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Abstract

We study a standard two-parameter family of area-preserving torus diffeomor-
phisms, known in theoretical physics as the kicked Harper model, by a combination
of topological arguments and KAM-theory. We concentrate on the structure of the
parameter sets where the rotation set has empty and non-empty interior, respectively,
and describe their qualitative properties and scaling behaviour both for small and
large parameters. This confirms numerical observations about the onset of diffusion
in the physics literature. As a byproduct, we obtain the continuity of the rotation set
within the class of Hamiltonian torus homeomorphisms.

1 Introduction
The kicked Harper map is a parameter family of torus diffeomorphisms that is given
by

fα,β : T2 → T2 , (x, y) 7→ (x+ α sin(2π(y + β sin(2πx))), y + β sin(2πx)) ,
(1.1)

with parameters α, β ∈ R. It is the composition of a vertical and a horizontal skew
shift: if we let

vβ(x, y) = (x, y + β sin(2πx)) , (1.2)

hα(x, y) = (x+ α sin(2πy), y) , (1.3)

then
fα,β = hα ◦ vβ . (1.4)

This also allows to see the maps fα,β are all Hamiltonian torus diffeomorphisms, by
which we mean that they are homotopic to the identity, preserve area and have zero
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Lebesgue rotation number. As (1.1) presents one of the simplest ways to produce
explicit examples of Hamiltonian torus diffeomorphism, one can see it as a stan-
dard family that may serve as a reference for the study of their dynamics and rota-
tional behaviour. Moreover, this model has been associated to a variety of problems
in theoretical physics, including the motion of magnetic field lines, wave-particle
interactions, dynamics of particle accelerators or laser-plasma coupling, and both
its classical and quantum dynamics have been studied with computational methods
by a variety of authors (see, for example [HH84, LKFA90, Leb98, SA97, SA98,
Shi02, Zas05, Zas07] and references therein). In the context of KAM-theory (1.1)
provides a natural example of area-preserving diffeomorphisms that do not satisfy
the classicial twist condition. This fact gives rise to a number of phenomena that
have been studied, again in theoretical and computational physics, under the names
of meandering KAM-tori, separatrix reconnection or the appearence of twin chains
(e.g. [HH84, Leb98, SA97, Shi02]). The existence and breakup of a shearless KAM-
torus3 has been related to the onset of diffusion and global chaos in the kicked Harper
map [Shi02].

The purpose of this article is to study this model from the viewpoint of rotation
theory, which provides a rigorous framework for the description of (some of) the
above-mentioned phenomena. The main topological invariant in this theory is the
rotation set of a torus homeomorphism f : T2 → T2, homotopic to the identity and
with lift F : R2 → R2, which has been introduced by Misiurewicz and Ziemian in
[MZ89] as

ρ(F ) =

{
ρ ∈ R2

∣∣∣∣ ∃ni ↗∞, zi ∈ R2 : ρ = lim
i→∞

(Fni (zi)− zi) /ni
}
. (1.5)

As a basis for our further investigations, we first show the continuity of the map
(α, β) 7→ ρ(Fα,β). This follows from a general result on the continuous dependence
of rotation set for Hamiltonian homeomorphisms (Theorem 3.1 below). The onset
of diffusion and global chaos in (1.1) then corresponds to the appearence of rotation
sets with non-empty interior, and we aim at a better understanding of this transition
by studying the two complementary parameter regions with empty and non-empty
interior of the rotation set, as shown in Figure 1. The analysis of these sets is sim-
plified by the fact that the maps Fα,β have a number of symmetries, which directly
translate into symmetries of the rotation sets. In particular, the latter are invariant
under the reflexions along the horizontal and vertical axis (see Section 2). Combined
with the convexity of the rotation set, this implies the following

Proposition 1.1. For any α, β ∈ R, the rotation set ρ(Fα,β) is either

(i) reduced to {(0, 0)};
(ii) a non-degenerate segment contained in the horizontal or vertical axis, with

midpoint in the origin;

(iii) a set with non-empty interior.

We denote by Fα,β the canonical lift of fα,β to R2 and let

E =
{

(α, β) ∈ R2 | int(ρ(Fα,β)) = ∅
}
,

N =
{

(α, β) ∈ R2 | int(ρ(Fα,β)) 6= ∅
}
,

(1.6)

3A KAM-torus that has an extremal rotation number, so that no twist condition (shear) can be satisfied
in any of its neighbourhoods.
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so that N = R2 \ E . The following result provides a theoretical basis for the nu-
merical approximations of these sets in Figure 1 (explained below) and thereby also
provides a justification for similar computations in [Shi02]. By |I|, we denote the
length of an interval I ⊆ R. By πi : R2 → R we denote the canonical projection to
the i-th coordinate, and we use the same notation for other product spaces like T2 or
A = T1 × R.

Proposition 1.2. For i = 1, 2, we have |πi(ρ(Fα,β))| > 0 if and only there exists

some z ∈ R2 and n ∈ N such that |πi
(
Fnα,β(z)− z

)
| ≥ 1.

Due to the symmetries mentioned above, this immediately entails

Corollary 1.3. We have int(ρ(F )) 6= ∅ if and only if there exist z1, z2 ∈ R such that
|πi
(
Fnα,β(zi)− zi

)
| ≥ 1 for i = 1, 2.

Since this allows us to detect rotation sets with nonempty interior by considering
the absolute displacement of orbits instead of asymptotic averages, this provides a
simple numerical procedure to approximate the setsN and E . In order to obtain Fig-
ure 1, for each parameter (pixel), a test point is chosen and iterated 4 million times.
If the maximal observed displacement is greater than 1 in both directions, the pixel
is painted white. The process is repeated for a large number of test points. The white
region can thus be seen as a (lower) approximation of N . In the red region, which
corresponds to E , the color scheme corresponds to the maximum of the observed
displacements between 0 and 1.

The fact that the rotation set has empty interior in a neighborhood of the coor-
dinate axes (removing the origin) is easily explained by the KAM phenomenon: if
one parameter is fixed (and nonzero) and the other is small enough, the dynamics in
a neighborhood of one of the axes is a small perturbation of an integrable twist map,
so that KAM tori persist and force the boundedness of orbits in the transverse direc-
tion. Hence, for any α 6= 0 there exists β0 > 0 such that {(α, β) : |β| ≤ β0} ⊂ E .
A quantitative refinement of this statement will be given in Theorem 1.8 below. In
contrast, when both parameters are large, one can guarantee the creation of rota-
tional horseshoes, leading to a rotation set with nonempty interior. This entails the
following

Proposition 1.4. If |α| ≥ 1/2 and |β| ≥ 1/2 then (α, β) ∈ N .

The transition between the diffusive and the non-diffusive regime is a subtle prob-
lem that is still poorly understood, even in the classical Chirikov-Taylor standard
family [Chi79, CS08]. A non-trivial qualitative feature of the sets E and N that can
be observed in Figure 1 is the fact that a thin cusp of N seems to extend along the
diagonal towards the origin. This is confirmed by the following results.

Theorem 1.5. We have ρ(Fα,β) = {(0, 0)} if and only if (α, β) = (0, 0).

Due to further symmetries of the rotation set on the diagonal explained in Sec-
tion 2, this directly implies

Corollary 1.6. We have int(ρ(Fα,α)) = ∅ if and only if α = 0.

Hence, the diagonal is indeed contained in N . Further, the following statement
confirms the cusp-like shape of N near the origin.
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Figure 1: The parameter region E on which the rotation set of fα,β has empty interior is shown in
red, whereas the white region corresponds to parameters with non-empty interior rotation set. The
red colour scheme indicates the amount of vertical movement (below the diagonal) or horizontal
movement (above the diagonal). Dark red corresponds to very small displacements, whereas light
red indicates displacments close to the critical threshold of one.

