

Lemma 2.5. Suppose f is a torus homeomorpihsm for which no power of f is a pseudo-
rotation with uniformly bounded deviations. Then for any fundamental domain D Ă R2,
any lift F of f , and any K ą 0, there exists n ą 0 such that FnpDq has diameter larger
than K.

Proof. Fix a lift F of f , and first consider the case where f is not homotopic to a periodic
homeomorphism. Then there exists some simple closed curve α : r0, 1s Ñ T2 such that, if
rα is a lift of α to R2, then limnÑ8 }Fnprαp0qq´Fnprαp1qq} “ 8, and so for any fundamental
domain D the diameter of FnpDq is not uniformly bounded.

Now consider the case where f is homotopic to a periodic homeomorphism, in which
case there exists some n0 such that g “ fn0 is homotopic to the identity, and let G “ Fn0 .
If g is not a pseudo-rotation, then there exists z1, z2 in R2 and rotation vectors ρ1, ρ2 with
ρ1 �“ ρ2 such that lim n Ñ 8Gnpziq´zi

n
“ ρi, i P t1, 2u. Since both points can be taken in

the same fundamental domain but }Gnpz1q ´Gnpz2q} “ }Fnn0pz1q ´ Fnn0pz2q} diverges,
the result holds.

Now assume g is a pseudo-rotation. Then there exists ρ such that limnÑ8
Gnpzq´z

n
“ ρ

for all z P R2. Given w P R2, let Dwpn, zq “ xGnpzq ´ z ´ nv,wy. In other words,
Dw denotes the deviation from the rigid rotation in the w direction. [13, Lemma 3.2]
shows that, for every w P R2zt0u, there exists points yw,` and yw,´ such that, for all n P
N, Dwpn, yw,`q ą ´1, Dwpn, yw,´q ă 1, and we may assume that both points belong toD.
If D is a fundamental domain with diameter R, and if g does not have uniformly bounded
deviations, there exists a unit vector w0, n0 ą 0 and z P D such that |Dw0

pn0, zq| ą
K `R` 2, and so either xGnpzq ´Gnpyw0,`q, w0y “ xFnn0pzq ´ Fnn0pyw0,`q, w0y ă ´K
or xGnpzq ´Gnpyw0,´q, w0y “ xFnn0pzq ´ Fnn0pyw0,´q, w0y ą K.

The following proposition is the main new result of this subsection. Its proof is inspired
by those of Theorem 8 and Proposition 9 of [14].

Proposition 2.6. Suppose f is a strictly toral nonwandering torus homeomorphism and
that no power of f is a pseudo-rotation with bounded deviations. Then for any neighbour-
hood U of an essential point x there exists n P N such that U Y fnpUq is essential.

Proof. By maybe taking a subneighborhood, we can assume that U is inessential and
contained in B1{2pxq. Let us fix a connected component rU of π´1pUq. Since f is strictly
toral, every invariant or periodic essential set is fully essential and invariant, and since
x is an essential point, this implies that O “

Ť
iPZ fpUq is fully essential and invariant.

Therefore there exists simple closed curves α1, α2 : T1 Ñ T2 whose images lie in O and
which generate the fundamental group of T2. This implies that the connected components
of the complement of π´1pα1Yα2q are uniformly bounded. Note also that for each point z
in π´1pα1 Yα2q, there exists some integer iz and some vz P Z2 such that z P F iz p rUq ` vz.

Let D Ă R2 be a fundamental domain, and consider the connected set D1 which is the
union of D with all connected components of the complement of π´1pα1 Yα2q intersecting
D. Then D1 is a bounded set, and its boundary is contained in π´1pα1 Y α2q. Let R be
larger than the diameter of D1. By compactness, one can find integers ij , 1 ď j ď k, and
integer vectors vj , 1 ď j ď k such that BD1 Ă

Ťk

j“1
F ij p rUq ` vj , and

Ťk

j“1
F ij p rUq ` vj is

connected. Since no power of f is a pseudo-rotation with uniformly bounded deviations,
by Lemma 2.5 there exists some n ą 0 such that the diameter of FnpDq is larger than
kpk`1qR. This implies that the diameter of

Ťk

j“1
F ij`np rUq`vj is greater than kpk`1qR

and thus, for some j0 ď k, the diameter of F ij0
`np rUq ` vj0 is larger than pk ` 1qR.