Theorem 1.7. Suppose that λ ∈ [0, 1). Then

α0(λ) = inf{α > 0 | (α, λα) ∈ N} (= inf{α > 0 | (λα, α) ∈ N}) > 0 .

(Note that the alternative definition of α0 in brackets is justified by the symmetries
of the rotation set discussed in Section 2.) Moreover, α0 is uniformly bounded away
from zero on any compact subinterval of [0, 1).

Turning away from the vicinity of the origin, we then focus on large parameters
near the coordinate axes. Here, Figure 2 reveals both a periodic structure combined
with a decay in height of the region E as the parameter α tends to infinity. Both the
periodicity and the scaling behaviour are explained in [Shi02] on a heuristic level, by
rescaling the maps Fα,β in a suitable neighbourhood of the critical line R × {1/4}
and relating them to a quadratic approximation, given by the standard non-twist map
(see [SA97, SA98]). As the argument relies on some a priori assumptions that are
hard to verify, it is difficult to convert it into a rigorous proof. However, we can at
least use these ideas to obtain analytic estimates for the scaling behaviour. Given
α ∈ R, we let

β−(α) = inf{β > 0 | (α, β) ∈ N} and β+(α) = sup{β > 0 | (α, β) ∈ E} .
(1.7)

Then we have

Theorem 1.8. There exists constants 0 < c < C such that
c√
α
≤ β−(α) ≤ β+(α) ≤ C√

α
(1.8)
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for all α ≥ 1.

Figure 2: The picture shows the part of the parameter set E that lies below the diagonal, with α
between 0 and 4. It reveals a seemingly periodic structure, combined with a decay in the height of
the region when α becomes large.

The paper is organised as follows. In Section 2, we collect a number of basic
facts about the kicked Harper map, including a description of its symmetries, the lo-
cal analysis of canonical fixed points and a proof of Proposition 1.4. Section 2.2 deals
with the diffusion threshold provided by Proposition 1.2. The continuous dependence
of the rotation set of Hamiltonian torus diffeomorphisms is proved in Section 3. Sec-
tion 4 provides the proofs of Theorems 1.5 and 1.7 and their corollaries, describing
the cusp of N along the diagonal. The proof of Theorem 1.8 about the scaling be-
haviour for large parameters is then given in Section 5. We conclude with Section 6,
presenting some additional remarks on the family as well as a few interesting ques-
tions for further work.
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of AK was supported by a Mercator Fellowship of the German Research Council
(DFG-grant OE 538/9-1). The stay of FT was made possible by a Willhelm Friedrich
Bessel Award of the Alexander von Humboldt Foundation. TJ acknowlegdes support
by a Heisenberg grant of the German Research Council (DFG-grant OE 538/4-1).

2 Basic observations on the kicked Harper map
The aim of this section is to collect a number of basic observations about the sym-
metries and the fixed and periodic points of the maps fα,β given by (1.1) and their
lifts Fα,β . In order to simplify notation, we let

s(x) = sin(2πx) ,

so that
Fα,β(x, y) = (x+ αs(y + βs(x)), y + βs(x)) .

We further let

Hα(x, y) = (x+ αs(y), y) and Vβ(x, y) = (x, y + βs(x)) .

Then we have Fα,β = Hα ◦ Vβ , which allows to see that Fα,β is area-preserving and
also extends to a biholomorphic diffeomorphism of C2.



6 Tobias Jäger, Andres Koropecki, Fabio Armando Tal

2.1 Symmetries
The maps fα,β and their lifts Fα,β have a number of natural symmetries, which di-
rectly translate to symmetries of their rotation sets ρ(Fα,β) and the map (α, β) 7→
(ρ(Fα,β)). In order to describe these, we make use of the following basic facts con-
cerning the transformation of rotation sets.

By Hom(X) we denote the space of homeomorphisms of a topological space
X . Further we let π : R2 → T2 = R2/Z2 be the canonical projection. Given a lift
H of an element of Hom(T2), denote by [H] the unique element of GL(2,Z) such
that z 7→ H(z) − [H](z) is Z2-periodic. Suppose that F,G are lifts of elements of
Hom0(T2), where Hom0(T2) = {f ∈ Hom(T2) | f is homotopic to the identity}.
Then (compare [Kwa92, Lemma 1]),

F ◦H = H ◦G =⇒ ρ(F ) = [H]ρ(G) . (2.1)

To properly state the symmetries, consider the following linear involutions:

S1 : (x, y) 7→ (−x, y), S2 : (x, y) 7→ (x,−y), S : (x, y) 7→ (−x,−y), D : (x, y) 7→ (y, x)

We will also use the general fact that ρ(F−1) = Sρ(F ). Futher, note that

Hα ◦D = D ◦ Vα and Vβ ◦D = D ◦Hβ. (2.2)

which, noting that H−1α = H−α and V −1β = V−β , implies

Fα,β ◦D = D ◦ F−1−β,−α (2.3)

Moreover,

Hα ◦ Si = Si ◦H−α and Vβ ◦ Si = Si ◦ V−β for i ∈ {1, 2}, (2.4)

which implies
Fα,β ◦ Si = Si ◦ F−α,−β for i ∈ {1, 2}, (2.5)

and, since S = S1 ◦ S2, we also have

Fα,β ◦ S = S ◦ Fα,β. (2.6)

Reversibility. For any G ∈ {Hα ◦ S1, Hα ◦ S2, S1 ◦ Vβ, S2 ◦ Vβ}, one has

Fα,β ◦G = G ◦ F−1α,β, (2.7)

and G2 = id, as one can directly verify using (2.4). This property of a map being
conjugated to its inverse by means of an involution is often referred to as reversibility
of the dynamics.

Reflection symmetries. First note that from (2.6) and (2.1) we see that

ρ(Fα,β) = Sρ(Fα,β) = ρ(F−1α,β). (2.8)

On the other hand, since H−α = H−1α and V−β = V −1β , one easily verifies that

Hα ◦ F−α,−β = F−1α,β ◦Hα.
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In particular, since [Hα] = id, the above equation and (2.1) imply

ρ(F−α,−β) = ρ(F−1α,β)
(2.8)
= ρ(Fα,β). (2.9)

From (2.5) and (2.1) we se that ρ(Fα,β) = Siρ(F−α,−β) for i ∈ {1, 2}, so the above
implies

ρ(Fα,β) = Siρ(Fα,β) for i ∈ {1, 2}. (2.10)

In other words, the rotation set is symmetric with respect to the two coordinate axes.

Remark 2.1. Together with the convexity of the rotation set and the fact that ρ(Fα,β)
always contains the origin (since the origin is a fixed point), the symmetry with
respect to the two coordinate axes implies Proposition 1.1.

We also have, using (2.3),

ρ(Fα,β)
(2.1)
= Dρ(F−1−β,−α)

(2.8)
= Dρ(F−β,−α)

(2.9)
= Dρ(Fβ,α). (2.11)

Rotation symmetry. Consider the rotation R : (x, y) 7→ (−y, x) by π/2. Noting
that R = S1D, we see that

ρ(Fα,β)
(2.10)

= S1ρ(Fα,β)
(2.11)

= S1Dρ(Fβ,α) = Rρ(Fβ,α). (2.12)

In particular, ρ(Fα,α) = Rρ(Fα,α) so that for parameters in the diagonal α = β the
rotation set is invariant under rotations by angle π/2.

Remark 2.2. The above symmetries, in particular (2.11) and (2.12), imply that the
set N is symmetric with respect to the diagonal and to rotations by π/2 around the
origin, which allows us to restrict our attention to parameters 0 ≤ β ≤ α below the
diagonal in order to analyze the structure of the parameter sets N and E .

Remark 2.3. The previous analysis relies only on the fact that s is an odd function.
Therefore, it also applies if one replaces s by any 1-periodic odd continuous function.

Translation symmetries. From the fact that s(x + 1/2) = −s(x), we obtain some
additional symmetries. Consider the translations

T1 : (x, y) 7→ (x+ 1/2, y), T2 : (x, y) 7→ (x, y + 1/2)

Then it is easily checked that

Fα,β ◦ T1 = T1 ◦ Fα,−β and Fα,β ◦ T2 = T2 ◦ F−α,β. (2.13)

Consequently (2.1) implies

ρ(Fα,β) = ρ(Fα,−β) = ρ(F−α,β) = ρ(F−α,−β) . (2.14)

Note that the last equality can be derived from the first one, applied to F−α,β , or
similarly from the fact that if we let T = T1 ◦ T2 then we have

Fα,β ◦ T = T ◦ F−α,−β (2.15)

by (2.13). We also note that these facts only depend on the fact that s(x + 1/2) =
−s(x) and will remain true if s is replaced by any other function with this property.
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2.2 A threshold for diffusion

As we saw in Proposition 1.1, if ρ(Fα,β) has empty interior it is contained in one of
the coordinate axes. It is known that when the rotation set is a nondegenerate interval,
the displacement in the direction perpendicular to the interval is uniformly bounded
(see [Dav16, GKT14]). In our case, the reversibility of the dynamics allows us to
obtain a direct proof and an explicit bound.

Proposition 2.4. If z ∈ R× {0} and Fnα,β(z) ∈ R× {k/2} for some k, n ∈ Z, then
F 2n
α,β(z) = z+ (0, k). In particular, (0, k2n) ∈ ρ(Fα,β). An analogous property holds

in the horizontal direction.

Proof. Suppose z = (t, 0) and Fnα,β(z) = (t′, k/2). Letting G = Hα ◦ S2, one has
G(z) = z, so by the reversibility equation (2.7) we deduce

G(Fnα,β(z)) = F−nα,β(G(z)) = F−nα,β(z),

and noting that s(−k/2) = 0 we see that

G(Fnα,β(z)) = Hα(S2(t
′, k/2)) = (t′,−k/2) = Fnα,β(z)− (0, k).

Therefore F−nα,β(z) = Fnα,β(z) − (0, k), which yields z = F 2n
α,β(z) − (0, k), and the

claim follows. The analogous claim for the horizontal direction is proven similarly
using G = S1 ◦ Vβ .

Corollary 2.5. If πi(ρ(Fα,β)) = {0}, then |πi(Fnα,β(z)− z)| < 1 for all z ∈ R2 and
n ∈ Z.

Proof. We consider the case i = 2, the case i = 1 is analogous. Assuming that there
exist z0 ∈ R2 and n ∈ Z such that |π2(Fnα,β(z0) − z0)| ≥ 1, we need to prove that
π2(ρ(Fα,β)) 6= {0}.

Since z 7→ π2(F
n
α,β(z)−z) attains the value 0, by the intermediate value theorem

we may choose z0 such that |π2(Fnα,β(z0)− z0)| = 1. Moreover, since Fα,β(−z) =
−Fα,β(z) we may assume π2(Fnα,β(z0)−z0) = 1 (replacing z0 by−z0 if necessary).
In addition, we may assume that z0 ∈ R × (−1, 0] since z0 can be replaced by any
of its integer translates.

Consider first the case where z0 ∈ R × (−1/2, 0], so that Fnα,β(z0) ∈ R ×
(1/2, 1]. Then the image by Fnα,β of the half-planeH0 = {(x, y) : y ≤ 0} is bounded
from above and intersects {(x, y) : y > 1/2}, which implies that its boundary
∂Fnα,β(H0) = Fnα,β(R × {0}) also intersects {(x, y) : y > 1/2}. Since the line
R × {0} contains fixed points of Fα,β , we see that Fnα,β(R × {0}) also intersects
{(x, y) : y < 1/2}, and therefore it intersects the line R× {1/2}. Thus the previous
proposition implies that π2(ρ(Fα,β)) 6= {0}.

In the case that z0 ∈ R×(−1,−1/2], an analogous argument shows thatFnα,β(R×
{−1/2}) intersects R×{0}, and the previous proposition again implies π2(ρ(Fα,β)) 6=
{0}, completing the proof.
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2.3 Local analysis for irrotational fixed points
For parameters α, β 6= 0, the map Fα,β has, up to integer translations, exactly four
fixed points: (0, 0), (0, 1/2), (1/2, 0) and (1/2, 1/2). In order to analyze their stabil-
ity, note that the Jacobian of Fα,β is given by

DFα,β(x, y) =

(
4π2αβ cos(2πy′)) cos(2πx) + 1 2πα cos(2πy′))

2πβ cos(2πx) 1

)
(2.16)

where y′ = y + b sin(2πx). At the origin, this simplifies to

DFα,β(0, 0) =

(
4π2αβ + 1 2πα

2πβ 1

)
. (2.17)

If αβ 6= 0, the eigenvalues are

λ
(0,0)
1 = 2π2αβ − 2π(αβ(π2αβ + 1))1/2 + 1 < 1 , (2.18)

λ
(0,0)
2 = 2π2αβ + 2π(αβ(π2αβ + 1))1/2 + 1 > 1 , (2.19)

with eigenvectors

v
(0,0)
1 =

(
−((αβ(π2αβ + 1))1/2 − παβ)/β

1

)
and (2.20)

v
(0,0)
2 =

(
((αβ(π2αβ + 1))1/2 + παβ)/β

1

)
(2.21)

In (1/2, 1/2) the Jacobian is

DFα,β(0, 0) =

(
4π2αβ + 1 −2πα
−2πβ 1

)
. (2.22)

It has the same eigenvalues, λ
( 1
2
, 1
2
)

1 = λ
(0,0)
1 and λ

( 1
2
, 1
2
)

2 = λ
(0,0)
2 , but with eigenvec-

tors

v
( 1
2
, 1
2
)

1 =

(
((αβ(π2αβ + 1))1/2 − παβ)/β

1

)
and (2.23)

v
( 1
2
, 1
2
)

2 =

(
−((αβ(π2αβ + 1))1/2 + παβ)/β

1

)
(2.24)

Thus (0, 0) and (1/2, 1/2) are hyperboic fixed points. The remaining two fixed
points are (0, 1/2) and (1/2, 0). The Jacobian at those points is(

1− 4π2αβ ±2πα
∓2πβ 1

)
. (2.25)

Note that its trace is 2− 4π2αβ which can only be equal to 2 if either α or β is 0. In
particular the fixed points are elementary, meaning that 1 is not an eigenvalue of the
Jacobian.
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2.4 Rotational periodic orbits and a priori lower bounds on
the rotation set
Suppose that α, β ≥ n for some n ∈ N. Choose x, y ∈ [0, 1] with s(x) = n/β and
s(y) = n/α. Then it is easily checked that

Fα,β(±x,±y) = (x± n, y ± n)

so that {(n, n), (−n, n), (n,−n), (−n,−n)} ⊆ ρ(Fα,β). Hence, by convexity of
the rotation set [−n, n]2 ⊆ ρ(Fα,β). In the particular case α = β = n, we even
obtain the equality ρ(Fn,n) = [−n, n]2, as the maximal displacement in the x- and
y-direction is exactly n.