But this implies that F ij0
`np rUq ` vj0 intersect at least k ` 2 integer translates of

D1, and so F ij0
`np rUq ` vj0 must intersect at least k ` 1 integer translates of BD1. Let

wl, 1 ď l ď k ` 1 be vectors in Z2 such that F ij0
`np rUq ` vj0 intersects BD1 ` wl for

each l. As each copy BD1 ` wl is covered by the k sets F ij p rUq ` vj ` wl, there exists
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wl1 �“ wl2 and some j1 ď k such that F ij0
`np rUq ` vj0 intersects both F ij1 p rUq ` vj1 `wl1

and F ij1 p rUq ` vj1 ` wl2 .

This implies that F ij0
`n´ij1 p rUq`vj0 ´vj1 intersects both rU`wl1 and rU`wl2 . There-

fore, the connected components of π´1
`
f ij0

`n´ij1 pUq Y U
˘
do not project injectively on

T2 and so f ij0
`n´ij1 pUq Y U is an essential set.

3 Proof of Theorem 1.1

We start with the “only if”-direction. We identify the fundamental group Π1pTdq of the
d-dimensional torus with Zd and denote the action of a continuous map ψ : Td Ñ Tk

on the fundamental groups by ψ˚ : Π1pTdq Ñ Π1pT kq. In the following, if h : T2 Ñ T1

semiconjugates a torus homeomorphism f to Rα and H and F are lifts, then we implicitly
assume these to be chosen such that H semiconjugates F to x ÞÑ x ` α on R.

Lemma 3.1. Suppose a homeomorphism f of the two-torus is semiconjugate to an irra-
tional rotation Rα on T1 via the factor map h : T2 Ñ T1. Then h˚Π1pT2q Ñ Π1pT1q is
given by u Ñ kxu, vy for some reduced integer vector v and a positive integer k. More-
over, we have f˚pvKq P tvK,´vKu, ρvpF q “ tα{k}v}2u and f has bounded deviations in
the direction of v. In addition, if w is complementary to vK, then f˚pwq “ w ` mvK for
some m P Z.

Proof. First, suppose for a contradiction that h˚ “ 0 and let H : R2 Ñ R1 be a lift of h.
Then supzPR2 |Hpzq| ă 8. However, since HpFnpzqq “ Hpzq ` nα, this contradicts the
fact that α ‰ 0. Hence, the kernel of h˚ is homomorphic to Z and generated by some
reduced integer vector ṽ, so if we let v “ ṽK we have h˚puq “ kxu, vy for some k P Zzt0u.
By replacing v with ´v if necessary, we may assume k ą 0. Let w be a reduced integer
vector complementary to vK and A “ pw, vKq P SLp2,Zq. Then A induces a linear torus
homeomorphism φA with lift ΦA : z ÞÑ Az, and h̃ “ h˝φA semiconjugates f̃ “ φ´1

A ˝f ˝φA

to Rα. Since h̃˚ “ h˚ ˝ A and A sends p1, 0q to w and p0, 1q to vK, h̃˚ sends p1, 0q to
k and p0, 1q to zero. This implies that h̃ is homotopic to the map z ÞÑ kπ1pzq mod 1.
By replacing the circle by a k-fold covering and Rα by Rα{k, we may assume that h̃ is

homotopic to π1 and semiconjugates f̃ to Rα{k.

Let F̃ and H̃ be lifts of f̃ , h̃, again chosen such that H̃ semiconjugates F̃ to the trans-
lation by α{k on R. The fact that h̃ is homotopic to π1 implies that C “ supzPR2 |H̃pzq ´
π1pzq| ă 8. This further yields

|π1pF̃npzq ´ zq ´ nα{k| “

“ |π1pF̃npzqq ´ H̃pF̃npzqq ` H̃pF̃npzqq ´ H̃pzq ´ nα{kloooooooooooooooomoooooooooooooooon
“0

`H̃pzq ´ π1pzq|(3.1)

ď |π1pF̃npzqq ´ H̃pF̃npzqq| ` |H̃pzq ´ π1pzq| ď 2C .