Similarly, if α, β ≥ 1/2, we can choose x, y ∈ [0, 1] such that s(x) = 1/2β
and s(y) = 1/2α. Then we obtain that Fα,β(x, 0) = Fα,β(x, 1/2) and further
Fα,β(x, 1/2) = Fα,β(x, 1) (note that s(0) = s(1/2) = 0). Consequently (0, 1/2) ∈
ρ(Fα,β), and in the same way we obtain (0,−1/2), (1/2, 0), (−1/2, 0) ∈ ρ(Fα,β).
Hence, the rotation set contains the square Q = {(x, y) ∈ R2 | |x| + |y| ≤ 1/2} in
this case, and in particular has non-empty interior. This proves Proposition 1.4. As a
consequence, this means that we can restrict to parameters in the 1/2-neighbourhood
of the coordinate axes when analyzing the sets N and E . We note also that, when
α = β = 1/2, then one can verify that 〈F 2

1/2,1/2(x, y)− (x, y); (
√

2/2,
√

2/2)〉 ≤ 1.
This, together with the symmetries of the rotation set, imply that in this case the
rotation set is exactly Q.

3 Continuity of the rotation set for Hamiltonian
lifts of torus homeomorphisms
In this section we prove a general result which in particular implies the continuous
dependence of the rotation set of Fα,β on the parameters (α, β). Recall that a home-
omorphism f of the two-torus is said to be Hamiltonian if it is homotopic to the
identity, preserves the Lebesgue measure λ on T2 and has a lift F : R2 → R2 with
zero Lebesgue rotation vector, that is,

ρλ(F ) =

∫
[0,1]2

F (z)− z dλ(z) = (0, 0) . (3.1)

The lift F is called a Hamiltonian lift in this case. We denote by Hom0(T2) the space
of torus homeomorphism homotopic to the identity and let

Homap
0 (T2) =

{
f ∈ Hom0

(
T2
)
| f is area-preserving

}
.

The respective spaces of lifts will be denoted by Ĥom0(T2) and Ĥom
ap

0 (T2), re-
spectively. Further, we denote by Ham0(T2) the space of Hamiltonian torus homeo-
morphisms and by Ĥam0(T2) the space of their lifts that satisfy (3.1). Note that we
have

Ham0(T2) ⊆ Homap
0 (T2) ⊆ Hom0(T2) ,

and the same inclusions hold for the respective lift spaces. The statement on the
continuity of the rotation set then reads as follows.
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Theorem 3.1. The mapping
F 7→ ρ(F )

is continuous on Ĥam0(T2) (with respect to the C0-topology on Ĥam0(T2) and the
Hausdorff metric on the space of compact subsets of R2).

In order to prove Theorem 3.1, let us first explain how existing results can be
used to reduce the problem to the case when F ∈ Ĥam0(T2) has a rotation set of the
form

ρ(F ) = {tu | a ≤ t ≤ b} , where u ∈ Z2 and a < 0 < b . (3.2)

When ρ(F ) is a singleton, continuity follows from the upper semi-continuity of
the rotation set [MZ89]. Likewise, when ρ(F ) has non-empty interior continuity of
ρ in F follows from [MZ91, Theorem B]. Thus, we can assume that ρ(F ) is a line
segment, which contains the origin due to the Hamiltonian condition ρλ(F ) = 0.
Moreover, [CT15, Theorem 70] implies that this segment is exactly of the form (3.2).

Hence, suppose from now on that F ∈ Ĥam0(T2) satisfies (3.2) and fix ε > 0.
Let v, v′ be two rational vectors (i.e., in Q2,) in ρ(F ) which are ε-close to the end-
points. If we can show that v, v′ ∈ ρ(G) for any sufficiently small perturbation g of
F in Ĥam0(T2), then by the convexity of the rotation set the whole segment between
v and v′ will be contained in ρ(G). This yields the lower semicontinuity of ρ in F .
Together with the upper semicontinuity from [MZ89] this gives the continuity of ρ
in F . Therefore, it suffices to prove the following statement, which can be applied to
two pairs of rational points w, v and w′, v′ chosen close enough to the endpoints of
ρ(F ).

Proposition 3.2. Suppose that rotation set of F ∈ Ĥam0(T2) is a line segment
containing w ∈ ρ(F ) ∩ Q2 \ {0}. Then, for each v ∈ Q2 lying in the interval
Iw = {tw | t ∈ (0, 1)}, there exists a neighborhood U of F in Ĥam0(T2) such that
every G ∈ U satisfies v ∈ ρ(G).

Proof. Since ρ(Fn) = nρ(F ), we can replace F by an adequate power to assume
that v and w have integer coordinates. Note that since n depends on (the denomina-
tors of) v and w, so does the neighbourhood U chosen below.

Hence, we assume v, w ∈ Z2. Since F is a lift of an area-preserving homeo-
morphism of T2 and its rotation set is a segment containing w, the main result of
[Fra95] implies that there exists z0 such that F (z0) = z0 + w. Fix 0 < ε < 1/4
such that F (Bε(z0)) has diameter smaller than 1/4. Let U be a neighbourhood of
F in Ĥam0(T2) with the property that every element G ∈ U is such that G(z0) ∈
Bε(z0 + w) and G(Bε(z0)) has diameter smaller than 1/4. We claim that v ∈ ρ(G)
for any such G. To show this, we consider an area-preserving homeomorphism h
defined on Bε(z0 + w) which is the identity in the boundary of the disk and such
that h(G(z0)) = z0 + w. We extend h to a homeomorphism H ∈ Ĥam0(T2) by
H(z) = h(z−ν)+ν if z ∈ Bε(z0+w)+ν for some ν ∈ Z2, andH(z) = z otherwise.
One easily verifies that H ∈ Ĥam0(T2), and G′ := HG satisfies G′(z0) = z0 + w.

Thus w ∈ ρ(G′), and since G′ ∈ Ĥam0(T2), we also have 0 ∈ ρ(G′). By
convexity this implies Iw ⊂ ρ(G′). It then follows from [Fra95, Prop. 2.1] that there
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exists z1 ∈ R2 such that G′(z1) = z1 + v. If z1 ∈ Bε(z0), then

‖G′(z0)−G′(z1)‖ = ‖(z0 +w)− (z1−v)‖ ≥ ‖w−v‖−‖z0−z1‖ ≥ 1− ε > 3/4 ,

which contradicts the fact that G′(Bε(z0)) = G(Bε(z0)) has diameter at most 1/4.
Thus z0 /∈ Bε(z0), and the same argument applied to its integer translations show that
z1 /∈

⋃
u∈Z2 Bε(z0) + u. Since G′ coincides with G outside of this set, we conclude

that G(z1) = G′(z1) = z1 + v. In particular v ∈ ρ(G) as claimed.

Remark 3.3. We note that the above argument can also be modified in order to
give an alternative and elementary proof of [MZ91, Theorem B]. In order to show
the persistence of a rotation vector v ∈ int(ρ(F )) ∩ Q2, it suffices to choose three
rational vectors w1, w2, w3 ∈ ρ(F ) such that v is contained in the interior of their
convex hull and to repeat the above construction simultaneously for three fixed points
z1, z2, z3 realising w1, w2, w3, respectively.

4 The cusp along the diagonal
In this section, we concentrate on parameters on or close to the diagonal, with the
aim to verify (in a qualitative way) the cusp form of the set N in this region. First,
we note from (2.12) that the rotation set of ρ(Fα,α) is invariant under the rotation
by angle π/2, and therefore it cannot be a line segment of positive length. Hence,
Corollary 1.6, which states that the rotation set always has non-empty interior on the
diagonal (excluding the origin) is an immediate consequence of Theorem 1.5.

4.1 Absence of irrotational dynamics for (α, β) 6= 0: Proof
of Theorem 1.5
A torus homeomorhism f ∈ Hom0(T2) is called irrotational if it has a lift F that
satisfies ρ(F ) = {(0, 0)}. In this case, we also say the lift F is irrotational. The aim
of this section is to show that for the kicked Harper map this case can only occur
when α = β = 0, which is the statement of Theorem 1.5.

When α = 0 and β 6= 0 or vice versa, then it is obvious that ρ(Fα,β) is a
non-degenerate segment. Hence it remains to consider the case αβ 6= 0. For such
parameters, as discussed in Section 2, the fixed points of Fα,β are all elementary. As
Fα,β extends to a biholomorphic mapping of C2, we know due to Ushiki’s Theorem
[HK02, p. 289] that Fα,β does not admit any saddle connections between hyperbolic
fixed points. Therefore, Theorem 1.5 is a consequence of the following more general
result on irrotational Hamiltonian torus homeomorphisms.

Theorem 4.1. Suppose that f is a Hamiltonian torus diffeomorphism with a lift
F ∈ Ĥam0(T2) such that ρ(F ) = {(0, 0)}. Then F either has a non-elementary
fixed point, or it admits a saddle connection between hyperbolic fixed points.

Proof. Assume that every fixed point of F is elementary. Since ρ(F ) = {(0, 0)},
every fixed point of f is lifted to a fixed point of F , and since elementary fixed points
are isolated, f has finitely many fixed points. This implies that the fixed point set of
f is inessential (contained in some topological open disk in T2), and one may apply
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[CT15, Corollary I] which implies that F has uniformly bounded displacements, that
is, we have

sup
z∈R2,n∈Z

‖Fn(z)− z‖ < ∞ . (4.1)

Let H0 be the half-plane R × (−∞, 0), and consider H1 =
⋃
n∈Z F

n(H), which is
F -invariant and Γ1-invariant where Γ1(x, y) = (x+ 1, y). Let H be the union of H1

with all bounded connected components of the complement of H1. Then H is still
F - and Γ1-invariant, bounded from above, and moreover it is a simply connected
open set. Let U0 denote the projection of H to the annulus A = T1 ×R ' R2/〈Γ1〉.
The map F induces a homeomorphism F̃ : A → A which leaves U0 invariant and
commutes with the map Γ̃2 : A → A induced by the corresponding translation Γ2 :
(x, y) 7→ (x, y + 1) of R2.

We note that F̃ preserves some finite non-atomic measure µ of full support. This
can be seen by noting that the sets Ak = Γk2(Γ2(U0) \ U0) are bounded, invariant,
and F̃ preserves the measure µk given by the Lebesgue measure restricted to the
interior of Ak. Note that the boundary of each Ak is a closed nowhere dense set,
which implies that

⋃
k∈Z int(Ak) is dense. Since each µk is finite (and µk(Ak) does

not depend on k), letting µ =
∑

k∈Z 2−|k|µk we obtain a finite F̃ -invariant measure
of full support.

Let S2 = A ∪ {+∞,−∞} be the usual compactification of A by topological
ends (where +∞ is the end on which U does not accumulate), and U = U0 ∪
{−∞}, which is an open topological disk. Extending F̃ (by fixing ±∞) we have an
orientation-preserving homeomorphism of S2 which leaves invariant the open topo-
logical disk U . The fact that the original map is irrotational implies that the prime
ends rotation number of F̃ in U is 0 (this follows, for instance, from [FLC03, Props.
5.3-5.4], or more directly from [Mat10]). Moreover, in a neighborhood of ∂U , the
fixed points of F̃ are elementary (because, as elements of A, they are projections
of fixed points of F ). Since F̃ also preserves a finite measure of full support in S2,
it follows from Theorem 1.4 of [KN18] that ∂U either contains a degenerate fixed
point or consists entirely of hyperbolic fixed points and saddle connections.

4.2 Pinching at the origin: Proof of Theorem 1.7
We already know from Corollary 1.6 that the setN of parameters where the rotation
set has nonempty interior includes {(α, α) : α 6= 0}, and therefore a neighborhood
of the latter set (sinceN is open). On the other hand, Figure 1 suggests that the set of
parameters with nonempty interior (in the first quadrant) has a cusp shape at the ori-
gin; that is, every line through the origin other than the diagonal contains an interval
around the origin where the rotation set has empty interior. This is confirmed by The-
orem 1.7. We slightly reformulate the latter and prove the following statement. Note
that due to the symmetries described in Section 2, it suffices to consider parameters
below the diagonal.

Theorem 4.2. For every 0 ≤ λ < 1 there exists α0 = α0(λ) > 0 such that for every
α ∈ [0, α0(λ)] the rotation set of Fα,λα has empty interior. Moreover, α0 : [0, 1) →
(0,+∞) can be chosen continuous.

Remark 4.3. What we actually show is that if α is chosen smaller than α0(λ), then
there exist horizontal invariant closed curves (KAM-curves) for Fα,λα. This implies
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that the rotation set is contained in the horizontal axis.

Proof of Theorem 4.2. Consider the vector field

W λ,α(x, y) = (s(y + αλs(x)), λs(x)) ,

and denote the corresponding flow by Φλ,α. If we perform Euler’s method for the
numerical integration of W λ,α, then the map we obtain for time step α is exactly

Fα,λα(x, y) = (x, y) + αW λ,α(x, y) .

Let nα = b1/αc. Although we have a dependence between the vector field W λ,α

and the time step α, standard estimates on the convergence of the Euler method (as,
for instance, provided by Theorem 7.3 in the appendix) imply that the C∞-distance
between Fnαα,λα and the time-one map Φλ,α

1 converges to zero as α → 0. (Note here
that there exist uniform bounds for all derivatives of the vector fields W λ,α with
α ∈ [0, 1].) As at the same time Φλ,α

1 clearly converges to Φλ,0
1 , this means that for

α sufficiently small the map Fnαα,λα is C∞-close to Φλ,0
1 .

However, the flow Φλ = Φλ,0 with λ ∈ [0, 1] is easy to analyse. It is a conser-
vative flow, which lifts a flow of T2 with two hyperbolic singularities at (0, 0) and
(1/2, 1/2) and two elliptic ones at (0, 1/2) and (1/2, 0). When λ = 1, the hyperbolic
singularities have saddle connections as shown in Figure 4.2(a). When λ < 1, one
may easily verify that these connections are replaced by homoclinic connections as
in Figure 4.2(b). The region complementary to the elliptic islands on T2 consists of
two essential horizontal annuli A1 and A2, and the dynamics on the Ai is integrable,
that is, all its orbits are essential (horizontal) circles. Moreover, by the smoothness
of the flow, and since each point is these annuli is periodic, the function assigning
to each point its period is also smooth and constant on each invariant circle. Note
that the set of invariant circles has a natural topology where it is homeomorphic to
an open interval of R. Finally, since the boundary of these annuli contain singulari-
ties, the function assigning to each circle the period of its point cannot be constant
and thus must be strictly monotone in some sub-interval. Therefore one may find a
smaller annulus A0 ⊂ A1 foliated by invariant circles such that Φλ

1 is an integrable
twist map on A0 By the KAM theorem [Her83], any map sufficiently C∞-close to
Φλ
1 will have horizontal invariant circles. In particular, if α is small enough, Fnαα,λα

has some horizontal invariant circle C, and therefore so has Fα,λα. Hence, ρ(Fα,λα)
must be contained in a horizontal segment. This proves that for α small enough,
ρ(Fα,λα) has empty interior.

Finally, we note that due to the stability of the KAM-circles, we may choose
α0 such that it is uniformly bounded away from 0 on any compact subinterval of
[0, 1). Reducing α0 further if necessary, we can therefore choose it continuously as
a function [0, 1)→ (0,+∞).