Applied to n “ 1, this means in particular that |π1pF̃ p0, 0q ´ F̃ p0, lqq| “ l|π1pf̃˚p0, 1qq| ď
4C for all l P N, so that π1pf˚p0, 1qq “ 0. Hence, p0, 1q is an eigenvector for the action of
f̃˚. Since f̃ is a homeomorphisms and thus f̃˚ has to permute reduced integer vectors,
it must send p0, 1q either to itself or to p0,´1q. Thus f˚pvKq P tvK,´vKq. Similarly, we
have |π1pF̃ pl, 0q ´ l ´ F̃ p0, 0q| ď 4C for all l P N, which implies that π1pf̃˚p1, 0qq “ 1, so
f̃˚p1, 0q “ p1,mq for some m P Z. Therefore f˚pwq “ w ` mvK.

Finally, (3.1) directly implies that f̃ has rotation number α{k and bounded deviations
in the direction of p1, 0q. Going back to the original coordinates, we obtain that F “
ΦA ˝ F ˝ Φ´1

A has a well-defined speed of rotation and bounded deviations orthogonal to

Ap0, 1qt “ ut, and the rotation number in this direction is α{k ¨ xw,uKy
}u}2

“ α{k}u}2 (see

also [6, Proof of Proposition 2.1]). This proves the statement.

By choosing vK and a complementary vector w as a basis of Z2, we can thus determine
the possible homotopy types of f .

Corollary 3.2. If a torus homeomorphisms f is semiconjugate to an irrational rotation
of the circle, then the action f˚ : Z2 Ñ Z2 is conjugate to a linear transformation given

by a matrix of the form

ˆ
˘1 m

0 1

˙
with m P Z.
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In order to proof the converse direction, we may assume by means of a linear coordinate
change that v “ p1, 0q. If we let A “ R ˆ T1 and denote by pF : A Ñ A the respective lift
of f , then due to the bounded deviations in the v-direction we have

(3.2)
ˇ̌
ˇπ1

´
pFnpzq ´ z

¯
´ nα

ˇ̌
ˇ ď C

for some constant C ě 0. Suppose that some iterate fp of f has a well-defined rotation
number and bounded deviations also orthogonal to v. Since we exclude the eventually
annular case, this means that ρvK pF pq “ tβu for some β P R which is not rationally related
to α [6, Proposition 3.9]. It is easy to see that this can neither happen if f is orientation-
reversing nor if it is homotopic to a Dehn-twist. Thus, in the light of Corollary 3.2, f
has to be homotopic to the identity. In this case, the existence of a semiconjugacy to the
two-dimensional rotation by ρ “ pα, βq on T2 follows directly from [6, Theorem C].

Hence, it remains to treat the case no iterate of f is a pseudorotation with bounded
deviations. As we have mentioned, the argument which we will apply here only requires
f to be nonwandering. Note that if h semiconjugates f to Rα{k and τ pxq “ kx mod 1,
then τ ˝h semiconjugates f to Rα. Hence, in order to complete the proof of Theorem 1.1,
it suffices to show the following statement.

Theorem 3.3. Suppose f is a nonwandering non-annular torus homeomorphism and
ρpF q Ď tαu ˆ R for some α P RzQ. Moreover, assume that f has bounded deviations
in the direction of p1, 0q, but no iterate of f is a pseudorotation with uniformly bounded
deviations. Then f is semiconjugate to the irrational rotation Rα on T1.

Proof. Due to (3.2), the sets Ar “
Ť

nPZ
pFnptr ´ nαu ˆ T1q are compact, and it is easy

to check that they satisfy F pArq “ Ar`α and Ar`1 “ T pArq, where T : A Ñ A, px, yq ÞÑ
px` 1, yq. Moreover, these relations carry over to the circloids Cr “ C

`pArq. In addition,
the monotonicity of the construction implies Cr ď Cs whenever r ď s. We now define

H : A Ñ R , z ÞÑ suptr P R | z P U
`pCrqu .

Then H ˝F pzq “ suptr P R | F pzq P U
`pCrqu “ suptr P R | z P U

`pCr´αqu “ Hpzq`α.
In the same way, one can see that H ˝T “ T ˝H . Hence, H projects to a map h : T2 Ñ T2

that satisfies h ˝ f “ Rα ˝ h. If h is continuous, then it follows immediately from the
minimality of Rα that h is also onto. Thus, it only remains to check the continuity of h.