5 Large parameters: Proof of Theorem 1.8
Recall that

β−(α) = inf{β > 0 | int(ρ(Fα,β)) 6= ∅} , (5.1)

β+(α) = sup{β > 0 | int(ρ(Fα,β)) = ∅} , (5.2)
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A1

A2

(a) (b)

Figure 3: Schematic picture of the (projections of the) vector fields W λ,0 and the corre-
sponding flows Φλ on the torus: (a) the case λ = 1; (b) the case λ < 1, with the two
invariant annuli A1 and A2, bounded by homoclinic saddle-connections (in green).

and Theorem 1.8 asserts that both these quantities are of order 1/
√
α for large α, in

the sense that there exists constants 0 < c < C such that

c√
α
≤ β−(α) ≤ β+(α) ≤ C√

α
. (5.3)

We will treat the lower and upper estimate in two separate lemmas.

Lemma 5.1. There exists a constant C > 0 such that β+(α) ≤ C√
α

for all α ≥ 1/2.

We note that whenever α ≥ 1/2, we have that [−1/2, 1/2]×{0} ⊆ π1(ρ(Fα,β)).
Hence, in order to find an upper bound on β+(α) it suffices to show that the rotation
set is not contained in the horizontal axis for any β larger than the desired bound.

In order to do so, we will use a geometric argument that essentially relies on the
fact that the horizontal shift Hα induces a strong shear in most parts of the phase
space. As the proof does not use any specific properties of the kicked Harper model
and the construction may also be useful in other situations, we work in a slighly
more general setting. Consider homeomorphisms of T2 of the following type: Let
ϕ,ψ, : R → R be two continuous and 1-periodic functions. Let Hϕ, Vψ : R2 → R2

be given by

Hϕ(x, y) = (x+ ϕ(y), y) , (5.4)

Vψ(x, y) = (x, y + ψ(x)) , (5.5)

and define Fϕ,ψ = Hϕ◦Vψ (note that, with this notation, the Harper map Fα,β should
be denoted Fαs,βs). Given a 1-periodic continuous function γ : R→ R, let

Varγ(δ) = min
t∈R

(
max

x∈[t,t+δ]
γ(x)− min

x∈[t,t+δ]
γ(x)

)
be the minimal variation that the function γ has on an interval of length δ.
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Proposition 5.2. Let ϕ,ψ be such that minx∈R ψ(x) ≤ 0 < maxx∈R ψ(x) = β, and
such that there exists δ ≤ β/2 such that Varϕ(δ) ≥ 2. Then π2 (ρ(Fϕ,ψ)) ≥ β − δ.

Proof. Let α0 be the line segment joining (0, 0) to (1, 0). We will show by in-
duction that, for every n ≥ 1, there exists a curve αn ⊂ Fϕ,ψ(αn−1) such that
maxπ1(αn) −minπ1(αn) = 1 and αn ⊂ R × [n(β − δ), n(β − δ) + δ]. The last
property clearly implies the proposition, as it shows that there are points in α0 whose
vertical displacement after n iterations is ≥ n(β − δ).

Given n ≥ 1, suppose that αn−1 satisfies the inductive assumption (which is triv-
ial for α0) and let an−1 = minz∈αn π1(z). There exists some x0, x1 ∈ [an−1, an−1+
1] such that ψ(x0) = 0 and ψ(x1) = β. Note that, by the induction hypothesis, there
exists y0, y1 such that both (x0, y0) and (x1, y1) belong to αn−1, and

αn−1 ⊆ [an−1, an−1 + 1]× [(n− 1)(β − δ), (n− 1)(β − δ) + δ] .

Note further that Vψ(x0, y0) = (x0, y0) and δ ≤ β/2, so

π2(Vψ(x0, y0)) ≤ (n− 1)(β − δ) + δ ≤ n(β − δ) ,

and Vψ(x1, y1) = (x1, y1 + β), so

π2(Vψ(x1, y1)) ≥ (n− 1)(β − δ) + β = n(β − δ) + δ .

Moreover, Vψ(αn−1) is still contained in the strip [an−1, an−1+1]×R. One deduces
that there exists a sub-arc γ of Vψ(αn−1) contained in [an−1, an−1 + 1] × [n(β −
δ), n(β − δ) + δ] such that γ intersects both the upper and lower boundaries of this
rectangle.

Now, as Varϕ(δ) ≥ 2, we may find y′0, y
′
1 in [n(β − δ), n(β − δ) + δ] such that

ϕ(y′1)−ϕ(y′0) ≥ 2. Let x′0, x
′
1 be such that both (x′0, y

′
0) and (x′1, y

′
1) belong γ. Note

that
π1
(
Hϕ((x′0, y

′
0))
)
≤ an−1 + 1 + ϕ(y′0) ≤ an−1 + ϕ(y′1)− 1,

and
π1
(
Hϕ((x′1, y

′
1))
)
≥ an−1 + ϕ(y′1).

Moreover, Hϕ(γ) is contained in the strip R × [n(β − δ), n(β − δ) + δ]. Choosing
an = an−1 + ϕ(y′1) − 1 one deduces the existence of a subarc αn of Hϕ(γ) ⊂
Fϕ,ψ(αn−1) such that

αn ⊆ [an, an + 1]× [n(β − δ), n(β − δ) + δ]

and αn intersects both the left and right boundaries of this rectangle, proving the
induction assumption for n and thus the proposition.

Proof of Lemma 5.1. Let s(x) = sin(2πx) as before. Choose C1 > 0 such that
Vars(δ) > C1δ

2 for all δ > 0. Note that such a constant exists, since s is quadratic
at its critical points. We have that Varαs(δ) = αVars(δ). Therefore, if α ≥ 8

C1β2 ,
we get that Varαs(β/2) > 2. Taking C = 8

C1
, we get by Proposition 5.2 that if α ≥

C/β2, then ρ(Fα,β) = ρ(Fαs,βs) is not contained in R× {0}. Hence, (α, β) ∈ N in
this case, thus proving that β+(α) ≤ C/

√
α for all α ≥ 1/2.



Onset of diffusion in the kicked Harper model 17

Lemma 5.3. There exists a constant c > 0 such that for any α ≥ 1 we have that
β−(α) ≥ c/

√
α.

Proof. It will be convenient to consider the maps Gα,β = Vβ ◦Hα instead of Fα,β .
Note that since Gα,β = Vβ ◦ Fα,β ◦ V −1β , we have ρ(Fα,β) = ρ(Gα,β) and may
therefore replace Fα,β by Gα,β in the definition of β−(α) in 1.8. Further for any
α0 > 0 the restriction of Fα0,0 to R×[−1/8, 1/8] is a lift of the completely integrable
twist map fα0,0 on the annulus A obtained by projecting the corresponding strip
R × [−1/8, 1/8]. By the KAM theorem, fα0,0 has stable KAM-circles, and thus
fα,β has a horizontal KAM-circle whenever (α, β) is close enough to (α0, 0). By a
compactness argument, this guarantees that for each M > 0 there is a constant cM
such that β−(α) > cM > 0 whenever α ∈ [1,M ]. As a consequence, it will be
sufficient to prove the estimate of the lemma for large enough values of α.

Let A = T1 ×R and κ = 4π2 = |s′′(1/4)| and consider the parameter family of
annular diffeomorphisms Sα,β : A→ A lifted by

S̃α,β : R2 → R2 , (x, y) 7→ Vβ(x+ α− κy2, y) .

We note that this family is sometimes referred to as the standard non-twist map (e.g.
[SA98, SA98]). For each ε > 0 and α0 ∈ R, the restriction of the map Sα0,0 to
T1 × [ε, 1] is a completely integrable twist map and therefore has stable horizontal
KAM-circles. Moreover, we have Sα0+1,β = Sα0,β , so that α0 can be viewed as an
element of T1. Hence, by compactness we obtain that there exist constants b, ε0 > 0
and k0 ∈ N such that any smooth injective map G : A → A whose restriction
to A = T1 × [0, 1] is ε0-close to Sα0,0|A in the Ck0-metric for some α0 ∈ R has
horizontal KAM-circles.

Now, given α, β ∈ R, consider the rescaling

G̃α,β = Φα ◦Gα,β ◦ Φ−1α

of Gα,β , where Φα(x, y) = (x,
√
κα(y − 1/4)). Note that Φα ◦ Vβ = V√καβ ◦ Φα,

and therefore

G̃α,β = V√καβ ◦ Φα ◦Hα ◦ Φ−1α = V√καβ ◦ G̃α,0 .

Let Ĝα,β : A → A be the homeomorphism naturally induced by G̃α,β on A. Then
it can be checked that, due to the above rescaling, the maps Ĝα0+n,0|A converge to
Sα0,0|A as n → ∞ in the Ck-topology for any k ∈ N. (Note here that Ĝα0+n,0 6=
Ĝα0,0 for n ∈ N \ {0}, since the rescaling that is carried out before projecting to A
is different for the two maps.) Moreover, the convergence is uniform in α0 ∈ [0, 1].
Hence, there exists a constant M > 0 such that such that for any α > M the map
Ĝα,0|A is ε0/2-close to Sα,0|A in the Ck0-topology.

Further, there exists δ > 0 such that for any α ∈ R and β̃ ∈ (0, δ) the map
G̃α,β̃/

√
κα = Vβ̃ ◦ G̃α,0 is ε0/2-close to G̃α,0 in the Ck0-topology. As a consequence,

we obtain that for any β ∈ (0, δ/
√
κα) the map Ĝα,β|A is ε0/2-close to Ĝα,0|A,

and thus ε0-close to Sα,0|A in the Ck0-topology when α > M . By the above, this
means that Ĝα,β has invariant KAM-circles. However, as Ĝα,β is just a rescaling of
the projection ofGα,β to A, this means that the rotation set ofGα,β is confined to the
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Figure 4: More detailed look at the sets E and N with zoomed regions where nu-
merical estimates indicate the possibility of non-connectedness of the sets. The first
zoomed square corresponds approximately to the parameter region [0.915, 0.935] ×
[0.065, 0.085]. The second zoomed square corresponds approximately to the parameter
region [0.920, 0.921]× [0.069, 0.070].

horizontal axis, that is, ρ(Gα,β) ⊆ R × {0}. Letting c = min{δ/
√
κ, cM} (where

cM is the constant from the beginning of the proof) we conclude that β−(α) ≥ c/
√
α

for all α ≥ 1, as required.

6 Questions and final remarks
The kicked Harper map, by which we mean the whole parameter family (fα,β)α,β∈R,
shows a rich variety of different dynamical behaviours and phenomena. We believe
that its study as a paradigmatic example of smooth torus dynamics can be extremely
fruitful and may lead to general insights about torus dynamics and rotation theory
on surfaces that go well beyond the context of this particular example. With the
results presented above, we have merely scratched at the surface of a multitude of
intriguing open problems that can be investigated in this context. In the remainder of
this section, we collect a few directions in which future research on this topic may
be oriented.

6.1 Structure of the parameter regions
The aim for a better understanding of the structure of the parameter regions E andN
leads to a number of further questions concerning their qualitative and quantitative
properties. First of all, in analogy to the well-known problems in the study of Julia
sets in complex dynamics, one may ask

• Are the sets E and N connected? Are they locally connected?

As Figure 4 shows, even connectedness should not be taken for granted.
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Another problem that we leave open here is that of the seemingly periodic struc-
ture of the set E observed in Figure 2 (and described previously in [Shi02]). In math-
ematical terms, one may formulate it as follows. Let M2((x, y), t) = (x, ty)

Conjecture 6.1. The sequence An = M2((E ∩ [n, n + 1] × [0, 1]) − (n, 0),
√
n)

converges in Hausdorff distance to the set

A = {(α, β) ∈ [0, 1]2 | Sα,β admits unbounded orbits},

where Sα,β is the standard non-twist map introduced in the proof of Lemma 5.3.

Various further questions may be asked about the tongue structure that appears
in Figures 1 and 2. On a heuristic level, it seems plausible that the tongues of the
region N that reach into the region E should somehow correspond to ‘resonances’
appearing in the dynamics that make it easier to break all KAM-circles, so that dif-
fusion can take place. This should correspond to the appearence and disappearence
of certain periodic orbits. However, the precise mechanisms are not at all clear to
us. We refer to [HH84, Shi02, Leb98, LKFA90, Zas07] for more details and some
phenomenological descriptions.

6.2 Monotonicity properties
Another aspect that is not well-understood and prompts a multitude of questions is
that of the dependence of the rotation set on the parameters. Apart from the continuity
derived in Section 3, little is known. Specifically, one may ask about monotonicity
properties: when do 0 ≤ α ≤ α̃ and 0 ≤ β ≤ β̃ imply ρ(Fα,β) ⊆ ρ(Fα̃,β̃). For
instance, we have a natural upper bound ρ(Fα,β) ⊆ [−α, α]× [−β, β] on the rotation
set. However, while this upper bound grows monotonically with the parameters, the
same is not true in general for the rotation set itself.

One way to see this is to consider parameters α = 0 and β ∈ (0, 1). In this
case, we have ρ(F0,β) = {0} × [−β, β]. However, for any parameter pair (α, β) an
average vertical displacement of β is only possible if an orbit stays exactly on the
vertical line {1/4}×R, or converges to it. This is not possible for α ∈ (0, 1), so that
(0, β) /∈ ρ(Fα,β) in this case, and therefore ρ(F0,β) * ρ(Fα,β).

In contrast to this, numerical simulations based on [PPGJ17] suggest that the
rotation set behaves monotonically along the diagonal.

Conjecture 6.2. If 0 ≤ α ≤ α̃, then ρ(Fα,α) ⊆ ρ(Fα̃,α̃).

6.3 Mode-locking
A well-known and -studied phenomenon in the context of rotation theory is that of
mode-locking, which refers to the stability rotation numbers, vectors or sets under
perturbations of the system. In the context of torus dynamics, it was shown in [Pas14]
that there exists an open and dense subset of Hom0(T2) on which the rotation set is
locally constant and a rational polygon, and in [GK17] the same statement was shown
to hold when restricted to Homap

0 (T2). However, it is not clear if the analogous
statement is still true if one restricts to the parameter family (fα,β)α,β∈R, although
the recent results in [LCAZ15], showing that for any analytic one parameter family
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Gt ∈ Homap
0 (T2) the rotation set cannot strictly increase over a whole interval I ⊆

R (that is, ρ(Gs) ⊂ int(ρ(Gt)) cannot hold for all s < t in I), point in that direction.
So, the following questions are open.

• Is it true that there exists an open and dense setM ⊆ R2 such that the mapping
(α, β) 7→ ρ(Fα,β) is locally constant on M?

• Is it true that whenever the mapping (α, β) 7→ ρ(Fα,β) is locally constant, the
rotation set is a rational polygon?

• Is there an open and dense set A ⊆ R such that the mapping α 7→ ρ(Fα,α) is
locally constant and only has rational polygons as images on A.