In order to do so, however, it suffices to prove that the circloids Cr Ď A with r P R are
pairwise disjoint. This fact is shown on [6, page 615] (Construction of the semi-conjugacy),
and we refrain from repeating the argument here. Thus, in order to complete the proof,
it remains to show the disjointness of the circloids.

To that end, let r1 ă s1 and suppose without loss of generality that s1 ´ r1 ď 1. Let
r “ p2r1 ` s1q{3 and s “ pr1 ` 2s1q{3. If Cr “ Cs, then Ct “ Cr for all t P pr, sq, and we
may choose t of the form t “ r` pα´ q for suitable integers n,m. Then Cr “ Cr`pα´q “
T´q ˝ pF ppCrq, which implies that ρvpF q “ tp{qu, contradicting the irrationality of α.

Hence, we have Cr ‰ Cs, and due to Lemma 2.2 we can find an open disk pU Ď pCr, Csq.
Let U “ πp pUq. According to Proposition 2.6, there exists an integer n P N such that
fnpUq Y U is essential. This implies in particular that fnpUq X U ‰ H, so that we can
choose m P N such that pV “ T´m ˝ pFnp pUq intersects pU .

Since pU Ď pCr, Csq and pV Ď pCr`nα´m, Cs`nα´mq, this is only possible if |nα´m| ă
ps1 ´ r1q{3. This yields that pU Y pV Ď pCr1 , Cs1 q, and as a consequence pV cannot intersect
any translates of pU . Since UYfnpUq is essential, this means pUY pV is essential as well. We
thus obtain an essential open set between Cr1 and Cs1 which separates the two circloids,
so that these must be disjoint. Since r1 ă s1 were arbitrary, this completes the proof.

4 A counterexample in the annular case

In this section we sketch the construction of an area-preserving transitive annular ir-
rational pseudo-rotation of the 2-torus with uniformly bounded deviations that is not
semi-conjugated to any irrational rotation.

To begin, Besicovitch in [15]( see also [16]) has shown the existence of a transitive
homeomorphism g : T1 ˆR, which is a skew-product over an irrational rotation, that is, g
is of the form gpx, yq “ px`α, y`φpxqq with α irrational. We claim that the only possible



Irrational rotation factors for conservative torus homeomorphisms 7

semi-conjugacies between g and an irrational rotation are the trivial ones, given by the
projection onto the first coordinate composed with a uniform rotation. Indeed, if px0, y0q
is a point with dense forward orbit, then for any px, yq there exists a sequence pnkqkPN

such that gnkpx0, y0q converges to px, yq and, in particular, nkα converges to x ´ x0. If
h : T1ˆR Ñ T1 is the map semiconjugating g to a rotation Rα, then hpx0, y0q´px´x0q “
limkÑ8 R

nk
α hpx0q “ limkÑ8 hpgnkpx0, y0qq “ hpx, yq and so hpx, yq ´ hpx0, y0q “ x ´ x0.

Now, let ψ : T1 ˆ R Ñ T1 ˆ p´1, 1q be defined as

ψpx, yq “ px` sinplog |y| ` 1q,
y

|y| ` 1
q.

One can easily verify that, if f is the homeomorphism of T1 ˆ p´1, 1q given by f “ ψ ˝ g ˝
ψ´1, then f can be extended to a homeomorphism of the closed annulus A “ T1 ˆ r´1, 1s
by defining fpx, 1q “ px ` α, 1q and fpx,´1q “ px ` α,´1q. It is also immediate that f
has uniformly bounded deviations from the rigid rotation by α, and that the ψ image of
any fiber txu ˆ R accumulates on all boundary points of A.

Now, if by contradiction there exists h that semi-conjugates f to the rotation Rα, then
h ˝ ψ semi-conjugates g to Rα. This implies that, for each θ P T1, h´1pθq must contain
ψpx,Rq for some x, and by continuity h´1pθq must contain both boundaries of A, which
is impossible since the image of a fiber of the semiconjugation must be disjoint from its
iterates.
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[3] T. Jäger and J. Stark. Towards a classification for quasiperiodically forced circle homeomor-
phisms. J. Lond. Math. Soc., 73(3):727–744, 2006.

[4] J. Aliste-Prieto. Translation numbers for a class of maps on the dynamical systems arising
from quasicrystals in the real line. Ergodic Theory Dyn. Syst., 30(02):565–594, 2010.
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