In this context, we note that the numerical computation or approximation of ro-
tation sets is an intricate problem in itself, such that it is difficult to obtain numer-
ical evidence concerning the occurrence or density of mode-locking. We refer to
[PPGJ17] for details on the numerical aspects. Using the algorithm developed there,
it is possible to identify some specific mode-locked regions in the kicked Harper
family, for instance around parameters (α, β) = (0.66, 0.66).

6.4 Shape of rotation sets
Another general open problem in torus dynamics is that of the possible shapes of ro-
tation sets. Due to [MZ89], it is know that the rotation set of a torus homeomorphism
is always convex, and Kwapisz showed that every rational polygon (a polygon with
all vertices in Q2) are realised. Moreover, a few examples of non-polygonal rotation
sets have been described [Kwa95, BdCH16], but all of these only have a countable
number of extremal points. Hence, it is completely open if a set like the unit disk
may appear as the rotation set of a torus homeomorphism.

• Which sets do appear as rotation sets in the family (Fα,β)α,β∈R?

6.5 Phase space
Finally, questions that are typically studied in the context of the Arnol’d standard
family (of area-preserving twist maps) may equally be asked for the kicked Harper
model.

• Do elliptic islands exist for all/Lebesgue-almost all parameters α, β 6= 0.

• Conversely, are there parameters for which the kicked Harper map is topologi-
cally transitive/ergodic with respect to Lebesgue?

• What is the Lebesgue measure of the complement of the union of all KAM-
circles/elliptic islands?

6.6 Transverse foliation
A number of recent advances in surface dynamics have been based on the concept
of transverse foliations (Brouwer-Le Calvez foliations) and a related forcing theory
developed in [CT15]. As we have not made use of this theory, we refrain from going
into more detail here. However, for readers that are familiar with the topic, we want to
point out that the existence of a transverse foliation (which in general follows from
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Figure 5: Transverse foliation for the kicked Harper map with α, β 6= 0.

the work of Le Calvez in [LC05]) can be seen quite easily for the kicked Harper
model. If one considers the homotopy (ht)t∈[0,1] between the identity and fα,β given
by

ht : R2 → R2 , (x, y) 7→

{
(x, y + 2tβs(x)), 0 ≤ t ≤ 1/2

(x+ (2t− 1)αs(y + βs(x)), y + βs(x)) , 1/2 < t ≤ 1

then each path of this isotopy that connects a point (x, y) to its image under fα,β
consists of a vertical and a horizontal segment (possibly degenerate). Moreover, the
orientation of these segments is only determined by the quadrant of T2 in which the
segment starts. This allows to see that the oriented foliation shown in Figure 5 is
positively transverse to the dynamics, that is, the paths of the homotopy the leaves
of the foliation in a transverse way from left to right, for all parameters α, β 6= 0 at
the same time. The four common fixed points (0, 0), (1/2, 0), (0, 1/2), (1, 1) of the
kicked Harper maps are singularities of the foliation.

Appendix
Theorem 7.3 (Cr-convergence of Euler’s method). For each r ≥ 1 andM > 0 there
exists Cr = Cr(M) > 0 such that the following property holds. Let z 7→ V (z) be a
Cr+1 vector field (r ≥ 1) in Rn, and z0 ∈ Rn a point such that the corresponding
flow φt(z0) is defined for all t ∈ [0, 1], and assume that the Cr+1 norm of V (z) is at
most M for all z in the ε-neighborhood Uε of {φt(z0) : t ∈ [0, 1]}. Then the function
Gδ(z) = z + δV (z) satisfies

‖DrGnδ (z0)−Drφnδ(z0)‖ ≤ Crδ

for all 0 < δ < min{1, ε}/Cr and n ≤ b1/δc.

Sketch of the proof. Without loss of generality we assume ε < 1. Denote by Mr the
Cr norm of V in Uε. Iterating Gδ produces an Euler approximation of the solutions
of z′ = V (z), and we have the following well-known estimate for the error in Euler’s
method:

‖φnδ(z0)−Gnδ (z0)‖ ≤ δM0(e
M1δ(n+1) − 1),
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which holds for all n such that the right hand side is smaller than ε. In particular, if
C0 = M0(e

2M1 − 1) then

‖φnδ(z0)−Gnδ (z0)‖ ≤ C0δ

holds whenever δ < ε/C0 and n ≤ nδ. Thus the claim holds for r = 0.
To get a similar estimate for the derivatives, we will use the previous observations

in a new vector field. To avoid cumbersome notation with higher order derivatives,
we omit details about the spaces to which each object belongs; this should be clear
from context.

We will use the following notation:Dk
∗V (z) = (DV (z), D2V (z), . . . , DkV (z)).

Let Γk be a C∞ map such that if f, g : Rn → Rn are two Ck maps and h = f ◦ g,

Γk(D
k
∗f(g(z)), Dk

∗g(z)) = Dkh(z).

An explicit formula for Γk can be given (for instance Faa di Bruno’s formula).
Let u = (z, u1, . . . , ur), W0(u) = V (z),

Wk(u) = Γk(D
k
∗V (z), u1, . . . , uk)

and
W (u) = (W0(z),W1(z, u1), . . . ,Wr(z, u1, . . . , ur)).

Then it is easy to verify that the solution to

u′ = W (u) (7.1)

with initial condition u(0) = v(z) := (z, I, 0, . . . , 0) is

φtr(v(z)) = (φt(z), Dφt(z), . . . , Dr(φt(z)). (7.2)

Let Gr,δ(u) = u + δW (u) be the Euler approximation of the flow given by the
vector fieldW . IfU rε denotes the ε-neighborhood of {φtr(v(z0)) : t ∈ [0, 1]}, we then
know from the case r = 0 that there exists Cr > 0 such that whenever δ < ε/Cr and
n ≤ nδ, ∥∥∥φnδr (v(z0))−Gnr,δ(v(z0))

∥∥∥ ≤ Crδ. (7.3)

where Cr depends only on the C1 norm of W in U rε .
For t ∈ [0, 1] and 1 ≤ k ≤ r, there is a uniform bound

∥∥Dkφtr(v(z0))
∥∥ ≤ K

depending only on Mr. This can be seen noting (for instance from Faa di Bruno’s
formula) that

Γk(D
k
∗V (z), (u1, . . . , uk)) = Λk(D

k
∗V (z), u1, . . . , uk−1) +DV (z)uk,

where Λk is another (explicit) function, and applying Gronwall’s inequality for each
coordinate uk in (7.1) inductively. We leave these details to the reader.

This implies that any u ∈ U rε satisfies ‖ui‖ ≤ K + ε ≤ K + 1 for 1 ≤ i ≤ r.
Using this fact and the explicit form of W we see that the C1 norm of W in U rε is
bounded by a constant depending only on Mr+1. In particular the constant Cr above
depends only on Mr+1.
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Since the r-th coordinate of φnδr (v(z0)) is Drφnδ(z0), in view of (7.3) and (7.2),
to complete the proof it suffices to show that

Gnr,δ(v(z)) = (Gnδ (z), DGnδ (z), . . . , DrGnδ (z)). (7.4)

This clearly holds when n = 0 due to the defintion of v(z0); and for n ≥ 0

Gn+1
r,δ (v(z)) = Gr,δ(G

n
r,δ(v(z))) = Gnr,δ(v(z)) + δW (Gnr,δ(v(z))).

So assuming by induction that the claim holds for n, looking at the k-th coordinates
we get

Gn+1
r,δ (v(z))k = DkGnδ (z) + δΓk(G

n
δ (z), DGnδ (z), . . . DkGnδ (z)).

Using the definition of Γk, this is equal to

DkGnδ (z) + δDkV (Gnδ (z)) = Dk(Gδ(G
n
δ (z))) = DkGn+1

δ (z),

which proves the induction step. This completes the proof.
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